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History of Results 
History [Main] 
(1) [Tseitin69] implicitly gave a first example of  UNSAT formula 

requiring subexponetial regular Resolution refutations  
(2) [Haken 85] Gave the first exponential lower bounds for DLR. 

Use PHP.  
(3) [Chvatal Szemeredi 86] usign Haken method, prove the 

lower bounds for random k-CNF. 
(4) [Urquhart 88] Extended [CS86] to get exponential lower 

bounds in DLR for Tseitin Tautologies 
(5) [BeamePitassi 96] Simplify the Haken’s metod to prove DLR 

lower bounds for PHP and Random CNF [This Lecture] 
(6) [Ben-Sasson Wigderson 99] Synthesis of  the [BP] method 

into a general method based on the width [This Lecture] 
(7) [Raz 02, Razborov 05] get exponential lower bounds for 

WeakPHP, introducing psuedowidth 
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Plan  
1.  From Resolution to Monotone Resolution. Polynomial 

equivalence wrt PHP. 

2.  The Beame-Pitassi method: PHP requires exponential 
refutations in DLR. 

3.  Synthesis of BP method: The width method of Ben-
Sasson-Wigderson 

4.  Application of width method - I : Random k-CNF 

5.  Application of width method - II : Tseitin formulae  

6.  The “strange case” of Weak PHP: pseudowidth 123 



Notions and Techniques 

1.  The Beame-Pitassi method 

2.  The width method of Ben-Sasson-Wigderson 

3.  Complexity of Random k-CNF 

4.  Pseudowidth 
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Monotone Resolution 
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Motivations 
DLR Complexity of PHP was considered a big problem. 
Haken’s technique was pretty complicated. Many efforts to  
simplify it 

Monotone Resolution: clauses without negations 
Polynomial Equivalence with DLR wrt PHP. 
[BP96, BP96] noticed that it sufficient to study monotone DLR  
to prove lower bounds for PHP 

Consequences: 
-  Great simplification of Haken result on PHP 
-  Slight simplification of [CS 86] results on random k-CNF 
-  Developing ground for the width method of [BSW99] 126 



Monotone Resolution for PHP 
Let us consider PHP[n+1,n]. Only clauses with positive literals 

Monotone Resolution Rule for PHP 

Where R,S, and T are disjoint set of indices 

Idea of the monotone Rule 
Since different pigeons can’t go to the same hole we delete  
variables speaking of different holes and keep only those of  
common pigeons 

€ 

A∨PR , j ∨PS, j                      B∨PR , j ∨PT , j

A∨B∨PR , j
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Polynomial Simulation 

Thm[Buss,Pitassi] MR and DLR polynomially simulate each  
other on the PHP[m,n], m>n. 
Proof 
MR proof → DLR proof. See how to simulate the monotone  
Rule.   
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Polynomial Simulation 

DLR proof → MR proof. 

Negation Transformation 

Initial clause  

        unchanged 

€ 

¬pi,k ∨¬p j,k ⇒
l∈[n ]
∨ pl ,k
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Polynomial Simulation 

Clauses Transformation 
           C= A∨B  ⇒ C+=A∨B+ 

 where only B contains negated  literals 
 and B+ is obtained from B applying the transformation 

Proof strategy 

I case B is an initial clause of the form  
II case General Case 
[Exercise 1] Study the exact simulations and asymptotic  
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Conclusions 

Exponential lower bounds for the size of MR refutations of the  
PHP will give exponential lower bounds for the size of DLR  
refutations of the PHP. 

In the next section we study lower bounds for the PHP in MR 
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Lower bounds for PHP 
In daglike Resolution 
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Main theorem 

Th[BP96]. Any monotone Resolution refutation of PHP[n,n-1]  
requires 2n/20 many clauses 

Critical Truth Assignments  
Assingments to pi,j`s defining 1-1 mapping from pigeons to  
holes. 
 -  every pigeon is sent to at most one hole 
       -  no two pigeons are sent to the same hole 
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Critical Truth Assignments 

Consider the PHP[5,4] a 5-cta 

Property: Exactly one initial clause of PHP is falsified 
     p5,1 ∨ p5,2 ∨p5,3 ∨ p5,4  

Notation: i-cta if  column i in the matrix is all 0’s or falsifies 
      initial clause  pi,1∨ pi,2 ∨…… ∨ pi,n  

1 2 3 4 5 
1 0 1 0 0 0 
2 1 0 0 0 0 
3 0 0 1 0 0 
4 0 0 0 1 0 

pigeons 

ho
le

s 

134 



Proof Idea  

1.  Assume to have a short MR refutation P of PHP[n,n-1]. 
2.  Identifies LARGE CLAUSES in P as those having approx  

n2 variables 
3.  Killing Process: Hit the proof P with a simplification 

process (assigning a partial cta α) that at each step delete 
many wide clauses from the proof, but leave P[α] yet a 
proof of a simplified PHP[n’,n’-1] with n’< n. 

4.  Forcing Prop.Prove that any proof of the PHP[n,n-1] 
contains a  moderately LARGE clause 

5.  Argue that If P is short, it contains few LARGE clauses, 
and hence the simplifications process deletes to fast 
LARGE clauses contradicting (4). 
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Killing Large clauses -I 

Defn 
LARGE clauses are those with n2/10 literals 

Let P a be a MR refutation of PHP[n,n-1] with less than S  
LARGE  clauses 

Claim. There is a variable that appears in at least S/10 LARGE  
Clauses 
Proof.  
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Killing Large clauses - II 

Defn Assignment 
Pick pi,j appearing in at least S/10 large clause. 

Claim [Exercise 3] 
 P[α] is a proof of PHP[n-1,n-2] with at most 9S/10 Large  
Clauses 

1 ... i ... n 
1 0 
... 0 
j 0 0 1 0 0 

... 0 
n-1 0 

pigeons 

ho
le

s 
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Killing Large clauses - III 

Saturating the Process 
Apply previous simplification process x times, up to delete all  
large clauses and be left with a MR refutation of  
PHP[n-x,n-x-1]. 

Computing  x 
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Forcing Lemma & Contradiction 

Forcing Lemma 
Any MR refutation of PHP[n,n-1] contains a clause with n2/9  
variables. 

Getting the Contradiction 
S<2n/10. By Forcing Lemma applied on PHP[n-x,n-x-1]  
for   x=              we get 

This contradicts the fact that after x =              steps we have  
eliminated all the large clauses. 
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Proof of Forcing Lemma 

Idea  

-  We introduce a complexity measure µ on clauses. 

-  We prove that there exists a clause K with high measure 

-  We prove that K contains the required number of 
variables  
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Definition of µ 

Notation R ⊆ [n], ∧R clauses of PHP with pigeons in R 
 C a clause in the proof 

   If every cta that satisfies ∧R also satisfies C 

Defn  µ(C) 
 C a clause in the proof.  
 IC be the minimal subset of [n] s.t. 
 µ(C)=|IC| 
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Properties of µ 

Properties of µ(C)  [Exercise 4] 
1.  µ(C)=1 if C ∈ PHP 

2.  µ([])=n 

3.              then µ(C)≤µ(A)+µ(B) 

4.  (1)+(2)+(3) ⇒ ∃K s.t. n/3≤µ(K)=≤2n/3 

142 



K is a large clause   
Claim K contains n2/9 variables 
Proof.  By Prop it follows n/3≤|IK|=≤2n/3 
 Let LK= [n]-IK. Then n/3≤|LK|=≤2n/3 
 Let i ∈ IK and let α be a i-cta. Let j ∈ LK  

Swap α in β  

Since j∉ IK then β satisfies K. hence pi,l ∈ K  
Claim follows since |IK|*|LK|≥n2/9 

1 ... i ... j ... n

1 0 0

... 0 0

l 0 0 0 0 1 0 0

... 0 0

n-1 0 0

1 ... i ... j ... n

1 0 0

... 0 0

l 0 0 1 0 0 0 0

... 0 0

n-1 0 0

α i-cta β j-cta 
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The Width Method: 
Short proofs are narrow 
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Width definitions  

Restrictions [Exercise 5] understand what rules add to 
Resolution in such a way to keep the system consistent 
with application of restrictions to proofs 

Notation  
              means there is Resolution refutation of C from F of    
              width w 
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Width properties 

Prop 1 If                      then                    
Proof.   F= F’ ∧ {¬x∨y} and F’ not contain x or ¬x 

F[x=1] = F’ ∧ {y}  

w 

[] 

F = F’ ∧ {¬x∨y}  

w+1 

{¬x} 
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Width properties 
Prop2 If                      and                    ,then                    
 where Fx is the set of clauses of F containing x 
Proof.   Assume f.i. that Fx= {x∨A}  

F[x=1]   

k-1 

[] 

Prop1 

F   

k 

[¬x] {x∨A}  

{A}  F[x=0]   

k 

[] 147 



Short proofs are narrow: TLR 
Thm 
Proof.  Prove that  
By induction on b and n. b=0 OK! Assume wlog  |P1|<=|P|/2. 

By induction on b  

By induction on n 

|P|=|P1|+|P2|+1. The claim follows from Prop 2 

Cor.  

x ¬ x 

P1 P2 
P 
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Short proofs are narrow: DLR 
Thm  
Proof. Let P be a minimal size DLR refutations for F of size S. 

Set “clause largeness”  

Let PL ⊆ P the set of “large clauses”. Prove induction on b and  
n that  

149 



Short proofs are narrow: DLR 

Argue [Exercise 7]  

Claim follows from Prop2 

Cor. 
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Limitations and optimality 
Thm [BG00] The size width tradeoffs for DLR is optimal                        

Proof.   Use a formula F (LOP) over O(n2) variables and with 
bounded initial width and prove that 

1.  SDLR <= nO(1) 

2.  wR(F)>=Ω(n) 
3.  w(F)<=O(1) 
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Width proof search 
An algorithm to produce a DLR refutation of a UNSAT  
formula A in CNF 
Resk(A)={C : w(C)<=k and C is resolvent of two clauses in A} 

1.  k=1 
2.  Repeat      
3.        S= Resk(S) 
4.         k= k+1 
5.  While ([] ∉ S) 
6.  Output([]∈S) 

Running Time. On UNSAT F over n variables   
The algorithm runs in time nO(w

R
(F))  152 



Width Lower bounds: general framework 
Given an UNSAT F, define a complexity measure on clauses  
µF s.t. 
1.  µF(Axioms) ≤ 1 

2.  µF([]) ≥ “large”  

3.  µF is subadditive, i.e.                   µF(C)≤µF(A)+µF(B) 

4.  (1)+(2)+(3) ⇒ there is a clause K  of “medium” measure 
µF(K) 

5.  Argue   that “medium” complexity implies “large” width  

153 



Lower bounds for  
TseitinTautologies 
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Tseitin Tautologies 
Let G =(V,E) be a connected graph. Let m:V→{0,1} a labelling  
of the nodes of V s,t.  

Assign a variable xe to each edge e in G. 

For a  node v in V 

[Exercise 6] Take a small graph and build Tseitin formula on it  
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Expander Graphs 
We will apply the T(G,m) formulas on a graph G which is a  
good expander and we will show that the width of refuting  
T(G,m) is lower bounded by the expansion of G 

Expansion 
G a connected graph the  
      e(G)=min{|E(V’,V-V’)|: |V|/3 <= V’ <= 2|V|/3} 

Thm There are 3-regular graphs G=(V,E) with expansion 
         e(G) =Ω(|V|)  
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Define the measure 
Av =  
V’ ⊆ V,  ∂V’={xe : e ∈ E(V’,V-V’)} 

A v-cta for T(G,m) is an assignment which falsifies only  
PARITY(v) and satisfies all the other PARITY(v’) 
[Exercise 8: prove it exists] 

For C  clause let VC=min V’ ⊆ V s.t. Av’ ⇒ C under ctas 
      
       µ(C)=|VC| 
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Verifying the measure 
1.  C an Axiom,  µ(C)=1 easy: C is in PARITY(v) for some v 

2.  µ([])=|V|. [Exercise 9: Prove that for any |V’|<|V|, AV` is        
             SAT) 

3.  Take the complex clause K having 
           |V|/3 <=µ(K)=2|V|/3.  
         Let VK be the subset of V witnessing K  

4.  [Forcing] We prove that  each variable in ∂VK belongs to K 

5.  The result follows since |∂VK | >= e(G) (by def of e(G)) 
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Forcing 
VK is the minimal set implying K under ctas. 

Assume that there is xe ∈ ∂VK s.t xe ∉ C 

Let α s.t. AVK[α ]=1 and C[α]=1.  
Form β from α setting xe=0 and keeping that β is a cta 

AVK-{v}[β]=1 and C[β]=1.  
Contradictions with minimality of VK 

v u 

V 
V’ e 
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Lower bounds for  
Random k-CNF 
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Encoding of Combinatorial principles 
Tseitin Principle - Odd Charged Graph 
 The sum along nodes of the edges of a simple connected  
graph  is even. 

Encoding  
Let G =(V,E) be a connected graph. Let m:V→{0,1} a labelling  
of the nodes of V s,t.  

Assign a variable xe to each edge e in G. 

For a  node v in V 
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Random Formulae in CNF 

Experiment: 
Choose uniformly and independently m clauses with k  
variables from the space of all possible such clauses over n  
variables 
         (¬ x4∨ ¬x2 ∨ x6) ∧ (x1∨ ¬x2 ∨ x3) ∧ (¬x1∨ ¬x4 ∨ x5) 

Fact 
Let D=m/n be  density. There exists a threshold value   
r*  s.t.: 
-  if r < r*: F (n,m) è SAT w.h.p 
-  If  r > r*: F(n,m) è UNSAT w.h.p. 
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Preliminary Definitions 
Dfn.  A literal l is pure in a set of clauses F if l appears in F but 

no clause of F contains ¬l 

Dfn. A set of clauses F over n variables is 1-sparse if |F|≤n 

Properties. For s≥ 1 and 0<ε<1. 

-  A(s) iff every set of  r≤s clauses is 1-sparse 

-  Bε(s) iff every set of r clauses, s/2<r≤s, has at least εr 
pure literals 
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Preliminary Definitions 
Dfn.  A literal l is pure in a set of clauses F if l appears in F but 

no clause of F contains ¬l 

Dfn. A set of clauses F over n variables is 1-sparse if |F|≤n 

Properties. For s≥ 1 and 0<ε<1. 

-  A(s) iff every set of  r≤s clauses is 1-sparse 

-  Bε(s) iff every set of r clauses, s/2<r≤s, has at least εr 
pure literals 
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Properties for Random Formulas 
Thm [CS,BSW,BKPS] 
Let F be a random k-CNF over n variables and Δn clauses,  
ε>0. If                       , then w.h.p property A(s) and Bε(s) both  
hold.  
Proof 
Relatively elementary probability and counting. See [BKPS] 

Assumption 
From now on we assume to have for F both A(s) and Bε(s).  
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Define the measure 

Let P be DLR refutations of a random k-CNF F. 

µ(C)= min I⊆F. s.t. I →C 
Prop1 µ is sub-additive 
Prop2 C∈F → µ(C) ≤1 
Prop3 µ([])>s. 
  If a subset of F is 1-sparse then is satisfiable  
 [Exercise: hint Hall theorem]. Then property A(s) 

implies µ([])>s. 
Prop4. There exists a clause K such that s/2<µ(C)≤s. 
 Choose the first clause in P with µ(C)>s/2. By sub-

additivity get µ(C)≤s. 
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High complexity implies high width 

Lemma. w(K)≥εs/2  

Proof. 
µ(K) ≥ s/2, hence the minimal subset of F implying K has size  
at least s/2. 

Claim 
If S minimally implies K and l is pure in S, then l ∈K.  
[Exercise] 

Lemma follows from property Bε(s). 
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Weak PHP: 
pseudowidth 
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Weak PHP 
The width method does not work for PHP[m,n] when  
m>=n2/log n 

It was a big problem to understand the exact complexity of  
such a PHP 

[Raz 02] Proved that it is hard for Resolution 

[Razborov,03-05] Introduced a measure that generalize the  
width, called psuedowidth and prove Raz result and extend it  
to weaker form of Weak PHP 
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Weak PHP 
Pseudowidth. 
Let i∈[m] and let C a clause 
    JC(i)={j∈[n] : pi,j C} 

 Consider a vector of pigeons  threshold d=(d1,…,dm) 

    pwd(C)={i∈[m] : |JC(i)| >= di} 

Thm Short proofs of PHP[m,n] have small psuedowidth 

Thm PHP[m,n] requires high pseudowidth 
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Open Problems 
Apply and define pseudowidth to other examples of formulas.  

For instance  
-  Exact complexity of Ramsey formulas is not known in 

Resolution. 
-  Try to get stronger DLR lower bounds for random 

formulas (f.i. for a great density) 
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