
Complexity of read-once branching programs for
satisfiable and unsatisfiable Tseitin formulas
Ludmila Glinskih
St. Petersburg Department of V.A. Steklov Institute of Mathematics of the Russian Academy
of Sciences, Fontanka 27, St. Petersburg, Russia
lglinskih@gmail.com

Dmitry Itsykson
St. Petersburg Department of V.A. Steklov Institute of Mathematics of the Russian Academy
of Sciences, Fontanka 27, St. Petersburg, Russia
dmitrits@pdmi.ras.ru

Artur Riazanov
St. Petersburg Department of V.A. Steklov Institute of Mathematics of the Russian Academy
of Sciences, Fontanka 27, St. Petersburg, Russia
St. Petersburg Academic University, Khlopina 8/3, St. Petersburg, Russia
aariazanov@gmail.com

Petr Smirnov
St. Petersburg State University, 7-9 Universitetskaya Emb., St. Petersburg, Russia
comradepetr@gmail.com

Abstract
We study the read-once branching program complexity of two natural problems based on Tseitin
formulas. We show that the complexity of computing of the value of a satisfiable Tseitin formula
based on a graph G and the complexity of finding a vertex with violated parity condition for
an unsatisfiable Tseitin formula based on the same graph G are quasipolynomialy related for
read-once branching programs. Namely, if a minimum-size 1-BP for the vertex search problem
has size S then the smallest possible size of a 1-BP computing the value of a Tseitin formula
based on the same graph is at least S/n and at most SO(logn), where n is the number of vertices
in the graph.
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1 Introduction

Let ϕ be an unsatisfiable CNF-formula. We consider the search problem Searchϕ: given the
values of the variables of ϕ, find a clause ϕ which is falsified by these values. The search
problem Searchϕ is very important for the propositional proof complexity. For instance, it is
known that the length of the shortest tree-like resolution refutation of ϕ is equal to the size
of the smallest decision tree for Searchϕ and the length of the shortest regular resolution
proof equals the size of the smallest read-once branching program for Searchϕ [13]. Lower
bounds for the randomized communication complexity of Searchϕ imply the lower bounds for
the proof complexity of ϕ in tree-like proof systems where proof lines have small randomized
communication complexity [1].

As mentioned before, regular resolution refutations of ϕ are equivalent to read-once
branching programs computing Searchϕ. Sometimes an unsatisfiable formula ϕ naturally
corresponds to a satisfiable formula ϕ′ which is obtained from ϕ, for example, by removing
several clauses. It is interesting to study connections between read-once branching program
complexities of computing Searchϕ and computing ϕ′. Consider, for example, the pigeonhole
principle PHPn+1

n that states that it is possible that n+ 1 pigeons fly into n holes such that
no two pigeons fly into one hole. A natural satisfiable equivalent for PHPn+1

n is PHPnn (the
same statement for n pigeons and n holes). It is known that PHPn+1

n requires resolution
proofs of size 2Θ(n) [9] and that PHPnn requires read-once branching program of size 2Θ(n)

[12].
In this paper we study Tseitin formulas constructed by an undirected graph G(V,E)

and a charge function f : V → {0, 1}, the variables of TsG,f correspond to the edges of the
graph, the formula itself is the conjunction of the parity conditions for the vertices of G.
A parity condition for a vertex v ∈ V states that the sum of the values of the variables
corresponding to the edges incident to v equals f(v) modulo 2. A Tseitin formula TsG,f is
satisfiable iff for every connected component of G the sum of the values of f(v) is even [16].
Unsatisfiable Tseitin formulas are important hard examples for various propositional proof
systems [15, 16, 3, 14, 10, 5, 8]. It is known that unsatisfiable Tseitin formulas based on an
expander graph with n vertices require resolution proofs of size 2Θ(n) [16], the expander-based
satisfiable Tseitin formulas require read-once branching programs of size 2Θ(n) [6]. In contrast
to the pigeonhole principle the complexity of a Tseitin formula may vary for different graphs.
Thus it is interesting to establish a connection between the 1-BP complexity of a satisfiable
Tseitin formula and the regular resolution complexity problem of an unsatisfiable Tseitin
formula based on the same graph.

For an unsatisfiable Tseitin formula TsG,c we introduce an auxiliary search problem
SearchVertexG,c: for the given values of the variables of TsG,c find a vertex of G with violated
parity condition. The problem SearchVertexG,c is not harder than SearchTsG,c since given a
falsified clause it is easy to find a vertex with violated parity condition. Consider a complete
graph on logn vertices Klogn. Using the technique connecting the expansion of a graph with
the resolution width of the corresponding Tseitin formula [2] it is easy to show that the
length of the shortest resolution refutation of TsKlogn,c is 2Ω(log2 n) (see [4] for details). On
the other hand 1-BP complexity of TsKlogn,c′ is poly(n) for any c′ [6] and, as it follows from
our results, the 1-BP complexity of SearchVertexKlogn,c is poly(n) as well. In the context of
1-BP the problem SearchVertexG,c is interesting even for graphs with large degrees, while in
this case the complexity of SearchTsG,c is automatically large since the number of clauses is
exponential in the maximum degree of the graph.

It is easy to find an example of a family of graphs Gn such that there is a polynomial-sized
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decision tree computing SearchVertexGn,c (if TsGn,c is satisfiable) but every decision tree
for a satisfiable formula TsGn,c′ has exponential size. Consider a path of length n with an
additional parallel edges between every pair of the consecutive vertices of the path and denote
the resulting graph by Pn. Let the charge function be zero for all the vertices. The resulting
Tseitin formula is satisfiable and has exactly 2n satisfying assignments (an assignment satisfies
the formula iff for every pair of parallel edges the values assigned to them are the same).
Since each path from the root to an accepting leaf of a decision tree computing a satisfiable
Tseitin formula has to test all edges of the graph, no two satisfying assignments correspond
to the same leaf. Thus any decision tree for Pn has size at least 2n. The Tseitin formula
on the same graph and with exactly one of the charges equal to 1 is unsatisfiable and there
exists a decision tree of size O(n2) computing SearchVertex for this formula. Indeed, we can
branch on the values of two central edges and for each of the four possible substitutions
only one of the two connected parts of Pn is unsatisfiable, so we will search the vertex with
violated parity condition in a graph that has twice smaller size. The size of the resulting
decision tree can be determined by the recurrence S(n) = 4S(n/2) and hence S(n) = O(n2).
Our results. In Theorem 5 we show that the existence of 1-BP of size S, computing a
satisfiable Tseitin formula TsG,c based on a connected graph G implies the existence of 1-BP
of size nS, computing SearchVertexG,c′ where TsG,c′ is unsatisfiable.

In Theorem 8 we show that the existence of a 1-BP of size S computing SearchVertexG,c
for an unsatisfiable Tseitin formula TsG,c based on a connected graph implies the existence
of 1-BP of size SO(logn) computing TsG,c′ .

The proofs of Theorems 5 and 8 are based on the structural characterizations of 1-BP
computing a Tseitin formula or a SearchVertex problem of an unsatisfiable Tseitin formula.
Lemma 6 states that each node of a minimum-size 1-BP, computing a Tseitin formula,
computes the Tseitin formula obtained from the initial one by the substitution according to
any path from the source to the node. This lemma is relatively simple and was known before.
Lemma 9 states that if D is a minimum-size 1-BP computing SearchVertexG,c, then each
node s of D computes SearchVertexH,f such that for every substitution α corresponding to
a path from the source to s, if we apply α to TsG,c the resulting Tseitin formula contains
exactly one unsatisfiable connected component (i.e. connected component with odd sum of
charges) H and f is a restriction of its charge function to H. This Lemma is not trivial and
requires a careful proof. Therefore, each node s of a minimum-size 1-BP for each of the two
problems corresponds to a graph Gs and a charge function cs such that the node s computes
the same problem as the whole 1-BP but for (Gs, cs).

The transformation of 1-BP for one of the problems into a 1-BP of the other problem
is possible because the dependency between a node and its direct successors behaves in a
similar way for both problems. Namely, if a node labeled with xe, where e is not a bridge of
the graph corresponding to the node, then for both problems the graphs and the charges of
the direct successors differs from the parent’s graph and charge in the exact same way. If e
is a bridge of the graph Gs corresponding to the node of a 1-BP computing the value of a
satisfiable formula, the substitution of one of the values of xe makes the formula unsatisfiable
and thus the corresponding edge goes to 0-sink, the other edge goes to the node corresponding
to the graph Gs − e that has one more connected component with respect to Gs. If s is a
node of a 1-BP computing a SearchVertex problem, then Gs is connected graph. Thus if e is
a bridge of Gs, then one of the successors corresponds to the first connected component of
Gs − e and the other successor corresponds to the another component.
Further research. In the recent work Glinskih and Itsykson [7] proved that there exists
a constant δ > 0 such that the 1-BP complexity of computing a satisfiable Tseitin formula
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TsG,c is at least 2tw(G)δ , where tw(G) is the tree-width of the graph G. Our results imply
the same lower bound but with a smaller δ holds for SearchVertexG,c′ and therefore for the
regular resolution refutations of TsG,c′ .

Open questions: is it possible to prove a polynomial equivalence of computing SearchVertex
and computing a Tseitin formula for the same graph by 1-BPs? Is it possible to separate the
complexity of the search for a falsified clause from the complexity of the search for a falsified
vertex for bounded degree graphs?

2 Preliminaries

2.1 Tseitin formulas

Let G(V,E) be an undirected graph without loops but possibly with parallel edges. Let
c : V → {0, 1} be a charge function. A Tseitin formula TsG,c depends on the propositional
variables xe for e ∈ E. For each vertex v ∈ V we define the parity condition in v as
Pv := (

∑
e is incident to v xe = c(v) mod 2). The Tseitin formula TsG,c is the conjunction of all

the parity conditions of all the vertices
∧
v∈V Pv.

In this paper we define a connected component of a graph G as a maximal inclusive
connected subgraph of G. Assume that G consists of connected components H1, H2, . . . ,Ht.
Then a Tseitin formula TsG,c is equivalent to the conjunction

∧t
i=1 TsHi,c. In the last formula

we abuse the notation in the following way: we allow that the charge function c is defined
not only on the vertices of the graph and we implicitly use the corresponding restriction on
the set of vertices.

I Lemma 1 ([16]). A Tseitin formula TsG,c is satisfiable if and only if for every connected
component with a set of vertices U of the graph G the condition

∑
u∈U c(u) = 0 mod 2 holds.

I Lemma 2 ([11], Lemma 2.3). Let G(V,E) be a connected graph and let c : V → {0, 1} be
a charge function. Let U ( V and Φ =

∧
v∈U Pv be the conjunction of the parity conditions

for all vertices from U . Then Φ is satisfiable.

I Lemma 3. The result of the substitution xe := b to TsG,c where b ∈ {0, 1} is a Tseitin
formula TsG′,c′ where G′ = G− e and c′ differs from c on the endpoints of the edge e by b
and equals c for every other vertex.

Proof. The proof is straightforward. J

I Lemma 4. Let G(V,E) be a connected graph and let c1, c2 : V → {0, 1} be charge functions.
If Tseitin formulas TsG,c1 and TsG,c2 are both satisfiable or both unsatisfiable, then one of
them can be obtained from another by replacing some variables with their negations.

Proof. See Appendix A. J

For a graph G(V,E) and a charge function c : V → {0, 1} we define a relation
SearchVertexG,c consisting of the pairs (σ, v) where σ : {xe | e ∈ E} → {0, 1} and v ∈ V
such that

∑
e is incident to v σ(xe) 6= c(v) mod 2. If a Tseitin formula TsG,c is unsatisfiable

then the relation SearchVertexG,c is total i.e. for every σ : {xe | e ∈ E} → {0, 1} there exists
v ∈ V such that (σ, v) ∈ SearchVertexG,c. We consider this relation as the following search
problem: given the values of the variables find a vertex with violated parity condition.



Glinskih L., Itsykson D., Riazanov A., Smirnov P. XX:5

2.2 Branching programs
A branching program is a way to represent a function f : {0, 1}n → K, where K is a finite set.
The function f(x1, x2, . . . , xn) is represented by a directed acyclic graph with |K| sinks, sinks
are labeled with different elements of the set K, each of the remaining nodes is labeled with
a variable from {x1, x2, . . . , xn} and has exactly two outgoing edges, the first is labeled with
0, the second is labeled with 1. Each node v of a branching program computes a function
fv : {0, 1}n → K. The sink labeled with k ∈ K computes the constant k. Assume that a
node v is labeled with xi, the outgoing edge from v labeled with 0 ends in a node v0 and the
outgoing edge labeled with 1 ends in a node v1. Then fv(x1, . . . , xn) equals fv1(x1, . . . , xn) if
xi = 1 and equals fv0(x1, . . . , xn) if xi = 0. It is usually assumed that a branching program
has only one source, in that case we say that the branching program computes the function
computed in its source. We refer to a sink labeled with k ∈ K as k-sink.

We say that a branching program computes a relation Q ⊆ {0, 1}n ×K if it computes a
function f : {0, 1}n → K such that for every x ∈ {0, 1}n the condition (x, f(x)) ∈ Q holds.

If D is a branching program computing a function f(x1, x2, . . . , xn) then for every full
assignment σ : {x1, . . . , xn} → {0, 1} we denote D(σ) = f(σ(x1), . . . , σ(xn)).

A branching program is called read-once (1-BP) if for every path in the program the
nodes have distinct labels.

3 SearchVertexG,c is not harder than TsG,c′

In this section we prove the following theorem:

I Theorem 5. Let G(V,E) be an undirected connected graph and a Tseitin formula TsG,c be
satisfiable and TsG,c′ be unsatisfiable. Assume that there exists a 1-BP computing TsG,c of
size S. Then there exists a 1-BP computing SearchVertexG,c′ of size at most |V |S.

We need the following lemma characterizing functions computed in nodes of 1-BP
representing a Tseitin formula.

I Lemma 6 (partial case of ([6], Claim 15)). Let D be a 1-BP computing a Tseitin formula
TsG,c. Then for every node s of D, such that 1-sink is reachable from s and for every two
paths p1 and p2 from the source to s the following conditions hold:
1. The sets of labels of the nodes of p1 and p2 are equal.
2. Let αi be a partial assignment according to the path pi for i ∈ {1, 2}. Then Tseitin

formulas TsG,c|α1 and TsG,c|α2 are equal.

Proof of Theorem 5. Let D be a minimal 1-BP computing Tseitin formula TsG,c and let S
be the size of D (the number of nodes including the sinks). Let n = |V |.

We enumerate all nodes ofD, except the 0-sink, in a reverse topological order: u1, u2, . . . , uS−1
(i.e. any edge of D is directed from a node with the greater number to a node with the less
number).

Since D is a minimal 1-BP, 1-sink is reachable from all nodes except the 0-sink, thus by
Lemma 6 every node of D, except the 0-sink, computes the Tseitin formula obtained from
TsG,c by a substitution according to any path from the source to this node. We denote the
Tseitin formula corresponding to ui by TsGi,ci .
I Claim 7. For every k ∈ [S − 1] there exists a 1-BP D(k) of size at most kn (sinks are
included in the number of nodes), such that:
— for every i ∈ [k]
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— for every connected component H of Gi
— for every charge function c′i, which differs from ci in exactly one vertex of H
there exists a node of D(k) computing SearchVertexH,c′

i
.

Moreover, each node s of D(k) computing SearchVertexH,f for a connected component
H and a charge function f such that the Tseitin formula TsH,f is unsatisfiable. If the node
s is labeled with xe then e is an edge of H and each of the direct successors of the node s
computes SearchVertexH′,f ′ , where H ′ is a subgraph of H − e. The latter statement implies
that D(k) is a 1-BP.

Let us stress that Claim 7 for k = S − 1 implies the statement of Theorem 5 since G is
connected and thus the diagram D(S−1) contains a node computing SearchVertexG,c′′ , where
c and c′′ differ in exactly one vertex. By Lemma 4 there exists a 1-BP of size at most nS
computing SearchVertexG,c′ .

Proof of Claim 7. The proof is by induction on k. Base case: k = 1, then u1 is the 1-sink,
Gu1 is the empty graph and c1 is identically 0. In this case the program D(1) that consists
of n sinks labeled with the vertices from V satisfies the conditions of the claim.

Induction step from k−1 to k. By the induction hypothesis there exists D(k−1) satisfying
the conditions for i ∈ [k − 1]. Let us add some nodes to D(k−1) such that the condition will
by satisfied for i = k as well.

For a graph H and its vertex v we denote by CC(H, v) the connected component of
H containing v. For a charge function c : V → {0, 1} and a vertex j ∈ V denote by
c⊕j : V → {0, 1} the charge function which differs from c on the vertex j and nowhere else.

Let us assume the node uk of D is labeled with xe. Let uk0 be the endpoint of the edge
outgoing from uk labeled with 0 and uk1 be the endpoint of the edge outgoing from uk
labeled with 1.

By the induction hypothesis for k0 and k1 for every l ∈ [n] there exists a node s0
l

of the program D(k−1) computing SearchVertexCC(Gk0 ,l),c
⊕l
k0
, and a node s1

l computing
SearchVertexCC(Gk1 ,l),c

⊕l
k1
.

We need to construct a program D(k) such that for every vertex j ∈ V there exists a node
sj of D(k) computing SearchVertexCC(Gk,j),c⊕jk

. For some values of j ∈ V , D(k−1) already
contains such a node and for some values of j we will add a node sj explicitly.

We consider three cases:
e is outside of CC(Gk, j). In this case the components CC(Gk, j) and CC(Gk0 , j) are

equal, and ck and ck0 are equal on the vertices of this connected component. Then we may
take sj = s0

j .
e is in CC(Gk, j), and e is not a bridge. In this case we add a new node sj

labeled with xe and add an edge from sj to s0
j labeled with 0 and an edge to s1

j labeled
with 1. Since e is not a bridge, CC(Gk0 , j) and CC(Gk1 , j) are equal to each other and to
CC(Gk, j) − e. Thus the node s0

j computes SearchVertexCC(Gk,j)−e,c⊕jk0
, and s1

j computes
SearchVertexCC(Gk,j)−e,c⊕jk1

. By Lemma 3 the charge function ck0 equals ck and ck1 can be
obtained from ck by flipping the values on the endpoints of the edge e. Hence sj computes
SearchVertexCC(Gk,j),c⊕jk

.
e is a bridge of CC(Gk, j). Let A and B be two components of the graph CC(Gk, j)−e,

such that A contains the vertex j. Let a ∈ A, b ∈ B be the endpoints of the edge e.
Since TsGk,ck is satisfiable, then Lemma 1 implies that there exists exactly one value

γ ∈ {0, 1} such that TsGk,ck |xe:=γ is satisfiable. Since D is minimal, the edge from uk labeled
with 1− γ goes to the 0-sink.
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graph of the node uk the graph of the node ukγ the graph of sγ
j

the graph of sγ
b

Figure 1 The graphs of the nodes (for γ = 1); nodes with the charge different from ck are black,
nodes with the same charge as in ck are white.

We add a new node sj labeled with xe, an edge from sj to sγj labeled with γ and an edge
from sj to s1−γ

b labeled with 1− γ. (See Fig. 1.)
It is easy to see that A = CC(Gkγ , j). Thus s

γ
j computes SearchVertexA,c⊕j

kγ

and ckγ equals
ck on the vertices of the graph A except maybe the vertex a and ckγ (a) = ck(a) + γ mod 2
(see Figure 2 for clarification). Since b ∈ B the vertex sγb computes SearchVertexB,c⊕b

kγ

and ckγ
equals ck on the vertices of B except maybe the vertex b and ckγ (b) = ck(b)+γ mod 2. Thus
c⊕bkγ equals ck on the vertices of B except maybe the vertex b and c⊕bkγ (b) = ck(b) + γ + 1 =
ck(b) + (1− γ) mod 2. This implies that sj computes SearchVertexCC(Gk,j),c⊕jk

. J

J

4 TsG,c is at most quasipolynomialy harder than SearchVertexG,c′

In this section we prove the following theorem:

I Theorem 8. Let G(V,E) be an undirected connected graph and a Tseitin formula TsG,c
be satisfiable and TsG,c′ be unsatisfiable. Assume that there exists a 1-BP computing
SearchVertexG,c′ of size S. Then there exists a 1-BP computing TsG,c of size at most
SO(log |V |).

In the following subsection we study the structure of 1-BPs computing SearchVertex. In
the subsection 4.2 we prove Theorem 8 itself.

4.1 The structure of 1-BP computing SearchVertex
Let D be a 1-BP that computes SearchVertexG,c, where G(V,E) is a connected graph and
TsG,c is unsatisfiable. For any internal node s of D we denote by h(s) the set of labels of
sinks reachable from s. We denote by P (s) the set of partial assignments corresponding to
the paths from the source of D to s.

Let F (V,E) be an undirected (not necessary connected) graph and let H be a connected
component of F . We call H a satisfiable component of a formula TsF,c if the formula TsH,c
is satisfiable. Otherwise we call H an unsatisfiable component of the formula TsF,c.

In this subsection we prove the following Lemma.

I Lemma 9. Let G(V,E) be a connected graph and let c be such that TsG,c is unsatisfiable.
Let D be a minimum-size 1-BP computing SearchVertexG,c. Then every node s of D computes
SearchVertexH,f such that for every α ∈ P (s), H is the only unsatisfiable component of the
formula TsG,c|α and f is the restriction of the charge function of TsG,c|α to the vertices of
H.

I Proposition 10. Let s be an internal node of D. Let α1 and α2 be the assignments from
P (s). Then the following conditions hold:
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1. For every edge e ∈ E incident to a vertex in h(s), α1 assigns a value to the variable xe iff
α2 does.

2. For every v ∈ h(s) the charge of v in TsG,c|α1 is equal to the charge of v in TsG,c|α2 .

Proof. Consider a vertex v ∈ h(s) and consider some sink t labeled with v that is reachable
from s. Let β be a partial assignment corresponding to a path from s to t. Notice that
the set of variables assigned by β does not intersect the set of variables assigned by αi for
i ∈ {1, 2} since D is a 1-BP. Let us define ρi = αi ∪ β for i ∈ {1, 2}.

Both the assignments ρ1 and ρ2 falsify the vertex v. Thus, for every edge e incident to v
the value for xe is assigned by ρ1 and by ρ2. Thus α1 and α2 assign values to the same subset
of variables among {xe | e is incident to v} and the sums modulo 2 of the values assigned to
these variables by α1 and α2 are the same. J

By Lemma 3 the result of the substitution of a value to a variable of a Tseitin formula is
a Tseitin formula as well. For an arbitrary assignment α from P (s) we denote by Gs,α and
cs,α a graph and a charge function such that TsG,c|α is precisely TsGs,α,cs,α .

Notice that if for some α ∈ P (s), C is an unsatisfiable component of TsGs,α,cs,α and all
its vertices are contained in h(s), then by Proposition 10, C is an unsatisfiable component
with respect to all partial assignments from P (s). Let U(s) be the set of all unsatisfiable
components of TsGs,α,cs,α contained in h(s), where α is some partial assignment from P (s).
By the remark above U(s) does not depend on α.

Consider some α ∈ P (s). Let H(VH , EH) be a connected component of Gs,α that contains
at least one vertex from h(s). Then there are three possible cases (three types of a component
H with respect to a node s and a partial assignment α):

(1) VH ⊆ h(s) and H is unsatisfiable connected component of TsGs,α,cs,α . I.e.
H ∈ U(s);

(2) VH ⊆ h(s) and H is satisfiable connected component of TsGs,α,cs,α ;
(3) VH 6⊆ h(s).

I Proposition 11. Let s be an internal node of D. Then U(s) is not empty. In other words,
for any partial assignment α ∈ P (s) the formula TsGs,α,cs,α contains at least one unsatisfiable
component C of type (1).

Proof. Assume for the sake of contradiction that all connected components of Gs,α inter-
secting h(s) have type (2) or (3).

Consider a formula Ψ which is a part of TsGs,α,cs,α and it is the conjunction of the parity
conditions of the vertices from h(s). The formula Ψ is the conjunction of several formulas
depending on disjoint sets of variables corresponding to connected components of Gs,α. Since
each connected component of the graph Gs,α has type (2) or (3), each of these formulas is
either a satisfiable Tseitin formula or a subset of a Tseitin formula based on a connected
graph. By Lemma 2 a formula in the latter case is also satisfiable. Thus Ψ itself is satisfiable.
Let β be a full assignment which satisfies Ψ and agrees with α. By the construction β does
not falsify any vertex of h(s).

We get a contradiction as follows. We consider the path in D from the source to a sink
corresponding to β. By the construction the path goes through the node s and hence ends in
a sink labeled with an element of h(s). Thus β falsifies a vertex from h(s) and this contradicts
the construction of β.

Thus, there exists a connected component S ⊆ h(s) such that S is an unsatisfiable
component of TsGs,α,cs,α . Therefore, U(s) is not empty. J
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I Proposition 12. Let D be a minimum-size 1-BP that computes SearchVertexG,c. Then any
internal node s of D is labeled with an edge incident to h(s).

Proof. Assume that for an inner node s labeled with xe the statement is false i.e. e connects
two vertices outside h(s). Let t0 and t1 be the direct successors of s such that the edge
(s, ti) is labeled with i. Let us modify D as follows: remove the edge (s, t0) and contract the
edge (s, t1). We denote the result of the contraction by s′ and label it with the label of t1 in
D. The resulting diagram D′ is strictly smaller than D. We claim that D′ also computes

SearchVertexG,c. Consider a full assignment β. Let β′(xq) =
{
β(xq) q 6= e

1 q = e
.

If the path in D corresponding to β does not pass through s, then exactly the same path
with the same labels is contained in D′ thus D′(β) = D(β). Hence it is sufficient to consider
the case where the path in D corresponding to β passes through the node s. In this case
the path in D′ corresponding to β′ passes through s as well, because among the nodes of
any path from the source to s only s is labeled with xe. Then D(β′) ∈ h(s). The edge e is
not incident to any vertex from h(s) thus e is not incident to the vertex D(β′). Since the
vertex D(β′) is falsified by β′ and e is not incident to D(β′), then D(β′) is falsified by β as
well. By the construction of D′ the equality D(β′) = D′(β) holds. Thus, β falsifies D′(β).
Therefore, D′ correctly computes SearchVertexG,c and the size of D′ is strictly less then the
size of D, this is a contradiction. J

I Proposition 13. Let D be a minimum-size 1-BP that computes SearchVertexG,c. Then
any internal node s of D is labeled with a variable xe, where e connecting two vertices of a
component from the set U(s).

Proof. By Proposition 12 we may assume that for every node l of D if l is labeled by xe,
then e is incident to a vertex of h(l).

Assume that the statement of the proposition is false. Let us fix the deepest (i.e. the
farthest from the source) node s of D violating the statement. Let s be labeled by xe. Let t0
and t1 be the direct successors of s and the edge (s, ti) be labeled with i for i ∈ {0, 1}. Let
α be an assignment corresponding to some path from the source to s.

Since s violates the statement, e connects two vertices of a satisfiable component of Gs,α
or connects two vertices of a component containing a vertex outside h(s).

Let C(VC , EC) be the connected component of Gs,α containing the edge e.
Let us consider an arbitrary partial assignment θ which satisfies all vertices of VC ∩ h(s)

and does not assign any variable corresponding to an edge of Gs,α outside C (if C is satisfiable,
θ exists by definition and if C contains a vertex from the outside of h(s), θ exists by Lemma 2).
I Claim 14. Consider a path τ = (τ1, . . . , τm) from tθ(xe) in D to a sink node. Then for
every label xe′ of a node of τ , e′ is not incident to a vertex from C.

Proof. Assume for the sake of contradiction that there exists a node violating the statement.
Let i ∈ [m] be the smallest index such that τi is labeled by xe′ and e′ is incident to a vertex
from C.

Since τi is a successor of s, h(τi) ⊆ h(S). By Proposition 12 the edge e′ is incident to
h(τi). We are going to show that e′ is not contained in an unsatisfiable component inside
h(τi) and get a contradiction with the assumption that s is the deepest node violating the
statement of the proposition.

Assume that e′ is contained in an unsatisfiable component C ′ ⊆ h(τi). As it was mentioned
before the structure of such components is independent of a path from the source to τi, thus
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we choose a path that agrees with α on the path from the source to s and then continues as
τ1, . . . , τi. Let µ be the partial assignment corresponding to this path. µ extends α, hence
the graph Gτi,µ is a subgraph of Gs,α. C is a connected component of Gs,α. C and C ′ has a
common edge e′. Thus C ′ is a subgraph of C. The assignment θ satisfies the Tseitin formula
corresponding to the connected component C and the charge function cs,α. Moreover, θ
and µ have only one common variable in their domains. That variable is xe and µ agrees
with θ on xe by the construction. Therefore, µ has a full extension that agrees with θ.
But that extension satisfies all parity conditions of the vertices from C ′ which contradicts
unsatisfiability of C ′ with respect to τi. J

Consider a diagram D′ obtained by the removing the edge (s, t1−θ(e)) and the contraction
of the edge (s, tθ(e)) where ti is as before. Since D′ is smaller than D and D is a minimal
1-BP computing SearchVertexG,c, there exists a full assignment β such that the vertex D′(β)
is not falsified by β. The path in D′ corresponding to β passes through s since otherwise
D′(β) = D(β) which is falsified by β.

Let β′(xq) =
{
β(xq) q 6= e

θ(xe) q = e
.

Let v = D′(β).
I Claim 15. v is incident to e.

Proof. As in the proof of Proposition 12, D(β′) = D′(β) = v and by the correctness of D,
β′ falsifies v. On the other hand β does not falsify v by the choice of β. Since β′ and β differ
only on e, e is incident to v. J

Since v is incident to e and e connects two vertices from C, v ∈ C. By Claim 14 the part
of β′ that corresponds to the path from tθ(xe) to a sink does not substitute values to edges
that are incident to C, and since β′ falsifies v, we get that v is a leaf in Gs. But the value
β′(xe) was chosen according to the assignment θ satisfying all vertices in VC ∩ h(s) 3 v and
thus β′ satisfies v that leads to a contradiction. J

I Proposition 16. Let D be a minimum-size 1-BP computing SearchVertexG,c, where TsG,c
is unsatisfiable. Let s be a node of D. Let α be a partial assignment from the set P (s). Then
each vertex v from h(s) is contained in an unsatisfiable component of TsGs,α,cs,α which is
contained in h(s).

Proof. We prove the proposition by induction on the distance d from s to the farthest sink
reachable from s.

Base case: d = 0, i.e. s is a sink. h(s) consists of the only vertex v, the label of the node
s. v is falsified by the assignment α, then the component that consists of v is unsatisfiable.

Induction step. Assume for the sake of contradiction that v is a vertex of h(s) contained
in a connected component C(VC , EC) of type (2) or (3) with respect to the node s and the
assignment α ∈ P (s). Let t0 and t1 be the direct successors of the node s. Notice that
h(s) = h(t0) ∪ h(t1) by the definition of h, thus there exists i ∈ {0, 1} such that v ∈ h(ti).
Consider βi ∈ P (ti) that extends α.

Let s be labeled with a variable xe; by Proposition 13 the edge e is contained in
an unsatisfiable component of TsG,c|α, thus e is not contained in the component C. If
VC \h(ti) 6= ∅, then v belongs to a connected component of type (3) with respect to the node
ti and the assignment βi. If VC ⊆ h(ti), then, since e is not contained in C, the connected
component C equals the corresponding connected component of TsG,c|βi contained in h(ti),
moreover the charges of the vertices of C are the same in the formulas TsG,c|βi and TsG,c|α.
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Thus in this case v is contained in a component of type (2) with respect to the node ti and
the assignment βi.

But all vertices of h(ti) are contained in components of type (1) with respect to the node
ti and the assignment βi by the induction hypothesis. This is a contradiction, hence all the
vertices of h(s) are contained in unsatisfiable components. J

Proof of Lemma 9. We prove by induction on the distance d from the source to s that U(s)
consists of a single connected component with the set of vertices h(s). Moreover, for every
α ∈ P (s), the single component from U(s) is the only unsatisfiable component of TsG,c|α.

Base case: d = 0, i.e. s is the source of D. Since G is connected, it consists of the only
unsatisfiable component of TsG,c. Lemma 2 implies that for every vertex v ∈ V there exists
a full assignment such that the parity condition of v is violated, but the parity condition of
any other vertex is satisfied. Therefore, h(s) = V .

Induction step. Let α be a partial assignment from P (s). Let r be the direct predecessor
of s according to the path corresponding to α. Let β ∈ P (r) agree with α. By the induction
hypothesis, U(r) consists of a single connected component C(VC , HC) of the formula TsG,c|β
with the vertex set h(r). Let xe be the label of the node r. By Proposition 13 the edge e is
contained in C. We consider the following two cases.

If e is not a bridge of C, then for the substitution xe := α(xe) to TsG,c|β the resulting
formula has the only unsatisfiable component C − e. Lemma 2 implies that every vertex
of VC can be the only vertex, where the parity condition of TsG,c|α is violated. Therefore,
h(s) = h(r) = VC .

Assume that e is a bridge of C. Let A,B be the connected components of C−e. The result
of the substitution xe := α(xe) to TsG,c|β (which is TsG,c|α) has the connected components
A and B instead of C. Lemma 1 implies that exactly one of the components A and B is
unsatisfiable. W.l.o.g. we assume that A is unsatisfiable component of TsG,c|α. By Lemma 2
every vertex of A can be the only vertex with violated parity condition, thus h(s) contains
all vertices of A. h(s) does not contain any vertex of B since by Proposition 16 it can only
contain vertices of unsatisfiable components. A is the single unsatisfiable component of
TsG,c|α since the substitution of any value to xe in TsG,c|β does not affect any component
except C. So, the induction step is proved.

Consider arbitrary node s of D. We have already established that for every α ∈ P (s)
a Tseitin formula TsGs,α,cs,α which is the result of substitution α to TsG,c has the only
unsatisfiable component H ∈ U(s) with the set of vertices h(s). Moreover, by Proposition 10,
H and the restriction of cs,α to the vertices of H does not depend on the choice of α. We
denote by f the restriction of cs,α to h(s).

Fix α ∈ P (s) and consider an arbitrary path from s to a sink in D. Let µ be the partial
assignment corresponding to this path. Let γ be the union of µ and α. Let v = D(γ).
Then γ falsifies the parity condition in the vertex v of TsG,c. Thus µ falsifies the parity
condition in the vertex v of the formula TsH,f as well. Therefore the node s of D computes
SearchVertexH,f . J

4.2 Proof of Theorem 8
We need the following technical proposition.

I Proposition 17. Let G be a connected graph and let H and T be two connected subgraphs
of G with disjoint sets of vertices. Let DH be a 1-BP computing a satisfiable Tseitin formula
TsH,cH and let DT be a 1-BP computing a satisfiable Tseitin formula TsT,cT . Consider a
branching program D which is obtained by redirecting edges of DH going to 1-sink to the
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source of the program DT (and by merging two 1-sinks into a single 1-sink and two 0-sinks
into a single 0-sink). Let s be a node of DH such that in the program DH it computes the
formula TsHs,cs . Then in the new program D the node s computes a formula TsK,f , where
K is the union of the graphs Hs and T , and the charge function f equals cs on the vertices
of Hs and equals cT on the vertices of T .

Proof. The proof is straightforward. The node s of D checks the parity conditions of TsHs,cs
and then the parity conditions of TsT,cT . J

Proof of Theorem 8. Consider a minimum-size 1-BP D computing SearchVertexG,c and let
S be its size. Enumerate the nodes of D in a reverse topological order u1, u2, . . . , uS , i.e.
such that every edge of D is directed from a node with the greater number to a node with
the less number.

By Lemma 9 every node of D computes SearchVertexH,c′ , where H is a connected graph
and the formula TsH,c′ is unsatisfiable. We assume that ui computes the SearchVertex-relation
for a graph Gi(Vi, Ei) and a charge function ci.

For k from 0 to S we iteratively construct a branching program D(k) such that:
— for every i ∈ [k]
— for every charge function c′i : Vi → {0, 1} that differs from ci for exactly one vertex of Gi
there exists a node of D(k) computing TsGi,c′i . Moreover, each node of D(k) computes a
Tseitin formula TsH,f . If a node labeled with xe then e is an edge of the graph H and each of
its successors computes SearchVertexH′,f ′ , where H ′ is a subgraph of H − e. This condition
implies that D(k) is a 1-BP.

For k = 0, the program D(0) consisting of 0-sink and 1-sink is sufficient.
Assume that D(k−1) is constructed. We show how to add several nodes to D(k−1) such

that the resulting diagram D(k) satisfies the conditions.
Consider several cases. Let uk be a sink labeled with a vertex v. Then the graph Gk

consists of the vertex v and ck(v) = 1. In that case we do not need to add any nodes to
D(k−1) since the 1-sink satisfies the conditions for uk.

Let uk be a non-sink node labeled with a variable xe. Assume that the edge outgoing
from uk labeled with 0 ends in the node uk0 and the edge outgoing from uk ends in the
node uk1 . For every vertex j of the graph Gk we will add to D(k) a node sj computing
TsGk,c⊕jk . (Recall that for a charge function c : V → {0, 1} and a vertex j ∈ V denote by
c⊕j : V → {0, 1} the charge function which differs from c on the vertex j and nowhere else.)

We consider two cases:
e is not a bridge of Gk. In this case Lemma 9 implies that the graphs Gk0 and Gk1 are

equal to Gk − e. Let j be a vertex Gk, then it is a vertex of Gk0 and Gk1 . By the induction
hypothesis for k0 and k1 there exists such nodes s0

j and s1
j in D(k−1) such that s0

j computes
TsGk0 ,c

⊕j
k0

and s1
j computes TsGk1 ,c

⊕j
k1
. We add to D(k) a node sj and label it with xe and

add an edge (sj , s0
j ) labeled with 0 and an edge (sj , s1

j ) labeled with 1.
Notice that by Lemma 9, ck0 equals ck, and ck1 differs from ck only in the endpoints of e,

thus the same statement is true for the charge functions ck0 , ck1 and ck with flipped value at
the vertex j. Therefore sj correctly computes TsGk,c⊕jk .

e is a bridge of Gk. Let A be the connected component of the graph Gk− e containing
the vertex j and let B be the other connected component of Gk − e. Let a ∈ A, b ∈ B be
the endpoints of the edge e.

Since TsGk,ck is unsatisfiable, Lemma 1 implies that there exists the unique γ ∈ {0, 1}
such that the formula TsGk,ck |xe:=γ contains the unique unsatisfiable component A and
TsGk,ck |xe:=1−γ contains the unique unsatisfiable component B. By Lemma 9, Gkγ = A and
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Figure 3 Copying.

Gk1−γ = B. By the induction hypothesis D(k−1) contains a vertex sγj computing TsA,c⊕j
kγ

and

a vertex s1−γ
b , computing TsB,c⊕b

k1−γ
(see Fig. 2).

If the number of vertices in the component A is less or equal than the number of vertices
in B, we denote ` = sγj and r = s1−γ

b , otherwise we denote ` = s1−γ
b and r = sγj . We copy

the subprogram of ` (i.e. all successors of ` except the sinks) and add it to D(k). For every
edge from the copied nodes to the 1-sink we redirect it to the node r. The edges to the 0-sink
remain unchanged. We denote the source of the copied subprogram of ` by `′ (see Fig. 3).

By Proposition 17 the node `′ computes the Tseitin formula based on the union of graphs
A and B, the charges of the vertices of A equal c⊕jkγ and the charges of the vertices of B equal
c⊕bk1−γ

. Similarly, by Proposition 17 each copied node computes a new Tseitin formula: the
graph of the new formula can be obtained from the graph of the original one by addition of a
new component which by the construction has at least as many vertices as the initial graph.

We add to the program D(k) a node sj labeled with xe, the edge outgoing from sj labeled
with 1− γ ends in the 0-sink, and the edge labeled with γ ends in the node `′.

Since A is an unsatisfiable component of TsGk,ck |xe:=1−γ and j ∈ A, the formula
TsGk,c⊕jk |xe:=1−γ contains the usnatisfiable componentA, hence it is unsatisfiable. TsGk,ck |xe:=γ
contains unsatisfiable component A and satisfiable component B with the charge ckγ . Hence
TsGk,c⊕jk |xe:=γ contains the satisfiable component A with the charge c⊕jkγ and the satisfiable
component B with the charge ckγ that on the vertices of B equals c⊕bk1−γ

. Therefore, the node
`′ computes TsGk,c⊕jk |xe:=γ , and hence, sj computes TsGk,c⊕jk .

I Claim 18. The number of nodes in D(S) does not exceed logn(nS)logn = SO(logn), where
n is the number of vertices in the graph G.

Proof. Consider some node of the program D(S) that computes a Tseitin formula TsH,f . If
H consists of m connected components then they could be enumerated as C1(VC1 , EC1),
C2(VC2 , EC2), . . . , Cm(VCm , ECm) such that |VCi | ≥ |VC1 | + · · · + |VCi−1 | for every i ∈ [m].
Since H is a subgraph of G we have m ≤ logn.

By the construction for every i ∈ [m] there exists a node u of the program D such that
u computes SearchVertexCi,h, where h differs from f in exactly one vertex from VCi . The
number of different m does not exceed logn. The number of different pairs (Ci, f) such that
there exists a node u of D, computing SearchVertexCi,h, where f and h differs in exactly one
vertex of VCi , does not exceed Sn. Therefore the number of nodes in D(S) does not exceed
logn(Sn)logn. J

J
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A Appendix

Proof of Lemma 4. A replacement xe with ¬xe in a Tseitin formula corresponds to the
flipping of the charges of the endpoints of the edge e. Since G is connected and TsG,c1 and
TsG,c2 are both satisfiable or both unsatisfiable, then by Lemma 1 the charge functions c1
and c2 have even number of differences. Let v1, v2, . . . , v2k be the vertices where c1 differs
from c2. Let pi be a simple path connecting v2i−1 and v2i for i ∈ [k]. Let us modify TsG,c1

in the following way: for each of the paths p1, . . . , pk we replace the variables corresponding
to the edges of a path with their negations (if several paths pass through an edge e we will
replace xe with its negation as many times as the number of paths that pass through e).
The resulting formula is TsG,c2 since charges of the ends of the paths (i.e. in the vertices
v1, . . . , v2k) have been changed and charges of all other vertices have not been changed. J
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