
46 15-16/08/2009 Nicola Galesi 



History 

Resolution is a proof system for DNF formulas or a refutational  
Systems for CNF formulas 

It was introduced by Blake in 1937 and then became important  
by a work Davis-Putnam and Robinson in the 60s in the field of  
automated theorem  Proving. 

In the last 20 years it was subject of deep investigations in the  
field of Proof Complexity. There are  hundreds of  papers with  
subject Resolution.  

At present it is still matter of strong investigations 47 15-16/08/2009 Nicola Galesi 



Plan  

-   Definition of the Resolution system 
-  Soundness and Completeness 
-  Examples 
-  Restrictions and Refinements of Resolution 
-  Complexity measures for Resolution 
-  Interpolation for Resolution 
-  Search Problems and Resolution. 
-  DPLL algorithm and Treelike Resolution 

48 15-16/08/2009 Nicola Galesi 



Definitions 

49 15-16/08/2009 Nicola Galesi 



Resolution rule 
Clauses are disjunctions of literals (x1∨x2∨¬x3). 
CNF ar conjunctions of clauses 
Resolution Rule 

We can assume that both xi and ¬xi do not occur in C and D. 
xi is the resolved variables 

Assignments 
An assignment satisfies a clause if satisfies at least one of its  
literals 

Property [Exercise 1] 
Resolution rule is sound: if an assignment satisfies the  
premises of the rule then it satisfies the conclusion  

50 15-16/08/2009 Nicola Galesi 



Resolution refutations 
Let F be a CNF, F =C1,...,Cm. 

A Resolution proof P of a clauses C from F  
is a sequence of  
Clauses D1,.....,Dl s.t. 
1.  Dl =C 
2.  Di is either one of the Ci`s or is inferred by Resolution rule 

from two previous clauses Dj and Dk, j,k<i in the sequence 

If C =[] the empty clause , we speak of Refutation of F  

51 15-16/08/2009 Nicola Galesi 



Examples 
F = {A,B,C},{¬ C, B} {A,¬ B} {¬ A} 

{A,B,C} {¬ C, B} 

{A,¬ B}  

{¬ A} 

{A,B} 

{A} 

{} 

52 15-16/08/2009 Nicola Galesi 



Example         ∅   

          (x1) 

      (x1 x2)  

    (x1 x2 x5)   (x2 x5) 

      (x1 x2 x4 x5)    (x4)     (x1) 

F={(x1 x2 x3) (x3 x4 x5)(x4 x6)(x4 x6 )(x2 x4 x5)(x1 x2 )(x1 x3)(x3 )} 
53 15-16/08/2009 Nicola Galesi 



Assignments and refutations 
Let C be a clause and α a partial assignment to  
variables of C. C[α] acts  as follows: 
-  if some variables of C is set to 1 then C =1 
-  All variables set to 0 are deleted from C 

Extend to refutations 

{A,B,C} {¬ C, B} 

{A,¬ B}  

{¬ A} 

{A,B} 

{A} 

{} 

{B,C} {¬ C, B} 

{¬ B}  {B} 

{} 

{} 

54 15-16/08/2009 Nicola Galesi 



A method for UNSAT 
Resolution is a method to prove unsatisfiability of formulas in  
CNF. If a proof of F in Resolution ends with the [] then F  
is UNSAT. 

Soundness 

If                     then F is UNSAT. 
Assume by the contrary that F is SAT. Then there exists an  
assignment which satisfies the whole proof, in particular []. 

55 15-16/08/2009 Nicola Galesi 



A method for UNSAT 
Completeness. Induction on n = # of variables of F 
n=0. Then F =[]. Ok 
n n+1. Choose a var x in F  
F1=F[x=1] and F2=F[x=0]. F1 and F2 are UNSAT , then by HI 

[] 

F1 

[] 

F2 

P1 P2 

56 15-16/08/2009 Nicola Galesi 



A method for UNSAT 
F+ obtained from F as follows 
-  keep all clauses containing x 
-  Delete all clauses containing ¬x  
-  Keep all other clauses 

F- obtained from F as follows 
-  keep all clauses containing ¬x 
-  Delete all the clauses containing x 
-  Keep all other clauses 

57 15-16/08/2009 Nicola Galesi 



A method for UNSAT 

P2 

C∨x,   D∨x,  F* 

x 

P2 

C 

[] 

C∨x ¬x 

F- 

P1 

D F* 

D∨x 

x 

F+ 

P2 

¬x 

F- 

P1 

F+=C∨x,   D∨x,  F* 

58 15-16/08/2009 Nicola Galesi 



Resolution as an algorithm 
Assume S is a set of clauses. 

Res(S)= S ∪ {C | C is obtained by Resolution from A, B ∈ S} 

Define  

Thm. S is a set of clauses is UNSAT iff [] ∈ Res*(S). 
[Exercise 2] 

59 15-16/08/2009 Nicola Galesi 



Resolution as an algorithm 
An algorithm to test if a formula A is a TAUT 

1.  Take ¬A 
2.  Trasform ¬A in CNF formula S 
3.  Repeat      
4.        F=S 
5.        S= Res(S) 
6.  While ([] ∉ S or F=S) 
7.  Output([]∈S) 

60 15-16/08/2009 Nicola Galesi 



Refinements of  
Resolution 

61 15-16/08/2009 Nicola Galesi 



Treelike Resolution (TLR) 

A Resolution refutation P is treelike if each clause in the  
proof is used at most once  as a premise in a resolution rule 

Said otherwise: a refutation is treelike if the proof graph is a  
tree. 

{A,B,C} {¬ C, B} 

{A,¬ B}  

{¬ A} 

{A,B} 

{A} 

{} 

62 15-16/08/2009 Nicola Galesi 



Regular Resolution  
A Resolution refutation P is regular  if along all paths from  
the empty clause to a leaf, each variable is resolved at most  
once. 

Regularity important on daglike proofs 

{}  

{A,B,C}  {A,¬B,C}  {A,B,¬C}  {A,¬B,¬C}  {¬A,B,C}  {¬A,¬B,C}  {¬A,B,C}  {¬A,¬B,¬C
}  

{A,C}  {A,¬C}  {¬A,B}  {¬A,¬B}  

{A}  
{¬A}  

A  

C  B  

C  C  B  B  

63 15-16/08/2009 Nicola Galesi 



Ordered Resolution  
A Resolution refutation P of is Ordered  if ther is an  
elimianation order of the variables which is respected along all  
Paths. 

Ordered is a case of Regular [Trasform the proof in the  
                                                  example in ordered]. 
Ordered Resolution important on daglike proofs 

{A,B,C}  {A,¬B,C}  {A,B,¬C}  {A,¬B,¬C}  {¬A,B,C}  {¬A,¬B,C}  {¬A,B,¬C}  {¬A,¬B,¬C}  

{A,C}  {A,¬C}  {¬A,B}  {¬A,¬B}  

{A}  
{¬A}  

{}  

A  

C  B  

C  C  B  B  

64 15-16/08/2009 Nicola Galesi 



Linear Resolution  

A Linear Resolution refutation of a formula F=F1,...,Fr  is a  
sequence C1,...,Cm. s.t. C1 ∈ F, Cm=[] and each step is of the  
form 

Where Li-1 is either a clause  
of F or is Cj for j<i 

Ci-1 

Ci 

Li-1 {A,B}  {A,¬B}  

{¬A,B}  {A}  

A  

B  

{B}  {¬A,¬B}  

{¬A}  

{A}  

A  

B  

Example 

65 15-16/08/2009 Nicola Galesi 



Complexity measures 
For Resolution 

66 15-16/08/2009 Nicola Galesi 



Size 
Let P be a refutation C1,C2,....,Cm=[] of a CNF F = F1,...,Fr . 

The size of P is m, i.e. the number of clauses in the proof or  
equivalently the number of nodes in the proof graph. 

Given a CNF formula F 
Size of refuting F in X-Resolution (where X= daglike, treelike, 

Regular, ecc)  

 SX(F)= min{|P| : P is  a X-Resolution refutations of F}  

Notice for the same F it could be that STLR(F) >= exp(|F|ε) but 
SDLR(F)<= |F|O(1) 

67 15-16/08/2009 Nicola Galesi 



Memory configuration: A set of clauses M 
Refutation: P=M0 ,M1 , ..., Mk 
 * M0 is empty   
   * Mk contains the empty clause. 
 * Mt+1 is obtained from Mt by: 
    1. Axiom Download: Mt+1 = Mt +  C ∈F. 
    2. Inference step:Mt+1 = Mt + some C derived by 
   resolution from a pair of clauses in Mt. 
    3. Memory Erasure:Mt+1 is a subset of Mt . 

Sp(P)= max t∈[k]{|Mt|}. 

SpR(F)= min {Sp(P): P refutation of  F}. 

Resolution Space  

68 15-16/08/2009 Nicola Galesi 



Resolution Space: Example  

{A,B}  {A,¬B}  

{¬A,B}  {A}  

A  

B  

{B}  {¬A,¬B}  

{¬A}  

{}  

A  

B  

Example Time Memory 
0 

1 {A,B}  

2 {A,B}  {A,¬B}  

3 {A,B}  {A,¬B}  {A}  

4 {A,¬B}  {A}  

5 {A}  

6 {¬A,¬B}  {A}  

7 {¬A,¬B}  {A}  {B}  

8 {A}  {B}  

9 {A}  {B}  {¬A,¬B}  

10 {A}  {B}  {¬A,¬B}  {¬A}  

11 {A}  {B}  {¬A}  

12 {A}  {B}  {¬A}  {}  

69 15-16/08/2009 Nicola Galesi 



Resolution width 
C a clause. The width of C, 

w(C)= # literals in C 

F a CNF,  the width of F 
w(F) = max{w(C) :  C a clause in F} 

P a Refutation of a CNF F, the width of P 
w(P)= max{w(C) : C a clause in P} 

F UNSAT CNF. The width of refuting F in Resolution 
wR(F)= min {w(P) : P is a Resolution of F} 

70 15-16/08/2009 Nicola Galesi 



Relatioships between size and width 
[BenSasson,Wigderson 99] Proved in Chapter II 
Let F be a UNSAT k-CNF defined over n variables 

Size-width tradeoffs for TLR 

Size-width tradeoffs for DLR 

€ 

wR (F) ≤ log(STLR (F))+ k
STLR (F) ≥ 2

(wR (F )−k )

71 15-16/08/2009 Nicola Galesi 



Relatioships between space and width 
[Atserias-Dalmau 03] Proved in Chapter VI 
Let F be a UNSAT k-CNF defined over n variables 

Space width tradeoffs for Resolution 

72 15-16/08/2009 Nicola Galesi 



Interpolation for 
Resolution 

73 15-16/08/2009 Nicola Galesi 



Interpolation and Complexity 
Let A(p,q)→B(p,r)  be a TAUT formula where q,r are sets of  
private varibales and p are commons to the two formulas. 

An Interpolant  C(p)  is a formula such that 
A(p,q) → C(p) 
C(p) → B(p,r). 

Interpolant and complexity 
[Mundici 82] proved that if the formula size (circuit size) of  the  
inteporlant is polynomial in the size of the implication then 

 NP ∩ co-NP ⊆ NC1/poly (resp NP ∩ co-NP ⊆P/poly) 

74 15-16/08/2009 Nicola Galesi 



Interpolation and Complexity 
[Krajicek 94] Estimate the size of the circuit of the interpolant  
in terms of the length of the proof fo the implicant. 
Let  A(p,q) ∧ B(p,r)  a  UNSAT CNF   

An Interpolant  C(p)  is a circuit s.t.  

€ 

C(a) =
0 A(a,q) UNSAT
1 B(a,r) UNSAT
 
 
 

 

75 15-16/08/2009 Nicola Galesi 



Interpolation and Complexity 
Thm [Krajicek 94, Pudlak 96] proved in Chapter III 
Let P be a DLR refutations of  A(p,q) ∧ B(p,r). Then there  
exists   a boolean circuit C(p) s.t.   
1.  for every truth assignment a  to the common variables p 

2.  C is of size O(|P|) (#gates). 
3.  If the common variables p occur only positively in A and 

negatively in B, then C is monotone 
4.  If P is TLR, then C is a formula (treelike circuit) 

Cor (informal)  
Lower bounds on (monotone) circuit size give lower bounds on  
length of Resolution refutations 

€ 

C(a) =
0 A(a,q) UNSAT
1 B(a,r) UNSAT
 
 
 

 

76 15-16/08/2009 Nicola Galesi 



Search Problems 
And Resolution 

77 15-16/08/2009 Nicola Galesi 



Branching Progam 
Branching Programs   
A 2-regular dag with one source node and  
two target nodes 
-  Every node labelled with a variable 
-  The two edges leaving a node are labelled  
    with element of a set X 

A branching program computes a function 
f:{0,1}n → X as follows: 
f(a1,...,an)=x if  the path starting at the root 
and following the edges according to a  
ends in x 

x2 

x3 

x1 

x2 

x3 

x4 x4 

1 0 

0 

0 

0 

0 

1 

1 

1 

1 

0 
1 

1 
0 

0 1 

78 15-16/08/2009 Nicola Galesi 



A False Clause Search Problem 
Let F be a UNSAT CNF F= C1,....,Cm 

Search Problem 
Given an assignment α to variables F find a clause C in F  
falsified under α 

Refutation into decision trees 

{A,B,C}  {A,¬B,C}  {A,B,¬C}  {A,¬B,¬C}  {¬A,B,C}  {¬A,¬B,C}  {¬A,B,C}  {¬A,¬B,¬C}  

{A,C}  {A,¬C}  {¬A,B}  {¬A,¬B}  

{A}  
{¬A}  

A  

C  
B  

C  C  B  B  

79 15-16/08/2009 Nicola Galesi 



A False Clause Search Problem 
Refutation into decision trees 

Thm. A TLR refutation for F defines a decision tree that solves  
the FCLP for F.  [Exercise 5. Make the statement and its proof  
                            precise] 
Regular resolution define ordered branching programs to solve  
FCSP  

A 

B C 

C C B B 

1 

1 1 

0 

0 

{A,B,C} 

0 

0 

{A,¬B,C} {A,¬B,¬C} {A,B,¬C} 

0 1 

{¬A,¬B,¬C} {¬A,¬B,C} 

{¬A,B,¬C} {¬A,B,C} 

1 0 

80 15-16/08/2009 Nicola Galesi 



DPLL and  
treelike Resolution 

81 15-16/08/2009 Nicola Galesi 



A SAT algorithm 
Let F be a CNF. DPLL is an algorithm for the SAT of F 

DPLL (F) 
   if F is empty   
  F is satisfiable and report the assignment 
    If F contains the empty clause 
  then return 
    else 
  - choose a literal x 
   - DPLL(F[x=1]) 
           - DPLL(F[x=0]) 

82 15-16/08/2009 Nicola Galesi 



Search tree on DPLL 

A 

B C 

C C B B 

1 

1 1 

0 

0 

{A,B,C} 

0 

0 

{A,¬B,C} {A,¬B,¬C} {A,B,¬C} 

0 1 

{¬A,¬B,¬C} {¬A,¬B,C} 

{¬A,B,¬C} {¬A,B,C} 

1 0 

Let F be a UNSAT CNF. DPLL is producing a Treelike  
Resolution refutation of F. 

F= {A,B,C} {A,¬B,C} {A,B,¬C} {A,¬B,¬C}  
      {¬A,B,C} {¬A,¬B,C} {¬A,B,¬C} {¬A,¬B,¬C} 

83 15-16/08/2009 Nicola Galesi 



DPLL and Proof Complexity 

DPLL vs TLR refutations.  
DPLL is an algorithm to recover TLR refutations on UNSAT  
CNF formulas. This will have some consequences on  
Automatizabilty of TLR (Chapter III) 

TLR Refutations vs DPLL performances 
Since TLR is not polynomially bounded, i.e. There are families  
of formulas requiring exponential size TRL refutations, then 
DPPL performs bad on this formula. 

DLR and Proof Search 
Extending similar considerations to DLR and find good  
algorithms giving DLR refutations is matter of research 84 15-16/08/2009 Nicola Galesi 



85 



History of Results 
The Result.  
A family of UNSAT formulae requiring exponential size TLR but  
admitting polynomial size DLR. 

History 
(1) [Goerdt 92] gave a first example of  UNSAT formula with 

polynomial size DLR but requiring quasipolynomial TLR 
refutations (ad hoc modification of the PHP) 

(2) [Bonet,Galesi,Esteban,Johannsen 98] Gave the first 
exponential separation. Use the Interpolation method 
together with a circuit lower bound for monotone real NC 
hierarchy. 

(3) [Ben-Sasson, Impagliazzo,Wigderson03] Simplify and 
slightly improve the result for Resolution   

86 



Plan of the day 
1.  First we introduce a general setting to prove lower bound 

for tree-like Resolution: the Prover-Delayer Game 

2.  Then we introduce Pebbling Games on  graphs and briefly 
discuss an important old result of [Celoni,Paul,Tarjan 77] 

3.  We build a family of UNSAT formulae Peb(G) encoding a 
principle related to pebbling of directed acyclic graphs G 

4.  We will show there are polynomial size DLR refutations for 
Peb(G),  for any dag G. 

5.  Using the Prover Delayer game and the result of [CPT 77] 
we will prove that there exists a graph G s.t. Peb(G) 
requires exponential size proofs in TLR 

87 



Notions and Techniques 

1.  the Prover-Delayer Game 

2.  Pebbling Games and [CPT 77] result 

3.  Construction of  Peb(G)  

4.  [BSIW03] proof 

88 



Prover Delayer Game 

89 



Prover Delayer Game 
Definition.  
In the PD game there are two players playing on a UNSAT 
k-CNF formula F 

Prover: asks for variables x of F 
Delayer: answers with a value for x or leaves it unset  
              and win 1$ 

Prover wins as soon as he falsifies a clause of F 

Objective: Maximize  the gain of Delayer 

90 



Prover Delayer Game 
Example.  

--------------------------------------------------------------------------------------------------------------- 
I round 
Prover: x1 ? 
Delayer: unset  
Gain: 1$ 
Prover x1=T 
----------------------------------------------------------------------------------- 
II round 
Prover: x2 ? 
Delayer: unset  
Gain: 2$ 
Prover x2=T 
--------------------------------------------------------------------------------------------------------------- 
III round 
Prover: x3 ? 
Delayer: unset  
Gain: 3$ 
Prover x3=F   WIN 91 



TLR proof size vs PD game 
Idea. 
“Good” strategies for the Delayer on a unsat CNF F, give  
“good” lower bounds for  TLR refutations of F 

Thm [Pudlak,Impagliazzo] 
If F has TLR refutations of size S, then the Prover wins the PD  
game on F leaving O(log S) dollars to the Delayer 

Cor 
If in any PD game over F the Delayer wins at least p dollars,  
then the shortest TLR refutations of F are of size 2Ω(p). 

92 



Proof of the Theorem 
Assume to have a size S TLR refutation P for F, |P| = S 

Notice that both S1 and S2 cant be <= S/2. Say S1<=S/2. 
For a generic round k, denote by 

αk = the assignment to variables of F built so far 
pk = the total number of dollars scored by the Delayer so far  

x ¬ x 

S1 S2 

93 



Prover Rule 
The Prover keeps the following invariant IP: 

Assume the Prover is able to keep the invariant along the  
game. 

Let f the final round. We want  to calculate pf, knowing that at  
the end |P[αf]|=1 

94 



Keeping the Invariant - I 
Base. At the beginning of the game: 
   α=∅, p=0; and the IP follows 
Induction. 

Wlog  

Prover chooses to present x 

x ¬ x 

P1 P2 

95 



Keeping the Invariant- II 
I Case. Delayer gives a value i ={0,1} to x.  
Then pk+1=pk 

II Case. Delayer gets 1 $ but leaves Prover to choose. Prover  
gives to x the value to proceed into P1 (the smaller).  

pk+1=1+pk, but   

96 



Prover Delayer Game: Conclusions 

Why PD Game ? 
To prove an exponential lower bounds for TLR refutations  of  
some UNSAT k-CNF F over n variables, is sufficient to  
find a strategy for the Delayer in the PD game over F that 
allow her to win Ω(n) dollars against any strategy of the  
Prover. 

Not an easy task - after all 
Since this means that to prove unsatisfiabilty of F the Prover  
needs to ask simultaneously almost all variables.  

97 



Pebbling Games 

98 



Pebbling Games on DAG 

   Source Nodes 
   Internal Nodes 
   Target nodes 
    Pebbles 

99 



Pebbling Games: Rules 
Game:  
Place pebbles     on dag’s nodes according to the rules 

Rule 1 
Sources nodes can be pebbled freely 

100 



Pebbling Games: Rules 
Rule 2 
Internal nodes can pebbled only if their parents are both  
pebbled 

101 



Pebbling Games: Rules 
Rule 3 
Pebbles can be removed at any time 

102 



Pebbling Games: Aim & Complexity 
Aim 
Put a Pebble on some target node 

Complexity Measure: Pebbling number 
Maximal number of pebbles placed simultaneously on the 

graph. 

Pebbling Number = 6 103 



Definitions 

Pebbling number of a strategy to pebble G 
Let S be strategy to pebble a dag G. 
 Pn(G,S)= max # of simultaneous pebbles on G following S 

Pebbling number of G 
Pn(G) = min { pn(G,S) |  S strategy to pebble G} 

Hardness Results: prove that a graph G requires high pn(G) 

Original Motivations: Prove space lower bounds for Turing  
Machine: pebbling game models space in TM 

104 



An Important Old Result 
[Celoni, Paul, Tarjan 77] 

Found (constructively) a directed acyclic graph G over n nodes  
with in-degree  <= 2 such that  

105 



Pebbling Formulas 

106 



Modelling PG as UNSAT Formulas 

Let G be a dag with indegree <=2.  We encode the principle  
that the pebbling game must terminate sucessfully pebbling a  
target node. Put in an UNSAT formula we say that 

1.  Sources nodes can be always pebbled 
2.  Internal nodes can be pebbled  whenever its parents are 
3.  But no target node is ever pebbled 

107 



Modelling PG as UNSAT Formulas 
G=(V,E)  

v∈V, xv iff “node v has been pebbled”  

            xv                             for any source node v∈ V 
Peb0(G)    xv ∧xw → xz                    for any (v,z),(w,z)∈E 

               xv               for any target v ∈V 

[Exercise 8] Prove that Peb0(G) is unsatisfiable 

108 



Peb0(G) is not Sufficient 
Thm. There are polynomial size in n=|V| TLR refutations of  
Peb0(G). 

Proof Idea. Visit the graph G passing once from any node in a  
depth first fashion, starting from the bottom. Apply to the  
following pyramidal graph and then generalize to any graph 

a b c d e 

f g h i 

n m l 

o p 

q 
109 



Adding Complexity to Peb0(G)  
Idea. Use pebbles of two colors           and let us consider a  
node v pebbled if it is pebbled by one of two colours 

Why.  
1)  Similar to the formulas used in the previous exponential 

separations [BEGJ98] (pyramidal) 
2)  From the previous proof for Peb0(G). Not possible to carry 

on that proofs on such a modification. 

The New Principle 
1. Sources nodes can be always pebbled by any of the two 

colours 
2. Internal nodes can be pebbled  of any colours whenever its  
    parents are pebbled by  any color 
3.  No target node is ever pebbled with any colour 

110 



Modelling 2-color PG as UNSAT Formula 
G=(V,E), dag with indegree <=2. 
 v∈V,  ther are two variables for each node 
x(v,R) iff “node v has been pebbled RED”  
x(v,B) iff “node v has been pebbled BLUE”  

[Exercise 8] Prove that for all dag G, Peb(G) is unsatisfiable  
and give polynomial size DLR refutations.  

111 



Lower bounds for 
Pebbling Formulas 

in TLR 

112 



Main Idea 

Main Thm 
Let G be a dag with indegree <=2.  Delayer can always win  
pn(G)-3 dollars in any PD game played on peb(G). 

Cor [by Thm PI96;CPT77] 
Take as G the dag of [CPT]. By Main Thm and Thm of [PI] we  
Have that Peb(G) requires exponential size TLR refutations. 

113 



Informal proof -  I 
Tools.  
Let G=(V,E) our dag. Let S and T the sets of sources and 
target nodes in G. Denote pn(G) as pn(G,S,T) 

Informal Strategy Kept by the Delayer 
-  Delayer keeps sets of actual sources and target nodes in 

G 
     Si and Ti initially set resp. as S0=S and T0=T. 

-  Assume that Prover proposes the variable x(v,·) talking of 
     node v. The Delayer will let x(v,·) unassigned only if adding 

v  to the target Ti the pebbling number of G is decreasing 

114 



Informal proof -  II 
Prop1. [Invariant Property]  
After round i, if the Delayer has scored pi points, then 

    pi >= pn(G,S,T) - pn(G,Si,Ti) 

Read: the Delayer scores as many points as the pebbling  
number of G 

Prop2 
After the last round f, the pebbling number of G is  
    pn(G,Sf,Tf) <= 3 

Cor 
pf >= pn(G)-3. Then when G is the [CPT] graph, the theorem  
follows 

115 



Delayer’s Strategy - I 
Let x(v,·) the variable queried by the Prover after round i. 

Case 1. v ∈ Si, the Delayer sets x(v,·) =1 
Read: Delayer must satisfy a actual source axiom, otherwise  
           could immediately loose 

Case 2. v ∈ Ti, the Delayer sets x(v,·) =0 
Read: Delayer must satisfy a actual target axiom otherwise  
           could immediately loose 

116 



Delayer’s Strategy - II 

Case 3. v ∉ Si ∪ Ti, and pn(G, Si,Ti) = pn(G,Si,Ti ∪ {v}). 
            Then the Delayer sets x(v,·) =0 and add v to Ti 
Read: Since the pebbling number of G does not decrease  
adding v to Ti, then Delayer can safely set the variable to the  
value most advantegeous for her 

Case 4. v ∉ Si ∪ Ti, and pn(G, Si,Ti) > pn(G,Si,Ti ∪ {v}). 
            Then the Delayer leaves x(v,·) unset and add v to Si.  
Read: Since the pebbling number of G decreases  
adding v to Ti, to keep the invariant the Delayer gain 1$ but  
leaves the decision on the variable to the Prover. He can then  
safely add v to the sources, to be meant as a”pebbled” node 

117 



Keeping the Invariant - I 
Reduction Lemma. 
For any v∈ V and any set S and T. 

 pn(G,S,T)<= max{pn(G,S,T∪{v}), pn(G,S∪{v},T)+1} 

Proof. 
To pebble T from S, first pebble T ∪{v} from S. If this ends  
with a  node of T pebbled we have done (in this case  
pn(G,S,T) <= pn(G,S,T∪{v}). Otherwise is v to be  
pebbled. Then keep v pebbled and pebble T from S ∪{v} (in  
this case pn(G,S,T)<= pn(G,S∪{v},T)+1). 

118 



Keeping the Invariant - I 

Prop 1. 
After round i, if the Delayer has scored pi points, then 
    pi >= pn(G,S,T) - pn(G,Si,Ti) 

Proof. At the beggining p=0, Si=S,Ti=T. 
At any round pn(G,Si,Ti) is changing only in case 4. We  
loose 1 from pn(G,Si,Ti) but Delayer scores one point and  
since she adds v to Si the property follows by reduction lemma  

119 



Terminating the game 
Prop2 
After the last round f, the pebbling number of G is  
    pn(G,Sf,Tf) <= 3 
Proof. 
By the strategy of the Delayer neither (actual) axiom clauses  
nor (actual) target clauses will never be violated (Prove this !  
[Exercise 9]). Then, since the Prover aways win, at the end will  
be violated  an  internal (actual) clause axiom.  

Prover wins on this by using at most  three pebbles 

u v 

z 

120 


