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Boolean Constraint Satisfaction Problems

CSP Post Schaefer QCSP #QCSP Galois FO Equality Classification Applications Résumé

Γ – a finite set of Boolean relations

Constraint: R(x1, . . . , xn) for R ∈ Γ, x1, . . . , xn propos. variables

Γ-formula: Conjunction of constraints over Γ

Example: R1-IN-3 =
{
(0, 0, 1), (0, 1, 0), (1, 0, 0)

}
.

Then: {R1-IN-3}-formulas = instances of 1-IN-3-SAT.

CSP(Γ):

Input: a propositional Γ-formula F

Question: Is F satisfiable?
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Comparing Complexities of CSPs

CSP Post Schaefer QCSP #QCSP Galois FO Equality Classification Applications Résumé

Goal: Determine the computational complexity of CSP(Γ) as a

function of Γ!

I Determine Γ0 such that CSP(Γ0) is NP-complete and conclude

that CSP(Γ) is NP-complete for all “harder”Γ as well.

I Determine Γ1 such that CSP(Γ1) is tractable and conclude that

CSP(Γ) is tractable for all “easier”Γ as well.

Need a way to compare complexity of CSP(Γ) for different Γ.
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Reductions

CSP Post Schaefer QCSP #QCSP Galois FO Equality Classification Applications Résumé

Question: When does CSP(Γ) reduce to CSP(Γ′)?

Answer: When using relations in Γ′ we can simulate (implement)

all relations in Γ.

Develop a reasonable notion of the class of relations that can be

implemented by Γ′.
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Relational Clones

CSP Post Schaefer QCSP #QCSP Galois FO Equality Classification Applications Résumé

Let 〈Γ〉 be the relational clone (or co-clone) generated by Γ, i.e.,

– 〈Γ〉 contains the equality relation and all relations in Γ.

– 〈Γ〉 is closed under primitive positive definitions, i.e.,

if φ is a 〈Γ〉-formula and

R(x1, . . . , xn) ≡ ∃y1 . . . y` φ(x1, . . . , xn, y1, . . . , y`)

then R ∈ 〈Γ〉.
(Such R are also called conjunctive queries over 〈Γ〉.)

〈Γ〉 is called the expressive power of Γ.
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If Γ ⊆ 〈Γ′〉 then CSP(Γ) ≤log
m CSP(Γ′)

CSP Post Schaefer QCSP #QCSP Galois FO Equality Classification Applications Résumé

Let F be a Γ-formula. Construct F ′ as follows:

I Replace every constraint from Γ by its defining existentially

quantified
(
Γ′ ∪ {=}

)
-formula.

I Delete existential quantifiers.

I Delete equality clauses and replace all variables that are

connected via a chain of equality constraints by a common new

variable (undirected graph accessibility problem).

F ′ is a Γ′-formula.

Then: F is satisfiable iff F ′ is satisfiable.
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Relational Clones and CSPs

CSP Post Schaefer QCSP #QCSP Galois FO Equality Classification Applications Résumé

I If Γ ⊆ 〈Γ′〉, then CSP(Γ) ≤log
m CSP(Γ′).

I If 〈Γ〉 = 〈Γ′〉, then CSP(Γ) ≡log
m CSP(Γ′),

i.e., the complexity of CSP(Γ) depends only on 〈Γ〉.

We only have to study co-clones in order to obtain a full

classification.

“Galois connection helps for satisfiability.”

What co-clones are there?
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Closure Properties of Relations

CSP Post Schaefer QCSP #QCSP Galois FO Equality Classification Applications Résumé

Let f : {0, 1}m → {0, 1}, R ⊆ {0, 1}n.

f ≈ R, if

f
(

f
(

f
(

f
(

If x1 = x1,1 x1,2 x1,3 · · · x1,n ∈ R

x2 = x2,1 x2,2 x2,3 · · · x2,n ∈ R
...

...
...

...
...

xm = xm,1 xm,2 xm,3 · · · xm,n ∈ R

)
=

)
=

)
=

)
=

then also z = z1 z2 z3 · · · zn ∈ R.

R is invariant under f . f preserves R.
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Let f : {0, 1}m → {0, 1}, R ⊆ {0, 1}n.

f ≈ R, if f
(

f
(

f
(

f
(

If x1 = x1,1 x1,2 x1,3 · · · x1,n ∈ R

x2 = x2,1 x2,2 x2,3 · · · x2,n ∈ R
...

...
...

...
...

xm = xm,1 xm,2 xm,3 · · · xm,n ∈ R

)
=

)
=

)
=

)
=

then also z = z1 z2 z3 · · · zn ∈ R.

R is invariant under f . f preserves R.

Boolean Constraint Satisfaction Problems 8



Clones of Polymorphisms

CSP Post Schaefer QCSP #QCSP Galois FO Equality Classification Applications Résumé

Pol(Γ) is the set of all polymorphisms of Γ, i.e., the set of all

Boolean functions that preserve every relation in Γ.

I Pol(Γ) is a clone, i.e., a set of Boolean functions that contains

all projections and is closed under composition.

Post’s lattice [Emil Post, 1921/1941]:

– List of all Boolean clones

– Inclusion structure among them

– Finite basis for each of them

Boolean Constraint Satisfaction Problems 9



Co-Clones of Invariants

CSP Post Schaefer QCSP #QCSP Galois FO Equality Classification Applications Résumé

Inv(B) is the set of all invariants of B, i.e., the set of all Boolean

relations that are preserved by every function in B.

I Inv(B) is a relational clone.

[Post 1941]:

Every clone B can be characterized by the set of its invariant

constraints:

Let Γ0 be a basis for the co-clone Inv(B). Then,

I A function belongs to B iff it preserves all relations in Γ0.
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The Galois Correspondence

CSP Post Schaefer QCSP #QCSP Galois FO Equality Classification Applications Résumé

I Inv
(
Pol(Γ)

)
= 〈Γ〉.

I Pol
(
Inv(B)

)
= [B].

One-one correspondence between clones and co-clones;

obtain complete list of co-clones from Post’s lattice.

Determine easy bases for relational clones!
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Efficient SAT Algorithms

CSP Post Schaefer QCSP #QCSP Galois FO Equality Classification Applications Résumé

If Γ ⊆ Inv(E2) (∧ ≈ Γ) then CSP(Γ) ∈ P (Horn relations).

If Γ ⊆ Inv(V2) (∨ ≈ Γ) then CSP(Γ) ∈ P (anti-Horn relations).

If Γ ⊆ Inv(D2) (T3
2 ≈ Γ) then CSP(Γ) ∈ P (2-CNF relations).

If Γ ⊆ Inv(L2) (⊕3 ≈ Γ) then CSP(Γ) ∈ P (affine relations).

If Γ ⊆ Inv(I1) (1 ≈ Γ) then CSP(Γ) ∈ P (1-valid relations).

If Γ ⊆ Inv(I0) (0 ≈ Γ) then CSP(Γ) ∈ P (0-valid relations).

What remains?

〈Γ〉 ⊇ Inv(N2), i.e., only polymorphism is negation.
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Schaefer’s Theorem

CSP Post Schaefer QCSP #QCSP Galois FO Equality Classification Applications Résumé

RNAE =
{
(0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0)

}
.

Pol(RNAE) = N2.

But: CSP
(
{RNAE}

)
= NOT-ALL-EQUAL-SAT, NP-complete.

I If 〈Γ〉 ⊇ Inv
(
N2

)
then CSP(Γ) is NP-complete, otherwise

CSP(Γ) is in P. [Schaefer 1978]

Through“polynomial-time glasses”, we observe dichotomy.
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A Finer Classification w.r.t. Logspace-Reductions

CSP Post Schaefer QCSP #QCSP Galois FO Equality Classification Applications Résumé

I If 〈Γ〉 ∈ {Inv(I2), Inv(N2)}, then CSP(Γ) is NP-complete.

I If 〈Γ〉 ∈ {Inv(V2), Inv(E2)}, then CSP(Γ) is P-complete.

I If 〈Γ〉 ∈ {Inv(L2), Inv(L3)}, then CSP(Γ) is ⊕L-complete.

I If Inv(S2
00) ⊆ 〈Γ〉 ⊆ Inv(S00) or Inv(S2

10) ⊆ 〈Γ〉 ⊆ Inv(S10) or

〈Γ〉 ∈ {Inv(D2), Inv(M2)}, then CSP(Γ) is NL-complete.

I If 〈Γ〉 ∈ {Inv(D1), Inv(D)} or Inv(R2) ⊆ 〈Γ〉 ⊆ Inv(S02 or

Inv(R2) ⊆ 〈Γ〉 ⊆ Inv(S12, then CSP(Γ) is in L.

I If Γ ⊆ Inv(I0) or Γ ⊆ Inv(I1), then every constraint formula over

Γ is satisfiable, and therefore CSP(Γ) is trivial.

[Allender-Bauland-Immerman-Schnoor-Vollmer 2005]

Through“logspace glasses”, there are 5 complexity levels for CSP.
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Quantified Boolean Formulae

CSP Post Schaefer QCSP #QCSP Galois FO Equality Classification Applications Résumé

I QBF (determination of truth of a closed quantified Boolean

formula) is PSPACE-complete. [Stockmeyer-Meyer 1973]

I QCNF (restriction to matrix in CNF) remains complete.

I QCSP(Γ) (determination of truth of a closed quantified

Γ-formula) is PSPACE-complete if 〈Γ〉 ⊇ Inv(N), otherwise

QCSP(Γ) is tractable.

[Schaefer 1978, Dalmau 2000, Creignou-Khanna-Sudan 2001]
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Quantified Boolean Formulae

CSP Post Schaefer QCSP #QCSP Galois FO Equality Classification Applications Résumé
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Bounded Number of Alternations

CSP Post Schaefer QCSP #QCSP Galois FO Equality Classification Applications Résumé

I QBFi (restriction of QBF to prenex normal-form with i − 1

quantifier alternations, starting with existential) is complete for

the class Σp
i of the polynomial-time hierarchy.

I For i odd, QCNFi is Σp
i -complete.

I For i even, QDNFi is Σp
i -complete.

[Wrathall, 1977]

How to define QCSPi?
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Quantified Constraints

CSP Post Schaefer QCSP #QCSP Galois FO Equality Classification Applications Résumé

QCSPi (Γ):

For i odd, determine if a closed quantified Γ-formula with i − 1

quantifier alternations starting with existential quantifier is true.

For i even, determine if a closed quantified Γ-formula with i − 1

quantifier alternations starting with universal quantifier is false.

I If Γ ⊆ 〈Γ′〉, then QCSPi (Γ) ≤log
m QCSPi (Γ

′).

“Galois connection helps for quantified satisfiability.”
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QCSPi (Γ):

For i odd, determine if a closed quantified Γ-formula with i − 1

quantifier alternations starting with existential quantifier is true.

For i even, determine if a closed quantified Γ-formula with i − 1

quantifier alternations starting with universal quantifier is false.

I If Γ ⊆ 〈Γ′〉, then QCSPi (Γ) ≤log
m QCSPi (Γ

′).

“Galois connection helps for quantified satisfiability.”

Boolean Constraint Satisfaction Problems 17



Classification of QCSPi(Γ)

CSP Post Schaefer QCSP #QCSP Galois FO Equality Classification Applications Résumé

I QCSPi

(
{R1-IN-3}

)
is Σp

i -complete,

�� ��R1-IN-3 ∈ Inv(I2)

since Inv(R1-IN-3) is the class of all Boolean relations.

I QCSPi

(
{RNAE}

)
is Σp

i -complete:
�� ��RNAE ∈ Inv(N2)

Replace every constraint R1-IN-3(x1, x2, x3) by

R2-IN-4(x1, x2, x3, t) for a (common) new variable t, and observe

R2-IN-4(x1, x2, x3, t) =
∧

i 6=j RNAE(xi , xj , t) ∧ RNAE(x1, x2, x3).

Quantify t in first quantifier block.

I QCSPi ({R0}) is Σp
i -complete,

�� ��R0 ∈ Inv(N)

where R0(u, v , x1, x2, x3) ≡ u = v ∨ NAE(x1, x2, x3):

Replace every constraint NAE(x1, x2, x3) by R0(u, v , x1, x2, x3).

Quantify u, v in last universal quantifier block.
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Hemaspaandra’s Theorem

CSP Post Schaefer QCSP #QCSP Galois FO Equality Classification Applications Résumé

I QCSP(Γ) is tractable if Γ is Horn, anti-Horn, bijunctive, or

affine. [Schaefer 1978, Creignou-Khanna-Sudan 2001]

If Γ is not in one of these cases, then 〈Γ〉 ⊇ Inv(N) 3 R0.

Hence:

I If 〈Γ〉 ⊇ Inv(N) then QCSPi (Γ) is Σp
i -complete and QCSP(Γ) is

PSPACE-complete; otherwise QCSPi (Γ) and QCSP(Γ) are

tractable. [Hemaspaandra 2004]
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Counting Solutions for Quantified Constraints

CSP Post Schaefer QCSP #QCSP Galois FO Equality Classification Applications Résumé

#QCSPi (Γ):

For i odd, determine number of satisfying assignments of a

quantified Γ-formula with i − 1 quantifier alternations starting with

existential quantifier.

For i even, determine number of unsatisfying assignments of a

quantified Γ-formula with i − 1 quantifier alternations starting with

universal quantifier.

I If Γ ⊆ 〈Γ′〉, then #QCSPi (Γ) ≤p
m #QCSPi (Γ

′).

“Galois connection helps for #QCSPi .”
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Reductions for Counting Problems

CSP Post Schaefer QCSP #QCSP Galois FO Equality Classification Applications Résumé

A – binary relation s.t. (x , y) ∈ A =⇒ |y | is polynomial in |x |

A(x) = { y | (x , y) ∈ A }, #A(x) = |A(x)|.

#A ≤p
m #B if there is polynomial-time computable function f

s.t. for all x , #A(x) = #B(f (x)). [Valiant 1979]

(“parsimonious reductions”)

#SAT is ≤p
m-complete for #P, but not many further complete

problems are known.
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Reductions for Counting Problems

CSP Post Schaefer QCSP #QCSP Galois FO Equality Classification Applications Résumé

#A ≤p
cnt #B if there are polynomial-time computable function f , g

s.t. for all x , #A(x) = g
(
#B(f (x))

)
. [Zankó 1991]

(“counting reductions”)

Permanent and many further problems are known to be

≤p
cnt-complete for #P, but #P is not closed under counting

reductions, in fact:

I ≤p
cnt(#P) = #PH =

⋃
k≥0 #Σp

k . [Toda-Watanabe 1992]

Look for a reduction powerful enough to prove completeness results

but strict enough to distinguish among levels of the #Σp
k -hierarchy.
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Reductions for Counting Problems

CSP Post Schaefer QCSP #QCSP Galois FO Equality Classification Applications Résumé

#A ≤p
ssub #B if there are polynomial-time computable function

f , g s.t. for all x ,

– B(g(x)) ⊆ B(f (x)).

– #A(x) = #B(f (x))−#B(g(x)).

“Subtractive reduction”≤p
sub is the transitive closure of strong

subtractive reduction ≤p
ssub. [Durand-Hermann-Kolaitis 2000]

I #P and all classes #Πp
k for k > 1 are closed under subtractive

reductions, but ≤p
sub(#Σp

k) = #Πp
k .

Boolean Constraint Satisfaction Problems 23



Reductions for Counting Problems

CSP Post Schaefer QCSP #QCSP Galois FO Equality Classification Applications Résumé

#A ≤p
scom #B if there are polynomial-time computable function

f , g and a bipartite permutation π on the alphabet underlying B

s.t. for all x ,

– B(g(x)) ⊆ B(f (x)).

– y ∈ B(x) ⇐⇒ π(y) ∈ B(x)

– 2 ·#A(x) = #B(f (x))−#B(g(x)).

“Complementive reduction”≤p
com is the transitive closure of strong

complementive reduction ≤p
scom and parsimonious reduction ≤p

m.

[Bauland-Chapdelaine-Creignou-Hermann-Vollmer 2004]

I #P and all classes #Πp
k for k > 1 are closed under

complementive reductions, but ≤p
com(#Σp

k) = #Πp
k .
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Classification of #QCSP

CSP Post Schaefer QCSP #QCSP Galois FO Equality Classification Applications Résumé

For every i ≥ 1,

I if Γ ⊆ Inv(L2) then #QCSPi (Γ) and #QCSP(Γ) are tractable,

I else if Γ ⊆ Inv(E2) or Γ ⊆ Inv(V2) or Γ ⊆ Inv(D2) then

#QCSPi (Γ) and #QCSP(Γ) are ≤p
cnt-complete for #P,

I else (note: 〈Γ〉 ⊇ Inv(N)) #QCSPi (Γ) is ≤p
com-complete for

#Σp
i and #QCSP(Γ) is ≤p

com-complete for #PSPACE.

[Bauland-Böhler-Creignou-Reith-Schnoor-Vollmer 2006]

– In 2nd case, #QCSPi (Γ) is not tractable unless FP = #P.

– In 3rd case, #QCSPi (Γ) is not in #Σp
i−1 unless #Σp

i = #Πp
i−1.
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[Bauland-Böhler-Creignou-Reith-Schnoor-Vollmer 2006]

– In 2nd case, #QCSPi (Γ) is not tractable unless FP = #P.

– In 3rd case, #QCSPi (Γ) is not in #Σp
i−1 unless #Σp

i = #Πp
i−1.

Boolean Constraint Satisfaction Problems 25



A priori

CSP Post Schaefer QCSP #QCSP Galois FO Equality Classification Applications Résumé

The Galois connection holds a priori for a computational problem

Π, if we can prove

I If Γ ⊆ 〈Γ′〉 then Π(Γ) ≤log
m Π(Γ′)

and use this to obtain a complexity theoretic classification.

For problems above, the Galois connection holds a priori.
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If Γ ⊆ 〈Γ′〉 then CSP(Γ) ≤log
m CSP(Γ′)

CSP Post Schaefer QCSP #QCSP Galois FO Equality Classification Applications Résumé

Let F be a Γ-formula. Construct F ′ as follows:

I Replace every constraint from Γ by equivalent(
Γ′ ∪ {=}

)
-formula.

I Delete existential quantifiers.

I Delete equality clauses.

F ′ is a Γ′-formula.

Then: F is satisfiable iff F ′ is satisfiable.

Problem: Introduction of new existentially quantified variables.

Preserves satisfiability, but does not preserve number of solutions,

etc.
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When does the Galois Connection Hold?

CSP Post Schaefer QCSP #QCSP Galois FO Equality Classification Applications Résumé

Galois connection holds a priori for Π, if definition of Π allows to

“hide” the new existentially quantified variables that are introduced

by co-clone implementation.

Examples:

– Satisfiability

– Several computational problems for quantified constraints
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Positive Examples

CSP Post Schaefer QCSP #QCSP Galois FO Equality Classification Applications Résumé

– Circumscription: [Nordh-Jonsson 2004]

Given formula F , subset M of variables, clause C , determine if

C holds in every satisfying assignment of F that is minimal on

M in componentwise order.

– Frozen variables: [Jonsson-Krokhin 2003]

[Bauland-Chapdelaine-Creignou-Hermann-Vollmer 2004]

Given formula F , subset M of variables, check if there is a

variable x ∈ M that has the same value in every satisfying

assignment of F .
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Positive Examples

CSP Post Schaefer QCSP #QCSP Galois FO Equality Classification Applications Résumé

– Abduction: [Creignou-Zanuttini 2006]

Given formula F , subset M of variables, variable x 6∈ M, check

if there is a set E of literals over M such that F ∧
∧

E is

satisfiable but F ∧
∧

E ∧ ¬x is not? (E is “explanation”of x .)

Boolean Constraint Satisfaction Problems 30



A posteriori

CSP Post Schaefer QCSP #QCSP Galois FO Equality Classification Applications Résumé

The Galois connection holds a posteriori for a computational

problem Π, if we obtain a complexity classification“by hand” that

speaks only of co-clones, and we can read the implication

I If Γ ⊆ 〈Γ′〉 then Π(Γ) ≤log
m Π(Γ′)

from the classification.

For many problems, the Galois connection holds a posteriori, e.g.

– Counting [Creignou-Hermann 1996]

– Enumeration [Creignou-Hébrard 1997]

– Equivalence and isomorphism

[Böhler-Hemaspaandra-Reith-Vollmer 2002,4]
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Negative Examples

CSP Post Schaefer QCSP #QCSP Galois FO Equality Classification Applications Résumé

The Galois connection does not hold for

– MaxSAT

– Fixed parameter tractability

– Approximation
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When does the Galois Connection Hold?

CSP Post Schaefer QCSP #QCSP Galois FO Equality Classification Applications Résumé

Open Problem: Determine properties of computational problems Π

that imply that the Galois connection holds for Π.
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Different Galois Connections

CSP Post Schaefer QCSP #QCSP Galois FO Equality Classification Applications Résumé

Problems arise from existentially quantified variables in definition

of relational clone.

Let 〈Γ〉′ be defined as folows:

– 〈Γ〉′ contains the equality relation and all relations in Γ.

– 〈Γ〉′ is closed under definitions by 〈Γ〉′-formulas,

i.e. if R(x1, . . . , xn) ≡ φ(x1, . . . , xn) for 〈Γ〉′-formulas φ, then

R ∈ 〈Γ〉′.

Road map: Look for Galois connection between lattice of classes

〈Γ〉′ and suitable refinement of Post’s lattice.

 Talk by Ilka Schnoor.
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If Γ ⊆ 〈Γ′〉 then CSP(Γ) ≤log
m CSP(Γ′)

CSP Post Schaefer QCSP #QCSP Galois FO Equality Classification Applications Résumé

Let F be a Γ-formula. Construct F ′ as follows:

I Replace every constraint from Γ by equivalent(
Γ′ ∪ {=}

)
-formula.

I Delete existential quantifiers.

I Delete equality clauses.

F ′ is a Γ′-formula.

Then: F is satisfiable iff F ′ is satisfiable.

Can we do better than logspace-reductions?
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The Equality Constraint

CSP Post Schaefer QCSP #QCSP Galois FO Equality Classification Applications Résumé

Example 1: Γ1 = {x , x}:
A Γ1-formula F is unsatisfiable iff it contains clauses x and x for

some x , hence CSP(Γ1) ∈ AC0.

Example 2: Γ2 = {x , x ,=}:
Then CSP(Γ2) can express undirected graph reachability as follows:

Given G , s, t, construct F to consist of clauses s, t, and u = v for

every edge (u, v) ∈ G .

Then t is reachable in G from s iff F is unsatisfiable, hence

CSP(Γ2) is hard for L (under AC0-reductions/FO-reductions).

Thus: Provably different complexity: CSP(Γ2) 6≤AC0

m CSP(Γ1),

but Pol(Γ1) = Pol(Γ2) (= R2).
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CSP(Γ2) is hard for L (under AC0-reductions/FO-reductions).

Thus: Provably different complexity: CSP(Γ2) 6≤AC0

m CSP(Γ1),

but Pol(Γ1) = Pol(Γ2) (= R2).
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I If Γ ⊆ 〈Γ′〉 then CSP(Γ) ≤AC0

m CSP
(
Γ′ ∪ {=}

)
≤log

m CSP(Γ′).

Say that Γ can express equality if equality constraint can be

defined by a conjunctive query over Γ.

I If Γ can express equality then CSP
(
Γ ∪ {=}

)
≤AC0

m CSP(Γ).

There is an algorithm that detects if Γ can express equality.

I If Γ can express equality then CSP(Γ) is hard for L, otherwise

CSP(Γ) ∈ AC0.
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Two remaining cases: Pol(Γ) ∈ {D1,D} and S02 ⊆ Pol(Γ) ⊆ R2 or

S12 ⊆ Pol(Γ) ⊆ R2.

I If Pol(Γ) ∈ {D1,D}, then CSP(Γ) is L-complete.

Proof: x ⊕ y ∈ Inv(Γ), i.e., there is conjunctive query over Γ ∪ {=}
that defines x ⊕ y . Equality clauses here appear only between

existentially quantified new variables and can be removed locally.

Hence, Γ can express x ⊕ y .

Now, (∃z)
(
(x ⊕ z) ∧ (z ⊕ y)

)
expresses equality.
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I If S02 ⊆ Pol(Γ) ⊆ R2 or S12 ⊆ Pol(Γ) ⊆ R2, then either CSP(Γ)

is in AC0, or CSP(Γ) is L-complete.

Proof: Logspace upper bound:

If Γ ⊆ Inv(S02) =
⋃

m Inv(Sm
02) =

⋃
m

〈
{∨m,=, x , x}

〉
,

then Γ ⊆
〈
{∨m,=, x , x}

〉
for some m.

Given Γ-formula F is satisfiable iff

• for each clause x1 ∨ · · · ∨ xk

• there is a variable xk ,

for which there is no =-path from xk to some clause x .

Essentially graph reachability, hence: CSP(Γ) ∈ L.

Γ ⊆ Inv(S12): analogously with NANDm.
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Let R ∈ Inv(Sm
02), i.e., R is defined by conjunctive query φ over

{∨m,=, x , x}.

– For all clauses x1 = x2:

If x1 or x2 occur in literals in φ, delete x1 = x2 and insert

corresponding literal for the other variable.

– For all clauses x1 ∨ · · · ∨k :

If there is a literal xi , delete xi in this clause.

– For all clauses x1 ∨ · · · ∨k :

If occuring variables are connected by =-path, delete all of

them except one.
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Case 1: No clause x1 = x2 remains. Then

CSP
(
{R,∨m, x , x}

)
∈ AC0.

(Satisfiable iff no contradictory literals and every disjunction has

variable that does not occcur in negative literal.)

Case 2: There is a remaining clause x1 = x2.

Obtain R ′(x1, x2) by existentially quantifiying all variables in R

except x1, x2.

Then R ′ expresses equality.

Analogous argument with NANDm for Γ ⊆ Inv(S12).
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Post’s lattice: L2 ⊆ R2, hence Inv(R2) ⊆ Inv(L2).

Hence:

I Undirected graph accessibility is in ⊕L, in other words:

SL ⊆ ⊕L. [Karchmer, Wigderson, 1993]

(Today we even know SL ⊆ L.)
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Isomorphism Theorem holds for ≤AC0

m -reducibility:

I For every constraint language Γ, CSP(Γ) is AC0-isomorphic

either to 0Σ? or to the standard complete set for one of the

complexity classes NP, P, ⊕L, NL, or L.

Through FO glasses, there are only six different CSP-problems!
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Provide a reasonably accurate bird’s eye view of complexity theory:

[Creignou-Khanna-Sudan 2001]

– inclusions among complexity classes

– relations among reducibility notions

– structure of complete problems

– playground for the study of many issues related to counting

classes

– CSP isomorphism problems yield good candidates for

“intermediate problems”

Boolean Constraint Satisfaction Problems 45



Why study Boolean CSP?

CSP Post Schaefer QCSP #QCSP Galois FO Equality Classification Applications Résumé
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Classifications of problems for Boolean CSPs provide a guidepost

for study of general CSPs:

– If Galois connection holds a priori, then usually for arbitrary

CSPs.

– Hard cases translate from Boolean to general case, sometimes

in nontrivial way: #QCSP

[Bauland-Böhler-Creignou-Reith-Schnoor-Vollmer 2006]

– Issues from Post’s lattice show direction for general

classification:

Non-FO CSPs are logspace-hard:  Talk by Benôıt Larose
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– Obtain fine classification for Boolean counting problem.

– Study different Galois connections.

– Uniform Boolean CSP?
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– Study different Galois connections.

– Obtain fine classification for satisfiability over 3-element

domain.

– Study different computational problems (besides satisfiability)

for general CSPs.

Boolean Constraint Satisfaction Problems 48


