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The burning issue

Problem
The model-checking problem for full Linear Temporal Logic (LTL)
is PSPACE-complete [Sistla, Clarke 1985].

That is, this problem is (most probably) intractable.

Solution
Systematically restrict the propositional part of LTL.

; Many tractable (good) fragments

; Many intractable (bad) fragments
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What is Linear Temporal Logic?

LTL = propositional logic plus temporal operators,
speaks about linear structures; for example:

A structure P
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The language and its interpretation

The structure P
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The following kinds of statements can be formulated in LTL.
I now P, 2 � (w ∧ ¬e) ∨ c
I at some time in the Future P, 0 � Fh
I always Going to P, 3 � G¬e
I neXt time P, 1 � X(w → e)
I Until P, 5 � cU(¬w)
I Since P, 3 � cSw
I P, 0 � F(c∧¬e)∧G

[
(c∧¬w)→ [X(w ∧Xh)∧ (h→ w ∧ c)Uc]

]
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A model and a structure

A model (cf. Clarke et al.
”
Model Checking“):

Possible behaviour of a microwave oven
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A model and a structure

A structure:

Actual behaviour of a microwave oven
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Summing up: Models and structures

Model
A directed graph where every state has a successor.
States are marked with assignments to propositional variables.

Structure
An infinite path in a model.
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The model-checking problem

Model-Checking
Instance 〈ϕ, M, a〉
Question Does M contain a structure P with initial state a

such that P, a � ϕ ?

Theorem (Sistla, Clarke 1985)

Model-checking for LTL is PSPACE-complete.
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When do LTL fragments suffice?

Example

Properties of “microwave oven runs” expressible in LTL fragments:

Property Formula Operators used

An error never occurs. G¬e G,¬
(Safety) ¬Fe F,¬

Ge′ G

Every error will GF¬e F, G,¬
eventually be resolved. G¬Ge G,¬
(Liveness) GFe′ F, G
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The model-checking problem for LTL fragments

LTL fragment

Let T ⊆ {F, G, X, U, S} be a set of temporal operators
and B be a finite set of Boolean operators.∗

L(T , B) = set of all LTL formulas with operators in T ∪ B.
∗For instance, {∧,∨}— monotone formulae.

Model-checking problem MC(T , B) for LTL fragments
Instance: 〈ϕ, M, a〉 with ϕ ∈ L(T , B)

Question: Does M contain a structure P with initial state a
such that P, a � ϕ ?
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Known complexity results . . .

Theorem ([Sistla, Clarke 1985] and [Markey 2004])

1. MC({G, X}, {∧,∨,¬}) and MC({U}, {∧,∨,¬}) are
PSPACE-complete, even if negation is applied to atoms only.

2. MC({F}, {∧,∨,¬}), MC({G}, {∧,∨,¬}) and
MC({X}, {∧,∨,¬}) are NP-complete, even if negation is
applied to atoms only.

3. MC({F, X}, {∧,∨,¬}) in general is PSPACE-complete,
but NP-complete if negation is applied to atoms only.
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Known complexity results . . .

Consequences of results by [Sistla, Clarke 1985] and [Markey 2004]:

Hardness and completeness of MC(T , B)

B {∧,∨} {∧,∨,¬}
T
X NP NP
G NP NP
F NP NP
FX NP PSPACE
GX PSPACE PSPACE
U PSPACE PSPACE


Bad fragments!
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What we would like to know . . .

Goal

I classify the complexity of MC(T , B) for all LTL fragments

I separate LTL fragments into
good (efficiently solvable) and bad (NP-hard)
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Fragments of propositional logic: Clones
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S0 x → y
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Clones with both constants

All relevant sets of Boolean operators

I

V E N

M L

BFall
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∨ ∧ ¬

∅

Every other set of Boolean op’s can be reduced to one of these.
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Tractability of model-checking: Fragments with F,G,X

Hardness and completeness of MC(T , B)

B I N E V M L BF
T ¬ ∧ ∨ mon. ⊕ all
X NL NL NL NL NP NL NP
G NL NL NL NL NP NP
F NL NL NP NL NP NP
FG NL NL NP NL NP NP
FX NL NL NP NL NP PS
GX NL NL NL NP PS PS
FGX NL NL NP NP PS PS

(PS = PSPACE)
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Tractability of model-checking: Fragments with S, U

Hardness and completeness of MC(T , B)

B I N E V M L BF
T ¬ ∧ ∨ mon. ⊕ all
S L L L L L L L
SX NP NP NP NP NP NP NP
SG NP NP NP NP PS NP PS
SF NL NP NP NL PS NP PS
SFG NP NP NP NP PS NP PS
SFX NP NP NP NP PS NP PS
SGX NP NP NP NP PS NP PS
SFGX NP NP NP NP PS NP PS
other NP NP NP NP PS NP PS
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An NP-hardness proof

Theorem (Sistla, Clarke 1985)

MC({F}, {∧}) is NP-hard.

Proof sketch.
I Reduction from 3SAT
I From (x1 ∨ ¬x2 ∨ ¬x4) ∧ (¬x1 ∨ x3 ∨ ¬x4) ∧ (¬x2 ∨ x4)

we obtain the model
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b2 b1, b3 b1, b2

and the L({F}, {∧})-formula Fb1 ∧ Fb2 ∧ Fb3 .
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An NP-hardness proof

Theorem

MC({U}, ∅) is NP-hard.

Proof sketch.
I Reduction from 3SAT
I From (x1 ∨ ¬x2 ∨ ¬x4) ∧ (¬x1 ∨ x3 ∨ ¬x4) ∧ (¬x2 ∨ x4)

we obtain the model
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and the L({U}, ∅)-formula ((a1Ub1)U(a2Ub2))U(a3Ub3) .
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An NL-completeness proof

Theorem
MC({F, X}, {∨}) is NL-complete.

Proof sketch.

I NL-hardness: Reduction from the Graph Accessibility Problem

I NL-membership via a logspace computable normal form

Given 〈ϕ, M, a〉, transform ϕ into

ϕ′ = FXi1y1 ∨ · · · ∨ FXinyn ∨ Xin+1yn+1 ∨ · · · ∨ Ximym .

I Guess one of the disjuncts (F)Xij .

I Guess the initial section of a path in M from a.
(Its length is determined by ij .)

I Check the truth of (F)Xij at a.
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Another good fragment

Theorem
MC({G, X}, {∧}) is NL-complete.

Proof sketch.

I NL-hardness: as above

I NL-membership:
Example:
(Xb ∧ GX(Ga ∧ XGXGXb)) ≡ Xb ∧ XGa ∧ XXXGb
goal: guess a path with following properties:

in state 0: nothing to check
in state 1: b and a hold
in state 2: a holds
in state 3: a and b hold
in state 4: a and b hold

. . . . . .
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Duality

I MC({F, X}, {∨}) is NL-complete.

I MC({G, X}, {∧}) is NL-complete.

I MC({F}, {∧}) is NP-complete.

I MC({G}, {∨}) is NL-complete,
even MC({F, G}, {∨}).
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A PSPACE-hardness proof

Theorem
For each finite B with [B] ⊇ M: MC({G, X}, B) is PSPACE-hard.

Proof sketch.

I PSPACE-hardness of MC({G, X}, {∧,∨}) follows from
[Markey 2004].

I Every operator in B can be represented by a short
∧,∨-formula.

I Hence, MC({G, X}, {∧,∨}) ≤log
m MC({G, X}, B).
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General results: lower bounds

Lemma (lower bounds are inherited to larger clones)

Let B ⊆ {∧,∨,¬} and B ⊆ [C ].
Then MC(T , B) ≤log

m MC(T , C ).

specific: MC({G, X}, {∨}) is NP-hard.

general: Let C be a finite set of Boolean functions
such that {∨} ⊆ [C ].

Then MC({G, X}, C ) is NP-hard.

specific: MC({G, X}, {∨,∧}) is PSPACE-complete.

general: Let C be a finite set of Boolean functions
such that {∨,∧} ⊆ [C ].

Then MC({G, X}, C ) is PSPACE-hard.
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General results: upper bounds

Fear
Upper bounds are not necessarily inherited to smaller clones.

Does MC({G, X}, C ) ∈ PSPACE hold for every C ?

Some upper bounds can be generalized. For example:

specific: MC({F, X}, {∨}) is in NL.

general: Let C be a finite set of Boolean functions
such that [C ] ⊆ [{∨}].

Then MC({F, X}, C ) in NL.
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Tractability of model-checking: Fragments with F,G,X

Hardness and completeness of MC(T , B)

B I N E V M L BF
T ¬ ∧ ∨ mon. ⊕ all
X NL NL NL NL NP NL NP
G NL NL NL NL NP NP
F NL NL NP NL NP NP
FG NL NL NP NL NP NP
FX NL NL NP NL NP PS
GX NL NL NL NP PS PS
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Tractability of model-checking: Fragments with S, U

Hardness and completeness of MC(T , B)

B I N E V M L BF
T ¬ ∧ ∨ mon. ⊕ all
S L L L L L L L
SX NP NP NP NP NP NP NP
SG NP NP NP NP PS NP PS
SF NL NP NP NL PS NP PS
SFG NP NP NP NP PS NP PS
SFX NP NP NP NP PS NP PS
SGX NP NP NP NP PS NP PS
SFGX NP NP NP NP PS NP PS
other NP NP NP NP PS NP PS
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Conclusion

Achieved

I Separated model-checking problems for almost all LTL
fragments into

good (efficiently solvable) and bad (NP-hard).

I Established the exact complexity of all good fragments.

Open questions

I LTL fragments with ⊕ (ugly)

I upper bounds e.g. for MC({U}, ∅)
I exact complexity of bad fragments

I CTL . . .
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Related work

Achieved

I Complete classification of satisfiability for all fragments of
CTL∗

I Partial classification of reasoning in fragments of default logic
I existence of a stable extension
I credulous reasoning
I skeptical reasoning
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Thanks

Joint work with
Michael Bauland, Olaf Beyersdorff, Arne Meier, Martin Mundhenk,
Thomas Schneider, Henning Schnoor, Ilka Schnoor,
Michael Thomas

Thank you!
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