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Abstract. GF(2)-grammars, recently introduced by Bakinova et al.
(“Formal languages over GF(2)”, LATA 2018), are a variant of ordi-
nary context-free grammars, in which the disjunction is replaced by ex-
clusive OR, whereas the classical concatenation is replaced by a new
operation called GF(2)-concatenation: K � L is the set of all strings
with an odd number of partitions into a concatenation of a string in K
and a string in L. This paper establishes several results on the family of
languages defined by these grammars. Over the unary alphabet, GF(2)-
grammars define exactly the 2-automatic sets. No language of the form
{anbf(n) | n > 1}, with uniformly superlinear f , can be described by
any GF(2)-grammar. The family is not closed under union, intersection,
classical concatenation and Kleene star, non-erasing homomorphisms.
On the other hand, this family is closed under injective nondeterministic
finite transductions, and contains a hardest language under reductions
by homomorphisms.

1 Introduction

A new family of formal grammars, the GF(2)-grammars, was recently intro-
duced by Bakinova et al. [2]. These grammars differ from the ordinary grammars
(Chomsky’s “context-free”) as follows. In ordinary grammars, the operations
are: the disjunction of syntactical conditions, expressed by multiple rules for the
same nonterminal symbol, and the concatenation of languages, which is defined
through conjunction and disjunction [17]. In GF(2)-grammars, these operations
are modified by replacing the underlying Boolean logic with the GF(2) field. Ac-
cordingly, instead of set-theoretic union of languages, GF(2)-grammars feature
symmetric difference, whereas concatenation of languages is replaced with a new
operation called GF(2)-concatenation, defined as follows.

K � L = {w | the number of partitions w = uv, with u ∈ K and v ∈ L, is odd }

GF(2)-grammars were introduced as a part of a general study of GF(2)-
concatenation as an operation on formal languages. Their formal definition is
based on parse trees in the corresponding ordinary grammar with classical con-
catenation and union: assuming that every string has a finite number of parse
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trees, the GF(2)-grammar defines all strings with an odd number of parse trees.
The intuitive correctness of this definition is confirmed by a result that if a gram-
mar is represented by a system of language equations, similar to the equations
of Ginsburg and Rice [8], but using the operations of GF(2)-concatenation and
symmetric difference, then the language defined by this GF(2)-grammar satisfies
the system.

A few related, more general grammar models were studied before. Knuth [13]
investigated specification of multisets by grammars, with every parse tree con-
tributing an element to a multiset. A more general extension are formal languages
over multiplicities, that is, mappings from the set of strings to a semiring. Under
certain monotonicity assumptions on the semiring, equations in formal power
series over a semiring behave similarly to ordinary grammars, and a substan-
tial theory has been developed around them, see the survey by Petre and Salo-
maa [18]. However, the two-element field does not have the required monotonicity
properties, and this general theory does not apply to GF(2)-grammars. Another
matter is that languages over multiplicities are, after all, functions, and not lan-
guages as such. There are just two cases when actual languages are defined: this
is when the semiring is either the Boolean semiring or the GF(2) field. Whereas
the former case is classical, the other case deserves investigation.

The study of GF(2)-grammars is a part of the research on formal grammars
with different sets of operations [17]. All these grammars are variants of Chom-
sky’s “context-free” model, and particular models include conjunctive grammars
equipped with a conjunction operator in the rules [15]; multi-component gram-
mars [19] that allow substrings with gaps as basic constituents; grammars with
context operators [3], and a few other models.

Every unambiguous grammar is a GF(2)-grammar, and it still defines the
same language. In the presence of ambiguity, ordinary grammars assert the exis-
tence of a parse tree, whereas GF(2)-grammars check the parity. For this reason,
ordinary grammars and GF(2)-grammars are two different generalizations of
unambiguous grammars. These two generalizations share the same complexity
upper bound: there is a basic cubic-time parsing algorithm, more efficient pars-
ing by matrix multiplication, and parallel parsing in NC2 [2]. These practically
valuable properties make the class of GF(2)-grammars potentially useful and
accordingly deserving further study.

There is some evidence that the formal properties of ordinary and GF(2)-
grammars are not symmetric. First, unlike the classical concatenation, the
GF(2)-concatenation is invertible: to be precise, for every language L containing
the empty string, there exists a language L−1, for which L� L−1 = L−1 � L =
{ε} [2]. How this property affects language specification, remains to be investi-
gated. Second, over a unary alphabet, GF(2)-grammars can describe some non-
regular sets, such as { a2n | n > 0 }. These differences make this family an
interesting subject for theoretical research.

The goal of this paper is to investigate the family of GF(2)-grammars and
to determine, which languages they can describe and which they cannot. These
results shall be used to establish the basic closure properties of GF(2)-grammars.
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as well as to compare their expressive power with that of the main families of
formal grammars.

2 GF(2)-grammars

Syntactically, a GF(2)-grammar is defined exactly as an ordinary grammar, with
a finite sequence of symbols and nonterminal symbols on the right-hand side of
each rule. However, every such sequence has semantics of GF(2)-concatenation,
whereas multiple rules for the same nonterminal symbol implicitly denote sym-
metric difference of the given conditions.

Definition 1 ([2]). A GF(2)-grammar is a quadruple G = (Σ,N,R, S), where:

– Σ is the alphabet of the language;
– N is the set of nonterminal symbols;
– every rule in R is of the form A→ X1�. . .�X`, with ` > 0 and X1, . . . X` ∈
Σ ∪ N , which represents all strings that have an odd number of partitions
into w1 . . . w`, with each wi representable as Xi;

– S ∈ N is the initial symbol.

The grammar must satisfy the following condition. Let Ĝ = (Σ,N, R̂, S) be the

corresponding ordinary grammar, with R̂ = {A → X1 . . . X` | A → X1 � . . . �
X` ∈ R }. It is assumed that, for every string w ∈ Σ∗, the number of parse trees

of w in Ĝ is finite; if this is not the case, then G is considered ill-formed.
Then, for each A ∈ N , the language LG(A) is defined as the set of all strings

with an odd number of parse trees as A in Ĝ.
A grammar is GF(2)-linear, if, in each rule, at most one of X1, . . . , X` is a

nonterminal symbol.

Theorem A ([2]) Let G = (Σ,N,R, S) be a GF(2)-grammar. Then the substi-
tution A = LG(A) for all A ∈ N is a solution of the following system of language
equations.

A =
i

A→X1�...�X`∈R
X1 � . . .�X` (A ∈ N)

Multiple rules for the same nonterminal symbol can be denoted by separating
the alternatives with the “sum modulo two” symbol (⊕), as in the following
example.

Example 2 ([2]). The following GF(2)-linear grammar defines the language
{ a`bmcn | ` = m or m = n, but not both }.

S → A⊕ C
A→ aA⊕B
B → bBc⊕ ε
C → Cc⊕D
D → aDb⊕ ε
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Indeed, each string a`bmcn with ` = m or with m = n has a parse tree, and if
both equalities hold, then there are accordingly two parse trees, which cancel
each other.

Since GF(2)-concatenation with a singleton language is the same as classi-
cal concatenation, GF(2)-linear grammars are a special case of linear Boolean
grammars, in which the allowed operations are all Boolean operations and con-
catenation with singletons. In the latter grammars, negation can be eliminated,
resulting in a linear conjunctive grammar [14].

Since linear conjunctive grammar over a unary alphabet define only regu-
lar languages, so do the GF(2)-linear grammars. On the other hand, GF(2)-
grammars of the general form can define some non-regular unary languages.

Example 3 ([2]). The following grammar describes the language { a2n | n > 0 }.

S → (S � S)⊕ a

The main idea behind this grammar is that the GF(2)-square S�S over a unary
alphabet doubles the length of each string: L�L = { a2` | a` ∈ L }. The grammar
iterates this doubling to produce all powers of two.

3 GF(2)-grammars over the unary alphabet

Ordinary grammars over the unary alphabet Σ = {a} define only regular lan-
guages [8]. On the other hand, as demonstrated by Example 3, GF(2)-grammars
can define some non-regular languages. The question is, which unary languages
can be defined? The answer follows from the famous Christol’s theorem [5].

A few definitions are necessary.

Definition 4. A set of natural numbers S ⊆ N is called k-automatic [1], if there
is a finite automaton over the alphabet Σk = {0, 1, . . . , k− 1} recognizing base-k
representations of these numbers.

Let Fk[t] be the ring of polynomials over the k-element field GF(k), and let
Fk[[t]] denote the ring of formal power series over the same field.

Definition 5. A formal power series f ∈ Fk[[t]] is said to be algebraic, if there
exists a non-zero polynomial P with coefficients from Fk[t], such that P (f) = 0.

Theorem B (Christol’s theorem for GF(2)) A formal power series∑∞
n=0 fnt

n ∈ F2[[t]] is algebraic if and only if the set {n ∈ N0 | fn = 1 } is
2-automatic.

For a unary alphabet, solutions of language equations corresponding to a
GF(2)-grammar, as in Theorem A, are algebraic formal power series in F2[[t]],
which has the following consequence.

Corollary 6. Every unary language defined by GF(2)-grammar is 2-automatic.



On the expressive power of GF(2)-grammars 5

Inferring the converse characterization from Christol’s theorem is not trivial,
it is easier to give a direct proof.

Theorem 7. Every 2-automatic unary language is described by a GF(2)-
grammar.

Proof. Let A = ({0, 1}, Q, q0, δ, F ) be a DFA that recognizes binary represen-
tations of natural numbers without leading zeroes. The corresponding GF(2)-
grammar is defined as G = ({a}, {Aq | q ∈ Q } ∪ {S}, R, S), with the following
set of rules.

Aq → Ap �Ap (p ∈ Q, δ(p, 0) = q)

Aq → a�Ap �Ap (p ∈ Q, δ(p, 1) = q)

Aq → a (δ(q0, 1) = q)

S → Aq (q ∈ F )

S → ε (if 0 ∈ L(A))

Here, as in Example 3 the rule for Aq → Ap �Ap produces all strings a2`, with
a` defined by Ap: this effectively appends zero to the binary representation. The
rule Aq → Ap � Ap � a doubles the length and adds one, thus appending digit
1.

Then, L(Aq) consists of all strings a(1w)2 , with δ(q0, 1w) = q. ut

By the above, the unary languages defined by GF(2)-grammars are exactly
the 2-automatic languages. This characterization also gives a tool for proving
that a given language over a non-unary alphabet cannot be defined by any
GF(2)-grammar.

Theorem 8 (Method of unary image). Let a language L over an alphabet
Σ be defined by a GF(2)-grammar, and let h : Σ → {t}∗ be a non-erasing homo-
morphism that is injective on L, in the sense that h(u) 6= h(v) for any distinct
u, v ∈ L. Then, h(L) is a 2-automatic language over the unary alphabet {t}.

In the GF(2)-grammar for L, it is sufficient to replace every occurrence of
every symbol a ∈ Σ in the rules with h(a). The resulting GF(2)-grammar defines
the language h(L), which is then 2-automatic by Corollary 6.

4 Representability of subsets of a∗b∗

Defining languages of the form L ⊆ a∗b∗ in a certain formalism represents its abil-
ity to count. A particular special case are languages of the form Lf = { anbf(n) |
n > 1 }, where f is a function f : N→ N.

Finite automata cannot keep count, in the sense that Lf is regular only if there
is a partition of N into finitely many pairwise disjoint arithmetic progressions,
including singletons, and for each arithmetic progression {m0 + ip | i > 0 }, the
language contains a subset { am0+ipbn0 | i > 0 }, for a fixed number n0.
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For ordinary grammars, the subset may be linear, that is, of the form
{ am0+ipbn0+iq | i > 0 }. Using linear conjunctive grammars, more sophisticated
languages with exponential growth can be expressed.

Example 9 (Ibarra and Kim [11]). The language { anb2n | n > 1 } is recognized
by a one-way real-time cellular automaton, and, equivalently, is described by a
linear conjunctive grammar.

At the same time, there is the following bound on the growth of f .

Theorem C (Buchholz and Kutrib [4]) For every function f : N → N, if
the language { anbf(n) | n > 1 } is linear conjunctive, then f is bounded by an
exponential function.

Buchholz and Kutrib [4] further examined the ability to count for several
classes of cellular automata. The question investigated in this paper is, what
kind of languages of the form Lf can be expressed using GF(2)-grammars? The
starting point is the following class of obviously representable languages.

Theorem 10. Let N be represented as a disjoint union of finitely many 2-
automatic sets: N = S1] . . .]Sk. For each of these sets, Sj, let Lj be a language
of the following form: either Lj = { ambn0 | m ∈ Sj }, for some n0 > 0, or,
as long as Sj is an arithmetic progression {m0 + ip | i > 0 } with m0 > 0 and
p > 1, a language Lj = { am0+ipbn0+iq | i > 0 } with n0 > 0 and q > 1. Then,
the languages L1, . . . , Lk are pairwise disjoint, their union is a language of the
form Lf , and it can be described by a GF(2)-grammar.

The current conjecture is that no other languages of the form Lf can be
represented. The next theorem identifies a class of non-representable languages,
which are all those with a superlinearly growing function f , under the following
uniformness restriction.

Definition 11. A function f : N → N is called uniformly superlinear, if, for
every c > 0, there exists N ∈ N, such that f(n + 1) − f(n) > c for all n >
N ; in other words, f(n + 1) − f(n) is eventually larger than any constant, or
lim inf
n→+∞

f(n+ 1)− f(n) = +∞.

Theorem 12. Let f : N → N be a monotonically increasing uniformly super-
linear function. Then the language { anbf(n) | n ∈ N } is not described by any
GF(2)-grammar.

Proof. Proof by contradiction. Suppose that L := { anbf(n) | n ∈ N } is described
by some GF(2)-grammar. Then S1 := {n + f(n) | n ∈ N } and S2 := { 2n +
f(n) | n ∈ N } are both 2-automatic by virtue of being unary images of L under
homomorphisms a→ t, b→ t and a→ t2, b→ t, respectively.

Let ` be an integer large enough, so that 2`/2 is greater than the number of
states in the minimal NFAs recognizing both S1 and S2 in binary notation. By the
uniform superlinearity of f , there exists a number M , such that f(n+1)−f(n) >
2` for all n >M . Consider the integers M + 1,M + 2, . . . ,M + 2`. Clearly, they
all have different remainders modulo 2`.
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Claim. For any function f : N → N and for any two numbers `,M ∈ N, there
exists a factor k ∈ {1, 2} and a set X ⊆ {M + 1,M + 2, . . . ,M + 2`}, such that
|X| = d2`/2e and all residues kn+ f(n) modulo 2` for n ∈ X are distinct.

Proof (of the claim). The first observation is that the mapping n 7→ (n +
f(n), 2n + f(n)) (mod 2`) is injective on {M + 1, . . . ,M + 2`}. Indeed, if, for
any two arguments n, n′ ∈ {M + 1, . . . ,M + 2`} the values coincide, that is,
n + f(n) ≡ n′ + f(n′) (mod 2`) and 2n + f(n) ≡ 2n′ + f(n′) (mod 2`), then,
subtracting the former equality from the latter yields n ≡ n′ (mod 2`), which
implies that the arguments must be the same.

Now the statement is proved by contradiction. For k = 1, the assumption
that no such set X exists means that there are fewer than 2`/2 distinct values
n + f(n) modulo 2`, for n ∈ {M + 1,M + 2, . . . ,M + 2`}. Similarly, for k = 2,
by assumption, there are fewer than 2`/2 distinct values 2n + f(n) modulo 2`,
for all n ∈ {M + 1,M + 2, . . . ,M + 2`}. Therefore, the number of distinct
pairs (n + f(n), 2n + f(n)) modulo 2`, obtained for different n, is strictly less
than 2`/2 · 2`/2 = 2`. Since there are 2` different arguments n, the mapping
n 7→ (n + f(n), 2n + f(n)) (mod 2`) cannot be injective, which contradicts the
above observation. ut

Resuming the proof of the theorem, by the lemma, there exist k ∈ {1, 2}
and X ⊆ {M + 1,M + 2, . . . ,M + 2`}, such that all numbers (kn+ f(n)), with
n ∈ X, are pairwise distinct modulo 2`. Let X := {n1, n2, . . . , n|X|}. For each
number ni, the least significant ` digits in its binary representation are denoted
by vi ∈ {0, 1}`; if ni is less than 2`−1, the string is accordingly padded by
zeroes. Similarly, let ui ∈ {0, 1}∗ be the string of all remaining digits, so that
(uivi)2 = kni + f(ni). By the choice of X, all vi are different.

It is claimed that the set of |X| pairs (u1, v1), . . . , (u|X|, v|X|) forms a fooling
set for the language of binary representations of Sk. Indeed, (uivi)2 = (kni +
f(ni)) ∈ Sk for i = 1, 2, . . . , |X|. On the other hand, for any i and j from
{1, 2, . . . , |X|}, such that i 6= j, at least one of the numbers (uivj)2 and (ujvi)2
is not in Sk. By choice of X, vi 6= vj . Without loss of generality, let (vi)2 < (vj)2.
For the sake of a contradiction, suppose that (ujvi)2 ∈ Sk, that is, (ujvi)2 =
km+ f(m) for some m ∈ N. On the one hand, (ujvi)2 < (ujvj)2 < (ujvi)2 + 2`,
because (ujvj)2 and (ujvi)2 differ only in ` lowest bits, and (vi)2 < (vj)2.
On the other hand, since km + f(m) = (ujvi)2 < (ujvj)2 = knj + f(nj) and
f is non-decreasing, one can conclude that m < nj and (ujvj)2 − (ujvi)2 =
(knj + f(nj))− (km+ f(m)) > f(nj)− f(m) > f(nj)− f(nj − 1) > 2`, because
nj − 1 > M and f(n + 1) − f(n) > 2` for n > M . Together these facts yield
2` > (ujvj)2 − (ujvi)2 > 2`, contradiction.

It has thus been proved that the language of binary representations of Sk.
has a fooling set of size 2`/2, and therefore every NFA recognizing this language
must have at least this many states. This contradicts the assumption that there
is a smaller NFA for this language. ut
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Example 13 (cf. Example 9). The language { anb2n | n > 1 } is not described by
any GF(2)-grammar, because the function f(n) = 2n is increasing and uniformly
superlinear.

5 A separating example and the hierarchy

In order to compare the expressive power of GF(2)-grammars to other grammar
families, it is essential to find a simple language which they could not represent,
but other kinds of grammars could. Most of the results presented later on are
based on the following language over the alphabet {a, b}.

L = { ba2·3
n−1 . . . ba17 ba5 ba bbb a3b a11b a35b . . . a4·3

n−1b | n > 0 }

Lemma 14. The language L is representable as L = L1 ∩ L2, where both L1

and L2 are described by unambiguous linear grammars.
Furthermore, their complements L1 and L2 are described by linear grammars,

and therefore so is the complement of L.

Proof (a sketch). This is a standard construction, inspired by a proof by Gins-
burg and Spanier [9]. Each string in L encodes two sequences of numbers: 1, 5,
17, . . . , 2 · 3n − 1 on the left, and 3, 11, 35, . . . , 4 · 3n − 1 on the right. The
language L1 ensures that for each i-th element m on the left-hand side, the i-th
element on the right-hand side must be 2m + 1; the language L2 similarly en-
sures that for each i-th element 2m − 1 on the right-hand side, the (i + 1)-th
element on the left-hand side must be 3m− 1, and also that the first element of
the left-hand-side sequence is 1.

Linear grammars for the complements of L1 and of L2 simply check that
there is at least one error in the above correspondence. ut

Lemma 15. Neither L nor its complement are described by any GF(2)-
grammars.

Proof. Indeed, the unary image of L is { a3n | n > 2 }, and the latter language is
not described by any GF(2)-grammar by Christol’s theorem. Since complemen-
tation is representable in GF(2)-grammars, there cannot be a grammar for the
complement of L either. ut

With this last example, the position of GF(2)-grammars in the hierarchy
of grammars with different sets of operations can be determined as follows.
The hierarchy in Figure 1 includes the following grammar families: ordinary
grammars or Chomsky’s context-free (union and concatenation: Ordinary);
unambiguous grammars (disjoint union, unambiguous concatenation: Unamb);
linear grammars (union, concatenation with symbols: Lin); unambiguous linear
grammars (disjoint union, concatenation with symbols: UnambLin); linear con-
junctive grammars (union, intersection, concatenation with symbols: LinConj);
conjunctive grammars (union, intersection, concatenation: Conj).

The families are separated by the following examples.
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LinConj

Ordinary

UnambUnambLin

Lin

GF(2)LinGF(2)

Conj

Fig. 1. The hierarchy of grammars: solid lines indicate proper inclusions, dashed
lines mark incomparable families (shown only for GF(2)-families).

– GF(2)-linear, but not ordinary (and thus not linear and not unambiguous):
{ a`bmcn | ` = m or m = n, but not both } (Example 2).

– GF(2), but not ordinary (and thus not unambiguous) and not linear conjunc-
tive (and thus neither linear nor GF(2)-linear): { a2n | n > 0 } (Example 3).

– Linear conjunctive but not GF(2) (and thus not GF(2)-linear): { anb2n | n >
1 } (Example 13).

– Linear (and also ordinary), but not GF(2) (and thus not GF(2)-linear): the
complement of L (Lemmata 14–15).

– Conjunctive, but not GF(2): the complement of L applies as well. Further-
more, non-containment is witnessed by the unary language { a3n | n > 0 },
which has a conjunctive grammar [12], but not a GF(2)-grammar (Corol-
lary 6).

– Unambiguous, but not GF(2)-linear: a language defined by an unambigu-
ous grammar, but not a linear conjunctive grammar, was constructed by
Okhotin [16, Lemma 4] using a method of Terrier [20].

The comparison between GF(2)-grammars and conjunctive grammars remains
incomplete, because no example of a language defined by a GF(2)-grammar,
but not by any conjunctive grammar, is known. The conjectured example is
{uv | u, v ∈ {a, b}∗, |u| = |v|, u and v differ in an odd number of positions } [2].
No way of constructing a conjunctive grammar for this language is known; how-
ever, no proof of this could be given due to the general lack of knowledge on
conjunctive grammars [15].
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6 Closure properties

Some closure properties of GF(2)-grammars are quite expected, and follow by
well-known arguments. Such is the closure under intersection with regular lan-
guages: the classical construction by Bar-Hillel et al. applies verbatim, because
it preserves multiplicities of parse trees. It makes sense to prove this result in
its most general form, for all mappings computed by injective nondeterministic
finite tranducers (NFT). First, it is established under the following technical
assumption.

Lemma 16. Let G be a GF(2)-grammar over an alphabet Σ, and let a mapping
T : Σ∗ → 2Ω

∗
be computed by an injective NFT, which has the following property:

for every pair (w, x) ∈ Σ∗×Ω∗, there is at most one computation on w that emits
x. Then the language T (L(G)) is defined by a GF(2)-grammar G′. Furthermore,
if G is linear, then so is G′.

Proof (a sketch). The construction is standard, and the assumptions of injectiv-
ity and of the uniqueness of a computation ensure that, whenever the original
grammar G defines w and x ∈ T (w), the number of parse trees of x in the con-
structed grammar G′ is the same as the number of parse trees of w in G. For
that reason, L(G′) = T (L(G)), as desired. ut

Using this result, the desired closure property is proved as follows.

Theorem 17. Let a mapping T : Σ∗ → 2Ω
∗

be computed by an injective NFT.
Then the language families defined by GF(2)-grammars and GF(2)-linear gram-
mars are closed under T .

Proof (a sketch). Since the definition of NFT is symmetric with respect to its in-
put and its output, there is a single-valued NFT implementing a partial mapping
T ′ : Ω∗ → Σ∗, with w = T ′(x) if and only if x ∈ T (w). As proved by Eilenberg [6,
p. 186] a single-valued NFT can be transformed to an unambiguous NFT, that
is, with at most one accepting computation on every input. Swapping the input
and the output again yields an NFT implementing the original mapping T that
satisfies the conditions of Lemma 16. Therefore, by Lemma 16, both language
families are closed under T . ut

Corollary 18. The families defined by GF(2) and GF(2)-linear grammars are
closed under intersection with regular languages, as well as under union with
regular languages.

For all other standard operations on languages, GF(2)-grammars demon-
strate non-closure.

Theorem 19. The family of languages described by GF(2)-grammars is not
closed under (a) union, (b) intersection, (c) concatenation, (d) Kleene star, (e)
left- and right-quotient with a two-element set, and (f) non-erasing homomor-
phisms. The same results hold for GF(2)-linear grammars.
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Intuitively, all these operations essentially use conjunction or disjunction in
their definitions, and those Boolean operations are not expressible in GF(2).

Proof. The proofs of all cases are based on the languages L, L1 and L2 given in
Lemmata 14–15. By Lemma 14, L1 and L2 are described by unambiguous linear
grammars, and hence both these languages and their complements are described
by GF(2)-linear grammars.

(a) Both L1 and L2 are described by GF(2)-linear grammars, but their union
L1 ∪ L2 = L is not.

(b) Similarly, L1 ∩ L2 = L, where L1 and L2 are described by GF(2)-
grammars, but L is not.

(c) Let c be a new symbol. By the assumptions, {ε, c} and cL14L2 = cL1∪L2

are described by some GF(2)-grammars. Their concatenation is the following
language.

({ε, c} · (cL1 ∪ L2)) = L2 ∪ c(L1 ∪ L2) ∪ ccL1

If it is represented by some GF(2)-grammar, then, by Theorem 17, so is its
image under a finite transduction T defined by T (cw) = w for all w ∈ Σ∗,
and undefined on all other strings. This image is the language L, which is not
described by any GF(2) grammar, contradiction.

(d) By Corollary 18, (cccL14ccL24c)∗ ∩ (c3{a, b}∗) = (cccL1 ∪ ccL2 ∪ c)∗ ∩
(c3 {a, b}∗) = c3(L1 ∪ L2 ∪ {ε}) = c3(L ∪ {ε}) = c3L. Simillarly to (c), this
language is not described by any GF(2)-grammar.

(e) For symmetry reasons it suffices to prove only the left-quotient result.
Denote K\M = { v | ∃u ∈ K : uv ∈ M }. Indeed, ({ε, c}\(cL14L2))4cL1 =
({ε, c}\(cL1 ∪ L2))4cL1 = (cL1 ∪ L2 ∪ L1 ∪∅)4cL1 = (L1 ∪ L2) = L.

(f) h(cL14dL2) = h(cL1 ∪ dL2) = c(L1 ∪ L2) = cL, where the images of
the letters under homomorphism h : {a, b, c, d} → {a, b, c}∗ are h(a) = a, h(b) =
b, h(c) = h(d) = c respectively. ut

In Table 1, the closure properties of GF(2)-grammars and of their linear sub-
class are summarized and compared with other grammar families. The operations
featured in the table are: intersection with regular languages (∩Reg), union (∪),
intersection (∩), complementation (∼), concatenation (·), Kleene star (∗), GF(2)-
concatenation (�), GF(2)-inverse (−1), quotient with regular languages (/Reg),
homomorphisms (h), injective homomorphisms (hinj), inverse homomorphisms
(h−1). All closure properties of GF(2) and GF(2)-linear grammars are proved
in this paper. Non-closure of the classical families under GF(2)-concatenation
and GF(2)-inverse is known [2]; most likely, this non-closure extends to linear
conjunctive grammars and could be proved by the method of Terrier [20].

7 Hardest language

Some formal properties of GF(2)-grammars are the same as for ordinary gram-
mars and are established by the same argument. One such property is Greibach’s
hardest language theorem [10], which has the same statement in the case of
GF(2)-grammars.
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∩Reg ∪ ∩ ∼ · ∗ � −1 /Reg h hinj h−1

GF(2)-linear (4, lin·) + − − + − − − − − − + +

Unambiguous (],unamb·) + − − − − − − − − − + +
Ordinary (∪, ·) + + − − + + − − + + + +
GF(2) (4,�) + − − + − − + + − − + +

Linear conjunctive (∪,∩, lin·) + + + + − − ? ? − − + +
Conjunctive (∪,∩, ·) + + + ? + + ? ? − − + +

Table 1. Closure properties of grammars under classical and under GF(2)-
operations.

Theorem 20. There exist an alphabet Σ0 and a GF(2)-grammar G0 =
(Σ0, N0, R0, S0), such that for every GF(2)-grammar over any alphabet Σ, there
exists a homomorphism h : Σ → Σ∗0 , such that a non-empty string w over Σ is
in L(G) if and only if h(w) is in L(G0).

The proof requires a Greibach normal form.

Definition 21. A GF(2)-grammar is said to be in Greibach normal form
(GNF), if all its rules are of the form A → a � B1 � . . . � B`, with a ∈ Σ,
` > 0 and B1, . . . , B` ∈ N .

Proposition 22. For every GF(2)-grammar G with ε /∈ L(G), there exists a
GF(2)-grammar in the Greibach normal form that describes the same language.

It is known that the transformation to the Greibach normal form preserves
the number of parse trees [7, Lemma 4]. Taking this modulo two yields Propo-
sition 22.

Proof (of Theorem 20). Greibach’s classical construction for ordinary grammars
applies here, because it is known to preserve multiplicities: for a non-empty
string w ∈ Σ∗, its image h(w) has the same number of parse trees in G0 as w
has in G [10, p. 307]. Therefore, the number of trees modulo 2 is preserved as
well. ut

8 Conclusion

The new negative results for GF(2)-grammars were sufficient to establish their
position in the hierarchy and their basic closure properties. However, these meth-
ods are still quite limited, and the existence of GF(2)-grammars remains un-
known even for some very simple languages. For instance, can the language
{ anbncn | n > 0 } be defined by these grammars? Exactly which subsets of a∗b∗

can be defined? In particular, what is the exact class of functions f , for which
the language Lf = { anbf(n) | n > 0 } can be defined—is it any larger than the
class in Theorem 10?
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