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Short introduction to
Fast matrix multiplication



Algebraic Matrix Multiplication

 =( )i jA a ( )i jB b ( )i jC ci

j

Can be computed naively in O(n3) time.



Matrix multiplication algorithms

AuthorsComplexity

—n3

Strassen  (1969)n2.81

Conjecture/Open problem: n2+o(1)   ???

Coppersmith, Winograd (1990)n2.38
…



Multiplying 22 matrices

8 multiplications
4 additions

Works over any ring!



Multiplying nn matrices

8 multiplications
4 additions

T(n) = 8 T(n/2) + O(n2)

T(n) = O(nlog8/log2)=O(n3)



Strassen’s 22 algorithm

11 11 11 12 21

12 11 12 12 22

21 21 11 22 21

22 21 12 22 22

C A B A B

C A B A B

C A B A B

C A B A B

 
 
 
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1 11 22 11 22

2 21 22 11

3 11 12 22

4 22 21 11

5 11 12 22

6 21 11 11 12

7 12 22 21 22

( )( )

( )

( )

( )

( )

( )( )

( )( )

M A A B B

M A A B

M A B B

M A B B

M A A B

M A A B B

M A A B B




  
 


 


 

 


11 1 4 5 7

12 3 5

21 2 4

22 1 2 3 6

C M M M M

C M M

C M M

C M M M M

  










 


7 multiplications

18 additions/subtractions

Subtraction!

Works over any ring!



“Strassen Symmetry”
(by Mike Paterson)



Strassen’s nn algorithm

View each nn matrix as a 22 matrix 
whose elements are n/2  n/2 matrices. 

Apply the 22 algorithm recursively.

T(n) = 7 T(n/2) + O(n2)

T(n) = O(nlog7/log2)=O(n2.81)



Matrix multiplication algorithms
The O(n2.81) bound of Strassen was 

improved by Pan, Bini-Capovani-Lotti-
Romani, Schönhage and finally by 

Coppersmith and Winograd to O(n2.38). 

The algorithms are much more complicated…

We let 2 ≤  < 2.38 be the 
exponent of matrix multiplication.

Many believe that =2+o(1).

New group theoretic approach [Cohn-Umans ‘03]
[Cohn-Kleinberg-szegedy-Umans ‘05]



Determinants / Inverses

The title of Strassen’s 1969 paper is:
“Gaussian elimination is not optimal”

Other matrix operations that can 
be performed in O(n) time:

• Computing determinants:  detA

• Computing inverses:  A1

• Computing characteristic polynomials



Matrix Multiplication
Determinants / Inverses

What is it good for?
Transitive closure

Shortest Paths

Perfect/Maximum matchings

Dynamic transitive closure

k-vertex connectivity

Counting spanning trees



Rectangular Matrix multiplication

[Coppersmith ’97]: n1.85p0.54+n2+o(1)

For p ≤ n0.29, complexity = n2+o(1) !!!

 =n

p

p

n

n

n

Naïve complexity:        n2p



BOOLEAN MATRIX 
MULTIPLICATION 

and

TRANSIVE CLOSURE



Boolean Matrix Multiplication

 =( )i jA a ( )i jB b ( )i jC ci

j

Can be computed naively in O(n3) time.



Algebraic 
Product

O(n2.38)
algebraic 
operations

Boolean 
Product

Logical or ()
has no inverse!

But, we can work
over the integers!

(modulo n+1)

O(n2.38)
operations on 

O(log n) bit words



Transitive Closure

Let G=(V,E) be a directed graph.

The transitive closure G*=(V,E*) is the graph in 
which (u,v)E* iff there is a path from u to v.

Can be easily computed in O(mn) time.

Can also be computed in O(n) time.



Adjacency matrix 
of a directed graph

1

3
2

4

6

5

Exercise 0: If A is the adjacency matrix of a graph, 
then (Ak)ij=1 iff there is a path of length k from i to j.



Transitive Closure 
using matrix multiplication

Let G=(V,E) be a directed graph.

If A is the adjacency matrix of G, 
then (AI)n1 is the adjacency matrix of G*.

The matrix (AI)n1 can be computed by log n
squaring operations in O(nlog n) time.

It can also be computed in O(n) time.



(ABD*C)* EBD*

D*CE D*GBD*

A B

C D

E F

G H

X =

X* = =

TC(n) ≤ 2 TC(n/2) + 6 BMM(n/2) + O(n2)

A D

C

B



Exercise 1: Give O(n) algorithms for 
findning, in a directed graph,

a) a triangle

b) a simple quadrangle

c) a simple cycle of length k.

Hints:

1. In an acyclic graph all paths are simple.

2. In c) running time may be exponential in k.

3. Randomization makes solution much easier.



MIN-PLUS MATRIX 
MULTIPLICATION

and

ALL-PAIRS 
SHORTEST PATHS

(APSP)



An interesting special case
of the APSP problem

A B

17

23

Min-Plus product

2

5
10

20

30

20



Min-Plus Products
































































125

703

48

528

5

731

571

252

1036



Solving APSP by repeated squaring

D  W
for i 1 to log2n
do D  D*D

If W is an n by n matrix containing the edge weights
of a graph. Then Wn is the distance matrix.

Thus: APSP(n)  MPP(n) log n

Actually: APSP(n) = O(MPP(n))

By induction, Wk gives the distances realized 
by paths that use at most k edges. 



(ABD*C)* EBD*

D*CE D*GBD*

A B

C D

E F

G H

X =

X* = =

APSP(n) ≤ 2 APSP(n/2) + 6 MPP(n/2) + O(n2)

A D

C

B



Algebraic 
Product

ij ik kj
k

C A B

c a b

 

 

O(n2.38)

Min-Plus 
Product

min operation 
has no inverse!



The min-plus product of two n  n
matrices can be deduced after only 
O(n2.5) additions and comparisons. 

Fredman’s trick 

It is not known how to implement 
the algorithm in O(n2.5) time. 



Algebraic Decision Trees

a17-a19 ≤ b92-b72

c11=a17+b71

c12=a14+b42
...

c11=a13+b31

c12=a15+b52
...

yes no

2.5n

…
c11=a18+b81

c12=a16+b62
...

c11=a12+b21

c12=a13+b32
...



Breaking a square product into 
several rectangular products

A2A1

B1

B2

* min *i i
i

A B A B
MPP(n) ≤ (n/m) (MPP(n,m,n) + n2)

m

n



Fredman’s trick

A Bn

m

n

m

Naïve calculation requires n2m operations

air+brj ≤ ais+bsj

air - ais  ≤ bsj - brj 



Fredman observed that the result can be inferred
after performing only O(nm2) operations



Fredman’s trick (cont.)

air+brj ≤ ais+bsj air - ais  ≤ bsj - brj 

• Generate all the differences air - ais and bsj - brj .

• Sort them using O(nm2) comparisons. (Non-trivial!)

• Merge the two sorted lists using O(nm2) comparisons.

The ordering of the elements in the sorted list
determines the result of the min-plus product 

!!!



All-Pairs Shortest Paths
in directed graphs with “real” edge weights

Running time Authors
n3 [Floyd ’62] [Warshall ’62]

n3 (log log n / log n)1/3 [Fredman ’76]
n3 (log log n / log n)1/2 [Takaoka ’92]

n3 / (log n)1/2 [Dobosiewicz ’90]

n3 (log log n / log n)5/7 [Han ’04]

n3 log log n / log n [Takaoka ’04]

n3 (log log n)1/2 / log n [Zwick ’04]

n3 / log n [Chan ’05]

n3 (log log n / log n)5/4 [Han ’06]

n3 (log log n)3 / (log n)2 [Chan ’07]



PERFECT MATCHINGS



Matchings

A matching is a subset of edges 
that do not touch one another.



Matchings

A matching is a subset of edges 
that do not touch one another.



Perfect Matchings

A matching is perfect if there
are no unmatched vertices



Perfect Matchings

A matching is perfect if there
are no unmatched vertices



Algorithms for finding 
perfect or maximum matchings

Combinatorial 
approach:

A matching M is a 
maximum matching iff it 

admits no augmenting paths



Algorithms for finding 
perfect or maximum matchings

Combinatorial 
approach:

A matching M is a 
maximum matching iff it 

admits no augmenting paths



Combinatorial algorithms for finding 
perfect or maximum matchings

In bipartite graphs, augmenting paths can be 
found quite easily, and maximum matchings 

can be used using max flow techniques.

In non-bipartite the problem is much harder. 
(Edmonds’ Blossom shrinking techniques)

Fastest running time (in both cases): 
O(mn1/2) [Hopcroft-Karp] [Micali-Vazirani]



Adjacency matrix 
of a undirected graph

1

3
2

4

6

5

The adjacency matrix of an 
undirected graph is symmetric.



Matchings, Permanents, Determinants

Exercise 2: Show that if A is the adjacency matrix 
of a bipartite graph G, then per(A) is the number of 

perfect matchings in G.

Unfortunately computing the 
permanent is  #P-complete…



Tutte’s matrix 
(Skew-symmetric symbolic adjacency matrix)

1

3
2

4

6

5



Tutte’s theorem
Let G=(V,E) be a graph and let A be its Tutte 
matrix. Then, G has a perfect matching iff det A0.

1

3

2

4

There are perfect matchings



Tutte’s theorem
Let G=(V,E) be a graph and let A be its Tutte 
matrix. Then, G has a perfect matching iff det A0.

1

3

2

4

No perfect matchings



Proof of Tutte’s theorem

Every permutation Sn defines a cycle collection

1 2 10
3 4

6 5

7

9 8



Cycle covers

1 2
3 4

6 5

7

9 8

A permutation Sn for which {i,(i)}E, 
for 1 ≤ i ≤ k, defines a cycle cover of the graph.

Exercise 3: If ’ is obtained from  by reversing
the direction of a cycle, then sign(’)=sign().

Depending on the 
parity of the cycle!



Reversing Cycles

Depending on the 
parity of the cycle!

7

9 8

3 4

6 5
1 2

7

9 8

3 4

6 5
1 2



Proof of Tutte’s theorem (cont.)

The permutations Sn that contain 
an odd cycle cancel each other! 

A graph contains a perfect matching 
iff it contains an even cycle cover.

We effectively sum only over even cycle covers.



Proof of Tutte’s theorem (cont.)
A graph contains a perfect matching 
iff it contains an even cycle cover.

Perfect Matching  Even cycle cover



Proof of Tutte’s theorem (cont.)
A graph contains a perfect matching 
iff it contains an even cycle cover.

Even cycle cover  Perfect matching



An algorithm for perfect matchings?

• Construct the Tutte matrix A.

• Compute detA.

• If detA  0, say ‘yes’, otherwise ‘no’. 

Problem:
det A is a symbolic expression 

that may be of exponential size!

Lovasz’s 
solution:

Replace each variable xij by a 
random element of Zp, where 
p=(n2) is a prime number



The Schwartz-Zippel lemma

Let P(x1,x2,…,xn) be a polynomial of degree d
over a field F. Let SF. If P(x1,x2,…,xn)0 

and a1,a2,…,an are chosen randomly and 
independently from S, then

Proof by induction on n.

For n=1, follows from the fact that polynomial of 
degree d over a field has at most d roots 



Lovasz’s algorithm for 
existence of perfect matchings

• Construct the Tutte matrix A.

• Replace each variable xij by a random 
element of Zp, where p=O(n2) is prime.

• Compute det A.

• If det A  0, say ‘yes’, otherwise ‘no’. 

If algorithm says ‘yes’, then 
the graph contains a perfect matching.

If the graph contains a perfect matching, then 
the probability that the algorithm says ‘no’, 

is at most O(1/n).



Parallel algorithms
Determinants can be computed 

very quickly in parallel

DET  NC2

Perfect matchings can be detected
very quickly in parallel (using randomization)

PERFECT-MATCH  RNC2

Open problem:
???  PERFECT-MATCH  NC ???



Finding perfect matchings

Self Reducibility

Needs O(n2) determinant computations

Running time O(n +2)

Not parallelizable!

Delete an edge and check 
whether there is still a perfect matching

Fairly slow…



Finding perfect matchings

Rabin-Vazirani (1986): An edge {i,j}E is 
contained in a perfect matching iff (A1)ij0. 

Leads immediately to an O(n+1) algorithm:
Find an allowed edge {i,j}E , delete it and its 

vertices from the graph, and recompute A1.

Mucha-Sankowski (2004): Recomputing A1 

from scratch is very wasteful. Running time 
can be reduced to O(n) !

Harvey (2006): A simpler O(n) algorithm.



Adjoint and Cramer’s rule

1

Cramer’s rule:

A with the j-th row 
and i-th column deleted



Finding perfect matchings

Rabin-Vazirani (1986): An edge {i,j}E is 
contained in a perfect matching iff (A1)ij0. 

Leads immediately to an O(n+1) algorithm:
Find an allowed edge {i,j}E , delete it and its 

vertices from the graph, and recompute A1.

1

Still not parallelizable



Finding unique minimum weight
perfect matchings 

[Mulmuley-Vazirani-Vazirani (1987)]

Suppose that edge {i,j}E has integer weight wij

Suppose that there is a unique minimum weight 
perfect matching M of total weight W



Isolating lemma
[Mulmuley-Vazirani-Vazirani (1987)]

Assign each edge {i,j}E
a random integer weight wij[1,2m] 

Suppose that G has a perfect matching

With probability of at least ½, the minimum 
weight perfect matching of G is unique

Lemma holds for general collecitons of sets, 
not just perfect matchings



Proof of Isolating lemma
[Mulmuley-Vazirani-Vazirani (1987)]

Suppose that weights were assigned 
to all edges except for {i,j}

Let aij be the largest weight for which {i,j} participates in 
some minimum weight perfect matchings

If wij<aij , then {i,j} participates in 
all minimum weight perfect matchings

An edge{i,j} is ambivalent if there is a minimum weight 
perfect matching  that contains it and another that does not

The probability that {i,j} is ambivalent is at most 1/(2m)!



Finding perfect matchings 
[Mulmuley-Vazirani-Vazirani (1987)]

Choose random weights in [1,2m]
Compute determinant and adjoint

Read of a perfect matching (w.h.p.)

Is using m-bit integers cheating?
Not if we are willing to pay for it!
Complexity is O(mn)≤ O(n+2)

Finding perfect matchings in RNC2

Improves an RNC3 algorithm by 
[Karp-Upfal-Wigderson (1986)]



Multiplying two N-bit numbers

[Schöonhage-Strassen (1971)]

[Fürer (2007)]
[De-Kurur-Saha-Saptharishi (2008)]

For our purposes…

``School method’’



Finding perfect matchings

[Mucha-Sankowski (2004)]
Recomputing A1 from scratch is wasteful. 

Running time can be reduced to O(n) !

[Harvey (2006)]

A simpler O(n) algorithm.

We are not over yet…



Using matrix multiplication
to compute min-plus products

11 12 11 12 11 12

21 22 21 22 21 22

c c a a b b

c c a a b b

     
           
     
     O O O

min{ }ij ik kjk
c a b 

11 12 11 12

21 22 21 22

11 12

21 22

' '

' '

a a b b

a a b b

c c

c c

x x x x
x x x x

                             
O O O



Using matrix multiplication
to compute min-plus products

11 12 11 12

21 22 21 22

11 12

21 22

' '

' '

a a b b

a a b b

c c

c c

x x x x
x x x x

                             
O O O

n
polynomial 

products

M
operations per 

polynomial 
product


Mn

operations per 
max-plus 
product

Assume:   0 ≤ aij , bij ≤ M



SHORTEST PATHS

APSP – All-Pairs Shortest Paths

SSSP – Single-Source Shortest Paths



UNWEIGHTED

UNDIRECTED
SHORTEST PATHS



4. APSP in undirected graphs

a. An O(n2.38) algorithm for unweighted
graphs (Seidel)

b. An O(Mn2.38) algorithm for weighted graphs
(Shoshan-Zwick)

5. APSP in directed graphs
1. An O(M0.68n2.58) algorithm (Zwick)

2. An O(Mn2.38) preprocessing / O(n) query 
answering algorithm (Yuster-Zwick)

3. An O(n2.38logM) (1+ε)-approximation algorithm

6. Summary and open problems



Directed versus undirected graphs

x
y

z

δ(x,z)  δ(x,y) + δ(y,z)

x
y

z

δ(x,z)  δ(x,y) + δ(y,z)

δ(x,z) ≥ δ(x,y) – δ(y,z)

δ(x,y)  δ(x,z) + δ(z,y)Triangle inequality

Inverse triangle inequality



Distances in G and its square G2

Let G=(V,E). Then G2=(V,E2), where 
(u,v)E2 if and only if (u,v)E or there 

exists wV such that (u,w),(w,v)E

Let δ (u,v) be the distance from u to v in G.
Let δ2(u,v) be the distance from u to v in G2.



Distances in G and its square G2 (cont.)

Lemma: δ2(u,v)=δ(u,v)/2 ,  for every u,vV.

Thus: δ(u,v) = 2δ2(u,v) or
δ(u,v) = 2δ2(u,v)1 

δ2(u,v) ≤δ(u,v)/2

δ(u,v) ≤2δ2(u,v)



Distances in G and its square G2  (cont.)

Lemma: If δ(u,v)=2δ2(u,v) then for every 
neighbor w of v we have δ2(u,w) ≥ δ2(u,v).

Lemma: If δ(u,v)=2δ2(u,v)–1 then for every 
neighbor w of v we have δ2(u,w)  δ2(u,v) and 

for at least one neighbor δ2(u,w) < δ2(u,v).

Let A be the adjacency matrix of the G.
Let C be the distance matrix of G2



Even distances

Lemma: If δ(u,v)=2δ2(u,v) then for every 
neighbor w of v we have δ2(u,w) ≥ δ2(u,v).

Let A be the adjacency matrix of the G.
Let C be the distance matrix of G2



Odd distances

Lemma: If δ(u,v)=2δ2(u,v)–1 then for every 
neighbor w of v we have δ2(u,w)  δ2(u,v) and 

for at least one neighbor δ2(u,w) < δ2(u,v).

Let A be the adjacency matrix of the G.
Let C be the distance matrix of G2

Exercise 4: Prove the lemma.



Seidel’s algorithm

Algorithm APD(A)
if A=J then

return J–I
else

C←APD(A2)
X←CA , deg←Ae–1
dij←2cij– [xij<cijdegj]
return D

end

1. If A is an all one matrix, 
then all distances are 1.

2. Compute A2, the adjacency 
matrix of the squared graph.

3. Find, recursively, the distances 
in the squared graph.

4. Decide, using one integer 
matrix multiplication, for every 
two vertices u,v, whether their 
distance is twice the distance in 
the square, or twice minus 1.

Complexity: 
O(nlog n)

Assume that A has 
1’s on the diagonal.

Boolean matrix 
multiplicaion

Integer matrix 
multiplicaion



Exercise 5: (*) Obtain a version of 
Seidel’s algorithm that uses only 
Boolean matrix multiplications.

Hint: Look at distances also modulo 3.



Distances vs. Shortest Paths

We described an algorithm for 
computing all distances.

How do we get a representation of
the shortest paths?

We need witnesses for the 
Boolean matrix multiplication.



Witnesses for 
Boolean Matrix Multiplication

Can be computed naively in O(n3) time.

A matrix W is a matrix of witnesses iff

Can also be computed in O(nlog n) time.



Exercise 6:

a) Obtain a deterministic O(n)-time 
algorithm for finding unique witnesses.

b) Let 1≤d≤n be an integer. Obtain a 
randomized O(n)-time algorithm for 
finding witnesses for all positions that 
have between d and 2d witnesses.

c) Obtain an O(nlog n)-time algorithm for 
finding all witnesses.

Hint: In b) use sampling.



Running time Authors

Mn [Shoshan-Zwick ’99]

All-Pairs Shortest Paths
in graphs with small integer weights

Undirected graphs. 
Edge weights in {0,1,…M}

Improves results of 
[Alon-Galil-Margalit ’91] [Seidel ’95]



DIRECTED
SHORTEST PATHS



Exercise 7:
Obtain an O(nlog n) time algorithm for 

computing the diameter of an unweighted 
directed graph.



Using matrix multiplication
to compute min-plus products

11 12 11 12 11 12

21 22 21 22 21 22

c c a a b b

c c a a b b

     
           
     
     O O O

min{ }ij ik kjk
c a b 

11 12 11 12

21 22 21 22

11 12

21 22

' '

' '

a a b b

a a b b

c c

c c

x x x x
x x x x

                             
O O O



Using matrix multiplication
to compute min-plus products

11 12 11 12

21 22 21 22

11 12

21 22

' '

' '

a a b b

a a b b

c c

c c

x x x x
x x x x

                             
O O O

n
polynomial 

products

M
operations per 

polynomial 
product


Mn 

operations per 
max-plus 
product

Assume:   0 ≤ aij , bij ≤ M



Trying to implement the 
repeated squaring algorithm

Consider an easy case: 
all weights are 1.

D  W
for i 1 to log2n 
do D  D*D

After the i-th iteration, the finite 
elements in D are in the range {1,…,2i}.

The cost of the min-plus product is 2i n

The cost of the last product is n+1 !!!



Sampled Repeated Squaring  (Z ’98)

D  W
for i 1 to log3/2n do
{

s  (3/2)i+1

B  rand( V , (9n lnn)/s )
D  min{ D , D[V,B]*D[B,V] }

}

Choose a subset of V
of size  n/s

Select the columns
of D whose 

indices are in B

Select the rows
of D whose 

indices are in B

With high probability, 
all distances are correct!

The is also a slightly more complicated 
deterministic algorithm



Sampled Distance Products (Z ’98)

n

n

n

|B|

In the i-th 
iteration, the set B

is of size  n/s, 
where s = (3/2)i+1

The matrices get 
smaller and smaller

but the elements get 

larger and larger



Sampled Repeated Squaring - Correctness

D  W
for i 1 to log3/2n do
{

s  (3/2)i+1

B  rand(V,(9n ln n)/s)
D  min{ D , D[V,B]*D[B,V] }

}

Invariant: After the i-th 
iteration, distances that are 
attained using at most (3/2)i

edges are correct.

Consider a shortest path that uses at most (3/2)i+1 edges

 1
2

3
2

i

 1
2

3
2

i 1
2

3
2

i
at most at most

Let s = (3/2)i+1
3

/39ln
(1 )

s
n

n
s

Failure 
probability :



Rectangular Matrix multiplication

[Coppersmith (1997)]  [Huang-Pan (1998)]

n1.85p0.54+n2+o(1)

For p ≤ n0.29, complexity = n2+o(1) !!!

 =n

p

p

n

n

n

Naïve complexity:        n2p



Rectangular Matrix multiplication

[Coppersmith (1997)] 

nn0.29 by n0.29 n
n2+o(1) operations!

 =n

n0.29

n0.
29

n

n

n

 = 0.29…



Rectangular Matrix multiplication

[Huang-Pan (1998)] 

 =n

p

p

n

n

n

Break into qq and q q sub-matrices



Complexity of APSP algorithm

The i-th iteration:

n

n/s

n

n /s

s=(3/2)i+1

The elements are 
of absolute value 

at most Ms

0.54 3
1.85min{ , }

n n
Ms n

s s
   
 

0.68 2.58M n

“Fast” matrix 
multiplicatio

n

Naïve matrix 
multiplicatio

n



Running time Authors

Mn2.38 [Shoshan-Zwick ’99]

All-Pairs Shortest Paths
in graphs with small integer weights

Undirected graphs. 
Edge weights in {0,1,…M}

Improves results of 
[Alon-Galil-Margalit ’91] [Seidel ’95]



All-Pairs Shortest Paths
in graphs with small integer weights

Running time Authors

M0.68 n2.58 [Zwick ’98]

Directed graphs. 
Edge weights in {−M,…,0,…M}

Improves results of 
[Alon-Galil-Margalit ’91] [Takaoka ’98]



Open problem:
Can APSP in directed graphs 

be solved in O(n) time?

[Yuster-Z (2005)]
A directed graphs can be processed in O(n)

time so that any distance query can be 
answered in O(n) time.

Corollary:
SSSP in directed graphs in O(n) time.

Also obtained, using a different technique, by
Sankowski (2005)



The preprocessing algorithm (YZ ’05)

D  W ; B V
for i 1 to log3/2n do
{

s  (3/2)i+1

B  rand(B,(9n lnn)/s)
D[V,B]  min{ D[V,B] , D[V,B]*D[B,B]
}
D[B,V]  min{ D[B,V] , D[B,B]*D[B,V]
}

}



The APSP algorithm

D  W
for i 1 to log3/2n do
{

s  (3/2)i+1

B  rand(V,(9n lnn)/s)

}

D  min{ D , D[V,B]*D[B,V] }



Twice Sampled Distance Products

n

n

n

|B|

n
|B|

|B|

|B|
|B|

n



The query answering algorithm

δ(u,v)  D[{u},V]*D[V,{v}]

u

v

Query time: O(n)



The preprocessing algorithm: Correctness

Invariant: After the i-th iteration, if u Bi or vBi
and there is a shortest path from u to v that uses at 

most (3/2)i edges, then D(u,v)=δ(u,v).

Let Bi be the i-th sample.    B1 B2 B3 …

Consider a shortest path that uses at most (3/2)i+1 edges

 1
2

3
2

i

 1
2

3
2

i 1
2

3
2

i
at most at most



The query answering algorithm: 
Correctness

Suppose that the shortest path from u to v
uses between (3/2)i and (3/2)i+1 edges

 1
2

3
2

i

 1
2

3
2

i 1
2

3
2

i
at most at most

u v



1. Algebraic matrix multiplication
a. Strassen’s algorithm

b. Rectangular matrix multiplication

2. Min-Plus matrix multiplication
a. Equivalence to the APSP problem

b. Expensive reduction to algebraic products

c. Fredman’s trick

3. APSP in undirected graphs
a. An O(n2.38) anlgorithm for unweighted graphs (Seidel)

b. An O(Mn2.38) algorithm for weighted graphs (Shoshan-Zwick)

4. APSP in directed graphs
1. An O(M0.68n2.58) algorithm (Zwick)

2. An O(Mn2.38) preprocessing / O(n) query answering alg. (Yuster-Z)

3. An O(n2.38logM) (1+ε)-approximation algorithm
5. Summary and open problems



Approximate min-plus products

Obvious idea: scaling 

SCALE(A,M,R):
/ , if 0

, otherwise

ij ij
ij

Ra M a M
a

         
  

APX-MPP(A,B,M,R) :
A’←SCALE(A,M,R)
B’←SCALE(B,M,R)
return MPP(A’,B’)

Complexity is Rn2.38, 
instead of Mn2.38, but 
small values can be 

greatly distorted.



Addaptive Scaling

APX-MPP(A,B,M,R) :

C’←∞
for r←log2R to log2M do

A’←SCALE(A,2r,R)
B’←SCALE(B,2r,R)
C’←min{C’,MPP(A’,B’)}

end

Complexity is Rn2.38 logM
Stretch at most 1+4/R



1. Algebraic matrix multiplication
a. Strassen’s algorithm

b. Rectangular matrix multiplication

2. Min-Plus matrix multiplication
a. Equivalence to the APSP problem

b. Expensive reduction to algebraic products

c. Fredman’s trick

3. APSP in undirected graphs
a. An O(n2.38) anlgorithm for unweighted graphs (Seidel)

b. An O(Mn2.38) algorithm for weighted graphs (Shoshan-Zwick)

4. APSP in directed graphs
1. An O(M0.68n2.58) algorithm (Zwick)

2. An O(Mn2.38) preprocessing / O(n) query answering alg. (Yuster-Z)

3. An O(n2.38logM) (1+ε)-approximation algorithm

5. Summary and open problems



Answering distance queries

Preprocessing 
time

Query
time

Authors

Mn2.38 n [Yuster-Zwick ’05]

Directed graphs. Edge weights in {−M,…,0,…M}

In particular, any Mn1.38 distances 
can be computed in Mn2.38 time.

For dense enough graphs with small enough edge 
weights, this improves on Goldberg’s SSSP algorithm.

Mn2.38 vs. mn0.5logM



Running time Authors

(n2.38 log M)/ε [Zwick ’98]

Approximate All-Pairs Shortest Paths
in graphs with non-negative integer weights

Directed graphs. 
Edge weights in {0,1,…M}

(1+ε)-approximate distances



Open problems

An O(n) algorithm for the 
directed unweighted APSP problem?

An O(n3-ε) algorithm for the APSP 
problem with edge weights in {1,2,…,n}?

An O(n2.5-ε) algorithm for the SSSP problem 
with edge weights in {1,0,1,2,…, n}?



DYNAMIC
TRANSITIVE CLOSURE



Dynamic transitive closure
• Edge-Update(e) – add/remove an edge e

• Vertex-Update(v) – add/remove edges touching v.

• Query(u,v) – is there are directed path from u to v?

Edge-Update n2 n1.575 n1.495

Vertex-Update n2 – –
Query 1 n0.575 n1.495

(improving [Demetrescu-Italiano ’00], [Roditty ’03])

[Sankowski ’04] 



Inserting/Deleting and edge

May change (n2) entries of the 
transitive closure matrix



Symbolic Adjacency matrix 

1

3
2

4

6

5



Reachability via adjoint
[Sankowski ’04] 

Let A be the symbolic adjacency matrix of G.
(With 1s on the diagonal.)

There is a directed path from i to j in G iff



Reachability via adjoint (example)
1

3
2

4

6

5 Is there a path from 1 to 5?



Dynamic transitive closure

Dynamic matrix inverse
• Entry-Update(i,j,x) – Add x to Aij

• Row-Update(i,v) – Add v to the i-th row of A

• Column-Update(j,u) – Add u to the j-th column of A

• Query(i,j) – return (A-1)ij

• Edge-Update(e) – add/remove an edge e

• Vertex-Update(v) – add/remove edges touching v.

• Query(u,v) – is there are directed path from u to v?



Sherman-Morrison formula

Inverse of a rank one correction 
is a rank one correction of the inverse

Inverse updated in O(n2) time



O(n2) update / O(1) query algorithm
[Sankowski ’04] 

Let pn3 be a prime number
Assign random values aij2 Fp to the variables xij

Maintain A
1

over Fp

Edge-Update Entry-Update

Vertex-Update  Row-Update + Column-Update

Perform updates using the Sherman-Morrison formula

Small error probability 
(by the Schwartz-Zippel lemma)



Lazy updates
Consider single entry updates



Lazy updates (cont.)



Lazy updates (cont.)

Can be made worst-case



Even Lazier updates



Dynamic transitive closure
• Edge-Update(e) – add/remove an edge e

• Vertex-Update(v) – add/remove edges touching v.

• Query(u,v) – is there are directed path from u to v?

Edge-Update n2 n1.575 n1.495

Vertex-Update n2 – –
Query 1 n0.575 n1.495

(improving [Demetrescu-Italiano ’00], [Roditty ’03])

[Sankowski ’04] 
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Finding triangles in O(m2 /(+1)) time
[Alon-Yuster-Z (1997)]

Let  be a parameter.                                   .
High degree vertices: vertices of degree  .
Low degree vertices: vertices of degree < .

There are at most 2m/ high degree vertices

 2m 
 m=

 = m(-1) /(+1)



129

Finding longer simple cycles

A graph G contains a Ck iff Tr(Ak)≠0 ?

We want simple cycles!
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Color coding [AYZ ’95]

Assign each vertex v a random number c(v) from 
{0,1,...,k1}. 

Remove all edges (u,v) for which c(v)≠c(u)+1 (mod k).

All cycles of length k in the graph are now simple.

If a graph contains a Ck then with a probability of at 
least kk it still contains a Ck after this process.

An improved version works with probability 2O(k).

Can be derandomized at a logarithmic cost.



Sherman-Morrison-Woodbury formula

Inverse of a rank k correction 
is a rank k correction of the inverse

Can be computed in O(M(n,k,n)) time.


