
Breaking Through the Reordering Obstacle in OBDD Proof

Systems

Sam Buss3, Dmitry Itsykson2, Alexander Knop2, 3, and Dmitry Sokolov1

1KTH Royal Institute of Technology
2St. Petersburg Department of V.A. Steklov Institute of Mathematics of the Russian Academy of Sciences

3University of California, San Diego
sbuss@ucsd.edu, dmitrits@pdmi.ras.ru, aknop@ucsd.edu, sokolovd@kth.se

October 19, 2018

Abstract

A refutation of a CNF formula φ in 1-NBP(∧)-calculus is a sequence of nondeterministic read-once
branching programs D1, D2, . . . , Ds such that for every i, Di represents either a clause of φ or the
conjunction of two 1-NBPs with smaller numbers, and Ds represents the identically false function. We
show that Tseitin formulas and Perfect matching principle based on algebraic expanders with small
enough second eigenvalue require 1-NBP(∧) refutations of size at least 2Ω(n), where n is the number
of variables. Derivations in the proof system OBDD(∧, reordering) proposed by Itsykson et al. [10] are
partial cases of 1-NBP(∧) refutations. There is a polynomial size 1-NBP(∧) refutation of the pigeonhole
principle, hence 1-NBP(∧) is strictly stronger than OBDD(∧, reordering). We also present a family of
formulas that has polynomial size tree-like resolution refutation but requires 1-NBP(∧) refutations of
size at least 2Ω(n). As a corollary, we get that the poof system OBDD(∧, reordering) does not simulate
tree-like resolution, this resolves the open question formulated in the paper of Buss et al. [6].

We consider the proof system OBDD(∧,weakening, reordering`) that is a subsystem of the proof
system OBDD(∧,weakening, reordering), where proofs may contain OBDDs in at most ` different orders.
For some constant C we show an exponential lower bound on the complexity of tree-like derivations in
the proof system OBDD(∧,weakening, reorderingk) for ` = C logn, where n is the number of variables.

1 Introduction

The proof system OBDD(∧,weakening) was introduced in 2004 by Atserias et al. [2]. A refutation of an
unsatisfiable CNF formula φ in in this proof system is a sequence D1, . . . , D` of OBDDs in some order π
such that D` represents the constant false function and for each i ∈ [`], Di either represents a clause of the
formula φ or is derived using one of the following rules.

Conjunction (or join) rule: Di represents the conjunction of Dj and Dk for j, k < i.

Weakening rule: there is j < i such that Dj semantically implies Di. I.e. every assignment that satisfies
Dj also satisfies Di.

The proof system OBDD(∧,weakening) polynomially simulates CP∗ (cutting planes with polynomially
bounded coefficients) since linear inequalities with polynomially bounded coefficients can be efficiently repre-
sented by OBDDs. In 1994 Pudlak [16] showed that Clique–Coloring principle is hard for cutting planes; Buss
at el. recently showed that there is a polynomial sized OBDD(∧,weakening)-proof of the Clique–Coloring
principle [6]. Thus, OBDD(∧,weakening) is strictly stronger than CP∗.

1

Though OBDD(∧,weakening) is a powerful proof system, there are known exponential lower bounds on
size of OBDD(∧,weakening)-refutations: in 2007 Segerlind [17] proved an exponential lower bound on size
of tree-like OBDD(∧,weakening)-refutations and in 2008 Kraj́ıček [13] proved an exponential lower bound
on size of dag-like refutations. Both their proofs consist of two steps.

1. The first step of the proof is the construction of a family of formulas φn and orders πn such that
any tree-like (dag-like) OBDD(∧,weakening)-refutations of φn in the order πn has exponential size.
This step may be accomplished by two general techniques: interpolation (a reduction from monotone
circuit lower bounds) in the dag-like case [12] and communication complexity (a reduction from the
lower bound on the randomised communication complexity of disjointness) in the tree-like case [3].
Both techniques may be applied to semantic proof systems which operate with proof lines that can be
computed with small (randomised in tree-like case and deterministic in dag-like case) communication if
values of some specific variables are known by Alice and values of other variables are known by Bob. It
is well known that if an OBDD D in order π has size S, then it can be computed with communication
at most logS + 1, if Alice knows the values of the first variables according to π and Bob knows all
other variables. This step significantly uses that all OBDDs in the proof have the same order since we
need a partition of variables between Alice and Bob that is consistent with all OBDDs in the proof.

2. The second step of the proof is a construction of the transformation that maps formulas that do not
have short refutations for one order to formulas that have no short refutations for all orders.

Itsykson et al. [10] proposed the generalised proof system OBDD(∧,weakening, reordering) that uses the
additional derivation rule:

Reordering rule: Di can be derived it it represents the same function as Dj for j < i (but the orders of
these OBDDs may be different).

Notice that the conjunction rule is allowed to apply only for two OBDDs in the same order, since it is an
NP-hard problem to check whether the conjunction of two OBDDs is equal to the third one if it is not
provided that all the OBDDs are in the same order [15, Lemma 8.14].

Buss et al. [6] showed that OBDD(∧,weakening, reordering) is strictly stronger than
OBDD(∧,weakening). At this moment it is still an open question to prove a superpolynomial lower bound
on size of OBDD(∧,weakening, reordering)-refutations.

Itsykson et al. [10] also studied the proof system OBDD(∧, reordering), a subsystem of
OBDD(∧,weakening, reordering) that does not use the weakening rule. It was shown that the pigeonhole
principle and Tseitin formulas are hard for OBDD(∧, reordering). The lower bound proofs essentially explore
that the join rule cannot be applied to OBDDs in different orders. Although this restriction is natural for
efficient verification of proofs, it seems too artificial that it is necessary for lower bound proofs.

1.1 Our Results

In this paper we show that lower bounds may be also proved if we relax restrictions on orders of OBDDs
in derivations. In Section 3.2 we study a calculus generalising OBDD(∧, reordering) (we use the word
“calculus” in order to emphasise that this generalisation is not necessary a proof system since it is NP-hard
to verify the correctness of derivations); in this generalisation we allow to apply the conjunction rule to
any previously derived OBDDs. Moreover, we allow to use nondeterministic read-once branching programs
instead of OBDDs; we call this generalization 1-NBP(∧)-calculus.

Theorem 3.1 shows a 2Ω(n) lower bound on the size of 1-NBP(∧) refutations of the perfect matching
principle and Tseitin formulas based on algebraic expanders, where n is the number of vertices in the graph.
The plan of the proof is the following.

1. We choose special clauses of the formula and show that if a conjunction of several clauses of the formula
is unsatisfiable, then it contains Ω(n) special clauses.

2

2. By the previous step, every 1-NBP(∧) refutation of the formula contains a 1-NBP representing the
conjunction of θ(n) special clauses. We show that this 1-NBP has exponential size.

In Section 5 we show that formulas which are “based on a bipartite graph” have short 1-NBP(∧) refu-
tations; as a corollary we get a family of formulas that are easy for 1-NBP(∧) and exponentially hard for
cutting planes.

We apply these results to resolve the question of whether OBDD(∧) simulates resolution or not. The
history of this question is quite entangled; the paper [19] claimed that OBDD(∧) does not simulate resolution
and the paper [11] claimed that OBDD(∧) does not simulate even tree-like resolution. However, Buss et
al. [6] noticed that proofs in the mentioned papers were not complete and showed that tree-like OBDD(∧)
does not simulate tree-like resolution. Nonetheless, the question about dag-like OBDD(∧) was left open.
Section 4 shows that proofs from [11,19] are not just incomplete but there is a counterexample to the main
statements from them. In the same section we show that 1-NBP(∧) does not simulate tree-like resolution;
the key difference in our proof is considering nondeterministic branching programs which allow us to close
the gap in the previous proofs.

In Section 6 we consider a subsystem of OBDD(∧,weakening, reordering) that allows the use of at most
k different orders of OBDDs in every proof. For some constant C we show an exponential lower bound
on the complexity of derivations in this proof system for ` = C log n, where n is the number of variables.
Additionally, we note that the full system OBDD(∧,weakening, reordering) has short proofs of the hard
formulas. We prove this statement in three steps.

1. For any unsatisfiable CNF formula φ we consider the search problem Searchφ: given an assignment σ
of variables of φ to find a clause of φ falsified by σ. We show that if there is a proof of a formula φ in
OBDD(∧,weakening, reordering) of size S using ` = (k − 1) orders, then the k-party communication
complexity of Searchφ in the NOF model is O(log2 S) for some balanced partition of the values of
variables between k participants.

2. We construct a transformation T of unsatisifiable CNF formulas satisfying the following property. If
the k-party communication complexity of Searchφ is big with respect to some partition of the values of
variables between k participants, then the k-party communication complexity of SearchT (φ) for every
balanced partition is big.

3. Using a family of formulas φn such that Searchφn requires Ω(
√
n/2kk) bit of k-party communication

for some partition of the values of variables between k participants. We apply T to φn and from the
first step we get that size of any OBDD(∧,weakening, reordering) derivation using k − 1 orders is at

least 2
Ω

(√ √
n

2kk

)
.

All the proven and known before results are shown on the Figure 1.

1.2 Open Questions

The main open question is to prove a superpolynomial lower bound on the proof system
OBDD(∧,weakening, reordering). In dag-like case it is still open to prove lower bound even for two dif-
ferent orders.

Another question is to study automatisability of OBDD based proof systems. It is known that the Clique–
Coloring principle has polynomial OBDD(∧,weakening) refutations [6]. Hence, providing that the separator
that accepts k-cliques and rejects (k + 1)-colorable graphs has big circuit complexity, OBDD(∧,weakening)
is not automatisable [5]. However, even the pigeonhole principle requires OBDD(∧, reordering) proofs of
exponential size. So it is interesting to investigate whether OBDD(∧, reordering) is automatisable or not.

3

Res

CP∗

CP

OBDD(∧)

OBDD(∧, reordering)

1-NBP(∧)

OBDD(∧,weakening)

OBDD(∧,weakening, reordering)

OBDD(∧,weakening, reorderingk)

[6],
q.p.

T
h
eorem

4.2

[10, Theorem
13]

[6], q.p.

T
heorem

6.1
[6]

Proposition 5.3Proposition 5.4

Figure 1: C1 −→ C2 denotes C1 p-simulates C2, and C1 99K C2 denotes C1 does not p-simulate C2. All the
results except one are for the dag-like versions of the systems. The dotted line denotes the separation that
is known only for tree-like version. New results are labelled with the relevant theorem. All the separations
on the picture are exponential, except the two separations labeled by “q.p” for “quasipolynomial”.

2 Preliminaries

2.1 Branching Programs

A deterministic branching program (BP) represents a Boolean function {0, 1}n → {0, 1} by a directed acyclic
graph with exactly one source and two sinks. All the nodes except the sinks are labeled with a variable;
every internal node has exactly two outgoing edges: one is labeled with 1 and the other is labeled with 0.
One of the sinks is labeled with 1 and the other is labeled with 0. The value of the function for a given
values of variables is evaluated as follows: we start a path from the source such that for every node on its
path we go along the edge that is labeled with the value of the corresponding variable. This path will end
in a sink. The label of this sink is the value of the function.

A nondeterministic branching program (NBP) differs from a deterministic in the way that we also allow
guessing nodes that are unlabelled and have two outgoing unlabelled edges. So nondeterministic branching
program may have three type of nodes: guessing nodes, nodes labeled with a variable (we call them just
labeled nodes) and two sinks; the source may be either a guessing node or a labeled node. The values of
a function represented by a nondeterministic branching program equals 1, if there exists at least one path
from the source to the sink labeled with 1 such that for every node labeled with a variable on its path we
go along the edge that is labeled with the value of the corresponding variable, while for guessing nodes we
are allowed to choose any of two outgoing edges.

Note that deterministic branching programs constitute a special case of nondeterministic branching pro-
grams.

A deterministic or nondeterministic branching program is (syntactic) read-k (k-BP or k-NBP) if every

4

path from the source to a sink contains at most k occurrences of every variable.
An ordered binary decision diagram (OBDD) is a partial case of 1-BP, where on every path from the

source to a sink all the variables appear in the same order.
We say that π is an order over the variables x1, . . . , xn if π is a bijection from [n] to {x1, . . . , xn}. We

denote the set {π(1), . . . , π(s)} by π[≤ s] and the set {π(s+ 1), . . . , π(n)} by π[> s].

2.2 Graph Based Formulas

Definition 2.1. Let G(V,E) be an undirected graph. For every edge e ∈ E, let xe be a propositional variable.
A formula based on G has the following structure:

∧
v∈V

φv, where φv is a CNF formula that depends on only

the variables xe such that e is incident to v.

The following formulas are most important graph-based formulas:

1. Tseitin formulas. The Tseitin formula TSG,f is defined by an undirected graph G(V,E) and a func-
tion f : V → {0, 1}, TSG,f =

∧
v∈V

φv, where φv is a CNF representation of the following equation:∑
e∈E:v is incident to e

xe ≡ f(v) (mod 2). It is well known [20] that TSG,f is satisfiable if and only if

for every connected component S of G,
∑
v∈S

f(v) is even.

2. Perfect matching principle. The formula PMPG is based on an undirected graph G as follows: PMPG =∧
v∈V

φv, where φv encodes in CNF that among values of xe for e that are incident to v, exactly one

variable has the value 1 and all other variables have the value 0. The formula PMPG is satisfiable if
and only of G has a perfect matching.

3. Graph pigeonhole principle. The formula PHPG is based on a bipartite graph G(V,E), where the set
of vertices V is split in two disjoint parts P (pigeons) and H (holes), and every edge connects a pigeon
with a hole. For every v ∈ P a formula φv =

∨
e∈E:v is incident to e

xe (every pigeon flies to at least one

hole). For every v ∈ H a formula φv encodes that at most one xe such that v is incident e has value 1
(at most one pigeon can fly to v). The standard pigeonhole principle PHPn+1

n is precisely PHPKn+1,n
,

where Kn+1,n is the complete bipartite graph with n+ 1 and n vertices in the parts.

2.3 OBDD-based proof systems

Let ϕ be an unsatisfiable CNF formula. An OBDD proof of ϕ is a sequence D1, D2, . . . , Dt of OBDD’s and
permutations π1, . . . , πt such that Dt is an πt-OBDD that represents the constant false function, and such
that each Di is either an πi-OBDD which represents a clause of ϕ or can be obtained from previous OBDD’s
by one of the following inference rules:

conjunction or join: Di represents the Boolean function Dk ∧D` for 1 ≤ `, k < i, where Di, Dk, D` have
the same order πi = πk = π`;

weakening: there exists a j < i such that Di and Dj have the same order πi = πj , and Dj semantically
implies Di. The latter means that every assignment that satisfies Dj also satisfies Di;

reordering: Di is an πi-OBDD that is equivalent to a πj-OBDD Dj with j < i.

Note that although we use terminology “OBDD proof”, it is actually a refutation of ϕ. It is well known that
there is a polynomial time algorithm which recognizes whether a given D1, . . . , Dt and π1, . . . , πt is a valid

OBDD proof of a given ϕ. The size of this proof is equal to
t∑
i=1

|Di|.

5

We use several different OBDD proof systems with different sets of allowed rules. For example,
the OBDD(∧,weakening) proof system uses conjunction and weakening rules; hence, all OBDDs in such
a proof have the same order π. We use the notation π-OBDD(∧) proof and π-OBDD(∧,weakening)
proof to explicit indicate the ordering. We say that OBDD(∧,weakening, reordering) refutation is
OBDD(∧,weakening, reorderingk) refutation if there are at most k orders π1, . . . , π` such that all the
OBDDs in the refutation are in these orders.

If every Di is used as a premise of the inference rule at most once, then the proof tree-like.

2.4 Calculus of Branching Programs

Let φ(x) be an unsatisfiable CNF formula with n variables x1, x2, . . . , xn, φ =
∧
i∈I Ci, where Ci is a clause

of φ for i ∈ I. A formal derivation of the contradiction from φ(x) is a sequence of Boolean functions
f1(x), f2(x), . . . , fs(x), where fs is identically false function and for all i ∈ [s], fi is either represents a clause
Cj for some j ∈ I, or fi(x) = fk(x) ∧ f`(x), where k, ` < i.

Let C be a way of representation of Boolean functions, for example, 1-BP or 1-NBP. If all Boolean
functions in a formal derivation of the contradiction are represented as C, then we call it a derivation in
C(∧)-calculus. Thus we define a derivation in the following calculi: 1-NBP, 1-BP.

Note that the proof system OBDD(∧, reordering)-proofs is a partial case of 1-BP and 1-NBP calculus.
The size of a derivation in C(∧)-calculus is the sum of sizes of all C-representations of all the Boolean

functions from the derivation.

2.5 Algebraic Expanders

Let G(V,E) be an undirected graph without loops but possibly with multiple edges. The graph G is an
algebraic (n, d, α)-expander if G is d-regular, |V | = n and the absolute value of the second largest eigenvalue
of the adjacency matrix of G is not greater than αd.

It is well known that for all 1 > α > 0 and all large enough constants d there exist a natural number n0

and a family {Gn}∞n=n0
of (n, d, α)-algebraic expanders. There are explicit constructions such that Gn can

be constructed in poly(n) time [14]. Also, it is known that a random d-regular graph is an expander with
high probability.

Let us denote by E(A,B) a multiset of edges that have one end in A and another end in B. Note that
in the case where both ends of an edge are simultaneously in A and in B, we count this edge twice.

Lemma 2.2 (Expander mixing lemma [1]). Let G(V,E) be an (n, d, α)-expander, A,B ⊆ V . Then∣∣∣|E(A,B)| − d|A||B|
n

∣∣∣ ≤ αd√|A||B|.
Lemma 2.3 ([8]). Let G(V,E) be an (n, d, α)-expander. Then for every set S ⊆ G the following inequality

is satisfied: |E(S, V \ S))| ≥ d|S|(1− α− |S|n).

Proof. |E(S, V \ S)| = d|S| − |E(S, S)| ≥ d|S| − d
n |S|

2 − αd
√
|S|2 = d|S|(1 − α − |S|n). The inequality is

followed from Lemma 2.2.

2.6 Communication Complexity

We use the “number on forehead” model of communication complexity. Let f : {0, 1}n → {0, 1} be a
Boolean function. We have k players who have to compute f(s). The function f is known by all of them.
Let Π = (Π1,Π2, . . . ,Πk) be a partition of [n] (Πi ∩ Πj = ∅ for every i 6= j ∈ [k]). The player i knows
only bits of s with indices from [n] \ Πi. They have a communication channel. On each round of their
communication one of them sends a string to everyone else and they are trying to minimise the total number
of sent bits.

In a more general situation, they have a relation R ⊆ {0, 1}n × Z and the player i knows only bits of s
with indices from [n] \Πi and they wish to find z ∈ Z such that (s, z) ∈ R.

6

More formally, a communication protocol with respect to a partition Π is a tree T where each internal
node v is labeled by a function fv : {0, 1}[n]\Πi → {0, 1}, each leaf is labeled by an element z ∈ Z, each node
has 2 children, and edges from a node to its children are labeled by different Boolean values. The value of
the protocol T on an input s is the label of the leaf reached starting from the root, and walking on the tree,
at each internal node labeled by f : {0, 1}[n]\Πi → {0, 1} we go by the edge labeled by f(s|[n]\Πi).

The cost of the protocol is the depth of T .
The communication complexity denoted D(R,Π) of a relation R is the minimal cost among the protocols

for this relation with respect to the partition Π.
For δ ∈ (0, 1) we say that a partition Π of the input of a relation R : {0, 1}n × Z into k subsets is

δ-balanced if |Πi| ≥ bδnc for every i ∈ [k].

3 Lower Bounds on 1-NBP Calculus

In this section we prove lower bounds on 1-NBP(∧) refutations, in Section 3.1 we define hard formulas and
in Section 3.2 we show the lower bounds.

3.1 Hard formulas

We consider a formula based on an undirected graph G(V,E). Racall that this means a formula Φ =
∧
v∈V

φv

such that for every v ∈ V the formula φv depends on variables xe1 , xe2 , . . . , xed , where {e1, e2, . . . , ed} is a
set of edges incident to v. We say that Φ is a matching formula if the following properties are satisfied:

• φv = (xe1 ∨ xe2 ∨ · · · ∨ xed) ∧ φ′v, where φ′v has value 1 if we substitute all zeros to its variables (note
that φv would be 0 if we substitute all zeros to its variables).

• φv is satisfied by any assignment of its variables (i.e. {xe1 , xe2 , . . . , xed}) such that the value of one
variable is 1 and the values of all other variables is 0.

Examples of matching formulas:

1. Perfect matching principle PMPG is a matching formula.

2. Tseitin formula TSG,f is a matching formula if f ≡ 1.

3.2 Lower Bound

Theorem 3.1. Let Φ be an unsatisfiable matching formula based on (n, d, α)-algebraic expander G(V,E),
where α < 1

161+
√

8
. Then the size of any 1-NBP(∧) refutation of Φ has size at least 2Ω(n).

Let Ψ be a conjunction of several clauses of formula Φ =
∧
v∈V

φv. We assume that Ψ =
∧
v∈V

ψv, where ψv

is the conjunction of some (may be empty) set of clauses of φv. We say that a vertex v ∈ V is active in Ψ,
if ψv equals zero if we substitute zeros to all its variables. In other words a vertex v ∈ V that is incident to
edges e1, . . . , ed is active if ψv contains the clause (xe1 ∨ xe2 ∨ · · · ∨ xed).

The proof of Theorem 3.1 is based on the following lemmas that will be proved later.

Lemma 3.2. Let Ψ be a conjunction of several clauses of the formula Φ =
∧
v∈V

φv. If Ψ contains at most

γn active vertices, then Ψ is satisfiable, where γ = 9
10 (1

2 − α).

Lemma 3.3. Let Ψ be a conjunction of several clauses of the formula Φ =
∧
v∈V

φv. Let β = 1−α(
√

8+1)
9 · 9

10 . If

Ψ is satisfiable and contains at least βn/2 and at most βn active vertices, then every 1-NBP representation
of Ψ has size at least 2Ω(n).

7

Proof of Theorem 3.1. Consider some 1-NBP(∧)-refutation of the formula Φ: D1, D2, . . . , Ds. For every
i ∈ [s], Di represents the conjunction of a subset of clauses of Φ. By Lemma 3.2, a formula that corresponds
to Ds contains more than γn active vertices. Note that γ ≥ β, hence γn ≥ βn, where γ and β are constants
from Lemma 3.2 and Lemma 3.3.

Let Ψ1 and Ψ2 be the conjunctions of several clauses of the formula Φ. Then the number of active vertices
in Ψ1 ∧Ψ2 is at most the sum of the numbers of active vertices in Ψ1 and in Ψ2. Indeed, a vertex v is active
in a formula Ψ if and only if Ψ contains the clause

∨
e∈Ev

xe, where Ev is set of edges that are adjacent to v.

Hence, there exists j ∈ [s− 1] such that Dj corresponds to a formula with at least βn
2 and at most βn active

vertices. By Lemma 3.2, Dj is satisfiable. Hence, by Lemma 3.3 the size of Dj is at least 2Ω(n).
In order to complete the proof of Theorem 3.1 we only need to prove Lemma 3.2 and Lemma 3.3.

3.3 Expanders and Matchings

For a set of vertices S of undirected graph G(V,E) we denote by Γ(S) the set of vertices that are adjacent
to at least one vertex from S. We also denote the set of external neighbours of S by δ(S) = Γ(S) \ S.

Lemma 3.4. Let G(V,E) be an algebraic (n, d, α)-expander. Let k > 0 and β ∈ (0, 1) satisfy α(
√
k + 1) +

β(k + 1) < 1. Then for every set S ⊆ V , if |S| ≤ βn, then |δ(S)| > k|S|.

Proof. Assume that |S| ≤ βn and |δ(S)| ≤ k|S|. Then by Lemma 2.2, |E(S, S)| = |E(S, δ(S))| ≤ d
n |S||δ(S)|+

αd
√
|S||δ(S)| ≤ d

nk|S|
2 +αd

√
k|S|. By Lemma 2.3, |E(S, S)| ≥ d|S|(1− |S|n −α). The latter two inequalities

imply that α(
√
k + 1) + |S|

n (k + 1) ≥ 1, but this is a contradiction since |S|n ≤ β and by the condition of the

Lemma α(
√
k + 1) + β(k + 1) < 1.

The following partial cases of Lemma 3.4 are important for us:

Corollary 3.5. Let G(V,E) be an algebraic (n, d, α)-expander.

1. Let α < 1
2 and β = (1/2− α) 9

10 . Then for every set S ⊆ V , if |S| ≤ βn, then |δ(S)| > |S|.

2. Let α < 1
4 and β = 1−α(

√
8+1)

9 · 9
10 . Then for every set S ⊆ V , if |S| ≤ βn, then |δ(S)| > 8|S|.

We will use Tutte’s classical criterion of the existence of perfect matching:

Theorem 3.6 (Tutte, 1947). A graph G has a perfect matching iff for any set S ⊆ V :

o(G− S) ≤ |S|

where G − S denotes the graph G without the vertices from the set S and o(G − S) denotes the number of
connected components with odd cardinality in the obtained graph.

Lemma 3.7. Let G(V,E) be an undirected graph with n vertices. Assume that for some subset S ⊆ V for
all its subsets A ⊆ S the inequality |δ(A)| > |A| holds, then there exists a matching in G that covers all the
vertices from S (i.e. for every v ∈ S there exists an edge from the matching that is incident to v).

Proof. We define a new graph G′ that is obtained from a subgraph of G induced by the set S ∪ δ(S) by
adding all the edges between all the pairs of vertices from δ(S). If G′ contains an odd number of vertices,
we add to it one more vertex v0 and connect v0 with all the vertices from δ(S). Now G′ has an even number
of vertices. Let B = δ(S)∪{v0} if |S ∪ δ(S)| is odd and B = δ(S) otherwise. We are going to prove that the
graph G′ has a perfect matching M . Notice that a set of edges from M that are incident to vertices from S
is a matching in G that covers S.

We will show that G′ satisfies the conditions of Tutte’s theorem. We know that |δ(S)| > |S| > 0. We
claim that in the graph G every vertex v ∈ S is connected by a path with a vertex from δ(S). Indeed,
assume that there is a vertex v ∈ S that is not connected with δ(S). Then the connected component U that

8

contains v lies in S, hence, δ(U) = ∅; the latter contradicts the inequality |δ(U)| > |U |. Also it is easy to see
that for every v ∈ S there is a path connecting v and δ(S) in G such that all the vertices in this path except
the last are in S. Indeed, if we consider some path that connects v in δ(S), then the first vertex in this path
that is not in S should be in δ(S). The latter observation implies that G′ is connected, since every vertex
from S is connected with some vertex in δ(S) ⊆ B and B is a clique in G′. The number of vertices in G′ is
even, hence. G′ does not contain odd connected components.

Consider arbitrary non-empty set A ⊆ S ∪ B. For the sake of contradiction assume that after removing
vertices A from G′ we get a graph with at least |A| + 1 odd connected components. Since B is a clique in
G′, all remaining vertices from B should be in one connected component of G′ − A. Hence, there exist at
least |A| connected components of G′ −A that contains only vertices from S. Let U denote the union of all
connected components of G′ − A that contains only vertices from S. Since every such a component has at
least one vertex, we get that |U | ≥ |A|. We know that δ(U) > |U | in the graph G, hence, |δ(U)| > |U | ≥ |A|.
All vertices of δ(U) are in G′; and |δ(U) \A| ≥ 1. We get a contradiction since there is a vertex in δ(U) \A
that is connected with U ; the later is impossible since U is the union of several connected components in
G′ −A. Thus G′ satisfies the conditions of Tutte’s theorem and G′ has a perfect matching.

3.4 Proof of Lemma 3.2

Proof of Lemma 3.2. The graph G is an algebraic (n, d, α)-expander with α < 1
2 , hence, by Lemma 3.4 for

β = γ = 9
10 (1

2 − α) and k = 1 (i.e. by Corollary 3.5), we get that for any set S ⊆ V , if |S| ≤ βn, then
|δ(S)| > |S|. Then by Lemma 3.7, for every S ⊆ V , if |S| ≤ γn, then there exists a matching in G that
covers S.

Let S be the set of active vertices in Ψ. Consider some matching of the graph G that covers S. Let
ρ be an assignment of variables that corresponds to this matching (edges from the matching have value 1
and other edges have value 0). For every vertex v ∈ V the assignment ρ assigns either all zeros to variables
corresponding edges that are incident to v if v is not active, or one to one variable and zeros to other variables
if v is active. If v is active, then v is covered by the matching, hence one of the variables corresponding
edges that are incident to v has the value 1 and other variables have the value 0 in ρ (hence, ρ satisfies φv
and hence ψv). Thus ρ satisfies Ψ.

3.5 Lower Bound on The Size of 1-NBP

In this subsection we prove Lemma 3.3.
Let a graph G(V,E) be an algebraic (n, d, α)-expander, where α < 1

2 . Let Φ be a matching formula based
on the graph G. Let Ψ be a conjunction of several clauses of Φ and S be the set of active vertices of Ψ.

We say that an assignment of all variables of formula Φ is good if it corresponds to a matching that covers
the set S. More precisely a full assignment ρ is good if there exists a matching M in the graph G that covers
all the vertices from the set S and ρ(xe) = 1 iff e ∈ M for all e ∈ E. Note that all the good assignments
satisfy Ψ.

Lemma 3.8. Let a 1-NBP D represent the formula Ψ. Let p1 and p2 be two paths in D from the source
to the sink labeled with 1 that are consistent with good assignments. Assume that p1 and p2 have a common
node v. For every i ∈ {1, 2} we consider a matching ρi that corresponds to the part of the path pi from the
source to v. If ρi covers a subset Si ⊆ S for i ∈ {1, 2}, then S1 = S2.

Proof. Let us denote by pi,1 and pi,2 parts of the path pi from the source to v and from v to the sink labeled
by 1, respectively. Note that the path p1,1p2,2 (i.e. we go along p1 from the sink to v and go along p2

from v to the sink labeled with 1) is also an accepting path of D. Since the set S is active in Ψ, for every
u ∈ S there exists e incident to u such that the path p1,1p2,2 substitutes xe := 1. Hence, a matching that
corresponds to p2,2 covers all the vertices from S \ S1. On the other hand, p2 corresponds to a matching,
hence, a matching corresponding to p2,2 covers exactly vertices S \ S2 from S. Hence S \ S2 ⊆ S \ S1.
Analogously, S \ S1 ⊆ S \ S2. Thus, S1 = S2.

9

In the proof of Lemma 3.3 we will use the following lemma:

Lemma 3.9. Let G(V,E) be an algebraic (n, d, α)-expander with α < 1
161+

√
8

. Let S ⊆ V and βn/2 ≤ |S| ≤

βn, where β = 1−α(
√

8+1)
9 · 9

10 . Then there exists a probabilistic distribution D on matchings covering S such
that for every subset A ⊆ S if |A| ∈ {d|S|/2e, d|S|/2e − 1}, then a random matching distributed according D
does not contain edges connecting vertices from A with vertices from S \A with probability at most 2−Ω(n).

We will prove Lemma 3.9 in the next subsection.

Proof of Lemma 3.3. Consider a 1-NBP for the formula Ψ. Let S be the set of active vertices of Ψ. Consider
some good assignment; let p be a path from the source to the sink labeled with 1 corresponding to this
assignment. By Lemma 3.8, every vertex of path p corresponds to a subset of S. Since the path p corresponds
to a matching and going along an edge of the path p we increase the number of covered vertices from S by
at most two, there exists a vertex vp such that the part of the path p from the source to vp covers exactly
vertices Ap ⊆ S from S, where |Ap| ∈ {d|S|/2e, d|S|/2e − 1}. Notice that for all paths through vp that
correspond to good assignments, their first parts (from the source to vp) correspond to matchings that do
not contain edges from E(Ap, S \Ap).

Consider the distribution D from Lemma 3.9. Consider a random matching distributed according D and
accepting path p that corresponds to this matching. The path p defines the vertex vp and the set Ap. By
Theorem 3.9, the probability of the event that the random accepting path that corresponds to a random
matching distributed according D passes vp is at most 2−Ω(n). Since every such path p passes vp with
probability 1, the number of different vertices vp is at least 2Ω(n).

3.6 Distribution on The Matchings

In this subsection we give a proof of Lemma 3.9. We start with an informal idea of the proof. Since the size
of S is large enough, there are Ω(n) edges connecting two vertices from S. We show that the set of edges
connecting A and S \A consists of a constant fraction of all edges connecting two vertices from S. Consider
the following randomised process:

1. Let I be the set of edges connecting two vertices from S.

2. M := ∅

3. While I is not empty

• Take e← I at random;

• M := M ∪ {e};
• Remove e and all the edges that have common endpoints with e from I;

4. Try to cover all the uncovered by M vertices of S using a matching N from exterior edges (i.e. edges
connecting S and V \ S)

5. Return M ∪N

The described algorithm has the following problem: it may be impossible to implement the 4th step of
the process since there are no corresponding matching from exterior edges. Thus we change the algorithm
and at first we choose a set of bad vertices B ⊂ S that has relatively small number of edges connecting B and
V \ S. We argue that B is small and we cover B before generating of a random matching using Lemma 3.7.
Let B′ be a set of vertices covered by the choosing matching. |B′| ≤ 2|B|, hence B′ is also small. Since B′

is small, the number of edge between A \B′ and S \ (A ∪B′) is also Ω(n).

10

Proof of Lemma 3.9. Let us fix some A ⊆ S such that |A| ∈ {d|S|/2e, d|S|/2e − 1}.
Consider an inclusion-wise maximal set of vertices B ⊆ S such that the set of all vertices V \ S that are

connected by edges to vertices from B has less than |B| vertices.
Notice that for any subset T ⊆ S \ B, the number of neighbors of T among V \ S is at least |T |. Since

otherwise we may choose T ∪B instead of B and get a contradiction with the maximality of B.
By Lemma 3.4, for k = 8 (i.e. by Corollary 3.5), if |B| ≤ βn, then |δ(B)| > 8|B|. Since |δ(B)∩ (V \S)| <

|B|, |S ∩ δ(B)| ≥ 7|B|. Hence, |S| ≥ 8|B| or |B| ≤ |S|/8.
We cover the set B as follows: by Lemma 3.7, there exists a matching N that covers B. Let N ′ be a

subset of N that consists of all edges from N that are incident to vertices from B. Let S′ be obtained from
S by the deletion of all endpoints of edges from N ′; |S′| ≥ |S| − |N ′| ≥ |S| − 2|B| ≥ 3

4 |S|. Let A′ = S′ ∩A.
The number of edges between A′ and S′ \A′ can be estimated by the Expander Mixing Lemma. We know

|A′| ≤ |S|/2 ≤ 2
3 |S
′| and |A′| ≥ |S|/2−3/2 ≥ |S′|/2−3/2. Assume that |S′| = τn, we know that τ ≥ 3

8β. For
large enough n the following inequalities are satisfied: 2τn/3 ≥ |A′| ≥ τn/3 and 2τn/3 ≥ |S′ \A′| ≥ τn/3.

By the Expander Mixing Lemma |E(A′, S \A′)| ≥ d
n |A

′||S \A′|−αd
√
|A′||S \A′| ≥ dn(τ2/9−2/3ατ) for

large enough n. We need that τ2/9− 2/3ατ > 0 or τ > 6α. τ ≥ 3
4
β
2 , hence, it is sufficient to have β > 16α.

The later inequality is satisfied since α < 1
161+

√
8
.

For the chosen τ we have |E(A′, S \ A′)| = Ω(n); in other words, the edges from this cut constitutes a
constant fraction. Consider the following randomised process:

1. Let I be the set of the edges connecting two vertices from S′.

2. M := ∅

3. While I is not empty

• Take e← I at random;

• M := M ∪ {e};
• Remove e and all edges that have common endpoints with e from I;

We claim that this probability 1 − 2−Ω(n) the set M contains edges from E(A′, S \ A′). Indeed, initially I
contains all edges from E(A′, S \ A′) and edges from E(A′, S \ A′) constitutes a constant fraction from I.
In every execution of the loop on the 3rd step of the randomised process we remove at most 2d edges from
I, hence among the first Ω(n) executions of the loop on the 3rd step |I ∩E(A′, S \A′)| = Ω(n). Every time
with constant probability e ∈ E(A′, S \A′). Thus the probability that the final value of M does not contain
an edges from E(A′, S \A′) is at most 2−Ω(n).

Some of the vertices from T ⊆ S′ may be still non covered. We will cover them using the Hall’s theorem.
Unfortunately, the part of vertices from V \ S may be already used for the matching covered B. Let us
assume that there exists a set X ⊆ T that does not satisfy the condition of the Hall’s theorem: X has fewer
than |X| neighbours in V \ S that are not covered by N ′. This contradicts the maximality of B, since we
may use B ∪X instead of B. Hence it is possible to extend N ′ ∪M to a matching covering S. We return
this matching.

4 1-NBP Calculus Does Not Polynomially Simulate Tree-like Res-
olution

A couple earlier papers have claimed that resolution is not simulated by OBDD(∧), see Theorem 5 of [19]
and Corollary 4 of [11], but we have been unable to verify their proofs. The difficult point in the proofs is
in Lemma 8 of [19] and in Lemma 4 of [11]. In the former, it is shown that two distinct nodes in an OBDD
B(F,≺) correspond to two distinct nodes in another OBDD B(F ∪G,≺); however, it does not follow from
this that n distinct nodes in B(F,≺) correspond to n distinct nodes in B(F ∪G,≺). A similar technique is
implicitly used in the latter paper.

11

Let φ(x1, x2, . . . , xn) be a CNF formula. The extension rule is an operation that adds to φ new clauses
that represent z = f(x1, x2, . . . , xn), where z is a fresh variable and f is an arbitrary Boolean function. We
say that a formula ψ is an extension of φ if ψ may be obtained from φ by several applications of the extension
rule. We may assume that ψ = φ ∧ E, where E is the conjunction of all the added clauses.

Lemma 4 of [11] claims that for every CNF φ if ψ = φ∧E is an extension of φ, then for every order π the
minimal size of OBDD in the order π computing φ is at most the the minimal size of OBDD in the order π
computing ψ. Lemma 8 of [19] is formulated as a very partial case Lemma 4 of [11] but indeed its “proof”
never used the specifics of this case.

We start from a counter example for Lemma 4 of [11].
We give an example of a Boolean function f(~a) which has a short representation as a π-OBDD with

the addition of an extension, but requires an exponentially long τ -OBDD representation over the original
variables ~a, where τ is the restriction of the order π to the original variables.

Let t ≥ 1 and m = 2t. Let f(y1, . . . , ym, x1, . . . xt) be the index function defined as

f(y1, . . . , ym, x1, . . . xt) = ybin(~x),

where bin(~x) means the integer with binary representation given by x1, . . . , xt. (We could have also called
f a “selection” function or “look up” function.)

We add extension variables z1, . . . , zt with the (rather trivial) extension definitions zi ↔ xi. For this,
define g(~z, ~y, ~z) by

g(z1, . . . , zt, y1, . . . , ym, x1, . . . xt) =
(
ybin(~x) ∧

∧
i

(zi ↔ xi)
)

Let τ be the linear order placing all yi’s before all xi’s. Let π be the linear order placing all zi’s before
all yi’s, and all yi’s before all xi’s, so that π extends τ .

Proposition 4.1. 1. f has m+ t = 2t + t many inputs and g has m+ 2t = 2t + 2t inputs.

2. Any τ -OBDD for f requires size at least 2m = 22t .

3. There is a π-OBDD for g of size O(2t).

Proof. Part 1. is immediate from the definitions.
Part 2. is easy to prove by observing that once the τ -OBDD has queried all the yi’s, it must remember

all m of the values of y1, . . . , ym: To prove this, note that each setting to y1, . . . , ym gives a different function
of x1, . . . , xt.

Part 3. is proved by constructing the π-OBDD. The first stage uses 2t+1 − 1 many nodes to query the
variables zi and remember all their values. The second stage uses exactly 2t nodes, one per yi, to query the
needed value of yi with i = bin(~z). If the queried yi has value 0 (False), the OBDD outputs 0. Otherwise,
the third stage checks the values of each xi to see if it is equal to the corresponding zi. It is obvious that
this can be done with t · 2t nodes, but by collapsing nodes, the third stage can even be done with 2t+1 − 1
many nodes. The overall size of the π-OBDD is less than 5 · 2t = O(2t).

The number of inputs n to f is m+ t = 2t + t. Thus the π-OBDD for g has size O(n), and the τ -OBDD
for f requires size at least 2n−logn = 2n/n.

4.1 Proof of The Separation

In this subsection we show that it is possible to fix the problem in the previous “proofs” by switching from
OBDDs to 1-NBPs. Namely we prove the following theorem.

Theorem 4.2. There is a family of formulas {Ψn}n∈N of size poly(n) such that any OBDD(∧, reordering)
refutation of Ψn has size at least 2Ω(n) and there is a tree-like resolution refutation of Ψn of size poly(n).

The correct analogue of Lemma 4 of [11] is the following.

12

Lemma 4.3. Let f(x1, x2, . . . , xn) be a Boolean function and g(z, x1, . . . , xn) be a Boolean function such
that g(h(x1, . . . , xn), x1, x2, . . . , xn) is the constant 1, where h : {0, 1}n → {0, 1} is a Boolean function. Then
for every 1-NBP for f(x1, x2, . . . , xn) ∧ g(z, x1, . . . , xn) of size S there exists a 1-NBP for f(x1, x2, . . . , xn)
of size at most S.

Proof. Consider a 1-NBP D for the function f(x1, x2, . . . , xn) ∧ g(z, x1, . . . , xn) and change all the nodes
labeled with z to guessing nodes and erase labellings of outgoing edges. We denote the resulting labeled
graph by D′. On every path from the source to a sink of D′ every variable appears at most once as a label
of a node. We claim that D′ is a correct 1-NBP for f . Consider α ∈ {0, 1}n and assume that f(α) = 0 and
D′ has a path from the source to the sink 1 that is consistent with α. Consider on this path in D, it must
finish at the sink 0 since f(α) ∧ g(z, α) equals 0 for every value of the variable z. Assume that f(α) = 1;
since f(α) = 1 and g(h(α), α) = 1, there is a path in D from the source to the sink labeled with 1 that is
consistent with substitution x = α, z = h(α). This path in D′ is consistent with x = α and also finishes in
the sink 1.

Lemma 4.4. Let φ be an unsatisfiable CNF formula and ψ = φ ∧ E be an extension of φ. Then for every
1-NBP(∧) refutation of ψ of size s there exist a 1-NBP(∧) refutation of φ of size at most s.

Proof. It is sufficient to prove for the case then ψ is obtained from φ by one extension operation. Let ψ
represent φ(x1, . . . , xn)∧ z = f(x1, x2, . . . , xn). Consider 1-NBP(∧) refutation of ψ: D1, D2, . . . , Ds. Every
Di represents the conjunction of several clauses of ψ. Consider a sequence D′1, D′2,. . . , D′s, where D′i is the
shortest 1-NBP representation of the conjunction of clauses from φ that are from the conjunction represented
by Di. If D′i is an empty conjunction, then it is just constant 1. We claim that D′s represents constant 0.
Indeed, assume α is a satisfying assignment of D′s, then x = α, z = f(α) satisfies Ds, but Ds is constant 0.

For every i ∈ [s] the function Di is the conjunction of D′i and a function that becomes 1 after the
substitution z = f(x1, x2, . . . , xn). Hence, by Lemma 4.3, size of D′i is at most size of Di. Every D′i
represents either a clause of φ, or the constant 1, or D′j ∧D′k, where j, k < i. If we drop off all constants 1
and repetitions (that may come as a conjunction with the constant 1) we get a 1-NBP(∧) refutation of φ of
size at most s.

It is well known that for every constant-degree graph G(V,E) on n vertices and every function f : V →
{0, 1}, if the Tseitin formula TSG,f is unsatisfiable, then there exists a tree-like derivation of ¬TSG,f in
Extended Frege proof system of poly(n) size. Hence, there exists a tree-like proof of TSG,f in the Extended
resolution of poly(n) size. The latter implies the following statement:

Lemma 4.5. Let Gn be undirected graph with n vertices, degrees of all vertices do not exceed d. Let TSG,f
be unsatisfiable Tseitin formula. Then there exists a CNF formula Ψn of size poly(n) that is an extension
of TSGn,fn and there is a tree-like resolution refutation of Ψn of size poly(n).

Proof of Theorem 4.2. Let Gn be an (n, d, α)-algebraic expander with α < 1
161+

√
8

and let fn be a labeling

function for Gn such that TSGn,fn is unsatisfiable. Then by Theorem 3.1 size of any 1-NBP(∧) refutation
of TSGn,fn has size at least 2Ω(n) and as a result any OBDD(∧, reordering) refutation of TSGn,fn has size at
least 2Ω(n). The formula Ψn from Lemma 4.5 is an extension of TSGn,fn , hence by Lemma 4.4 any 1-NBP(∧)
refutation of Ψn has size at least 2Ω(n). By Lemma 4.5 the formula Ψn has tree-like resolution refutation of
size poly(n).

5 Upper Bounds on 1-NBP Calculus

In this section we show that 1-NBP(∧)-calculus (and even 1-BP-calculus) has short refutations of several
non-trivial families of formulas.

Theorem 5.1. Let φ =
∧
v∈V

φv be unsatisfiable formula based on bipartite graph G(V,E). Suppose that, for

all v ∈ V there is a 1-BP(∧) derivation of φv from its clauses of size at most S. Then there exists a 1-BP(∧)
refutation of φ of size poly(|V |, S).

13

Proof. Let V1 and V2 be the two parts of the bipartite graph G. We show that for every i ∈ {1, 2} there is
a 1-BP(∧) derivation of

∧
v∈Vi

φv of size poly(|V |, S). Note that for i ∈ {1, 2}, distinct formulas φv for v ∈ Vi

do not share variables. For all v ∈ Vi we derive φv; the total size of this derivation is at most |Vi|S. Then
we consequently derive conjunctions φv from v ∈ Vi: the conjunction of the first two, of the first three and
etc. If two 1-BPs do not share variables, the size of their conjunction is at most the sum of sizes of initial
1-BPs. Hence size of the derivation of

∧
v∈Vi

φv is at most O(|Vi|2S).

When we derive
∧
v∈Vi

φv for i = 1 and i = 2, we apply the conjunction rule and get the constant 0.

Corollary 5.2. If G is a bipartite graph and formulas PMPG, TSG,f , PHPG are unsatisfiable, then there
exists polynomial size 1-BP(∧) refutations of them.

Buss et al. [6] proved that there exists two families of formulas φn and ψn that polynomial size
OBDD(∧, reordering) proofs but φn requires superpolynomial OBDD(∧, reordering) refutations and ψn re-
quires superpolynomial cutting planes refutation. The proof had the following structure: at first they pre-
sented a family of formulas that has Ω(log2 n) resolution width and has polynomial size OBDD(∧) refutation
and then applied the dag-like lifting developed by Garg et al. [7].

It is possible to apply the same approach to the graph pigeonhole principle. It is known that there is a
sequence of bipartite graphs Gn such that Gn has linearly many edges, PHPGn is a O(1)-CNF formula and
it requires Ω(n) resolution width [4]. By Corollary 5.2 PHPGn has poly(n) size 1-NBP refutations. Using
the same approach as in the paper [6] we may get the following statements:

Proposition 5.3 (see Section 4.4 of [6]). There is a family of formulas {φn}n∈N of size poly(n) such that

any OBDD(∧,weakening) refutation of φn has size at least 2n
Ω(1)

but there is a 1-BP(∧) refutation of φn of
size poly(n).

Proposition 5.4 (see Section 4.3 of [6]). There is a family of formulas {ψn}n∈N of size poly(n) such that

any cutting planes refutation of ψn has size at least 2n
Ω(1)

but there is a 1-BP(∧) refutation of ψn of size
poly(n).

6 Lower Bounds on OBDD(∧,weakening, reordering`)
Theorem 6.1. For any ` > 0, there is a family of formulas {φn}n∈N such that |φn| = poly(n, `), every

tree-like OBDD(∧,weakening, reordering`) proof of φn has size at least 2
Ω
(√√

n/2`+1(`+1)
)

, and there is a
tree-like OBDD(∧, reordering) proof of φn of size poly(n)

The proof of this theorem is based on two following theorems.

Theorem 6.2. Let φ be an unsatisfiable CNF. If there is a tree-like OBDD(∧,weakening, reordering`) proof
of φ of size S, then there is a 1

`+1 -balanced partition Π of the variables of φ into ` + 1 subsets such that

D(Searchφ,Π) = O(log2 S).

Theorem 6.3. For any k, δ > 0, there is a family of formulas {φn}n∈N such that |φn| = poly(n, k, 1
δ) and

D(Searchφn ,Π) = Ω(
√
n/2kk) for every δ-balanced partition Π into k subsets.

Moreover, there is a tree-like OBDD(∧, reordering) proof of φn of size poly(n).

Proof of Theorem 6.1. Let us consider the family of formulas {φn}n∈N from Theorem 6.3 for δ = 1
`+1 and

k = `+ 1.

We prove that every OBDD(∧,weakening, reordering`) proof of φn has size at least 2
Ω
(√√

n/2`+1(`+1)
)
.

Assume that there is a tree-like OBDD(∧,weakening, reordering`) proof of φn of size S. Hence, by Theo-
rem 6.2, there is a 1

`+1 -balanced partition Πn of the variables of φn such that D(Searchφn ,Πn) = O(log2 S).

Hence, log2 S = Ω
(√
n/2`+1(`+ 1)

)
by the properties of φn; i.e. S = 2

Ω
(√√

n/2`+1(`+1)
)
.

However, by Theorem 6.3, there is a tree-like OBDD(∧, reordering) proof of φn of size poly(n).

14

6.1 Lower Bounds for Multiparty Best-communication Complexity

This section proves Theorem 6.3. To prove it we use a lower bound for communication complexity proven
by Göös and Pitassi [9]. Their construction uses a pebbling contradiction.

Definition 6.4. Let G be a directed acyclic graph with one sink t. The CNF formula PebG (pebbling
contradiction for a graph G), uses a variable xv for each vertex v of G and has the following clauses:

• ¬xt;

• for each vertex v, the clause xv ∨
d∨
i=1

¬xpi where p1, . . . , pd are all the immediate predecessors of v

(d = 0 if v is a source).

It is not hard to see that PebG has short tree-like OBDD(∧) proofs.

Theorem 6.5 ([6]). For any directed acyclic graph G(V,E) with n vertices and maximum in-degree d there
is a tree-like OBDD(∧) proof of PebG of size poly(n).

Additionally, we need a concept of composition of CNFs. Let φ ◦ g(y1,1, . . . , yn,m) denote the formula
that can be obtained from φ(x1, . . . , xn) by replacement of each variable xi by g(yi,1, . . . yi,m), where g is a
CNF.

Theorem 6.6 ([9]). For every k > 0, there is a family of directed acyclic graphs {Gn}n∈N with constant
degree such that Gn has n vertices, a CNF formula g on O(1) variables, and a family of partitions {Πn}n∈N
such that

• |PebGn ◦ g| = poly(n);

• Πn is a partition of the variables of PebGn ◦ g into k subsets;

• D(SearchPebGn◦g,Πn) = Ω(
√
n/2kk).

This theorem is almost the same as Theorem 6.3 but the key difference that that theorem holds only for
one partition. Thus, now we need to transform that lower bound into a best-communication lower bound i.e.
the lower bound that holds for all balanced partitions. In order to do this, let us define the transformation
based on the transformation introduced by Segerlind [18].

Let t = dlog(n)e and N = 2t, and F be the field GF(N). Define Pt to be the set of all mappings given by
x 7→ ax+ b with a, b ∈ F and a 6= 0. Elements of Pn may be represented by binary strings of length 2t such
that the first t bits are not all zero; we denote the representation of α ∈ Pt as rep(α). Note that Pt ⊆ SN
so we have to add new variables, xn+1, . . . , xN . Then define

perm(φ)(z1, . . . , z2t, x1, . . . , xN) =
∧
σ∈Pt

[(
2t∧
i=1

zi = rep(σ)i

)
→ φ(xσ(1), . . . , xσ(n))

]
∧

t∨
i=1

zi.

Additionally, let φ∨m(y1,1, . . . , yn,m) denote the formula that is obtained from φ(x1, . . . , xn) by replacing
each variable xi by the disjunction of m fresh variables yi,1, . . . yi,m (note that it is a composition of g and
m∨
i=1

zi).

Now we can define the transformation T . Let φ be a formula on n variables, K > 0 be an integer, and
m(K, δ, n) be the least integer m such that 2Kn

δm + Kn
mn−1 < 1, so m(K, δ, n) = O(Knδ). Then TK,δ(φ) =

perm(φ∨m(K,δ,n)), where n is the number of variables of φ.

Theorem 6.7. Let K, δ > 0. For every φ with big enough number of variables, for every partition Π of the
variables of Searchφ into K subsets, and for every δ-balanced partition Γ of the variables of SearchTK,δ(φ)

into K subsets, D(SearchTK,δ(φ),Γ) ≥ D(Searchφ,Π).

15

For proving this theorem we also need two technical results.

Lemma 6.8 ([21]). For any t, |Pt| = 2t · (2t − 1), every mapping from Pt is a permutation, and for any
x1, x2, y1, y2 ∈ [2t] if x1 6= x2 and y1 6= y2, then Pr

π∈Pt
[π(x1) = y1, π(x2) = y2] = 1

2t(2t−1) .

Lemma 6.9 (Chebyshev’s inequality). If X1, . . . , Xt are random Boolean variables and Y =
t∑
i=1

Xi, then

Pr[Y = 0] ≤
EY +

∑
i 6=j∈[t]

Cov(Xi, Xj)

(EY)
2 .

Proof of Theorem 6.7. Let Π = (Π0, . . . ,ΠK−1) be an arbitrary partition into K subsets. We prove that if
there is a protocol for SearchTK,δ(φ) and a δ-balanced partition Γ with communication complexity S, then
there is a protocol for Searchφ and the partition Π with communication complexity S.

Let n be the number of variables of φ, and m = m(K, δ, n). Let N = n ·m be the number of the variables
of φ∨m , and t = dlogNe.

Claim 6.9.1. There is a permutation π ∈ Pt such that for any i ∈ [n] and k ∈ [K] there is j ∈ [m], such
that yi,j is mapped to a variable from Γk by π.

Let V = {v1, . . . , v2`} be a set of variables of TK,δ(φ) = perm(φ∨m) not including any of the variables z1,
. . . , z2t encoding a permutation. For every i ∈ [n] and k ∈ [K], let vr(i,k) denote some variable yi,j that is
mapped to a variable from Γk by the permutation π. The protocol will be the following: on input x1, . . . ,
xn it runs the protocol for Searchperm(φ∨m) with substitution to input values such that z1, . . . , z2t encode
π, all the variables from V \ {vr(i,k) : i ∈ [n], k ∈ [K]} are equal to zero, and

• vr(i,k) = xi if xi ∈ Πk and

• vr(i,k) = 0 otherwise.

It is easy to see that the communication complexity of this protocol is equal to S on the partition Γ.
Thus, D(Searchφ,Π) ≤ D(SearchTK,δ(φ),Γ).

We now prove Claim 6.9.1. We write τ(vi) to denote vτ(i), where τ is a permutation in Pt. Let Γ′ be the
partition induced by Γ on V . Note that |Γ′k| ≥ bδNc − 2dlogNe, so Γ′k is nonempty.

For k ∈ K and choosing π ∈ Pt uniformly at random, let χki,j be the Boolean random variables such that

χki,j = 1 iff yi,j is mapped by π into Γ′k. Set Y ki =
m∑
j=1

χki,j . By Lemma 6.8, χki,j has expectation equals
|Γ′
k|
N

and by additivity of expectation, the expectation of Y ki is equal to
m|Γ′

k|
N . Note that

Cov(χki,j0 , χ
k
i,j1) = E

(
χki,j0 · χ

k
i,j1

)
− Eχki,j0Eχ

k
i,j1

=
∑

u 6=v∈Γ′
k

Pr[π(u)=yi,j0 , π(v)=yi,j1]− |Γ
′
k|2

N2
=
|Γ′k|(|Γ′k|−1)

N(N−1)
− |Γ

′
k|2

N2

<
|Γ′k|2

N

(
1

N − 1
− 1

N

)
=

|Γ′k|2

N2(N − 1)
=

(
EY ki

)2
m2(N − 1)

.

Hence, by Lemma 6.9,

Pr[Y ki = 0] ≤
EY ki +

∑
j0 6=j1∈[m]

Cov(χki,j0 , χ
k
i,j1

)(
EY ki

)2 ≤ ‘
N

m|Γ′k|
+

m(m− 1)

m2(N − 1)

≤ N

m (bδNc − 2 logN)
+

1

N − 1
≤ N

m δN
2

+
1

N − 1
=

2

δm
+

1

nm− 1
.

16

Therefore, by union bound Pr
[
∃i, k Y ki = 0

]
≤ 2Kn

δm + Kn
nm−1 ≤ 1. As a result, there is a permutation

π ∈ P` such that for any i ∈ [n] and k ∈ [K] there is a j ∈ [m] and vr(i,k) ∈ Γ′k such that vr(i,k) = π (yi,j).

Additionally, in order to prove the upper bound we may use the following result from [6].

Theorem 6.10 (see [6, Lemma 2, Corollary 6, Theorem 5]). Let {φn}n∈N be a family of unsatisfiable formulas
in O(1)-CNF such that there is a tree-like OBDD(∧) proof of φn of size poly(n) and |φn| = poly(n).

• There is a tree-like OBDD(∧, reordering) proof of perm(φ) of size poly(n).

• For every m, there is a tree-like OBDD(∧) proof of φ∨m of size poly(n,m).

• For every formula g on O(1) variables, there is a tree-like OBDD(∧) proof of φ ◦ g of size poly(n).

Corollary 6.11. Let {φn}n∈N be a family of unsatisfiable formulas in O(1)-CNF such that there is a tree-like
OBDD(∧) proof of φn of size poly(n) and |φn| = poly(n). Then there is a tree-like OBDD(∧, reordering)
proof of TK,δ(φn).

Proof of Theorem 6.3. Let {Gn}n∈N be a family of graphs, g be a CNF on O(1) variables, and {Πn}n∈N be
a family of partitions from Theorem 6.6.

Let φn = Tk,δ(PebGn ◦ g). Note that, by Theorem 6.7, for every δ-balanced partition Γ of the variables
of φn into k subsets, D(φn,Γ) ≥ Ω(

√
n/2kk).

However, by Theorem 6.5 there is a tree-like OBDD(∧) proof of PebGn of size poly(n); thus, by Corol-
lary 6.11, there is a OBDD(∧, reordering) proof of φn of size poly(n).

6.2 Upper Bounds for Multiparty Communication Complexity

This section proves Theorem 6.2.

Lemma 6.12. For any orders π1, . . . , π` over the variables x1, . . . , xn there are s1, . . . , s` ∈ [n] and a
partition Π of the variables x1, . . . , xn into `+ 1 subsets such that

• |Πi| ≥ b n
`+1c for every i ∈ [`+ 1] i.e. Π is 1

`+1 -balanced;

• for every i ∈ [`], πi[≤ si] ∩Πi+1 = ∅ and πi[> si] ∩Πi = ∅.

Proof. Consider the following algorithm that constructs a partition.

• S1 := {x1, x2, . . . , xn};

• For i = 1 to `

– Let Πi be the first b n
`+1c elements of Si in the order πi.

– Let si be the maximal number of an element of Πi in the order πi.

– Si+1 := Si \Πi.

• Π`+1 := S`+1

By the construction, |Πi| = b n
`+1c for i ∈ [`], and hence |Π`+1| ≥ b n

`+1c. Notice that Πi and si are defined
such that πi[> si]∩Πi = ∅ and πi[≤ si]∩ Si+1 = ∅. Since Πi+1 ⊆ Si+1, we get that πi[≤ si]∩Πi+1 = ∅.

Lemma 6.13. Let a function f be computed by a π-OBDD D, s ∈ [n] be an integer, and Π be a partition
of variables of f into k subsets such that Πa ∩ π[≤ s] = Πb ∩ π[> s] = ∅ for some a, b ∈ [k]. Then
D(f,Π) ≤ dlog |D|e+ 1.

Proof. Player a starts the computation of f according D using the variables she knows (variables outside of
Πa). She reaches a vertex v of D after reading all the variables π[≤ s] and sends the number of the vertex v;
it has at most dlog |D|e bits. Player b continues computing f starting from v using now variables he knows
and sends the result of the computation (it is 1 bit).

17

Proof of Theorem 6.2. Consider a tree-like OBDD(∧,weakening, reordering`) proof D1, . . . , Dm of the for-
mula φ of size S. Since this proof is OBDD(∧,weakening, reordering`) there are orders π1, . . . , π` over the
variables of φ such that for every i ∈ [m], Di is a πj-OBDD for some j ∈ [`].

Let Π be a partition from Lemma 6.12. Based on this proof we construct a (`+ 1)-party communication
protocol for Searchφ with respect to the partition Π of complexity at most O(log2 S). The protocol consists
of s = O(logS) steps. At each step we consider some tree Ti that is known by all the players. The inner
vertices of the tree are labelled with OBDD’s in orders π1, . . . , π` and the leaves are labelled with clauses
of φ or with trivially satisfied clauses.

In the first step, the tree T1 is the tree of our tree-like proof. Ti ⊆ Ti−1. At each step, the players know
that the OBDD at the root of Ti is falsified by the input assignment, and that there exists some clause at a
leaf of Ti that is falsified. In the end, the tree Ts consists of a single vertex; hence it provides a clause of φ
that is falsified by the input assignment.

Now we describe how we obtain the tree Ti+1 from the tree Ti. Let v be a vertex of tree Ti such that
a subtree T ′ with root v satisfies the following condition: 1

3 |Ti| ≤ |T
′| ≤ 2

3 |Ti| (the players can find such
a vertex v without communication). Let D be the πj-OBDD labelling v; if the input assignment evaluates
diagram D to zero, then Ti+1 equals T ′ (the players can evaluate the πj-OBDD D on the input assignment
with at most dlog |D|+ 1e ≤ 2 logS bits of communication by Lemma 6.13). Otherwise, Ti+1 := Ti \ T ′.

It is easy to see that if the value of D equals zero then there is a leaf with falsified clause in the tree T ′.
Otherwise there is a leaf with falsified clause in the tree Ti \ T ′. Also, at each step the players use at most
2 logS bits of communication and there are at most O(logS) steps (since |Ti| ≤ 2

3 |Ti+1|). Hence, the players

use at most O(log2 S) bits of communication.

Acknowledgements The authors thanks Ludmila Glinskih for fruitful discussions.
The research presented in Sections 3, 4.1 and 5 was supported by Russian Science Foundation (project

18-71-10042).

References

[1] Noga Alon and Fan R. K. Chung. Explicit construction of linear sized tolerant networks. Discrete
Mathematics, 306(10-11):1068–1071, 2006.

[2] Albert Atserias, Phokion G. Kolaitis, and Moshe Y. Vardi. Constraint propagation as a proof system.
In Mark Wallace, editor, Principles and Practice of Constraint Programming - CP 2004, volume 3258
of Lecture Notes in Computer Science, pages 77–91. Springer, 2004.

[3] Paul Beame, Toniann Pitassi, and Nathan Segerlind. Lower bounds for Lovasz-Schrijver systems and
beyond follow from multiparty communication complexity. SIAM Journal on Computing, 37(3):845–869,
2007.

[4] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow - resolution made simple. Journal of the
ACM, 48(2):149–169, 2001.

[5] Maria Luisa Bonet, Toniann Pitassi, and Ran Raz. On interpolation and automatization for frege
systems. SIAM J. Comput., 29(6):1939–1967, 2000.

[6] Sam Buss, Dmitry Itsykson, Alexander Knop, and Dmitry Sokolov. Reordering rule makes OBDD proof
systems stronger. In 33rd Computational Complexity Conference, CCC 2018, June 22-24, 2018, San
Diego, CA, USA, pages 16:1–16:24, 2018.

[7] Ankit Garg, Mika Göös, Pritish Kamath, and Dmitry Sokolov. Monotone circuit lower bounds from
resolution. Electronic Colloquium on Computational Complexity (ECCC), 24:175, 2017.

18

[8] Ludmila Glinskih and Dmitry Itsykson. Satisfiable tseitin formulas are hard for nondeterministic read-
once branching programs. In 42nd International Symposium on Mathematical Foundations of Computer
Science, MFCS 2017, August 21-25, 2017 - Aalborg, Denmark, pages 26:1–26:12, 2017.

[9] Mika Göös and Toniann Pitassi. Communication lower bounds via critical block sensitivity. In Sym-
posium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages
847–856, 2014.

[10] Dmitry Itsykson, Alexander Knop, Andrei Romashchenko, and Dmitry Sokolov. On OBDD-based
algorithms and proof systems that dynamically change order of variables. In Heribert Vollmer and
Brigitte Vallée, editors, 34th Symposium on Theoretical Aspects of Computer Science, STACS 2017,
March 8-11, 2017, Hannover, Germany, volume 66 of LIPIcs, pages 43:1–43:14. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2017.

[11] Matti Järvisalo. On the relative efficiency of DPLL and OBDDs with axiom and join. In Jimmy Ho-
Man Lee, editor, Principles and Practice of Constraint Programming - CP 2011 - 17th International
Conference, CP 2011, Perugia, Italy, September 12-16, 2011. Proceedings, volume 6876 of Lecture Notes
in Computer Science, pages 429–437. Springer, 2011.

[12] Jan Kraj́ıcek. Interpolation theorems, lower bounds for proof systems, and independence results for
bounded arithmetic. Journal of Symbolic Logic, 62(2):457–486, 1997.

[13] Jan Krajiček. An exponential lower bound for a constraint propagation proof system based on ordered
binary decision diagrams. Journal of Symbolic Logic, 73(1):227–237, 2008.

[14] A Lubotzky, R Phillips, and P Sarnak. Ramanujan graphs. Combinatorica, 8(3):261–277, 1988.

[15] Christoph Meinel and Thorsten Theobald. Algorithms and data structures in VLSI design: OBDD -
foundations and applications. Springer, 1998.

[16] Pavel Pudlák. Lower bounds for resolution and cutting plane proofs and monotone computations.
Journal of Symbolic Logic, 62(3):981–998, 1997.

[17] Nathan Segerlind. Nearly-exponential size lower bounds for symbolic quantifier elimination algorithms
and obdd-based proofs of unsatisfiability. Electronic Colloquium on Computational Complexity (ECCC),
14(009), 2007.

[18] Nathan Segerlind. On the relative efficiency of resolution-like proofs and ordered binary decision diagram
proofs. In Proceedings of the 23rd Annual IEEE Conference on Computational Complexity, CCC 2008,
23-26 June 2008, College Park, Maryland, USA, pages 100–111. IEEE Computer Society, 2008.

[19] Olga Tveretina, Carsten Sinz, and Hans Zantema. Ordered binary decision diagrams, pigeonhole for-
mulas and beyond. JSAT, 7(1):35–58, 2010.

[20] Alasdair Urquhart. Hard examples for resolution. Journal of the ACM, 34(1):209–219, 1987.

[21] Mark N. Wegman and Larry Carter. New hash functions and their use in authentication and set equality.
Journal of Computer and System Sciences, 22(3):265–279, 1981.

19

	Introduction
	Our Results
	Open Questions

	Preliminaries
	Branching Programs
	Graph Based Formulas
	OBDD-based proof systems
	Calculus of Branching Programs
	Algebraic Expanders
	Communication Complexity

	Lower Bounds on 1-NBP Calculus
	Hard formulas
	Lower Bound
	Expanders and Matchings
	Proof of Lemma 3.2
	Lower Bound on The Size of 1-NBP
	Distribution on The Matchings

	1-NBP Calculus Does Not Polynomially Simulate Tree-like Resolution
	Proof of The Separation

	Upper Bounds on 1-NBP Calculus
	Lower Bounds on OBDD(and, weakening, reordering-l)
	Lower Bounds for Multiparty Best-communication Complexity
	Upper Bounds for Multiparty Communication Complexity

