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Space Complexity   
in Resolution 
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Memory configuration: A set of clauses M 
Refutation: P=M0 ,M1 , ..., Mk 
 * M0 is empty   
   * Mk contains the empty clause. 
 * Mt+1 is obtained from Mt by: 
    1. Axiom Download: Mt+1 = Mt +  C ∈F. 
    2. Inference step:Mt+1 = Mt + some C derived by 
   resolution from a pair of clauses in Mt. 
    3. Memory Erasure:Mt+1 is a subset of Mt . 

Sp(P)= max t∈[k]{|Mt|}. 

SpR(F)= min {Space(P): P refutation of  F}. 

Resolution Space  
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Resolution Space: Example  

{A,B}  {A,¬B}  

{¬A,B}  {A}  

A  

B  

{B}  {¬A,¬B}  

{¬A}  

{}  

A  

B  

Example Time Memory 
0 

1 {A,B}  

2 {A,B}  {A,¬B}  

3 {A,B}  {A,¬B}  {A}  

4 {A,¬B}  {A}  

5 {A}  

6 {¬A,¬B}  {A}  

7 {¬A,¬B}  {A}  {B}  

8 {A}  {B}  

9 {A}  {B}  {¬A,¬B}  

10 {A}  {B}  {¬A,¬B}  {¬A}  

11 {A}  {B}  {¬A}  

12 {A}  {B}  {¬A}  {}  
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Let GP be the graph associated to a refutation P: 

Sp(P)= pn(GP). 

SpR(F)= min {pn(GP): P refutation of  F}. 

Resolution Space: Game definition  
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Resolution Space: Game definition  

(¬x3∨x4∨x5) (¬x4∨x6) (¬x4∨¬x6) (x2∨x4∨¬x5) (x1∨¬x2 ) (¬x1 ∨x3) (¬x3) 

(x1∨x2∨x4∨x5) (¬x4) (¬x1) 

(x1∨x2∨x5) (x2∨¬x5) (¬x2) 

(x1∨x2) 

(x1) 

[] 

(x1∨ x2∨x3) 
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Why Resolution Space ?  
[ET99]  [ABRW00] 
A natural complexity measure. Analog of Computation 
Space. 

Automated Theorem Proving:  
the search space for a proof of F is lower bounded by 
SpR(F). 

Thm[ET99] SpR(F) ≤ log STLR(F). 

Linear lower bounds on space give exponential  lower 
bounds on treelike size. 
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1.  Haken ’98: Raised the question of proof space 

2.  Esteban,Toran 99. Defined Resolution Space 
1.  SpR(F)≤ |Vars(F)|+1 

3.  Toran 00. Lower bounds for PHP and Tseitin Formulas 

4.  Alekhnovich, Ben-Sasson, Razborov,Wigderson 00: 
•  Definition of Space for other proof systems 

•  Lower bound techniques for space (weak) 

5.  Ben-Sasson Galesi 03: Lower bounds for Random k-
CNF 

6.  Atserias, Dalmau 04 SpR(F) ≥ wR(F) (Space lower 
bounded by width) 

7.  Nordstrom 08. Separations between space and width 

History of Results 
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1.  [BSG] lower bound proof for Random k-CNF 

1.  Main technique used by Atserias in another field 

2.  [AD] results on space vs width 

3.  Statement of Nordstrom’s Separation 

Notions Results and Techniques 
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Space Lower Bounds for 
Random Formulas 
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F~F(n,Dn): Pick Dn clauses at random from all            
clauses.   D is the clause density. 

There is a sharp threshold between satisfiability  and 
unsatisfiability [Friedgut]. 

Conjecture: There exists a satisfiability threshold constant. 

If D> 4.579... then whp F is unsatisfiable [Jason et. Al 2000]. 

If D<3.145... then whp F is satisfiable [Achlioptas 2000]. 

Random k-CNF 
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Thm With high probability, F~F(n,Dn) has  

   SpR(F)=Ω(n/D). 

Cor With high probability, F~F(n,Dn)  has  

                             STLR (F) = exp(Ω(n/D)). 

Lower bounds 
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1. Define G(F), the graph of F. 

2. With high probability G(F) is an expander. 

3. Define the Matching Game on a graph G and the  
    associated Matching Space . 

4. Space(F) ≥ Matching-Space(G(F)) 

5. If G is an expander then Matching-Space(G) is large. 

Proof Outline 
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CNF’s as Bipartite Graphs 
(¬x3∨x4∨x5) (¬x4∨x6) (¬x4∨¬x6) (x2∨x4∨¬x5) (x1∨¬x2 ) (¬x1 ∨x3) (¬x3) (x1∨ x2∨x3) 

C1 C2 C3 C4 C5 C6 C7 C8 

C1 

C2 

C3 

C4 

C5 

C6 

C7 

C8 

x1 

x2 

x3 

x4 

x5 

x6 

C1 

C2 

C3 

C4 

C5 

C6 

C7 

C8 

x1 

x2 

x3 

x4 

x5 

x6 

G(F) 

186 



Dfn A bipartite G is called an (r,ε)-expander if 
for all subsets V’ of the left hand side: 

     If |V’| ≤  r   then  |N(V’)| ≥  (1+ ε)|V’| 

Thm [CS87, BKPS98, BW99]: 
For F~F(n,Dn), whp  

  G(F) is a (Ω(n/D), ε)-expander,  

for some constant ε >0. 

V                       U 

V’


Bipartite Expander Graphs 
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|V|       >         |U| 

Move 1 
Pete Move: Places a pebble on a node of V  
Dana Move: Places a pebble on anode of U node to keep matching 

Move 2 
Pete Move: Removes a pebble from a node of V  
Dana Move: Removes the corresponding pebble from U 

Easy for Pete:  Using |U|+1 fingers. 

MSpace(G): Minimal # fingers needed to prove the claim. 

Pete                Dana 

Matching Game 

Pete Aim: There is no matching from V to U. 
Dana Aim: Force a Perfect Matching from V to U   
Pete’s Goal: Prove the claim using pebbles. 
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 |V|       >           |U| 

Pete             Dana 

1 
1 

2 
2 

1 
1 

2 
2 

1 
1 

2 

:QED! 

Matching Space=2 

Matching Game Simulation 

189 



Thm SpR(F) ≥ MSpace(G(F)) 
Proof 
Assume Dana has a winning strategy when Pete uses p 
fingers. We prove that every set of clauses refutable using 
space p is satisfiable. 

Given P=M0,M1 , ..., Mk, use Dana’s strategy to  
inductively find restrictions {ρ1 ,ρ2 , ... , ρk} such that 

1. |ρt| ≤ |Mt| 
2. Mt is satisfied by ρt. 

By cases on the rule to obtain Mt  

Space vs Matching Space  
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Mt = Mt-1 + C,   C initial Clause 

Space ≤ p ⇒|M t-1| ≤ p-1. Then |Mt| ≤ p. 

So use variable x given by Dana to satisfy C and 

Define ρt = ρt-1 ∪ {x=1} 

        1.|ρt| ≤ |Mt| 
            2. Mt is satisfied by ρt. 

Axiom download 
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By the soundness of resolution ρt-1   satisfies Mt and  
|Mt |> |Mt-1 | . Hence set ρt = ρt-1. 

1. |ρt| ≤ |Mt| 

2. Mt is satisfied by ρt. 

Inference Steps  

192 



Locality lemma 
If ρ satisfies M, then there is a subrestriction ρ’ of ρ 
satisfying M,  and  such that | ρ’|≤|M|. [Exercise] 

Mt = Mt-1 – C, for some C.    
 ρt-1   satisfies Mt.  We apply the Locality Lemma to  Mt   
and  set   ρt= ρ’. Then 
   1. |ρt| ≤ |Mt | 
  2. Mt is satisfied by ρt  

Memory Erasure 
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Dfn  A bipartite G is called an (r, ε)-expander if for all 
subsets V’ of the left hand side: 

 If |V’| ≤  r     then     |N(V’)| ≥  (1+ ε)|V’|. 

Main Thm: 
If G is an (r, ε)-expander, then MSpace(G)> ε r/(2+ ε). 

Main theorem 
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Thm For F~F(n,Dn), whp G(F) is an (Ω(n/D), ε) -expander,  
for some constant ε >0.  

Main Thm 
If G is an (r, ε)-expander, then MSpace(G)> ε r/(2+ ε) 

Then  
1.  whp MSpace(G(F))= Ω(n/D). 

2.  whp Space(F)= Ω(n/D). 

Putting all Together 
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Et = matching at time t   
st = |Et| 

Vt , Ut = unmatched vertices.


|V|       >          |U| 

Dana’s Strategy: Maintain the property: 
 For all V’⊆Vt  |V’|≤ r- st  there is a matching of V’into Ut. 

Let t be first time property fails.


Claim: At time t, st > ε r/(2+ ε). 

Vt

Ut


Main Theorem 
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Claim: |V’| = r- st . 

Proof:  
Assume |V’| < r- st  , i.e. |V’|≤ r- st-1 then 
V’ is matchbale into Ut 
       * If v∉V’ then V’ is matchable into Ut-1. 
       * If v∈V’ then match v to u, and match 
          remaining vertices into Ut-1. 
Contradiction with Dana strategy
Vt = Vt-1+{v}     

Ut = Ut-1+{u}      

st = st-1-1 

∃V’ minimal unmatchable into Ut, |V’| ≤r- st 

|V|       >          |U| 

Vt-1

Ut-1


v
 u


Pete Removes a Pebble 
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V’ minimal unmatchable , |V’| = r- st . 

Hall’s theorem:  If V’ is minimal unmatchable,  
   then |N(V’)| < |V’|. 

|V’|+ st > |N(V’)|     

      |N(V’)| ≥ (1+ ε) |V’|     (expansion) 

|V’|+ st > (1+ ε) |V’|  

st > ε |V’| = ε(r- st). 

st > ε r/(1+ ε) > ε r/(2+ ε). 

Pete Removes a Pebble 

198 



Vt = Vt-1-{v}       st = st-1-1 

∀ neighbor ui of v in Ut-1, ∃ Vi  minimal unmatchable 
into Ut-1-{ui}, |Vi |≤ r- st . 

V’ = ∪[d] Vi +{v} 

Claim:  V’ is unmatchable into Ut-1. 

Hence:  |∪[d] Vi |> r- st . 

Hence:  there is some I ⊆ [d] such that 
              (r- st )/2 < |∪I Vi | ≤ r- st . 

V’’= ∪I Vi . 

Claim: |N(V’’)∩ Ut-1 | ≤ |V’’|. 

|V|       >           |U| 

Vt-1
 Ut-1


v
 u1


u2


u3


Pete Place a Pebble 

199 



|V’’| ≥  |N(V’’)∩ Ut-1 |. 

|V’’|+ st-1 ≥ |N(V’’)|     

        |N(V’’)| ≥ (1+ ε) |V’’|     (expansion) 

(r- st )/2 < |V’’| ≤ r- st  
     . 
     . 
     . 
st > ε r/(2+ ε). 

Pete Place a Pebble 
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Combinatorial 
Characterization of 
Resolution width 
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Language 
L ={R1,…,Rm} be a finite relational language 

L-Structure A 
Is a tuple                               where A is the universe and 
the R’s are relations on A in L 

Homomorphism  
A and B two L-structures 
A partial hom from A to B is any function from A’ to B, 
where A’⊆ A. 

For all R ∈ L and for all a1,…,as ∈ A’  
f(a1,..,as)∈RA iff (f(a1),….f(as))∈ RB  

Combinatorial Relational Structures 
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Homomorphism problem on Relational Structures 
Given two finite relational structures A and B (over the 
same language) is there an homomorphism from A to B ? 

Obs [Kolaitis Vardi] 
SAT on r-CNF can be identified with the homomorphism 
problem on relational structures 

Informally 
A: the set of variables and clauses 
B: is the set of assignments  
Hom: the set of truth assignments of variables that makes 
clauses TRUE 

Homomorphism problem and SAT 
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Dfn Two players game over two Relational Structures A 
and B. Spoiler has k pebbles. 

At each round 
Move 1 
Spoiler: places a pebble on a element of A 
Duplicator: answers placing one of her pebble on an element of B 

Move2 
Spoiler: removes a pebble from  a pebbled element of A 
Duplicator: removes the pebbles from the corresponding element 

Spoiler wins if at some round the set of pebbled pairs of A and B 
Is not a partial homomorphism 

Otherwise Duplicator wins 

Existential k-pebble games  
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Dfn [AtseriasDalmau]  F be a r-CNF. Duplicator wins the 
Existential k-game on F if there is a family  H of partial 
assignments that do not falsify any clause of F s.t. 

1.  If f∈H, then |Dom(F)| ≤k 
2.  If f∈H and g⊆f, then g∈H 
3.  If f∈H, |Dom(f)|<k and x is variable, then there is a g∈H 

s.t. f⊆g and g ∈ H 

 In words H is a set of p.a. f not falsifying F s.t. 
 -  f assigns no more than k variables 
 -  H is close under sub-assignments 
 - (forcing) Any p.a. f assigning less than k variables can 

always be extended to any variable still preserving 
belonging to H    

Existential Games on r-CNF [EkPG] 
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Thm[AD] Let F be a r-CNF. 

wR(F)≤k iff Spoiler wins the existential (k+1)-pebble game 
in F 

Proof 

Lem1: If there is no refutation of F with width k, then 
Duplicator wins E(k+1)PG on F 

Lem2: If Duplicator wins the E(k+1)PG on F then there is 
no width k refutation of F 

Main Theorem 
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Consider  Resk(F)  and define  
  

 H={f : dom(f)≤k+1 and ∀C∈Resk(F), f(C)≠ 0} 
       (partial assignments of size at most k+1 which do not falsify  

 any clause in Resk(F)) 

1.  H≠ ∅ (since empty f is in H) 
2.  closed under sub-assignments (by def) 

Lemma 1 

Assume (3) i.e. forcing, is not true. 
Then for f ∈ H and x  a var:  
1.  ∃ C ∈ Resk(F) s.t.  f(C)≠ 0 and f∪{x=0}(C)=0 ⇒ x∈ C 
2.  ∃ D ∈ Resk(F) s.t.  f(D)≠ 0 and f∪{x=1}(D)=0 ⇒ ¬x∈ D 

but then f(C-{x}∪D-{¬x})=0 and C-{x}∪D-{¬x}∈ Resk(F). 
Contradiction  
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Assume H is a winning strategy for E(k+1)PG on F. 
show by induction on the resolution proof of width k, that 
no assignment in H falsifies a clause in the proof. 
[Exercise 1] 

Argue that there is no refutation of width k [Exercise 2] 

Lemma 2 
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Thm[AD]  Let F be a UNSAT r-CNF. Then  

SpR(F) ≥wR(F)-r+1 

Proof. 
There is no proof of width wR(F)-1. then Duplicator wins 
the EwR(F)PG on F [lemma1]. 

Lemma Let F be UNSAT r-CNF 
If Duplicator wins the E(k+r-1)PG on F, then SpR(F)≥ k 

Width vs Space 
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Lemma Let F be UNSAT r-CNF 
If Duplicator wins the E(k+r-1)PG on F, then SpR(F)≥ k 

Proof.  
Similar to [BSG] proof that space is lower bounded by 
Matching space. 

H be a Duplicator winning strategy for the E(k+r-1)PG on F.  

Prove that any Resolution refutation of F of space less than k 
is satisfiable, building for each round i a p.a. fi in H that 
satisfies the content of memory at round i [Exercise 3] 

Lemma 
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[AD] Open question Is there a formula  requiring “high”  
space” in Resolution  but having refutations with “small” width? 

[Nordstrom 08] STOC 08 

There are k-CNF formulas of size O(n) s.t. 

1.  SDLR(F)≤O(n) 

2.  wR(F)≤O(1) 

3.  SpR(F)≥ Θ(n/log n) 

Nordstrom`s Separation 
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Many Open Problems, essentially related to understanding  
better space measure and extending to stronger systems  
lower bounds and techniques 

[BenSasson Nordstrom 09]  
Space hierarchy separation for Resolution + k-DNF  

Open Problems 
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Feasible Interpolation  
and size lower bounds 
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Interpolation and Complexity 
[Krajicek 94] Estimate the size of the circuit of the interpolant  
in terms of the length of the proof fo the implicant. 
Let  A(p,q) ∧ B(p,r)  a  UNSAT CNF   

An Interpolant  C(p)  is a circuit s.t.  

€ 

C(a) =
0 A(a,q) UNSAT
1 B(a,r) UNSAT
 
 
 
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Feasible Interpolation for Resolution 
Thm [Pudlak 96]  
Let P be a DLR refutations of  Ai(p,q) ∧ Bj(p,r), i∈I j∈J. Then  
there  exists  a boolean circuit C(p) on gates {¬,∧,∨,sel} s.t.    
for every truth  assignment a  to the common variables p 

1.  C is of size O(|P|) (#gates). 

2.  If the common variables p occur only positively in A and 
negatively in B, then C is monotone, i.e. on gates {∧,∨} 

3.  If P is TLR, then C is a formula (treelike circuit) 

€ 

C(a) =
0 A(a,q) UNSAT
1 B(a,r) UNSAT
 
 
 
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Proof Idea 
Proof Idea   
Given an assignment a to common variables p, trasform the  
proof into a proof of the only Ai(a,q) or Bj(a,r) where all clause  
are either q-clauses (discend only from A) or r-clauses  
(discend  only from B). 

The circuit C will have one gate for each clause in the original  
proof . At a gate C computes if the corresponding clause in the  
proof is transfomed into a q-clause or a r-clause under a. 

P C 

clause gate 
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Proof  Details 
First step. Transform the proof 
Base: C in F:easy. 
Induction: First Case 
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Proof  Details 
Induction: Second Case 
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Proof Details 
Second Step: Building the circuits. Choose 0 for q-clauses and  
1 for r-clauses 

x y 

Sel(p,x,y) 

x y 

∨ 

x y 

∧ 
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Proof Details 
Monotone and treelike Circuits: 

First Obs:  
If all p are positive in A  then in Case 1 of trasfomation if B’ is a 
q-clause we can take it  for A∨B even if p=0. 

Then sel(p,x,y) can be simplified in (p∨x)∧y 

Second Obs: 
By construction the topology of the circuit is the same as that  
of the proof. 
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Razborov Lower bound for  
monotone circuits 

Thm [Razborov,Pudlak] 
Let C be a monotone circuit whose input variables encode  
in the usual way a graph oven n variables. Suppose that C  
outputs 1 on all  cliques of size m and outputs 0 on all (m-1)- 
partite graphs, where m=                   . 

Then C is of size  
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Clique-Co-clique Tautologies 
We express the UNSAT formula saying that a graph G  
contains a m clique and it is m-1 colorable 
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Clique-Co-clique Tautologies 
We express the UNSAT formula saying that a graph G  
contains a m clique and it is m-1 colourable 

G is a m-clique 
Clique(p,q) }

} G is a (m-1)-partite 
Colour(p,r) 
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Lower bounds for Clique-Coclique 
Thm [Pudlak] Any resolution refutation of the CNF 
Clique(p,q)∧Colour(p,r) requires size  

Proof. Set m as in Razborov’s theorem. Then no proof can  
Exist of size smaller than the bound in Razborov theorem.  
Otherwise by Feasible Interpolation we get a monotone circuit  
which outputs 1 an all m-clique graphs and 0 an all (m-1)- 
partitionable graphs. 
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Interporlation and 
Automatizability 
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Automatizability 

 Automatizability [Impagliazzo, Bonet-Pitassi-Raz] 
A proof system S is automatizable if there is an algorithm 
AS which in input a tautology a gives a proof in S of the  
tauology A in running in time  polynomially bounded in the  
shortest proof of A in S 

A∈TAUT AS PA 
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Automatizability and Interpolation 
 Thm[Bonet,Pitassi,Raz] 
 If a Proof system S is automatizable, then it has Feasible  
Interpolation  
Proof Let D be the algorithm from Automatizability. Assume it  
answers  in time nc,where n is the size of the shortest proof of  
the formula  on which D is applied.Let A(x,z)∧B(y,z) an UNSAT  
formula. 
The circuit interpolating A and B is built as follows: 
1.  Run D on A(x,z)∧B(y,z) and get a refutation of size s. 
2.  Run D on A(x,z) and return 0 only if D gets a refutation in time  

sc. 

[Exercise 4] Prove it is sufficient. [Hint: if B is SAT then we know 
for sure there is refutation of only A of size at most s]  
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No-Automatizability for Resolution 

Cor. To prove no automatizabilty it is sufficient to prove no  
feasible interpolation.  

Question. What happen for system that do have feasible  
Interpolation like Resolution ? 
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No-Automatizability for Resolution 

 Thm[Razborov-Aleknovich00] 
Resolution is not Automatizable unless W[P] is in RP 
Proof Idea: 
1.  Consider  the optimization problem: Minimum Circuit 

Satisfying Assignment 
       Istance: a monotone circuit C over n variables 
       Solution: an input a s.t. C(a)=1 
       Objective function: w(a), the hamming weight of a 
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No-Automatizability for Resolution 
 2. Given C, build an unsatifiable formula F(C,w,r) and prove 

that the size of the shortest proof is strongly related to the 
size of the minimum sat assignment of the circuit 

3. Assuming Resolution is automatizable, use the algorithm to 
find a proof of approximately small size. This gives an 
approximation of the minimum sat assignment size in poly 
time. 

4. Apply randomized gap amplification procedures to improve 
the approximation up to an error smaller than one, thus 
obtaining the exact value. 

Conclude that, under automatizability, we can solve MMCSA  
which is a W[P]-complete problem in Random Polynomial time. 
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Res[k] 
Resolution +k-DNF 
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K-DNF 
[Krajicek] 
Instead of considering just clauses, i.e. disjunctions of literals,  
we allow disjunctions of k-conjunctions. 

Res[k] is a calculus that extends resolution to work on k-DNF. 

€ 

x1∨ (x2 ∧¬x3 ∧ x5)∨ (x4 ∧ x3)

€ 

A∨
i∈I
∧li          B∨

i∈J
∧li

A∨B∨
i∈I∪J
∧ li

       I∪ J ≤ k

€ 

A∨
i∈I
∧li          B∨

i∈I
∧¬li

A∨B
       I ≤ k

AND  Introduction k-resolution  
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History of Result on Res[k] 
Res[k] is subsystem of bounded depth Frege. Lower bounds  
were then known for the PHP[n+1,n]. 

[Esteban,Atserias,Bonet03] lower bounds in Res[2] for PHP  
 and  for Random k-CNF 

[Esteban,Galesi,Messner04] Exponential Separation between  
treelike Res[k] and treelike Res[k+1] and space lower bounds  
for Res[k] and space separations for treelike Res[k] 

[Segerlind,Buss,Impagliazzo05] Exponential separation between Res[k]  
and Res[k+1]. 

[Alekhnovich 05] lower bounds for random 3-CNF 

[BenSasson,Nordstrom 09] Space separation for Res[k] 234 



Lower bounds for Res[k] [SBI] 
General Idea of the proof. Let F be the CNF we want to  
prove the lower bound for.  Let P a Res[k] proof of F. 

1. Small restriction switching Lemma. If we hit a k-DNF with  
“good” random restriction, then w.h.p. we are left with a  
formula which can be computed by a small height decision  
tree. 

2. Small height in Res[k] implies small width in Resolution 

3. Then a width lower bound in Resolution and the existence  
of “good” random restriction give us Res[k] lower bounds. 
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Switching Lemma for k-DNF 
Let F be a k-DNF.  

Defn Ht(F)= height of the shallow DT computing F 

Defn Covering number. Let S be a set of variables. If every  
Term  of F contains a variable in S, then S is a covering of F.  
The covering number of F c(F) is the size of the smallest such  
a S.  
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Switching Lemma for k-DNF 
Switching Lemma [without parameters].  
Let D a distribution on partial assignment s.t. for each k-DNF  
G                        .  Then for every k-DNF F 

€ 

ρ∈D
Pr G ρ[ ] ≠1[ ] ≤1/2c(G )

€ 

ρ∈D
Pr Ht(F ρ[ ]) > 2s[ ] ≤1/2s
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Sketch of the proof on PHP[n] 

α “good” random restriction   

PHP[n’] PHP[n] 

P Res[k] Res[k] 

Switching Lemma+Union Bound 

P[α] 

Small heigth in Res[k] 
Reduce to small width 
in Res 

PHP[n’] 

Small size Small size 

Small width 

Res 
Contradiction: 
PHP[n] requires  
high width in Res 
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Separations between Res[k] and Res[k+1] 
Gop(G). A linear Ordering Principle over the nodes of a dag  
G. 
Lemma1  Gop(G) admits polynomial size Res  Refutations, for 
 all G. 
Proof. As for LOP 

Lemma 2 Let G be a d-regular expander. Then  
wR(Gop(G))>Ω(e(G)). 

Gop⊕k(G) as GOP but every xi,j variable is substituted by the  
formula                              , where                 are new  
variables 

€ 

PARITY(xi, j
1 ,...,xi, j

k )

€ 

(xi, j
1 ,...,xi, j

k )
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Separations between Res[k] and Res[k+1] 
Lemma 1  Gop⊕k(G) admits polynomial size Res[k]  
Refutations, for all G. 
Proof. Use the Res refutation of Gop(G) 

Lemma 2 Gop⊕k(G) requires exponential size Res[k-1]  
Resolution refutations when G is the d-regular expander. 
Proof. Use the Switching lemma. 
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Open problems 
Complexity of Weak PHP in Res[2]. Related to complexity of  
Ramsey formulas in Res [see Krajicek’s book] 

Ramsey formulas: 
Ramsey theorem: every graph contains a clique or an  
independent set of size at least log(n)/2. 

Assume G a graph and let n = number of edges,  
Variable xi for each edge i∈[n]. 

€ 

I ⊆[n ]
|I |= logn

2

∧ ((
i∈I
∨xi)∧ (

i∈I
∨¬xi))
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Frege systems 
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Definitions 
[Axiom Scheme] 
A→(B→A)         
A→(B→C)→(A→B)→(A→C) 
(¬A→¬B)→(B→A) 

A  A→B     [Modus Ponens] 
      B 
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Bounded Depth Frege 
Defn. Dept of the formula bounded by a costant O(1). 

Thm[Beame,Impagliazzo,Krajicek,Pitassi,Pudlak,Woods] 
PHP[n] requires exponential size proofs in BddFrege 
Proof. Use generalization of Hastad’s swtiching lemma 

Thm[Maciel,Pitassi,Woods]  
Weak PHP admits polynomial size proofs in BddFrege 
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Extended Frege 
Frege + Extension rule   p↔A 
Where p is a new variable not appearing previously in the proof  
and in the last line. 

Great strenght since we can abbreviate big formulas as one  
variable 

Thm[Cook,Rekhow]. PHP[n] has poly size Efrege Proof 
Proof.  
Let f:[n+1]→[n]. Define: 

€ 

fi(x) =
f i+1(x) fi+1(x) ≠ i
f i+1(i +1) o.w.

 
 
 

€ 

245 



PHP Proofs 
Claim. If fi+1 is 1-1 then fi is 1-1. 

Then a proof of the PHP[n] can be given in this way: 
¬PHPi+1 → ¬PHPi. Then 
¬PHPn → ¬PHP1.  But ¬PHP1 is clearly false and then PHPn  
is TRUE. 

In eFrege  we can mimic this proof as follows. Introduce  
extension variables 

€ 

qi, j
n ↔ pi, j
qi, j
k ↔ qi, j

k+1∨ (qi,k
k+1∧qk+1, j

k+1 )
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PHP Proofs 
Define A[k] a the PHP[k] on variables qk.  
Then we can prove  

¬A[k+1]→¬A[k] for all k. 

A[1] is easily provable in cosnstant size and hence by Modus  
ponens we get A[n] and hence PHP[n] by definition of A 

Thm[Buss]. PHP[n] has polynomial size Frege proofs. 
Proof. Counting in NC1 formalized in Frege Proofs 
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Feasible Interpolation 

Thm[Krajicek,Pudlak; Bonet,Pitassi,Raz] Frege does not have  
Feasible  Interpolation. 
Proof Idea. Assume one-way funtions exits and let h be a one- 
way function (i.e. Computable in poly time but difficult to invert) 
A(x,z)=“h(x)=z and the i-th bit of x is 1” 
B(y,z)=“h(y)=z and the i-th bit of x is 0” 

Since h is 1-way then A∧B is UNSAT. 
Assume by contradiction the Frege has Feasible Interpolation 
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Feasible Interpolation 

Claim A∧B has polynomial size Frege Proofs. 

Then the circuit given by the interpolation is deciding in  
polynomial time the value of the i’th bit of the input of h. 
Then repeating n times we can invert h efficiently. But this is  
impossible since h is 1-way. Contradiction, and then Frege  
does not have Feasible Interpolation. 
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Open Problems 

- Lower bounds for Random k-CNF in BddFrege 
- Finding plausible candidates to be hard in Frege 

[Bonet,Buss,Pitassi; Cook,Soltys] 
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Geometric Systems 
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Cutting Planes 
Linear Inequalities over {0,1} variables 

-  Clauses   (¬ x4∨ ¬x2 ∨ x6) are transformed into  
                               (1-x4)+(1-x2)+x6 >= 1 
-  Axioms x >=0 e 1-x >=0 to force solution in {0,1} 

-  Final Contradictions : 0>=1 
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Rules 
a1x1 + ...  + anxn ≥ A 
b1x1 + ...  + bnxn ≥ B 

(a1+b1)x1+...+(an+bn)xn ≥ A+B     

a1x1 + ...  + anxn ≥ A 

ca1x1 + ... + canxn ≥ cA 

ca1x1 + ... + canxn ≥ B 

   a1x1 + ... + anxn ≥ B/c 

-  Refutation: A sequence of linear inequalities ending in  
0>=1 253 



Result for Cutting Planes 

-  PHP has polynomial size proofs [Exercise] 
-  CP admits Feasible monotone Interpolation. Hence Lower 

bound for Clique-Color Tautology 

Open Problems 
-  Find other techniques to prove lower bounds: rank measure 

still not completely studied 
-  Prove lower bounds for random formula. There are rank 

lower bounds for random formulas 
-  Find proof search algorithm based on CP not similar to and 

stronger than DPLL 
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