
Matrix Multiplication
and Graph Algorithms

Uri Zwick
Tel Aviv University

NoNA Summer School
on Complexity Theory

Saint Petersburg

August 15-16, 2009

1. Algebraic matrix multiplication
a. Strassen’s algorithm

b. Rectangular matrix multiplication

2. Boolean matrix multiplication
a. Simple reduction to integer matrix multiplication

b. Computing the transitive closure of a graph.

3. Min-Plus matrix multiplication
a. Equivalence to the APSP problem

b. Expensive reduction to algebraic products

c. Fredman’s trick

Outline

4. APSP in undirected graphs
a. An O(n2.38) algorithm for unweighted graphs

(Seidel)

b. An O(Mn2.38) algorithm for weighted graphs
(Shoshan-Zwick)

5. APSP in directed graphs
1. An O(M0.68n2.58) algorithm (Zwick)

2. An O(Mn2.38) preprocessing / O(n) query
answering algorithm (Yuster-Zwick)

3. An O(n2.38logM) (1+ε)-approximation algorithm

6. Summary and open problems

Short introduction to
Fast matrix multiplication

Algebraic Matrix Multiplication

 =()i jA a ()i jB b ()i jC ci

j

Can be computed naively in O(n3) time.

Matrix multiplication algorithms

AuthorsComplexity

—n3

Strassen (1969)n2.81

Conjecture/Open problem: n2+o(1) ???

Coppersmith, Winograd (1990)n2.38
…

Multiplying 22 matrices

8 multiplications
4 additions

Works over any ring!

Multiplying nn matrices

8 multiplications
4 additions

T(n) = 8 T(n/2) + O(n2)

T(n) = O(nlog8/log2)=O(n3)

Strassen’s 22 algorithm

11 11 11 12 21

12 11 12 12 22

21 21 11 22 21

22 21 12 22 22

C A B A B

C A B A B

C A B A B

C A B A B

 
 
 
 

1 11 22 11 22

2 21 22 11

3 11 12 22

4 22 21 11

5 11 12 22

6 21 11 11 12

7 12 22 21 22

()()

()

()

()

()

()()

()()

M A A B B

M A A B

M A B B

M A B B

M A A B

M A A B B

M A A B B




  
 


 


 

 


11 1 4 5 7

12 3 5

21 2 4

22 1 2 3 6

C M M M M

C M M

C M M

C M M M M

  










 


7 multiplications

18 additions/subtractions

Subtraction!

Works over any ring!

“Strassen Symmetry”
(by Mike Paterson)

Strassen’s nn algorithm

View each nn matrix as a 22 matrix
whose elements are n/2  n/2 matrices.

Apply the 22 algorithm recursively.

T(n) = 7 T(n/2) + O(n2)

T(n) = O(nlog7/log2)=O(n2.81)

Matrix multiplication algorithms
The O(n2.81) bound of Strassen was

improved by Pan, Bini-Capovani-Lotti-
Romani, Schönhage and finally by

Coppersmith and Winograd to O(n2.38).

The algorithms are much more complicated…

We let 2 ≤  < 2.38 be the
exponent of matrix multiplication.

Many believe that =2+o(1).

New group theoretic approach [Cohn-Umans ‘03]
[Cohn-Kleinberg-szegedy-Umans ‘05]

Determinants / Inverses

The title of Strassen’s 1969 paper is:
“Gaussian elimination is not optimal”

Other matrix operations that can
be performed in O(n) time:

• Computing determinants: detA

• Computing inverses: A1

• Computing characteristic polynomials

Matrix Multiplication
Determinants / Inverses

What is it good for?
Transitive closure

Shortest Paths

Perfect/Maximum matchings

Dynamic transitive closure

k-vertex connectivity

Counting spanning trees

Rectangular Matrix multiplication

[Coppersmith ’97]: n1.85p0.54+n2+o(1)

For p ≤ n0.29, complexity = n2+o(1) !!!

 =n

p

p

n

n

n

Naïve complexity: n2p

BOOLEAN MATRIX
MULTIPLICATION

and

TRANSIVE CLOSURE

Boolean Matrix Multiplication

 =()i jA a ()i jB b ()i jC ci

j

Can be computed naively in O(n3) time.

Algebraic
Product

O(n2.38)
algebraic
operations

Boolean
Product

Logical or ()
has no inverse!

But, we can work
over the integers!

(modulo n+1)

O(n2.38)
operations on

O(log n) bit words

Transitive Closure

Let G=(V,E) be a directed graph.

The transitive closure G*=(V,E*) is the graph in
which (u,v)E* iff there is a path from u to v.

Can be easily computed in O(mn) time.

Can also be computed in O(n) time.

Adjacency matrix
of a directed graph

1

3
2

4

6

5

Exercise 0: If A is the adjacency matrix of a graph,
then (Ak)ij=1 iff there is a path of length k from i to j.

Transitive Closure
using matrix multiplication

Let G=(V,E) be a directed graph.

If A is the adjacency matrix of G,
then (AI)n1 is the adjacency matrix of G*.

The matrix (AI)n1 can be computed by log n
squaring operations in O(nlog n) time.

It can also be computed in O(n) time.

(ABD*C)* EBD*

D*CE D*GBD*

A B

C D

E F

G H

X =

X* = =

TC(n) ≤ 2 TC(n/2) + 6 BMM(n/2) + O(n2)

A D

C

B

Exercise 1: Give O(n) algorithms for
findning, in a directed graph,

a) a triangle

b) a simple quadrangle

c) a simple cycle of length k.

Hints:

1. In an acyclic graph all paths are simple.

2. In c) running time may be exponential in k.

3. Randomization makes solution much easier.

MIN-PLUS MATRIX
MULTIPLICATION

and

ALL-PAIRS
SHORTEST PATHS

(APSP)

An interesting special case
of the APSP problem

A B

17

23

Min-Plus product

2

5
10

20

30

20

Min-Plus Products
































































125

703

48

528

5

731

571

252

1036

Solving APSP by repeated squaring

D  W
for i 1 to log2n
do D  D*D

If W is an n by n matrix containing the edge weights
of a graph. Then Wn is the distance matrix.

Thus: APSP(n)  MPP(n) log n

Actually: APSP(n) = O(MPP(n))

By induction, Wk gives the distances realized
by paths that use at most k edges.

(ABD*C)* EBD*

D*CE D*GBD*

A B

C D

E F

G H

X =

X* = =

APSP(n) ≤ 2 APSP(n/2) + 6 MPP(n/2) + O(n2)

A D

C

B

Algebraic
Product

ij ik kj
k

C A B

c a b

 

 

O(n2.38)

Min-Plus
Product

min operation
has no inverse!

The min-plus product of two n  n
matrices can be deduced after only
O(n2.5) additions and comparisons.

Fredman’s trick

It is not known how to implement
the algorithm in O(n2.5) time.

Algebraic Decision Trees

a17-a19 ≤ b92-b72

c11=a17+b71

c12=a14+b42
...

c11=a13+b31

c12=a15+b52
...

yes no

2.5n

…
c11=a18+b81

c12=a16+b62
...

c11=a12+b21

c12=a13+b32
...

Breaking a square product into
several rectangular products

A2A1

B1

B2

* min *i i
i

A B A B
MPP(n) ≤ (n/m) (MPP(n,m,n) + n2)

m

n

Fredman’s trick

A Bn

m

n

m

Naïve calculation requires n2m operations

air+brj ≤ ais+bsj

air - ais ≤ bsj - brj



Fredman observed that the result can be inferred
after performing only O(nm2) operations

Fredman’s trick (cont.)

air+brj ≤ ais+bsj air - ais ≤ bsj - brj 

• Generate all the differences air - ais and bsj - brj .

• Sort them using O(nm2) comparisons. (Non-trivial!)

• Merge the two sorted lists using O(nm2) comparisons.

The ordering of the elements in the sorted list
determines the result of the min-plus product

!!!

All-Pairs Shortest Paths
in directed graphs with “real” edge weights

Running time Authors
n3 [Floyd ’62] [Warshall ’62]

n3 (log log n / log n)1/3 [Fredman ’76]
n3 (log log n / log n)1/2 [Takaoka ’92]

n3 / (log n)1/2 [Dobosiewicz ’90]

n3 (log log n / log n)5/7 [Han ’04]

n3 log log n / log n [Takaoka ’04]

n3 (log log n)1/2 / log n [Zwick ’04]

n3 / log n [Chan ’05]

n3 (log log n / log n)5/4 [Han ’06]

n3 (log log n)3 / (log n)2 [Chan ’07]

PERFECT MATCHINGS

Matchings

A matching is a subset of edges
that do not touch one another.

Matchings

A matching is a subset of edges
that do not touch one another.

Perfect Matchings

A matching is perfect if there
are no unmatched vertices

Perfect Matchings

A matching is perfect if there
are no unmatched vertices

Algorithms for finding
perfect or maximum matchings

Combinatorial
approach:

A matching M is a
maximum matching iff it

admits no augmenting paths

Algorithms for finding
perfect or maximum matchings

Combinatorial
approach:

A matching M is a
maximum matching iff it

admits no augmenting paths

Combinatorial algorithms for finding
perfect or maximum matchings

In bipartite graphs, augmenting paths can be
found quite easily, and maximum matchings

can be used using max flow techniques.

In non-bipartite the problem is much harder.
(Edmonds’ Blossom shrinking techniques)

Fastest running time (in both cases):
O(mn1/2) [Hopcroft-Karp] [Micali-Vazirani]

Adjacency matrix
of a undirected graph

1

3
2

4

6

5

The adjacency matrix of an
undirected graph is symmetric.

Matchings, Permanents, Determinants

Exercise 2: Show that if A is the adjacency matrix
of a bipartite graph G, then per(A) is the number of

perfect matchings in G.

Unfortunately computing the
permanent is #P-complete…

Tutte’s matrix
(Skew-symmetric symbolic adjacency matrix)

1

3
2

4

6

5

Tutte’s theorem
Let G=(V,E) be a graph and let A be its Tutte
matrix. Then, G has a perfect matching iff det A0.

1

3

2

4

There are perfect matchings

Tutte’s theorem
Let G=(V,E) be a graph and let A be its Tutte
matrix. Then, G has a perfect matching iff det A0.

1

3

2

4

No perfect matchings

Proof of Tutte’s theorem

Every permutation Sn defines a cycle collection

1 2 10
3 4

6 5

7

9 8

Cycle covers

1 2
3 4

6 5

7

9 8

A permutation Sn for which {i,(i)}E,
for 1 ≤ i ≤ k, defines a cycle cover of the graph.

Exercise 3: If ’ is obtained from  by reversing
the direction of a cycle, then sign(’)=sign().

Depending on the
parity of the cycle!

Reversing Cycles

Depending on the
parity of the cycle!

7

9 8

3 4

6 5
1 2

7

9 8

3 4

6 5
1 2

Proof of Tutte’s theorem (cont.)

The permutations Sn that contain
an odd cycle cancel each other!

A graph contains a perfect matching
iff it contains an even cycle cover.

We effectively sum only over even cycle covers.

Proof of Tutte’s theorem (cont.)
A graph contains a perfect matching
iff it contains an even cycle cover.

Perfect Matching  Even cycle cover

Proof of Tutte’s theorem (cont.)
A graph contains a perfect matching
iff it contains an even cycle cover.

Even cycle cover  Perfect matching

An algorithm for perfect matchings?

• Construct the Tutte matrix A.

• Compute detA.

• If detA  0, say ‘yes’, otherwise ‘no’.

Problem:
det A is a symbolic expression

that may be of exponential size!

Lovasz’s
solution:

Replace each variable xij by a
random element of Zp, where
p=(n2) is a prime number

The Schwartz-Zippel lemma

Let P(x1,x2,…,xn) be a polynomial of degree d
over a field F. Let SF. If P(x1,x2,…,xn)0

and a1,a2,…,an are chosen randomly and
independently from S, then

Proof by induction on n.

For n=1, follows from the fact that polynomial of
degree d over a field has at most d roots

Lovasz’s algorithm for
existence of perfect matchings

• Construct the Tutte matrix A.

• Replace each variable xij by a random
element of Zp, where p=O(n2) is prime.

• Compute det A.

• If det A  0, say ‘yes’, otherwise ‘no’.

If algorithm says ‘yes’, then
the graph contains a perfect matching.

If the graph contains a perfect matching, then
the probability that the algorithm says ‘no’,

is at most O(1/n).

Parallel algorithms
Determinants can be computed

very quickly in parallel

DET  NC2

Perfect matchings can be detected
very quickly in parallel (using randomization)

PERFECT-MATCH  RNC2

Open problem:
??? PERFECT-MATCH  NC ???

Finding perfect matchings

Self Reducibility

Needs O(n2) determinant computations

Running time O(n +2)

Not parallelizable!

Delete an edge and check
whether there is still a perfect matching

Fairly slow…

Finding perfect matchings

Rabin-Vazirani (1986): An edge {i,j}E is
contained in a perfect matching iff (A1)ij0.

Leads immediately to an O(n+1) algorithm:
Find an allowed edge {i,j}E , delete it and its

vertices from the graph, and recompute A1.

Mucha-Sankowski (2004): Recomputing A1

from scratch is very wasteful. Running time
can be reduced to O(n) !

Harvey (2006): A simpler O(n) algorithm.

Adjoint and Cramer’s rule

1

Cramer’s rule:

A with the j-th row
and i-th column deleted

Finding perfect matchings

Rabin-Vazirani (1986): An edge {i,j}E is
contained in a perfect matching iff (A1)ij0.

Leads immediately to an O(n+1) algorithm:
Find an allowed edge {i,j}E , delete it and its

vertices from the graph, and recompute A1.

1

Still not parallelizable

Finding unique minimum weight
perfect matchings

[Mulmuley-Vazirani-Vazirani (1987)]

Suppose that edge {i,j}E has integer weight wij

Suppose that there is a unique minimum weight
perfect matching M of total weight W

Isolating lemma
[Mulmuley-Vazirani-Vazirani (1987)]

Assign each edge {i,j}E
a random integer weight wij[1,2m]

Suppose that G has a perfect matching

With probability of at least ½, the minimum
weight perfect matching of G is unique

Lemma holds for general collecitons of sets,
not just perfect matchings

Proof of Isolating lemma
[Mulmuley-Vazirani-Vazirani (1987)]

Suppose that weights were assigned
to all edges except for {i,j}

Let aij be the largest weight for which {i,j} participates in
some minimum weight perfect matchings

If wij<aij , then {i,j} participates in
all minimum weight perfect matchings

An edge{i,j} is ambivalent if there is a minimum weight
perfect matching that contains it and another that does not

The probability that {i,j} is ambivalent is at most 1/(2m)!

Finding perfect matchings
[Mulmuley-Vazirani-Vazirani (1987)]

Choose random weights in [1,2m]
Compute determinant and adjoint

Read of a perfect matching (w.h.p.)

Is using m-bit integers cheating?
Not if we are willing to pay for it!
Complexity is O(mn)≤ O(n+2)

Finding perfect matchings in RNC2

Improves an RNC3 algorithm by
[Karp-Upfal-Wigderson (1986)]

Multiplying two N-bit numbers

[Schöonhage-Strassen (1971)]

[Fürer (2007)]
[De-Kurur-Saha-Saptharishi (2008)]

For our purposes…

``School method’’

Finding perfect matchings

[Mucha-Sankowski (2004)]
Recomputing A1 from scratch is wasteful.

Running time can be reduced to O(n) !

[Harvey (2006)]

A simpler O(n) algorithm.

We are not over yet…

Using matrix multiplication
to compute min-plus products

11 12 11 12 11 12

21 22 21 22 21 22

c c a a b b

c c a a b b

     
           
     
     O O O

min{ }ij ik kjk
c a b 

11 12 11 12

21 22 21 22

11 12

21 22

' '

' '

a a b b

a a b b

c c

c c

x x x x
x x x x

                             
O O O

Using matrix multiplication
to compute min-plus products

11 12 11 12

21 22 21 22

11 12

21 22

' '

' '

a a b b

a a b b

c c

c c

x x x x
x x x x

                             
O O O

n
polynomial

products

M
operations per

polynomial
product


Mn

operations per
max-plus
product

Assume: 0 ≤ aij , bij ≤ M

SHORTEST PATHS

APSP – All-Pairs Shortest Paths

SSSP – Single-Source Shortest Paths

UNWEIGHTED

UNDIRECTED
SHORTEST PATHS

4. APSP in undirected graphs

a. An O(n2.38) algorithm for unweighted
graphs (Seidel)

b. An O(Mn2.38) algorithm for weighted graphs
(Shoshan-Zwick)

5. APSP in directed graphs
1. An O(M0.68n2.58) algorithm (Zwick)

2. An O(Mn2.38) preprocessing / O(n) query
answering algorithm (Yuster-Zwick)

3. An O(n2.38logM) (1+ε)-approximation algorithm

6. Summary and open problems

Directed versus undirected graphs

x
y

z

δ(x,z)  δ(x,y) + δ(y,z)

x
y

z

δ(x,z)  δ(x,y) + δ(y,z)

δ(x,z) ≥ δ(x,y) – δ(y,z)

δ(x,y)  δ(x,z) + δ(z,y)Triangle inequality

Inverse triangle inequality

Distances in G and its square G2

Let G=(V,E). Then G2=(V,E2), where
(u,v)E2 if and only if (u,v)E or there

exists wV such that (u,w),(w,v)E

Let δ (u,v) be the distance from u to v in G.
Let δ2(u,v) be the distance from u to v in G2.

Distances in G and its square G2 (cont.)

Lemma: δ2(u,v)=δ(u,v)/2 , for every u,vV.

Thus: δ(u,v) = 2δ2(u,v) or
δ(u,v) = 2δ2(u,v)1

δ2(u,v) ≤δ(u,v)/2

δ(u,v) ≤2δ2(u,v)

Distances in G and its square G2 (cont.)

Lemma: If δ(u,v)=2δ2(u,v) then for every
neighbor w of v we have δ2(u,w) ≥ δ2(u,v).

Lemma: If δ(u,v)=2δ2(u,v)–1 then for every
neighbor w of v we have δ2(u,w)  δ2(u,v) and

for at least one neighbor δ2(u,w) < δ2(u,v).

Let A be the adjacency matrix of the G.
Let C be the distance matrix of G2

Even distances

Lemma: If δ(u,v)=2δ2(u,v) then for every
neighbor w of v we have δ2(u,w) ≥ δ2(u,v).

Let A be the adjacency matrix of the G.
Let C be the distance matrix of G2

Odd distances

Lemma: If δ(u,v)=2δ2(u,v)–1 then for every
neighbor w of v we have δ2(u,w)  δ2(u,v) and

for at least one neighbor δ2(u,w) < δ2(u,v).

Let A be the adjacency matrix of the G.
Let C be the distance matrix of G2

Exercise 4: Prove the lemma.

Seidel’s algorithm

Algorithm APD(A)
if A=J then

return J–I
else

C←APD(A2)
X←CA , deg←Ae–1
dij←2cij– [xij<cijdegj]
return D

end

1. If A is an all one matrix,
then all distances are 1.

2. Compute A2, the adjacency
matrix of the squared graph.

3. Find, recursively, the distances
in the squared graph.

4. Decide, using one integer
matrix multiplication, for every
two vertices u,v, whether their
distance is twice the distance in
the square, or twice minus 1.

Complexity:
O(nlog n)

Assume that A has
1’s on the diagonal.

Boolean matrix
multiplicaion

Integer matrix
multiplicaion

Exercise 5: (*) Obtain a version of
Seidel’s algorithm that uses only
Boolean matrix multiplications.

Hint: Look at distances also modulo 3.

Distances vs. Shortest Paths

We described an algorithm for
computing all distances.

How do we get a representation of
the shortest paths?

We need witnesses for the
Boolean matrix multiplication.

Witnesses for
Boolean Matrix Multiplication

Can be computed naively in O(n3) time.

A matrix W is a matrix of witnesses iff

Can also be computed in O(nlog n) time.

Exercise 6:

a) Obtain a deterministic O(n)-time
algorithm for finding unique witnesses.

b) Let 1≤d≤n be an integer. Obtain a
randomized O(n)-time algorithm for
finding witnesses for all positions that
have between d and 2d witnesses.

c) Obtain an O(nlog n)-time algorithm for
finding all witnesses.

Hint: In b) use sampling.

Running time Authors

Mn [Shoshan-Zwick ’99]

All-Pairs Shortest Paths
in graphs with small integer weights

Undirected graphs.
Edge weights in {0,1,…M}

Improves results of
[Alon-Galil-Margalit ’91] [Seidel ’95]

DIRECTED
SHORTEST PATHS

Exercise 7:
Obtain an O(nlog n) time algorithm for

computing the diameter of an unweighted
directed graph.

Using matrix multiplication
to compute min-plus products

11 12 11 12 11 12

21 22 21 22 21 22

c c a a b b

c c a a b b

     
           
     
     O O O

min{ }ij ik kjk
c a b 

11 12 11 12

21 22 21 22

11 12

21 22

' '

' '

a a b b

a a b b

c c

c c

x x x x
x x x x

                             
O O O

Using matrix multiplication
to compute min-plus products

11 12 11 12

21 22 21 22

11 12

21 22

' '

' '

a a b b

a a b b

c c

c c

x x x x
x x x x

                             
O O O

n
polynomial

products

M
operations per

polynomial
product


Mn 

operations per
max-plus
product

Assume: 0 ≤ aij , bij ≤ M

Trying to implement the
repeated squaring algorithm

Consider an easy case:
all weights are 1.

D  W
for i 1 to log2n
do D  D*D

After the i-th iteration, the finite
elements in D are in the range {1,…,2i}.

The cost of the min-plus product is 2i n

The cost of the last product is n+1 !!!

Sampled Repeated Squaring (Z ’98)

D  W
for i 1 to log3/2n do
{

s  (3/2)i+1

B  rand(V , (9n lnn)/s)
D  min{ D , D[V,B]*D[B,V] }

}

Choose a subset of V
of size  n/s

Select the columns
of D whose

indices are in B

Select the rows
of D whose

indices are in B

With high probability,
all distances are correct!

The is also a slightly more complicated
deterministic algorithm

Sampled Distance Products (Z ’98)

n

n

n

|B|

In the i-th
iteration, the set B

is of size  n/s,
where s = (3/2)i+1

The matrices get
smaller and smaller

but the elements get

larger and larger

Sampled Repeated Squaring - Correctness

D  W
for i 1 to log3/2n do
{

s  (3/2)i+1

B  rand(V,(9n ln n)/s)
D  min{ D , D[V,B]*D[B,V] }

}

Invariant: After the i-th
iteration, distances that are
attained using at most (3/2)i

edges are correct.

Consider a shortest path that uses at most (3/2)i+1 edges

 1
2

3
2

i

 1
2

3
2

i 1
2

3
2

i
at most at most

Let s = (3/2)i+1
3

/39ln
(1)

s
n

n
s

Failure
probability :

Rectangular Matrix multiplication

[Coppersmith (1997)] [Huang-Pan (1998)]

n1.85p0.54+n2+o(1)

For p ≤ n0.29, complexity = n2+o(1) !!!

 =n

p

p

n

n

n

Naïve complexity: n2p

Rectangular Matrix multiplication

[Coppersmith (1997)]

nn0.29 by n0.29 n
n2+o(1) operations!

 =n

n0.29

n0.
29

n

n

n

 = 0.29…

Rectangular Matrix multiplication

[Huang-Pan (1998)]

 =n

p

p

n

n

n

Break into qq and q q sub-matrices

Complexity of APSP algorithm

The i-th iteration:

n

n/s

n

n /s

s=(3/2)i+1

The elements are
of absolute value

at most Ms

0.54 3
1.85min{ , }

n n
Ms n

s s
   
 

0.68 2.58M n

“Fast” matrix
multiplicatio

n

Naïve matrix
multiplicatio

n

Running time Authors

Mn2.38 [Shoshan-Zwick ’99]

All-Pairs Shortest Paths
in graphs with small integer weights

Undirected graphs.
Edge weights in {0,1,…M}

Improves results of
[Alon-Galil-Margalit ’91] [Seidel ’95]

All-Pairs Shortest Paths
in graphs with small integer weights

Running time Authors

M0.68 n2.58 [Zwick ’98]

Directed graphs.
Edge weights in {−M,…,0,…M}

Improves results of
[Alon-Galil-Margalit ’91] [Takaoka ’98]

Open problem:
Can APSP in directed graphs

be solved in O(n) time?

[Yuster-Z (2005)]
A directed graphs can be processed in O(n)

time so that any distance query can be
answered in O(n) time.

Corollary:
SSSP in directed graphs in O(n) time.

Also obtained, using a different technique, by
Sankowski (2005)

The preprocessing algorithm (YZ ’05)

D  W ; B V
for i 1 to log3/2n do
{

s  (3/2)i+1

B  rand(B,(9n lnn)/s)
D[V,B]  min{ D[V,B] , D[V,B]*D[B,B]
}
D[B,V]  min{ D[B,V] , D[B,B]*D[B,V]
}

}

The APSP algorithm

D  W
for i 1 to log3/2n do
{

s  (3/2)i+1

B  rand(V,(9n lnn)/s)

}

D  min{ D , D[V,B]*D[B,V] }

Twice Sampled Distance Products

n

n

n

|B|

n
|B|

|B|

|B|
|B|

n

The query answering algorithm

δ(u,v)  D[{u},V]*D[V,{v}]

u

v

Query time: O(n)

The preprocessing algorithm: Correctness

Invariant: After the i-th iteration, if u Bi or vBi
and there is a shortest path from u to v that uses at

most (3/2)i edges, then D(u,v)=δ(u,v).

Let Bi be the i-th sample. B1 B2 B3 …

Consider a shortest path that uses at most (3/2)i+1 edges

 1
2

3
2

i

 1
2

3
2

i 1
2

3
2

i
at most at most

The query answering algorithm:
Correctness

Suppose that the shortest path from u to v
uses between (3/2)i and (3/2)i+1 edges

 1
2

3
2

i

 1
2

3
2

i 1
2

3
2

i
at most at most

u v

1. Algebraic matrix multiplication
a. Strassen’s algorithm

b. Rectangular matrix multiplication

2. Min-Plus matrix multiplication
a. Equivalence to the APSP problem

b. Expensive reduction to algebraic products

c. Fredman’s trick

3. APSP in undirected graphs
a. An O(n2.38) anlgorithm for unweighted graphs (Seidel)

b. An O(Mn2.38) algorithm for weighted graphs (Shoshan-Zwick)

4. APSP in directed graphs
1. An O(M0.68n2.58) algorithm (Zwick)

2. An O(Mn2.38) preprocessing / O(n) query answering alg. (Yuster-Z)

3. An O(n2.38logM) (1+ε)-approximation algorithm
5. Summary and open problems

Approximate min-plus products

Obvious idea: scaling

SCALE(A,M,R):
/ , if 0

, otherwise

ij ij
ij

Ra M a M
a

         
  

APX-MPP(A,B,M,R) :
A’←SCALE(A,M,R)
B’←SCALE(B,M,R)
return MPP(A’,B’)

Complexity is Rn2.38,
instead of Mn2.38, but
small values can be

greatly distorted.

Addaptive Scaling

APX-MPP(A,B,M,R) :

C’←∞
for r←log2R to log2M do

A’←SCALE(A,2r,R)
B’←SCALE(B,2r,R)
C’←min{C’,MPP(A’,B’)}

end

Complexity is Rn2.38 logM
Stretch at most 1+4/R

1. Algebraic matrix multiplication
a. Strassen’s algorithm

b. Rectangular matrix multiplication

2. Min-Plus matrix multiplication
a. Equivalence to the APSP problem

b. Expensive reduction to algebraic products

c. Fredman’s trick

3. APSP in undirected graphs
a. An O(n2.38) anlgorithm for unweighted graphs (Seidel)

b. An O(Mn2.38) algorithm for weighted graphs (Shoshan-Zwick)

4. APSP in directed graphs
1. An O(M0.68n2.58) algorithm (Zwick)

2. An O(Mn2.38) preprocessing / O(n) query answering alg. (Yuster-Z)

3. An O(n2.38logM) (1+ε)-approximation algorithm

5. Summary and open problems

Answering distance queries

Preprocessing
time

Query
time

Authors

Mn2.38 n [Yuster-Zwick ’05]

Directed graphs. Edge weights in {−M,…,0,…M}

In particular, any Mn1.38 distances
can be computed in Mn2.38 time.

For dense enough graphs with small enough edge
weights, this improves on Goldberg’s SSSP algorithm.

Mn2.38 vs. mn0.5logM

Running time Authors

(n2.38 log M)/ε [Zwick ’98]

Approximate All-Pairs Shortest Paths
in graphs with non-negative integer weights

Directed graphs.
Edge weights in {0,1,…M}

(1+ε)-approximate distances

Open problems

An O(n) algorithm for the
directed unweighted APSP problem?

An O(n3-ε) algorithm for the APSP
problem with edge weights in {1,2,…,n}?

An O(n2.5-ε) algorithm for the SSSP problem
with edge weights in {1,0,1,2,…, n}?

DYNAMIC
TRANSITIVE CLOSURE

Dynamic transitive closure
• Edge-Update(e) – add/remove an edge e

• Vertex-Update(v) – add/remove edges touching v.

• Query(u,v) – is there are directed path from u to v?

Edge-Update n2 n1.575 n1.495

Vertex-Update n2 – –
Query 1 n0.575 n1.495

(improving [Demetrescu-Italiano ’00], [Roditty ’03])

[Sankowski ’04]

Inserting/Deleting and edge

May change (n2) entries of the
transitive closure matrix

Symbolic Adjacency matrix

1

3
2

4

6

5

Reachability via adjoint
[Sankowski ’04]

Let A be the symbolic adjacency matrix of G.
(With 1s on the diagonal.)

There is a directed path from i to j in G iff

Reachability via adjoint (example)
1

3
2

4

6

5 Is there a path from 1 to 5?

Dynamic transitive closure

Dynamic matrix inverse
• Entry-Update(i,j,x) – Add x to Aij

• Row-Update(i,v) – Add v to the i-th row of A

• Column-Update(j,u) – Add u to the j-th column of A

• Query(i,j) – return (A-1)ij

• Edge-Update(e) – add/remove an edge e

• Vertex-Update(v) – add/remove edges touching v.

• Query(u,v) – is there are directed path from u to v?

Sherman-Morrison formula

Inverse of a rank one correction
is a rank one correction of the inverse

Inverse updated in O(n2) time

O(n2) update / O(1) query algorithm
[Sankowski ’04]

Let pn3 be a prime number
Assign random values aij2 Fp to the variables xij

Maintain A
1

over Fp

Edge-Update Entry-Update

Vertex-Update  Row-Update + Column-Update

Perform updates using the Sherman-Morrison formula

Small error probability
(by the Schwartz-Zippel lemma)

Lazy updates
Consider single entry updates

Lazy updates (cont.)

Lazy updates (cont.)

Can be made worst-case

Even Lazier updates

Dynamic transitive closure
• Edge-Update(e) – add/remove an edge e

• Vertex-Update(v) – add/remove edges touching v.

• Query(u,v) – is there are directed path from u to v?

Edge-Update n2 n1.575 n1.495

Vertex-Update n2 – –
Query 1 n0.575 n1.495

(improving [Demetrescu-Italiano ’00], [Roditty ’03])

[Sankowski ’04]

128

Finding triangles in O(m2 /(+1)) time
[Alon-Yuster-Z (1997)]

Let  be a parameter. .
High degree vertices: vertices of degree  .
Low degree vertices: vertices of degree < .

There are at most 2m/ high degree vertices

 2m 
 m=

 = m(-1) /(+1)

129

Finding longer simple cycles

A graph G contains a Ck iff Tr(Ak)≠0 ?

We want simple cycles!

130

Color coding [AYZ ’95]

Assign each vertex v a random number c(v) from
{0,1,...,k1}.

Remove all edges (u,v) for which c(v)≠c(u)+1 (mod k).

All cycles of length k in the graph are now simple.

If a graph contains a Ck then with a probability of at
least kk it still contains a Ck after this process.

An improved version works with probability 2O(k).

Can be derandomized at a logarithmic cost.

Sherman-Morrison-Woodbury formula

Inverse of a rank k correction
is a rank k correction of the inverse

Can be computed in O(M(n,k,n)) time.

