Требование к зачету

Для зачета нужно решить не меньше, чем a задач из части A, b задач из части B и c задач из части C и не менее, чем s задач всего. Если в задаче несколько пунктов, то нужно решить их все. Параметры a,b,c,s из таблицы:

	1	/ /	/	
Имя	a	b	c	\mathbf{s}
Данил	0	0	2	3
Святослав	0	1	3	5
Артур	2	2	2	6
Настя	1	2	3	7
Таня	1	3	3	8
Надя	3	3	3	10
Марсель	6	1	3	11
Петр	5	3	3	12
Иван	6	3	3	13
Лиза	6	3	3	13

Часть А

- 1. Compute the Fourier expansions of the following functions.
 - (a) The selection function Sel : $\{-1,1\}^3 \to \{-1,1\}$ which outputs x_2 if $x_1 = -1$ and outputs x_3 if $x_1 = 1$.
 - (b) The density function corresponding to the product probability distribution on $\{-1,1\}^n$ in which each coordinate has mean $\rho \in [-1,1]$;
 - (c) The hemi-icosahedron function $HI: \{-1,1\}^6 \to \{-1,1\}$, defined as follows: HI(x) is 1 if the number of 1's in x is 1, 2, or 6. HI(x) is -1 if the number of -1's in x is 1, 2, or 6. Otherwise, HI(x) is 1 if and only if one of the ten facets in the following diagram has all three of its vertices 1:



Рис. 1: The hemi-icosahedron

(Please give some indication of how you arrived at the expansion; a bare formula does not suffice.)

- 2. Let $f: \{-1,1\}^n \to \{-1,1\}$.
 - (a) Suppose $\mathbf{W}^1[f] = 1$. Show that $f(x) = \pm \chi_S$ for some |S| = 1.
 - (b) Suppose $\mathbf{W}^{\leq 1}[f] = 1$. Show that f depends on at most 1 input coordinate.

- (c) Suppose $\mathbf{W}^{\leq 2}[f] = 1$. Is it true that f depends on at most 2 input coordinates?
- 3. Let $A \subseteq \mathbb{F}_2^n$, let $\alpha = |A|/2^n$, and write $1_A : \mathbb{F}_2^n \to \{0,1\}$ for the indicator function of A.
 - (a) Show that $\sum_{S \neq \emptyset} \widehat{1}_A(S)^2 = \alpha(1 \alpha)$.
 - (b) Define $A+A+A=\{x+y+z:x,y,z\in A\}$, where the addition is in \mathbb{F}_2^n . Show that either $A+A+A=\mathbb{F}_2^n$ or else there exists $S^*\neq\emptyset$ such that $|\widehat{1}_A(S^*)|\geq\frac{\alpha}{1-\alpha}\cdot\alpha$. (Hint: if $A+A+A\neq\mathbb{F}_2^n$, show there exists $x\in\mathbb{F}_2^n$ such that $1_A*1_A*1_A(x)=0$.)
- 4. For functions $f: \mathbb{F}_2^n \to \mathbb{R}$, sometimes it is more natural to index the Fourier coefficients not by subsets $S \subseteq [n]$ but by elements $\gamma \in \mathbb{F}_2^n$; here we identify a subset with its indicator vector. In this case we would write the Fourier expansion as

$$f = \sum_{\gamma \in \mathbb{F}_2^n} \widehat{f}(S)\chi_{\gamma}, \quad \text{where } \chi_{\gamma}(x) = (-1)^{\gamma \cdot x}$$

and $\gamma \cdot x$ is the dot-product of γ and x in the vector space \mathbb{F}_2^n . Note that for $\beta, \gamma \in \mathbb{F}_2^n$ we have $\chi_{\beta}\chi_{\gamma} = \chi_{\beta+\gamma}$.

- (a) Let H be a vector subspace of \mathbb{F}_2^n . Let H^{\perp} be its "perpendicular subspace"; i.e., $H^{\perp} = \{\gamma \in \mathbb{F}_2^n : \gamma \cdot x = 0 \text{ for all } x \in H\}$. Show that the indicator function $1_H : \mathbb{F}_2^n \to \{0, 1\}$ of H has the Fourier expansion $1_H = \sum_{\gamma \in H^{\perp}} 2^{-k} \chi_{\gamma}$, where $k = \dim(H^{\perp})$. (Remark: $k = n \dim(H)$ is sometimes denoted $\operatorname{codim}(H)$.)
- (b) Given the subspace H and also $y \in \mathbb{F}_2^n$, the set $H + y = \{h + y : h \in H\}$ is called an "affine subspace" of \mathbb{F}_2^n . Show that the indicator function $1_{H+y} : \mathbb{F}_2^n \to \{0,1\}$ of this affine subspace has the Fourier expansion $1_{H+y} = \sum_{\gamma \in H^{\perp}} 2^{-k} \chi_{\gamma}(y) \chi_{\gamma}$, where again $k = \dim(H^{\perp})$.
- 5. In 1965, the Nassau County (New York) Board used a weighted majority voting system to make its decisions, with the 6 towns getting differing weights based on their population. Specifically, the board used the voting rule $f: \{0,1\}^6 \to \{-1,1\}$ defined by $f(x) = \operatorname{sgn}(-58 + 31x_1 + 31x_2 + 28x_3 + 21x_4 + 2x_5 + 2x_6)$. Compute $\operatorname{Inf}_i[f]$ for all $i \in [6]$. (PS: John Banzhaf invented the notion of Inf_i while suing on behalf of towns #5 and #6.)
- 6. Let $f: \{-1,1\}^n \to \{-1,1\}$ be unbiased (i.e., $\mathbf{E}[f] = 0$), and let $\mathbf{MaxInf}[f]$ denote $\max_{i \in [n]} \{\mathbf{Inf}_i[f]\}$.
 - (a) Use the Poincare Inequality to show $\mathbf{MaxInf}[f] \geq 1/n$.
 - (b) Prove $|\hat{f}(i)| \leq \mathbf{Inf}_i[f]$ for all $i \in [n]$. (Hint: consider $\mathbf{E}[|D_i f|]$.)
 - (c) Prove that $\mathbf{I}[f] \geq 2 n\mathbf{MaxInf}[f]^2$. (Hint: first prove $\mathbf{I}[f] \geq \mathbf{W}^1[f] + 2(1 \mathbf{W}^1[f])$ and then use the previous exercise.)
 - (d) Deduce that $\mathbf{MaxInf}[f] \geq \frac{2}{n} \frac{4}{n^2}$.
- 7. In this exercise you are asked to prove some fancily-named properties of the noise operator T_{ρ} .
 - (a) Show that T_{ρ} is "positivity-preserving" for all $\rho \in [-1, 1]$, meaning $f \geq 0 \Rightarrow T_{\rho}f \geq 0$. Show also that it is "positivity-improving" for all $\rho \in (-1, 1)$, meaning $f \geq 0, f \not\equiv 0 \Rightarrow T_{\rho}f > 0$.
 - (b) Show the "semigroup property": $T_{\rho_1} \circ T_{\rho_2} = T_{\rho_1 \rho_2}$ for all $\rho_1, \rho_2, \in [0, 1]$. (If you like, prove it even for $\rho_1, \rho_2 \in [-1, 1]$.)

- (c) Show that T_{ρ} is a "contraction on L^p " for all $p \geq 1$ and $\rho \in [-1, 1]$; i.e., $\|T_{\rho}f\|_p \leq \|f\|_p$, where $\|f\|_p = \mathbf{E}_{\boldsymbol{x}}[|f(\boldsymbol{x})|^p]^{1/p}$.
- 8. Suppose the Fourier spectrum of $f: \{-1,1\}^n \to \mathbb{R}$ is ϵ_1 -concentrated on \mathcal{F} and that $g: \{-1,1\}^n \to \mathbb{R}$ satisfies $||f-g||_2^2 \le \epsilon_2$. Show that the Fourier spectrum of g is $2(\epsilon_1 + \epsilon_2)$ -concentrated on \mathcal{F} .
- 9. (a) Let $k \in \mathbb{N}^+$ and let $\mathcal{C} = \{f : \{-1,1\}^n \to \{-1,1\} \mid \deg(f) \leq k\}$. (In particular, \mathcal{C} contains all functions computable by depth-k decision trees.) Show that \mathcal{C} is learnable from random examples with error 0 in time $n^k \cdot \operatorname{poly}(n, 2^k)$. You may use the following "Degree/Granularity Fact": for every $f \in \mathcal{C}$ and every $S \subseteq [n]$, the Fourier coefficient $\widehat{f}(S)$ is an integer multiple of 2^{1-k} .
 - (b) Prove the Degree/Granularity Fact.

Часть В

- 10. Let $\mathcal{H} = \{f : [m] \to [l]\}$ be a pairwise independent hash family and let $l \geq n^2$. Then for any $S \subseteq [m]$ of size |S| = n, there exists an $h \in \mathcal{H}$ such that the restriction $h|_S$ is a one to one function from S to [l].
- 11. Let k be a constant. Let $X \subseteq \{0,1\}^n$ with $|X| = o(n^{k/2})$. Show that for $d = \lfloor k/2 \rfloor$, there is a function $f: \{0,1\} \to \mathbb{R}$ which satisfies: 1) f is not identically 2) $\hat{f}(S) = 0$ for each |S| > d. 3) f(x) = 0 for each $x \in X$. Use this to show that any k-wise independent distribution over $\{0,1\}^n$ has support at least $\Omega(n^{k/2})$.
- 12. Show that for any ϵ -biased distribution μ , $\sum_{x \in \{0,1\}^n} \mu^2(x) \le \epsilon^2 + \frac{1}{2^n}$. Conclude that if $\epsilon < 1/2^{n/2}$, then μ must have support at least $\frac{1}{2}2^n$.
- 13. Let μ be an ϵ -biased distribution on $\{0,1\}^n$. Let t be a parameter to be chosen later. Let $\nu = \mu * \mu * \cdots * \mu$ (t times). 1) Show that ν is an ϵ^t -biased distribution. 2) Show that $|Support(\nu)| \leq \binom{|Support(\mu)|+t}{t}$ 3) Combine these with the previous problem to show that $|Support(\mu)| = \Omega\left(\frac{n}{\epsilon^2 \log \frac{1}{\epsilon}}\right)$
- 14. Show a correspondence between ϵ -bias generators $G:\{0,1\}^k>0,1^{l(k)}$ and binary linear error-correcting codes $C:0,1^{l(k)}>0,1^{2^k}$ such that every two codewords are at distance $(1\pm\epsilon(k))2^{k-1}$ apart. Guideline: Consider G such that the i-th bit of G(j) equals the j-th bit of $C(0^{i-1}10^{l(k)-i})$.

Часть С

- 15. Оцените сверху вероятность того, что при случайном блуждании длины ℓ по (n, d, α) экспандеру множество B плотности ρ будет посещено как минимум $\beta \ell$ раз.
- 16. Пусть H_n^m семейство попарно независимых хеш-функций. Пусть $S\subseteq\{0,1\}^n$. Пусть случайная величина H распределена равномерно на H_n^m , а случайная величина X равномерно на S. Докажите, что статистическое расстояние между распределением, задаваемым случайной величиной (H,H(X)) и случайной величиной H,U_m не превосходит $\epsilon=(\frac{2^m}{|S|})^{\Omega(1)}$.

- 17. Определим функцию Ext : $\{0,1\}^n \times \{0,1\}^t \to \{0,1\}^n$, которая по коду вершины $(2^n,d,\frac{1}{2})$ алгебраического экспандера выдает код вершины после блуждания, которое закодировано в строке t. Покажите, что для каждого k и $\epsilon>0$ существует $t=O(n-k+\log\frac{1}{\epsilon})$, что так определенная функция Ext является (k,ϵ) -экстрактором.
- 18. Пусть $\mathrm{Ext}:\{0,1\}^n \times \{0,1\}^d \to \{0,1\}^m$ это (k,ϵ) -экстрактор. Покажите, что алгоритм, который получет случайную строку r длины n и делает 2^d запросов $\{\mathrm{Ext}(r,s)\mid s\in\{0,1\}^d\}$ к функции $f:\{0,1\}^m \to [0,1]$ и выдает среднее арифмитическое полученных ответов, является усредняющим сэмплером с точностью ϵ и ошибкой $\delta=2^{-(n-k-1)}$.
- 19. Покажите, что существуют эффективные хиттеры с следующими параметрами: а) $q=\frac{1}{\epsilon}\log\frac{1}{\delta}$ и $r=\frac{n}{\epsilon}\log\frac{1}{\delta}$. б) $q=\frac{1}{\epsilon\delta}$ и r=2n; в) $q=O(\frac{1}{\epsilon}\log\frac{1}{\delta})$ и $r=2n+O(\log\frac{1}{\delta})$. (δ это вероятность неудачи, а ϵ это доля единиц функции f).