Matrix Multiplication
and Graph Algorithms

Uri Zwick
Tel Aviv University

NoNA Summer School
on Complexity Theory

Saint Petersburg
August 15-16, 2009

Outline

1. Algebraic matrix multiplication
’s algorithm
b. Rectangular matrix multiplication
2. Boolean matrix multiplication
a. Simple reduction to integer matrix multiplication
b. Computing the transitive closure of a graph.
3. Min-Plus matrix multiplication
a. Equivalence to the APSP problem

b. Expensive reduction to algebraic products
’s trick

4. APSP in undirected graphs

a. An O(n?°?) algorithm for unweighted graphs

()
O(Mn2.38)

()
S. APSP in directed graphs
1. An O(M"68,2-58) algorithm ()

2. An O(Mn?38) preprocessing / O(n) query
answering algorithm ()

3. An O(n*38logM) (1+¢)-approximation algorithm
6. Summary and open problems

Shortintroduction to
Fast matrix multiplication

Algebraic Matrix Multiplication

J

' m x =(b,)

0 =(c;)

n
Cij = E Qi bk
k=1

Can be computed naively in O(#?) time.

Matrix multiplication algorithms

Complexity Authors
n’ —
n2.81 Strassen (1969)
n2.3 3 Coppersmith, Winograd (1990)

Conjecture/Open problem: 722701 999

Cl 1
012
021
C(22

Multiplying 2x2 matrices

(Cll
021

Cia) _ (A Al) (Bi1 Bis
Coo Ao1 Ao By Bao

A11B11 + A12Bo;

= A11312 - AlzBQQ 8 multiplications

A21 B11 - A22B21 4 additions
Ao1B1o 4+ Ao Bao

Works over any ring!

Cl 1
012
021
C(22

Multiplying nxn matrices

(Cll
021

Ciz) _ (A Al) (Bi1 Bis)
Coo Ao1 Ao By Bao

A11B11 + A12Bo;

= A11312 T AlzBQQ 8 multiplications

A21 B11 - A22B21 4 additions
Ao1B1o 4+ Ao Bao

T(n) = 8 T(n/2) + O(n2)
T(I”l) — O(nlogS/logZ):O(n3)

Strassen’s 2x2 algorithm

Ci = A, B, + 4,8, M, =(Subtraction! j
C12 = AIIBIZ + Alszz M, = (21 11

Cy = 4,8, + A4, B,, M, =4,(B,—-B,,)
Cyp =48, + A4y, B,, M, =A4,(B, -B,)

M =(4,+4,)By
Ch=M+M,-M;+M, My = (4, —4,)(B, +B,,)
C, =M; +M; M, = (4, = A4,)(B, + B,,)
Cor =M, + M, 7 multiplications
C,=M,-M,+M,+M,

18 additions/subtractions

Works over any ring!

“Strassen Symmetry”
(by Mike Paterson)

Strassen’s nxn algorithm

View each n x»n matrix as a 2 x2 matrix
whose elements are n/2 x n/2 matrices.

Apply the 2x2 algorithm recursively.

T(n) =7 T(n/2) + O(n?)
T(n) = O(n10g7/10g2)20(n2’81)

Matrix multiplication algorithms
The O(n*®") bound of Strassen was
improved by Pan, Bini-Capovani-Lotti-
Romani, Schonhage and finally by
Coppersmith and Winograd to O(n?3%).

The algorithms are much more complicated...

New |Cohn-Umans ‘03]
[Cohn-Kleinberg-szegedy-Umans ‘05]

We let 2 < < 2.38 be the
exponent of matrix multiplication.

Many believe that o=2+o(1).

Determinants / Inverses

The title of Strassen’s 1969 paper 1is:
“Gaussian elimination is not optimal”

Other matrix operations that can
be performed in O(n®) time:

* Computing determinants: detA
« Computing inverses: A~!

* Computing characteristic polynomials

Matrix Multiplication
Determinants / Inverses

What 1s 1t good for?

Transitive closure
Shortest Paths
Perfect/Maximum matchings

Dynamic transitive closure

Rectangular Matrix multiplication

P n

Naive complexity: n2p
[Coppersmith *97]: n1-85p0.54_|_n2+0(1)

For p <n"?°, complexity = n>o() 11!

BOOLEAN MATRIX
MULTIPLICATION

and

TRANSIVE CLOSURE

Boolean Matrix Multiplication
j

A =(a,) ~ = (b,;)

0 =(c;)

n
Cij — \/ a;k N\ bkj
k=1

Can be computed naively in O(#?) time.

Algebraic Boolean

Product Product
Cij = Zaz‘kbkj Cij = \/az’k/\bkj
k k
O(n2.38)
algebraic

operations

Transitive Closure

Let G=(V,E) be a directed graph.

The transitive closure G*=(V,E*) 1s the graph 1n
which (u,v)e E* 1ff there 1s a path from u to v.

Can be easily computed in O(mn) time.

Can also be computed in O(n®) time.

Adjacency matrix

of a directed graph
1 ! (0 0 1 1 1 0}
100 110
01 00 1 1
6 0 0 0001
0000 0 0
2 5 \0 00010/

Exercise 0: If 4 1s the adjacency matrix of a graph,
then (4%),=1 iff there is a path of length & from i to /.

Transitive Closure
using matrix multiplication

Let G=(V,E) be a directed graph.

If A 1s the adjacency matrix of G,
then (AvI)"~! is the adjacency matrix of G *.

The matrix (AvI/)*! can be computed by log »
squaring operations in O(n®log n) time.

It can also be computed 1n O(n®) time.

v = D
C D
E F

Y = _
G H

TC(n) <2 TC(1/2) + 6 BMM(1/2) + O(n?)

Exercise 1: Give O(n®) algorithms for
findning, 1n a directed graph,

a) a triangle
b) asimple quadrangle
c) asimple cycle of length £.

Hints:
1. Inan graph all paths are simple.

2. In ¢) running time may be exponential in k.

3. Randomization makes solution much easier.

MIN-PLUS MATRIX
MULTIPLICATION

and

ALL-PAIRS
SHORTEST PATHS
(APSP)

An 1nteresting special case
of the APSP problem
A B
20 ‘ Q

C = AxB

Cij — mkln{azk_l_bkj}

Min-Plus product

(-6
2

1

-3
5
—7

Min-Plus Products
C = AxB
Cij — mkln{azk_l_bkj}

—10) (1 =3 7)) (8 +o0 —4)
-2 = |4+00 5 +oof x |=3 0 -7
—5) . 8 2 —5/ . 5 -2 1)

Solving APSP by repeated squaring

If W 1s an n by n matrix containing the edge weights
of a graph. Then " 1s the distance matrix.

By induction, ¥ gives the distances realized
by paths that use at most k edges.

D« W
for i <1 to| log,n |
do D < D*D

Thus: APSP(n) < MPP(n) log n
Actually: APSP(n) = O(MPP(n))

v D
C | D
E | F (AvBD*C)* EBD*
Y = _
G | H D*CE D*/GBD*

APSP(n) <2 APSP(n/2) + 6 MPP(n/2) + O(n?)

Algebraic
Product

C=A4-B
C; = Zaikb,\j
k

O(n2.3 8)

Min-Plus
Product

C = AxB

Cij = Hlkin{aik ‘|‘bk]}

min op?ration
has no #nverse!

Fredman’s trick

The min-plus product of two n x n
matrices can be deduced after only
O(n?) additions and comparisons.

It 1s not known how to implement
the algorithm in O(#°~) time.

Algebraic Decision Trees

a,a,9< by,-b,

C;1=a;,thy,
C=a by,

c;;=a;3tb;,
C;;=a;5ths,

C;1=a;5tbyg,
C;;=;51hg,

C;=a;,tby,
C;=a;3ths,

Breaking a square product into
several rectangular products

m

B,
B,

A*B=min A4 * B

MPP(n) < (n/m) (MPP(n,m,n) + n?)

Fredman’s trick

m
/_/% -
/ p A N
air_l_brj = ais_l_bsj
n < A b } m 0

Ay = Qjg S bsj - brj

Naive calculation requires n*m operations

Fredman observed that the result can be inferred
after performing only O(nm?) operations

Fredman’s trick (cont.)

air_l_brj = ais_l_bsj < - g = bsj_ brj

» Generate all the differences @, - a;;and b; - b,

them using O(nm?) comparisons. (Non-trivial!)
the two sorted lists using O(nm?) comparisons.

o)

6)\

The ordering of the elements in the sorted list

determines the result of the min-plus product
11

All-Pairs Shortest Paths
in directed graphs with “real” edge weights

Running time

Authors

nj’

[Floyd °62] [Warshall *62]

n3 (log log n /log n)'?3

[Fredman ’76]

n’ (log log n /log n)!?

[Takaoka *92]

n’/ (log n)!?

[Dobosiewicz *90]

n’ (log log n /log n)>’ [Han *04]
n’loglogn/logn [Takaoka *04]
n’ (log log n)"? /log n [Zwick *04]
n’/logn [Chan ’05]
n’ (log log n /log n)>* [Han *06]
n’ (log log n)? / (log n)? [Chan ’07]

PERFECT MATCHINGS

Matchings

A matching 1s a subset of edges
that do not touch one another.

Matchings

A matching 1s a subset of edges
that do not touch one another.

Perfect Matchings

A matching 1s perfect if there
are no unmatched vertices

Perfect Matchings

A matching 1s perfect if there
are no unmatched vertices

Algorithms for finding
perfect or maximum matchings

A matching M 1s a
maximum matching iff 1t
admits no augmenting paths

Combinatorial
approach:

r— @

Algorithms for finding
perfect or maximum matchings

A matching M 1s a
maximum matching iff 1t
admits no augmenting paths

Combinatorial
approach:

Combinatorial algorithms for finding
perfect or maximum matchings

In bipartite graphs, augmenting paths can be
found quite easily, and maximum matchings
can be used using techniques.

In non-bipartite the problem 1s much harder.
(Edmonds’ Blossom shrinking techniques)

Fastest running time (in both cases):
O(mn'?) [Hopcroft-Karp] [Micali-Vazirani]

Adjacency matrix
of a undirected graph

5

The adjacency matrix of an
undirected graph i1s symmetric.

Matchings, Permanents, Determinants

n

det(A) = Z sz’gn(ﬁ)Ham(z’)

per(A4) = Z Ham(i)

TeS,, 1=1

Exercise 2: Show that 1f 4 1s the adjacency matrix
of a graph G, then per(A4) 1s the number of
perfect matchings in G.

Unfortunately computing the
permanent 1s #P-complete...

Tutte’s matrix
(Skew-symmetric symbolic adjacency matrix)

4
1 T13 T4 Tis 0 \
—T12 Xo4 Top 0
6 —X13 —I23 L35 L36
—X14 —T24 0
2 —L15 —I25 —I35
5 K 0 0 —x36 —T46 —Ts6 /

—x;; if{7,j} € E and 7 > j, AT:—A

CLij —
0 otherwise

Tutte’s theorem

Let G=(V,E) be a graph and let 4 be its Tutte
matrix. Then, G has a perfect matching iff det A4 = 0.

1) (0 T12 0 T14 \
B —T12 0 X23 0
I:I A= 0 —zo3 0 —x3y
4 3 \—51514 0 —X34 0 /

2 .2 2 2
det A = x7,2354 + 7,053 + 2T19023234T41 7# O

There are perfect matchings

Tutte’s theorem

Let G=(V,E) be a graph and let 4 be its Tutte
matrix. Then, G has a perfect matching iff det 4 #0.

1N2 0 212 x13 T4

o — X112 0 0 0

4 = —X13 0 0 0

4 3 — 14 0 0 0
det A = 0

No perfect matchings

Proof of Tutte’s theorem

n

det A = > sign(m) [] ain

TES, =1

Every permutation meS_ defines a cycle collection

= (214563897 10)

G ie iy ®

Cycle covers

A permutation weS_ for which {i,n(i)} £,
for 1 <i <k, defines a cycle cover of the graph.

¢ o

Exercise 3: If n’ 1s obtained from 7t by reversing
the direction of a cycle, then sign(n’)=sign(m).

N — 4+ - Depending on the
Aimr (i) — T Qi (i
2-1;[1 o Zzl_[l 2 parity of the cycle!

Reversing Cycles

—|— —|‘£E34
L12
—T79 +2x7g
—T36 + 245
—X12 TT56 +Zs9
—JL34
—I12
+Z79 —X78
+T36 — 45
— —x
+T12 156 39

n

I I o — 4 I I o Depending on the
Airn’ () — Air(i
Pl) .) parity of the cycle!

Proof of Tutte’s theorem (cont.)

det A = Z SiQTL(W)ﬁaiW(i)
i=1

TeES,

The permutations meS_ that contain
an odd cycle cancel each other!

We effectively sum only over even cycle covers.

A graph contains a perfect matching
1ff 1t contains an even cycle cover.

Proof of Tutte’s theorem (cont.)

A graph contains a perfect matching
1ff 1t contains an even cycle cover.

Perfect Matching = Even cycle cover

o—o ¢ o
e—0 ‘

Proof of Tutte’s theorem (cont.)

A graph contains a perfect matching
1ff 1t contains an even cycle cover.

Even cycle cover = Perfect matching
oo

'

o—0

PR

An algorithm for perfect matchings?

* Construct the Tutte matrix A4.
* Compute detA.
» If det4 # 0, say ‘yes’, otherwise ‘no’.

det A 1s a symbolic expression

Problem: that may be of exponential size!
Lovasz’s Replace each variable X;; by a
solution: random element of Z , where

p= O(n?) is a prime number

The Schwartz-Zippel lemma

Let P(x,,x,,...,x,) be a polynomial of degree d
over a field F. Let S < F. If P(x,,x,,...,x,)#0
and a,,a,,...,a,are chosen randomly and
independently from S, then

d
Pr| P(ay,as,...,a,) =0] < ISl

Proof by induction on 7.

For n=1, follows from the fact that polynomial of
degree d over a field has at most d roots

Lovasz’s algorithm for
existence of perfect matchings

Construct the Tutte matrix A.

Replace each variable x;; by a random
element of Z , where p=0O(n-) is prime.

Compute det A.
If det A # 0, say ‘yes’, otherwise ‘no’.

If algorithm says ‘yes’, then
the graph contains a perfect matching.

If the graph contains a perfect matching, then
the probability that the algorithm says ‘no’,
1s at most O(1/n).

Parallel algorithms

Determinants can be computed
very quickly 1n parallel

DET € NC?

Perfect matchings can be detected
very quickly in parallel (using randomization)

PERFECT-MATCH € RNC?

Open problem:
7?77 PERFECT-MATCH € NC ?7??

Finding perfect matchings

Self Reducibility

Delete an edge and check
whether there 1s still a perfect matching

Needs O(n?) determinant computations

Running time O(n ©*?)

Fairly slow...

Not parallelizable!

Finding perfect matchings

Rabin-Vazirani (1986): An edge {i.j} €E 1s
contained 1n a perfect matching 1ff (A‘l)l.j;éO.

Leads immediately to an O(n®"!) algorithm:
Find an allowed edge {i,j} € £, delete 1t and 1ts
vertices from the graph, and recompute 4.

Mucha-Sankowski (2004): Recomputing 4!

from scratch i1s very wasteful. Running time
can be reduced to O(n®) !

Harvey (2006): A simpler O(n®) algorithm.

Adjoint and Cramer’s rule

?

(adj(A));; = (1) det(47%) = det

)]

A with the j-th row
and /-th column deleted

~ dj(A)
> . AT — a
Cramer’s rule: det(A)

Finding perfect matchings

Rabin-Vazirani (1986): An edge {i,j} €F 1s
contained 1n a perfect matching 1ff (A‘l)l.j;éO.

(adj(A));; = (1) det(47%) = det

J 1

Leads immediately to an O(n®*"") algorithm:
Find an allowed edge {i,j} €E , delete 1t and 1ts
vertices from the graph, and recompute 4.

Still not parallelizable

Finding unique
perfect matchings
[Mulmuley-Vazirani-Vazirani (1987)]

Suppose that edge {i,/} € £ has integer weight w,

Suppose that there 1s a unique minimum weight
perfect matching M of total weight I/

Replace z;; by 2%
Then, 22" |det(A) but 2"+l fdet(A)

Furthermore, {i,7} € M iff 2~ ;fﬁV(Aw) is odd

Isolating lemma
[Mulmuley-Vazirani-Vazirani (1987)]

Suppose that G has a perfect matching
Assign each edge {i,j} €FE
a random integer weight w,. €[1,2m]

With probability of at least }2, the minimum
weight perfect matching of G 1s unique

Lemma holds for general collecitons of sets,
not just perfect matchings

Proof of Isolating lemma
[Mulmuley-Vazirani-Vazirani (1987)]

An edge{i,j} 1s ambivalent if there 1s a minimum weight
perfect matching that contains 1t and another that does not

Suppose that weights were assigned
to all edges except for {i,j}

Let a,; be the largest weight for which {7/} participates in
some minimum weight perfect matchings

If w;<a,, then {i,/} participates in

all minimum weight perfect matchings
The probability that {i.j} 1s ambivalent is at most 1/(2m)!

Finding perfect matchings
[Mulmuley-Vazirani-Vazirani (1987)]

Choose random weights 1 [1,2m1]

Compute determinant and adjoint
Read of a perfect matching (w.h.p.)

Is using m-bit integers cheating?
Not if we are willing to pay for 1t!
Complexity is O(mn®)< O(n®*?)
Finding perfect matchings in RNC?

Improves an RNC? algorithm by
[Karp-Upfal-Wigderson (1986)]

Multiplying two N-bit numbers

"“School method™
NQ
[Schoonhage-Strassen (1971)]
N log N log log N

[Flrer (2007)]
[De-Kurur-Saha-Saptharishi (2008)]

N log N 2€(og™ N)

~

For our purposes... O(NN)

Finding perfect matchings

We are not over yet...

[Mucha-Sankowski1 (2004)]
Recomputing 4! from scratch is wasteful.

Running time can be reduced to O(7n®) !

[Harvey (2006)]
A simpler O(7®) algorithm.

Using matrix multiplication
to compute min-plus products

/Cu Cio) /au
C1 Cxp = a,
N O) N
Cij _
[a1
/0'11 c'l,) X
C'Zl C'22 — x 21
\

O
/ \
/I aik+bk;
Cij = g T 7
k

a,

a,,

\

O

\ / bll b12
X X
b2l b22
X X
O O
J o\
/

/bll b12 \

\

b2 1 b22

O

IIlkiIl{CLZ'k -+ bkj}

Using matrix multiplication
to compute min-plus products

Assume: 0< a;, bijSM

/ ap a \ / by, by, \

(¢ ey | X X X X
' ' ar dsy b21 b22
Cu Cx X X X X
O O 0
\ ’ \)\)
n® M Mn®
polynomial X Operatlons.per operations per
roducts polynomial max-plus
P product product

SHORTEST PATHS

APSP — All-Pairs Shortest Paths
SSSP — Single-Source Shortest Paths

UNWEIGHTED
UNDIRECTED

SHORTEST PATHS

4. APSP in undirected graphs
=) a. An O(n?3?) algorithm for unweighted
graphs (Seidel)

O(Mn?-3 8)
(Shoshan-Zwick)

S. APSP in directed graphs
1. An O(M"%%52-38) algorithm (Zwick)

2. An O(Mn?38) preprocessing / O(n) query
answering algorithm (Yuster-Zwick)

3. An O(n*38logM) (1+¢)-approximation algorithm
6. Summary and open problems

Directed versus undirected graphs

1 a7
X X
0(x,z) < o(x,y) + 0o(y,z) 0(x,z) < o(x,y) + 0(y,z)

Triangle inequality 0(x,y) < d(x,z) +d(z,y)

6()6,2) = S(X,y) - 60/92)
Inverse triangle inequality

Distances in G and its square G*

Let G=(V,E). Then G*=(V,E?), where
(u,v)eE? if and only if (u,v) € E or there
exists we V such that (u,w),(w,v)elk

X X

Let 0 (u,v) be the distance from u to v in G.
Let 6°(u,v) be the distance from u to v in G°.

Distances in G and its square G2 (cont.)

Lemma: 8(u,v)=|d(u,v)/2| , forevery u,veV.

T T ™
5%(u,v) <| 8(u,v)/2 |

N o R X
o(u,v) < 26%(u,v)

Thus: 6(u,v) = 26*(u,v) or
o(u,v) = 20%(u,v) —1

Distances in G and its square G* (cont.)

Lemma: If 6(u,v)=26(u,v) then for every
neighbor w of v we have 6%(u,w) > &(u,v).

Lemma: If 6(u,v)=26°(u,v)—1 then for every
neighbor w of v we have 6%(u,w) < 6*(u,v) and
for at least one neighbor 6%(u,w) < &%(u,v).

Let 4 be the adjacency matrix of the G.
Let C be the distance matrix of G?

Z Cuw — Z Cuw Qv — (CA)UU > deg(v)cuv

(v,w)eER weV

Even distances

Lemma: If 6(u,v)=26%(u,v) then for every
neighbor w of v we have 6%(u,w) > &(u,v).

———————————_
— 1 = = L B J—
- _— oy

LS

Let 4 be the adjacency matrix of the G.
Let C be the distance matrix of G°

Z Cuw — Z Cuw Qv — (CA)UU > deg(v)cuv

(v,w)eER weV

Odd distances

Lemma: If 6(1,v)=26°(u,v)—1 then for every
neighbor w of v we have 6%(u,w) < 6*(u,v) and
for at least one neighbor 6%(u,w) < &%(u,v).

Exercise 4: Prove the lemma.

Let 4 be the adjacency matrix of the G.
Let C be the distance matrix of G

Z Coprp = Z Cuwluwy = (CA),, < deg(v)cy,

(v,w)eER weV

~— ™~
Assume that 4 has
1’s on the diagonal.

. If 4 1s an all one matrix,

then all distances are 1.

Compute 42, the adjacency
matrix of the squared graph.

. Find, recursively, the distances
in the squared graph.

. Decide, using one integer
matrix multiplication, for every
two vertices u,v, whether their
distance 1s twice the distance in
the square, or twice minus 1.

Boolean matrix)

multiplicaion

e CTUTIT I 1
else

C—APD(4?)

"

—

Integer matrix
multiplicaion

X—CA , deg—Ae—1

eg]

7

Complexity:

O(n®log n)

Exercise 5: (*) Obtain a version of
Seidel’s algorithm that uses only
Boolean matrix multiplications.

Hint: Look at distances also modulo 3.

Distances vs. Shortest Paths

We described an algorithm for
computing all distances.

How do we get a representation of
the shortest paths?

We need for the
Boolean matrix multiplication.

Witnesses for
Boolean Matrix Multiplication

C = AB
Cij = \/ ik N Dk
k=1

A matrix W 1s a matrix of witnesses 1ff

It Cij — 0 then Wi — 0
If ¢;; = 1 then w;; = k where a;;, = by; = 1

Can be computed naively in O(#°) time.
Can also be computed in O(n®log n) time.

a)

b)

Exercise 6:

Obtain a deterministic O(n®)-time
algorithm for finding unique witnesses.

Let 1 <d<n be an integer. Obtain a
randomized O(n®)-time algorithm for
finding witnesses for all positions that
have between d and 2d witnesses.

Obtain an O(n®log n)-time algorithm for
finding all witnesses.

Hint: In b) use

All-Pairs Shortest Paths

in graphs with small integer weights

Undirected graphs.
Edge weights in {0,1,...M}

Running time Authors

Mn?® [Shoshan-Zwick *99]

Improves results of
[Alon-Galil-Margalit *91] [Seidel *95]

DIRECTED
SHORTEST PATHS

Exercise 7:

Obtain an O(n®log n) time algorithm for
computing the diameter of an unweighted
directed graph.

Using matrix multiplication
to compute min-plus products

/Cu Cio) /au
C1 Cxp = a,
N O) N
Cij _
[a1
/0'11 c'l,) X
C'Zl C'22 — x 21
\

O
/ \
/I aik+bk;
Cij = g T 7
k

a,

a,,

\

O

\ / bll b12
X X
b2l b22
X X
O O
J o\
/

/bll b12 \

\

b2 1 b22

O

IIlkiIl{CLZ'k -+ bkj}

Using matrix multiplication
to compute min-plus products

Assume: 0< a;, bijSM

/ ap a \ / by, by, \

(¢ ey | X X X X
' ' ar dsy b21 b22
Cu Cx X X X X
O O 0
\ ’ \)\)
n® M Mn @
polynomial X Operatlons.per operations per
roducts polynomial max-plus
P product product

Trying to implement the
repeated squaring algorithm

D« W .
. Consider an easy case:
for i <1 to log,n .
all weights are 1.
do D < D*D

After the i-th 1teration, the finite
elements in D are in the range {1,...,2}.

The cost of the min-plus product is 2/ n®

The cost of the last product is n®*! !!!

Sampled Repeated Squaring (Z °98)

D < W Choose a subset of V
for i <1 to log,,n do
{ of size =~ n/s

s < (3/2)*1

B« rand(V,Oninn)/s)

D < min{ D, D[V,B]*D|B,V] }

Sampled Distance Products (Z *98)

n

In the i-th
iteration, the set B

1S of size = n/s,
where s = (3/2)""/

\l The matrices get
smaller and smaller
N ———— but the elements get
/Bl

larger and larger

Sampled Repeated Squaring - Correctness

DeW Invariant: After the i-th
for i <1 to log;,n do ;) .
{ 1iteration, distances that are
3/2)i*! . . .
o s attained using at most (3/2)’
. edges are correct.

Consider a shortest path that uses at most (3/2)"! edges

at most at most

<—l(3)l > | < l(3)l > | < l ii
2\ 2 2\ 2 T2\ 2 '

/3
9lnn)S -

Failure
Lets=(3/2) probability * (s

Rectangular Matrix multiplication
P n

Naive complexity: nzp

[Coppersmith (1997)] [Huang-Pan (1998)]
n1.85p0.54 +p2to(1)

For p <n"?°, complexity = n>"oD) 111

Rectangular Matrix multiplication

n0-29
n

n

S
X
p0-29
I
S

|Coppersmith (1997)]

nxn020 by 7029

n?*ol) operations!
o=0.29...

Rectangular Matrix multiplication
P n

|[Huang-Pan (1998)]
Break into gxg% and g% xg sub-matrices

_ (2) 1—104 (ﬁ)w . q2 — fn/w_(f—_o% . p(f__i
= D ! ~ p1-85)0.54

Complexity of APSP algorithm

The i-th 1teration:
/s s=(3/2)*!

The elements are
of absolute value

at most Ms

n

0.54
mln{MS .n1-85 (_j , } S MO.68n2.58

All-Pairs Shortest Paths

in graphs with small integer weights

Undirected graphs.
Edge weights in {0,1,...M}

Running time Authors

Mn?-38 [Shoshan-Zwick *99]

Improves results of
[Alon-Galil-Margalit *91] [Seidel *95]

All-Pairs Shortest Paths

in graphs with small integer weights

Directed graphs.
Edge weights in {—M,...,0,...M}

Running time Authors
M0.68 n2.58 [Zwick *98]

Improves results of
[Alon-Galil-Margalit *91] [Takaoka *98]

Open problem:
Can APSP 1n directed graphs

be solved in O(n®) time?

[Yuster-Z (2005)]
A directed graphs can be processed in O(n®)
time so that any distance query can be
answered 1n O(n) time.

Corollary:
SSSP 1n directed graphs 1n O(n®) time.

Also obtained, using a different technique, by
Sankowski (2005)

The preprocessing algorithm (YZ ’05)

D« W;;B«V
for i <1 to log,,n do

d
s < (3/2)*1
B < rand(B,(9n1n n)/s)
DIV,B]| «<— min{ D|V,B] , D|V,B|*D|B,B]|
)
D|B,V| <~ min{ D|B,V], D|B,B|*D|B,V]
§

The APSP algorithm

D« W
for i <1 to log,,n do

{
s < (3/2)*1
B < rand(V,(9n1In n)/s)

D« min{ D, D|V.,B|*D|B,V] }

Twice Sampled Distance Products

n

The query answering algorithm

o(u,y) < Dljuj,VI*D|V,vil

V

Query time: O(n)

The preprocessing algorithm: Correctness

Let B be the i-th sample. B, o B,DB;DO...

Invariant: After the i-th iteration, if ue B, or veB,
and there 1s a shortest path from « to v that uses at

most (3/2)" edges, then D(u,v)=06(u,v).

Consider a shortest path that uses at most (3/2)"! edges

at most at most

) 1))
2\ 2 2\ 2 | 2\ 2

The query answering algorithm:
Correctness

Suppose that the shortest path from u to v
uses between (3/2)" and (3/2)"*/ edges

at most at most

—3(3) —]33)——1(3)—
2\ 2 2\ 2 "I° 2\ 2
i S

1. Algebraic matrix multiplication
a. Strassen’s algorithm

b. Rectangular matrix multiplication

2. Min-Plus matrix multiplication
a. Equivalence to the APSP problem
b. Expensive reduction to algebraic products

c. Fredman’s trick

3. APSP in undirected graphs
a. An O(n?°%) anlgorithm for unweighted graphs (Seidel)
b. An O(Mn?3%) algorithm for weighted graphs (Shoshan-Zwick)

4. APSP in directed graphs
1. An O(M"%8n?>%) algorithm (Zwick)
2. An O(Mn?3%) preprocessing / O(n) query answering alg. (Y uster-27)

B 3. An On*3*logM) (1+¢)-approximation algorithm
5. Summary and open problems

Approximate min-plus products

Obvious 1dea: scaling

SCALE(A,M.R): a; < {(

APX-MPP(A.B.M.R)

A’—SCALE(A,M,R)
B’—SCALE(B,M,R)
return MPP(A4°,B”)

Ra, /M| | if0<al.j<M}

400, otherwise

Complexity is Rn?¢,

instead of Mn?-38,
be
greatly distorted.

small values can

out

Addaptive Scaling

APX-MPP(A.B.M.R) :

(0

for r<—log,R to log,M do
A’—SCALE(A4,2",R)
B’—SCALE(B,2",R)
C’<—min{C’ ,MPP(4’,B’)}

end

Complexity is Rn*>% logh
Stretch at most 1+4/R

1. Algebraic matrix multiplication
a. Strassen’s algorithm

b. Rectangular matrix multiplication
2. Min-Plus matrix multiplication
a. Equivalence to the APSP problem

b. Expensive reduction to algebraic products

c. Fredman’s trick

3. APSP in undirected graphs
a. An O(n?°%) anlgorithm for unweighted graphs (Seidel)
b. An O(Mn?3%) algorithm for weighted graphs (Shoshan-Zwick)

4. APSP in directed graphs
1. An O(M"%8n?>%) algorithm (Zwick)
2. An O(Mn?>®) preprocessing / O(n) query answering alg. (Y uster-7)
3. An O(n*?%logM) (1+¢)-approximation algorithm

=) 5. Summary and open problems

Answering distance queries

Directed graphs. Edge weights in {—M,...,0,.. .M}

Prepr.ocessmg Q.uery Authors
time time
Mn?-38 n [Yuster-Zwick *05]

In particular, any Mn’~% distances

can be computed in Mn?7% time.

For dense enough graphs with small enough edge
weights, this improves on Goldberg’s SSSP algorithm.

Mn?3% vs. mn?’log M

Approximate All-Pairs Shortest Paths

in graphs with non-negative integer weights

Directed graphs.
Edge weights in {0,1,...M}

(1+e)-approximate distances

Running time Authors

(n?3%1og M)/e [Zwick *98]

Open problems

An O(n®) algorithm for the
directed unweighted APSP problem?

An O(n’®) algorithm for the APSP
problem with edge weights in {1,2,...,n}?

An O(n?>-¢) algorithm for the SSSP problem
with edge weights in {—1,0,1,2,..., n}?

DYNAMIC
TRANSITIVE CLOSURE

Dynamic transitive closure

 Edge-Update(e) — add/remove an edge e
 Vertex-Update(v) — add/remove edges touching v.

* Query(u,v) —1s there are directed path from u to v?

| Sankowski *04]

Edge-Update

Vertex-Update

Query

(improving [Demetrescu-Italiano *00], [Roditty *03])

Inserting/Deleting and edge

May change Q2(n?) entries of the
transitive closure matrix

Symbolic Adjacency matrix

111111111

L36

Reachability via adjoint
| Sankowski1 *04]

Let 4 be the symbolic adjacency matrix of G.
(With Is on the diagonal.)

There 1s a directed path from i toj in G 1ff

(adj(A))i; # O

Reachability via adjoint (example)

det

5
0 213 T4 15
1 O oy L25
320 1 0 x35
0 0 1 0
0 0 0 0
0 0 0 65

0
0
L36
L46

»

x13 x14 x15 0 \

0

1
0
0
0

Tog Xos 0

0 35 36

1 0 46

0 1 0

0 L5 1)

Is there a path from 1 to 5?

—<L15
—L13232L25
+T13%35
—X13L36L56
—L14X46L65

—X13X32X24X46L65

Dynamic transitive closure

Edge-Update(e¢) — add/remove an edge e
Vertex-Update(v) — add/remove edges touching v.

Query(u,v) —1s there are directed path from u to v?

-
Dynamic matrix inverse

Entry-Update(i,/,x) — Add x to 4,
Row-Update(i,v) — Add v to the i-th row of 4
Column-Update(;,u) — Add u to the j-th column of 4

Query(i,/) — return (4°1),

Sherman-Morrison formula

A Lyt A1
A T\—1 _ A—l
(A+uv) 1 +viA-1u
A tuot AL
vl A 1y

Inverse of a rank one correction
1s a rank one correction of the inverse

Inverse updated in O(#?) time

O(n?) update / O(1) query algorithm
[Sankowski *04]

Let p~n> be a prime number
Assign random values a2 F to the variables x;,
Maintain 4~ over F ,
Edge-Update = Entry-Update
Vertex-Update = Row-Update + Column-Update

Perform updates using the Sherman-Morrison formula

Small error probability
(by the Schwartz-Zippel lemma)

Lazy updates

Consider single entry updates

A = Ap_1 + apurvg

_ _ T
A — TG, 5, UL = €4, VUl — ij

—1 —1 !
Ak — Ak_l + QUL
1 1
ap =1+ apvp A - juk =1+ ag(AL 1)), i
-1 =1 |
= Ap_qjukp = (A)wip

/

k

! -1 _ —1 \
VU = UkAk—1 — (Ak—l)Jlm*

—1 A—1 k /!
A=A ‘|‘Z7;:1 Qi U; U,

Lazy updates (cont.)

A=A, —I—Z _, QiU

Do not maintain A,;l explicitly!

Maintain oy, u;,vi, 1 =1,2,....k
Querying (A, "),.. — O(k) time
Computing ay, uy, v, — O(nk) time

Queries and updates get more and more expensive!

Lazy updates (cont.)

Akl Ay —I—Z _, QiU

Query time — O(k)
Update time — O(nk)

Compute A;l explicitly after each K updates
Time required — O(M (n, K,n)) time
Amortized update time — O(nK + M (n, K,n)/K)

Update time minimized when K ~ n’-°7

Can be made worst-case

Even Lazier updates
k
A=A+ Z UL,
1=1

After ¢ updates in positions
(r1,¢1),(r2,¢c2), ..., (10, C0)
maintain:
iy (Ug) e (V;)r,, for 1 <, 5 </

1

Query time — O(k?)
Update time — O(k?)
After K, explicitly update A, :

Dynamic transitive closure

 Edge-Update(e) — add/remove an edge e
 Vertex-Update(v) — add/remove edges touching v.

* Query(u,v) —1s there are directed path from u to v?

| Sankowski *04]

Edge-Update 172 1575 | 511.495

Vertex-Update n? — —

0.575 1.495

Query 1 7 7

(improving [Demetrescu-Italiano *00], [Roditty *03])

Finding triangles in O(m?®/(@*1) time
[Alon-Yuster-Z (1997)]

Let A be a parameter. A = m(@-1) /(@t])

High degree vertices: vertices of degree > A.
Low degree vertices: vertices of degree < A.

There are at most 2m/A high degree vertices

— mA

128

Finding longer simple cycles

A graph G contains a C, iff Tr(AX)£0 ?

We want simple cycles!

129

Color cod ng [AYZ *95]

Assign each vertex v a random number c(v) from
{0,1,...,k—1}.

Remove all edges (u,v) for which c(v)#c(u)+1 (mod k).
All cycles of length & 1n the graph are now simple.

If a graph contains a C) then with a probability of at
least k£ it still contains a C, after this process.

An improved version works with probability 2 9%,
Can be derandomized at a logarithmic cost.

130

Sherman-Morrison-Woodbury formula
(A+UV") ™! =
At — Al vag+viaTioy Tty A

Inverse of a rank & correction
1s a rank % correction of the inverse

Can be computed in O(M(n,k,n)) time.

