The Tractability of Model-Checking for LTL: The Good, the Bad, and the Ugly Fragments

Heribert Vollmer

Theoretische Informatik, Leibniz Universität Hannover

The burning issue

Problem

The model-checking problem for full Linear Temporal Logic (LTL) is PSPACE-complete [Sistla, Clarke 1985]. That is, this problem is (most probably) intractable.

Solution

Systematically restrict the propositional part of LTL.

- → Many tractable (good) fragments 🙂
- → Many intractable (bad) fragments

What is Linear Temporal Logic?

LTL = propositional logic plus temporal operators, speaks about linear structures; for example:

A structure P

The language and its interpretation

The following kinds of statements can be formulated in LTL.

- now
- at some time in the Future
- always Going to
- neXt time
- Until
- Since

$$P, 2 \vDash (w \land \neg e) \lor C$$

$$P, 0 \vDash Fh$$

$$P, 3 \vDash G \neg e$$

$$P, 1 \vDash X(w \rightarrow e)$$

$$P, 5 \vDash c U(\neg w)$$

 $D \supset \vdash (\dots \land \neg) \setminus (\neg$

$$P, 3 \vDash c\mathbf{S}w$$

 $\blacktriangleright P, 0 \vDash \mathbf{F}(c \land \neg e) \land \mathbf{G}[(c \land \neg w) \to [\mathbf{X}(w \land \mathbf{X}h) \land (h \to w \land c)\mathbf{U}c]]$

A model and a structure

A model (cf. Clarke et al. "Model Checking"):

Possible behaviour of a microwave oven

The tractability of LTL model-checking

A model and a structure

A structure:

Actual behaviour of a microwave oven

Summing up: Models and structures

Model

A directed graph where every state has a successor. States are marked with assignments to propositional variables.

Structure

An infinite path in a model.

The model-checking problem

Model-Checking

Instance $\langle \varphi, M, a \rangle$

Question Does *M* contain a structure *P* with initial state *a* such that *P*, $a \models \varphi$?

Theorem (Sistla, Clarke 1985) Model-checking for LTL is PSPACE-complete.

When do LTL fragments suffice?

Example

Properties of "microwave oven runs" expressible in LTL fragments:

Property	Formula	Operators used
An error never occurs. (Safety)	G <i>¬e</i> <i>¬Fe</i> Ge′	G, ¬ F, ¬ G
	GF ¬e	F , G , ¬
	G⊐Ge GFe′	G,

When do LTL fragments suffice?

Example

Properties of "microwave oven runs" expressible in LTL fragments:

Property	Formula	Operators used
An error never occurs. (Safety)	G <i>¬e</i> <i>¬Fe</i> Ge′	G, ¬ F, ¬ G
Every error will eventually be resolved. (Liveness)	GF <i>¬e</i> G¬G <i>e</i> GF <i>e</i> ′	F, G, ¬ G, ¬ F, G

The model-checking problem for LTL fragments

LTL fragment

Let $T \subseteq {F, G, X, U, S}$ be a set of temporal operators and *B* be a finite set of Boolean operators.*

L(T, B) = set of all LTL formulas with operators in $T \cup B$. *For instance, $\{\land, \lor\}$ — monotone formulae.

Model-checking problem MC(T, B) for LTL fragments Instance: $\langle \varphi, M, a \rangle$ with $\varphi \in L(T, B)$

Question: Does *M* contain a structure *P* with initial state *a* such that *P*, $a \models \varphi$?

Theorem ([Sistla, Clarke 1985] and [Markey 2004])

- MC({G, X}, {∧, ∨, ¬}) and MC({U}, {∧, ∨, ¬}) are PSPACE-complete, even if negation is applied to atoms only.
- 2. $MC(\{F\}, \{\land, \lor, \neg\}), MC(\{G\}, \{\land, \lor, \neg\})$ and $MC(\{X\}, \{\land, \lor, \neg\})$ are NP-complete, even if negation is applied to atoms only.
- MC({F, X}, {∧, ∨, ¬}) in general is PSPACE-complete, but NP-complete if negation is applied to atoms only.

Consequences of results by [Sistla, Clarke 1985] and [Markey 2004]:

В	$\{\land,\lor\}$	$\{\wedge, \lor, \neg\}$	
Т			
Х	NP	NP	
G	NP	NP	
F	NP	NP	Ded for our out o
FX	NP	PSPACE	bad tragments
GΧ	PSPACE	PSPACE	
U	PSPACE	PSPACE	J

What we would like to know ...

Goal

• classify the complexity of MC(T, B) for all LTL fragments

 separate LTL fragments into good (efficiently solvable) and bad (NP-hard)

What we would like to know ...

Goal

- classify the complexity of MC(T, B) for all LTL fragments
- separate LTL fragments into good (efficiently solvable) and bad (NP-hard)

Fragments of propositional logic: Clones

Post's lattice (est'd 1941 by Emil Post)

Clones with both constants

All relevant sets of Boolean operators

Every other set of Boolean op's can be reduced to one of these.

В	I	Ν	Е	V	Μ	L	BF
Т		7	\wedge	V	mon.	\oplus	all
Х	NL	NL	NL	NL	NP	NL	NP
G	NL	NL	NL	NL	NP		NP
F	NL	NL	NP	NL	NP		NP
FG	NL	NL	NP	NL	NP		NP
FX	NL	NL	NP	NL	NP		PS
GX	NL	NL	NL	NP	PS		PS
FGX	NL	NL	NP	NP	PS		PS

В	I	Ν	Е	V	М	L	BF	
Т			\wedge	\vee	mon.	\oplus	all	
S	L	L	L	L	L	L	L	
SX	NP	NP	NP	NP	NP	NP	NP	
SG	NP	NP	NP	NP	PS	NP	PS	
SF	NL	NP	NP	NL	PS	NP	PS	
SFG	NP	NP	NP	NP	PS	NP	PS	
SFX	NP	NP	NP	NP	PS	NP	PS	
SGX	NP	NP	NP	NP	PS	NP	PS	
SFGX	NP	NP	NP	NP	PS	NP	PS	
other	NP	NP	NP	NP	PS	NP	PS	

В	I	Ν	Е	V	Μ	L	BF
Т		7	\wedge	\vee	mon.	\oplus	all
S	L	L	L	L	L	L	L
SX	NP	NP	NP	NP	NP	NP	NP
SG	NP	NP	NP	NP	PS	NP	PS
SF	NL	NP	NP	NL	PS	NP	PS
SFG	NP	NP	NP	NP	PS	NP	PS
SFX	NP	NP	NP	NP	PS	NP	PS
SGX	NP	NP	NP	NP	PS	NP	PS
SFGX	NP	NP	NP	NP	PS	NP	PS
other	NP	NP	NP	NP	PS	NP	PS

Theorem (Sistla, Clarke 1985) $MC({F}, {\land})$ is NP-hard.

Proof sketch.

- Reduction from 3SAT
- From $(x_1 \lor \neg x_2 \lor \neg x_4) \land (\neg x_1 \lor x_3 \lor \neg x_4) \land (\neg x_2 \lor x_4)$ we obtain the model

and the $L(\{F\}, \{\land\})$ -formula $Fb_1 \land Fb_2 \land Fb_3$.

Theorem (Sistla, Clarke 1985) $MC({F}, {\land})$ is NP-hard.

Proof sketch.

- Reduction from 3SAT
- From $(x_1 \lor \neg x_2 \lor \neg x_4) \land (\neg x_1 \lor x_3 \lor \neg x_4) \land (\neg x_2 \lor x_4)$ we obtain the model

bo

Theorem

$MC({U}, \emptyset)$ is NP-hard.

Proof sketch.

- Reduction from 3SAT
- From $(x_1 \lor \neg x_2 \lor \neg x_4) \land (\neg x_1 \lor x_3 \lor \neg x_4) \land (\neg x_2 \lor x_4)$ we obtain the model

and the $L({\mathbf{U}}, \emptyset)$ -formula $((a_1\mathbf{U}b_1)\mathbf{U}(a_2\mathbf{U}b_2))\mathbf{U}(a_3\mathbf{U}b_3)$.

Theorem

$MC({U}, \emptyset)$ is NP-hard.

- Reduction from 3SAT
- From $(x_1 \lor \neg x_2 \lor \neg x_4) \land (\neg x_1 \lor x_3 \lor \neg x_4) \land (\neg x_2 \lor x_4)$ we obtain the model

and the
$$L({\mathbf{U}}, \emptyset)$$
-formula $((a_1 Ub_1)U(a_2 Ub_2))U(a_3 Ub_3)$.

Theorem

$MC({U}, \emptyset)$ is NP-hard.

- Reduction from 3SAT
- From $(x_1 \lor \neg x_2 \lor \neg x_4) \land (\neg x_1 \lor x_3 \lor \neg x_4) \land (\neg x_2 \lor x_4)$ we obtain the model

Theorem

$MC({U}, \emptyset)$ is NP-hard.

- Reduction from 3SAT
- From $(x_1 \lor \neg x_2 \lor \neg x_4) \land (\neg x_1 \lor x_3 \lor \neg x_4) \land (\neg x_2 \lor x_4)$ we obtain the model

$$\begin{array}{c} a_{1} & a_{2} & a_{3} & b_{1} & b_{2} & b_{3} \\ a_{1} & a_{1} & a_{2} & a_{1} & a_{3} & a_{3} & a_{3} & a_{3} \\ q_{1} & q_{2} & q_{3} & a_{2} & a_{2} & a_{2} & a_{2} & a_{2} \\ a_{1} & a_{2} & a_{1} & a_{1} & a_{1} & a_{1} \\ \hline X_{1} & X_{2} & X_{3} & b_{1}, b_{2} \end{array}$$

and the $L(\{U\}, \emptyset)$ -formula $((a_{1}Ub_{1})U(a_{2}Ub_{2}))U(a_{3}Ub_{3})$.

В	I	Ν	Е	V	Μ	L	BF
Т		7	\wedge	\vee	mon.	\oplus	all
Х	NL	NL	NL	NL	NP	NL	NP
G	NL	NL	NL	NL	NP		NP
F	NL	NL	NP	NL	NP		NP
FG	NL	NL	NP	NL	NP		NP
FX	NL	NL	NP	NL	NP		PS
GX	NL	NL	NL	NP	PS		PS
FGX	NL	NL	NP	NP	PS		PS

В	I	Ν	Е	V	Μ	L	BF
Т		7	\wedge	\vee	mon.	\oplus	all
Х	NL	NL	NL	NL	NP	NL	NP
G	NL	NL	NL	NL	NP		NP
F	NL	NL	NP	NL	NP		NP
FG	NL	NL	NP	NL	NP		NP
FX	NL	NL	NP	NL	NP		PS
GX	NL	NL	NL	NP	PS		PS
FGX	NL	NL	NP	NP	PS		PS

An NL-completeness proof

Theorem $MC({F, X}, {\lor})$ is NL-complete.

- ▶ NL-hardness: Reduction from the Graph Accessibility Problem
- ► NL-membership via a logspace computable normal form Given ⟨φ, M, a⟩, transform φ into

$$\varphi' = \mathbf{F} \mathbf{X}^{i_1} y_1 \vee \cdots \vee \mathbf{F} \mathbf{X}^{i_n} y_n \quad \vee \quad \mathbf{X}^{i_{n+1}} y_{n+1} \vee \cdots \vee \mathbf{X}^{i_m} y_m \, .$$

- Guess one of the disjuncts $(\mathbf{F})\mathbf{X}^{i_j}$.
- Guess the initial section of a path in *M* from *a*. (Its length is determined by *i_j*.)
- ► Check the truth of (**F**)**X**^{*i*} at *a*.

An NL-completeness proof

Theorem $MC({F, X}, {\lor})$ is NL-complete.

- ▶ NL-hardness: Reduction from the Graph Accessibility Problem
- NL-membership via a logspace computable normal form
 Given (φ, M, a), transform φ into

$$\varphi' = \mathbf{F} \mathbf{X}^{i_1} y_1 \vee \cdots \vee \mathbf{F} \mathbf{X}^{i_n} y_n \quad \lor \quad \mathbf{X}^{i_{n+1}} y_{n+1} \vee \cdots \vee \mathbf{X}^{i_m} y_m .$$

- Guess one of the disjuncts (F)X^{ij}.
- Guess the initial section of a path in *M* from *a*.
 (Its length is determined by *i_j*.)
- Check the truth of (F)X^{ij} at a.

Another good fragment

Theorem $MC({G, X}, {\wedge})$ is NL-complete.

Proof sketch.

- NL-hardness: as above
- NL-membership:

Example:

```
(Xb \land GX(Ga \land XGXGXb)) \equiv Xb \land XGa \land XXXGb
```

goal: guess a path with following properties:

in state 0: nothing to check

in state 1: *b* and *a* hold

in state 2: a holds

in state 3: *a* and *b* hold

in state 4: a and b hold

Duality

- $MC({F, X}, {\vee})$ is NL-complete.
- $MC({G, X}, {\wedge})$ is NL-complete.

 MC({F}, {∧}) is NP-complete.
 MC({G}, {∨}) is NL-complete, even MC({F,G}, {∨}).

Duality

- $MC({F, X}, {\lor})$ is NL-complete.
- $MC({G, X}, {\wedge})$ is NL-complete.
- $MC({F}, {\wedge})$ is NP-complete.
- ► MC({G}, {∨}) is NL-complete, even MC({F, G}, {∨}).

Duality

- $MC({F, X}, {\lor})$ is NL-complete.
- $MC({G, X}, {\wedge})$ is NL-complete.
- $MC({F}, {\wedge})$ is NP-complete.
- ► MC({G}, {∨}) is NL-complete, even MC({F, G}, {∨}).

A PSPACE-hardness proof

Theorem

For each finite B with $[B] \supseteq M$: MC({**G**, **X**}, B) is PSPACE-hard.

- ► PSPACE-hardness of MC({G, X}, {∧, ∨}) follows from [Markey 2004].
- ► Every operator in B can be represented by a short ∧, ∨-formula.
- ► Hence, $MC({\mathbf{G}, \mathbf{X}}, {\land, \lor}) \leq_{m}^{\log} MC({\mathbf{G}, \mathbf{X}}, B).$

Lemma (lower	bounds are inherited to larger clones)							
Let $B \subseteq \{\land, \lor, \neg\}$ and $B \subseteq [C]$.								
Then $MC(T, B)$	$\leq_m^{\log} MC(T, C).$							
specific:	$MC(\{G,X\},\{\lor\})$ is NP-hard.							
general:	Let C be a finite set of Boolean functions such that $\{\lor\} \subseteq [C]$.							
	Then $MC({\mathbf{G}, \mathbf{X}}, C)$ is NP-hard.							
specific:	$MC(\{\textbf{G},\textbf{X}\},\{\vee,\wedge\})$ is PSPACE-complete.							
general:	Let C be a finite set of Boolean functions such that $\{\lor, \land\} \subseteq [C]$.							
	Then $MC({\mathbf{G}, \mathbf{X}}, C)$ is PSPACE-hard.							

General results: upper bounds

Fear

Upper bounds are not necessarily inherited to smaller clones. Does $MC({G, X}, C) \in PSPACE$ hold for every C?

Some upper bounds can be generalized. For example:

specific: $MC({F, X}, {\lor})$ is in NL.

general: Let C be a finite set of Boolean functions such that $[C] \subseteq [\{\lor\}]$. Then MC($\{F, X\}, C$) in NL.

В	I	Ν	Е	V	М	L	BF
Т			\wedge	\vee	mon.	\oplus	all
Х	NL	NL	NL	NL	NP	NL	NP
G	NL	NL	NL	NL	NP		NP
F	NL	NL	NP	NL	NP		NP
FG	NL	NL	NP	NL	NP		NP
FX	NL	NL	NP	NL	NP		PS
GX	NL	NL	NL	NP	PS		PS
FGX	NL	NL	NP	NP	PS		PS

В	I	Ν	Е	V	Μ	L	BF
Т		7	\wedge	\vee	mon.	\oplus	all
S	L	L	L	L	L	L	L
SX	NP	NP	NP	NP	NP	NP	NP
SG	NP	NP	NP	NP	PS	NP	PS
SF	NL	NP	NP	NL	PS	NP	PS
SFG	NP	NP	NP	NP	PS	NP	PS
SFX	NP	NP	NP	NP	PS	NP	PS
SGX	NP	NP	NP	NP	PS	NP	PS
SFGX	NP	NP	NP	NP	PS	NP	PS
other	NP	NP	NP	NP	PS	NP	PS

Conclusion

Achieved

 Separated model-checking problems for almost all LTL fragments into

good (efficiently solvable) and bad (NP-hard).

Established the exact complexity of all good fragments.

Open questions

- LTL fragments with \oplus (ugly)
- ▶ upper bounds e.g. for MC({**U**}, Ø)
- exact complexity of bad fragments
- ▶ CTL ...

Conclusion

Achieved

 Separated model-checking problems for almost all LTL fragments into

good (efficiently solvable) and bad (NP-hard).

Established the exact complexity of all good fragments.

Open questions

- ► LTL fragments with ⊕ (ugly)
- ▶ upper bounds e.g. for MC({U}, ∅)
- exact complexity of bad fragments
- CTL . . .

Related work

Achieved

- Complete classification of satisfiability for all fragments of CTL*
- Partial classification of reasoning in fragments of default logic
 - existence of a stable extension
 - credulous reasoning
 - skeptical reasoning

Related work

Achieved

- Complete classification of satisfiability for all fragments of CTL*
- Partial classification of reasoning in fragments of default logic
 - existence of a stable extension
 - credulous reasoning
 - skeptical reasoning

Thanks

Joint work with Michael Bauland, Olaf Beyersdorff, Arne Meier, Martin Mundhenk, Thomas Schneider, Henning Schnoor, Ilka Schnoor, Michael Thomas

Thanks

Joint work with Michael Bauland, Olaf Beyersdorff, Arne Meier, Martin Mundhenk, Thomas Schneider, Henning Schnoor, Ilka Schnoor, Michael Thomas

Thank you!