
Formal languages over GF(2)I

Ekaterina Bakinovaa, Artem Basharinb, Igor Batmanovc, Konstantin Lyubortd, Alexander Okhotine,
Elizaveta Sazhnevae

aGymnasium №1, ul. Abelmana, 15, Kovrov 601900, Vladimir region, Russia
bSchool №179, Bolshaya Dmitrovka, 5/6 building 7, Moscow 125009, Russia

cMoscow Institute of Physics and Technology, Russia
dSt. Petersburg Academic University, ul. Khlopina, 8, Saint Petersburg 194021, Russia

eSt. Petersburg State University, 7/9 Universitetskaya nab., Saint Petersburg 199034, Russia

Abstract

Variants of the union and concatenation operations on formal languages are investigated, in which Boolean
logic in the definitions (that is, conjunction and disjunction) is replaced with the operations in the two-
element field GF(2) (conjunction and exclusive OR). Union is thus replaced with symmetric difference,
whereas concatenation gives rise to a new GF(2)-concatenation operation, which is notable for being invert-
ible. All operations preserve regularity, and for a pair of languages recognized by an m-state and an n-state
DFA, their GF(2)-concatenation is recognized by a DFA with m · 2n states, and this number of states is
in the worst case necessary. Similarly, the state complexity of GF(2)-inverse is 2n + 1. Next, a new class
of formal grammars based on GF(2)-operations is defined, and it is shown to have the same computational
complexity as ordinary grammars with union and concatenation: in particular, simple parsing in time O(n3),
fast parsing in the time of matrix multiplication, and parsing in NC2.

Key words: Formal languages, finite fields, finite automata, formal grammars, state complexity,
computational complexity, parsing.

Contents

1 Introduction 2

2 GF(2)-operations and their basic properties 3

3 GF(2)-operations on regular languages 5

4 Formal grammars with GF(2)-operations 10

5 Normal form and parsing for GF(2)-grammars 13

6 Complexity of GF(2)-grammars 15

7 Conclusion 20

IA preliminary version of this paper [2] was presented at the 12th International Computer Science Symposium in Russia
(LATA 2018) held in Tel Aviv, Israel, on April 9–11, 2018.

Email addresses: katya-bakinova@mail.ru (Ekaterina Bakinova), artemvit@bk.ru (Artem Basharin),
igorbat99@gmail.com (Igor Batmanov), lyubortk@gmail.com (Konstantin Lyubort), alexander.okhotin@spbu.ru (Alexander
Okhotin), sazhneva-eliza@ya.ru (Elizaveta Sazhneva)

Preprint submitted to Elsevier November 10, 2018

1. Introduction

The classical operations on formal languages are union and concatenation; both regular expressions and
formal grammars are based on these operations. Union and concatenation are defined in terms of Boolean
logic: the union K∪L is the set of all strings w with w ∈ K or w ∈ L, which is a disjunction of two conditions;
similarly, the membership of a string w in a concatenation K ·L is a disjunction, over all partitions w = uv,
of the conjunction of u ∈ K and v ∈ L.

The purpose of this paper is to investigate a pair of related operations on languages defined using the
exclusive OR instead of the disjunction, so that Boolean logic is effectively replaced with the two-element
field GF(2). Thus, the union operation turns into the symmetric difference, whereas concatenation gives rise
to a new GF(2)-concatenation operation. A GF(2)-concatenation of K and L, denoted by K � L, consists
of all strings w that have an odd number of partitions w = uv, with u ∈ K and v ∈ L: this is the result of
applying the exclusive OR operation to these conjunctions.

The interest in these operations is motivated by the fact that they generalize the two unambiguous
operations on formal languages: the disjoint union and the unambiguous concatenation [6], that is, concate-
nation K · L with the restriction that each string w ∈ K · L has a unique partition w = uv with u ∈ K and
v ∈ L. Indeed, as long as two languages are disjoint, their symmetric difference equals their union, and if
the concatenation of K and L is unambiguous, then their GF(2)-concatenation K � L coincides with the
standard concatenation K · L. The unambiguous operations are important, for instance, for being the only
operations expressible in unambiguous grammars, as well as in their practically valuable subclasses with
efficient parsing algorithms, such as the LL and the LR grammars. Accordingly, any model featuring the
GF(2)-operations has the corresponding unambiguous model as a special case. Thus, the base unambiguous
model has two different extensions: one with classical operations (union and concatenation), and the other
with GF(2)-operations (symmetric difference and GF(2)-concatenation).

The two proposed operations can be equally obtained by regarding K and L as formal power series in
non-commuting variables with coefficients in GF(2); then, their sum is K4L and their product is K � L.
However, the authors’ intention is to treat them as operations on standard formal languages, and to carry
out a usual language-theoretic study of these operations.

The basic algebraic properties of GF(2)-operations, listed in Section 2, follow from the known facts
on formal power series: formal languages form a ring with the symmetric difference as addition and with
GF(2)-concatenation as multiplication. Furthermore, every language L containing the empty string is an
invertible element, that is, there exists another language L−1 with L� L−1 = L−1 � L = {ε}. This gives a
somewhat unexpected property of inverting the concatenation, and accordingly presents another operation
to study: the GF(2)-inverse, f(L) = L−1.

In Section 3, it is proved that the family of regular languages is closed under both GF(2)-concatenation
and GF(2)-inverse. This is established by direct constructions on finite automata: for every DFA with
m states and another DFA with n states, there is a DFA with m · 2n states that recognizes their GF(2)-
concatenation It is proved that this construction is in the worst case optimal with respect to the number of
states. For every n-state DFA, its GF(2)-inverse is recognized by a DFA with 2n + 1 states, and this upper
bound is also proved to be exact.

The next subject is a new family of formal grammars based on GF(2)-operations. The semantics of ordi-
nary grammars with union and concatenation (Chomsky’s “context-free”) are defined by least solutions of
language equations [8], owing to the monotonicity of both union and concatenation. Since GF(2)-operations
are not monotone, such a definition is not applicable to the desired new class of grammars. In Section 4,
the new class of GF(2)-grammars is defined by imposing a restriction on a grammar, so that each string
may have only finitely many parses. Under this restriction, the system of language equations always has a
solution, making the definition both mathematically correct and intuitively clear.

The basic parsing algorithm for GF(2)-grammars is defined in Section 5. First, it is proved that ev-
ery such grammar can be transformed to an analogue of the Chomsky normal form. For a grammar in
the normal form, there are simple variants of the Cocke–Kasami–Younger and Valiant’s [28] parsing al-
gorithms. The latter algorithm has subcubic complexity and is particularly efficient over GF(2), because
matrix multiplication over GF(2) is easier than in the Boolean semiring.

2

In the last Section 6, the computational complexity of the new class of GF(2)-grammars is investigated.
The NC2 parallel parsing algorithm by Brent and Goldschlager [3] and by Rytter [24] is also adapted to
handle GF(2)-grammars, thus establishing the same complexity upper bound for these grammars as for the
ordinary grammars with union and concatenation. The uniform membership problem for GF(2)-grammars
is shown to be P-complete, whereas for the subclass of linear GF(2)-grammars, this problem naturally turns
out to be ⊕L-complete.

2. GF(2)-operations and their basic properties

Two binary operations on formal languages are considered. the symmetric difference K4L and the
GF(2)-concatenation K �L. Unlike the union, the symmetric difference excludes the strings that belong to
both languages at once.

K ∪ L = {w | w is in K or in L }
K4L = {w | w is in K or in L, but not in both }

The GF(2)-concatenation is defined by replacing the condition on the existence of a partition in the classical
concatenation with the condition that the number of partitions must be odd.

K · L = {w | the number of partitions w = uv, with u ∈ K and v ∈ L, is non-zero }
K � L = {w | the number of partitions w = uv, with u ∈ K and v ∈ L, is odd }

By definition, K � L ⊆ K · L. Furthermore, if the concatenation K · L is known to be unambiguous, that
is, if every string w ∈ K · L has a unique representation as w = uv with u ∈ K and v ∈ L, then these two
languages coincide: K�L = K ·L. Thus, all interesting examples of GF(2)-concatenation involve ambiguity.

Example 1. {ε, a} � {ε, a} = {ε, aa}. The string a is missing from the GF(2)-concatenation, because its
two partitions cancel each other.

Example 2. a∗� a∗ = (aa)∗. Indeed, each string an has n+ 1 partitions, and thus all strings of odd length
are cancelled out.

Elementary algebraic properties of GF(2)-concatenation and symmetric difference on formal languages
can be inferred from the general results on the representation of languages as formal power series with
coefficients from an arbitrary semiring, using GF(2) as the semiring of coefficients. These properties are
summarized below, and could be established directly, without referring to formal power series.

Proposition 1. For every alphabet Σ, the set of all languages 2Σ∗ over this alphabet, forms a ring, with
symmetric difference as sum and with GF(2)-concatenation as product. Namely, the following propeties hold.

1. Symmetric difference is associative: K4(L4M) = (K4L)4M .

2. Symmetric difference is commutative: K4L = L4K
3. Symmetric difference has zero, which is the empty set: L4∅ = L.

4. Under symmetric difference, every language L has an opposite language −L, which is the same language:
L4L = ∅.

5. GF(2)-concatenation is associative: K � (L�M) = (K � L)�M .

6. GF(2)-concatenation has an identity, which is a singleton empty string: L� {ε} = {ε} � L = L.

7. GF(2)-concatenation is left- and right-distributive over symmetric difference: K � (L4M) = (K �
L)4(K �M), (K4L)�M = (K �M)4(L�M).

A further interesting property is that some languages have inverses with respect to GF(2)-concatenation,
that is, the product of two non-identity languages is the identity.

3

Example 3. {ε, ab} � (ab)∗ = {ε}. The empty string has a unique partition as ε · ε. Every string (ab)n,
with n > 1, can be represented both as ε · (ab)n and as ab · (ab)n−1, and these two representations cancel each
other.

There is no difference between left- and right-inverses: if L has both a left-inverse K, with K �L = {ε},
and a right-inverse M , with L � M = {ε}, then K and M must coincide (this property holds in every
monoid).

No language L with ε /∈ L may have an inverse, because in this case ε /∈ K � L for every language K.
On the other hand, every language containing the empty string has a GF(2)-inverse.

Theorem 1. For every language L ⊆ Σ∗ with ε ∈ L, there exists a unique language L−1 ⊆ Σ∗ that satisfies
L� L−1 = L−1 � L = {ε}.

Although a direct proof can be given, this result is a direct adaptation of a known fact on formal power
series—namely, that it is invertible if and only if its constant term is invertible in the semiring of coefficients.

Example 4. {ε, ab}−1 = (ab)∗ and, accordingly, ((ab)∗)−1 = {ε, ab}.

Example 5. (a∗b∗)−1 = {ε, a, b, ba}.

The inverse can be equivalently represented as the following adaptation of the Kleene star.

Definition 1. For every language L, its GF(2)-star, denoted by L~, is the set of all strings w that have an
odd number of representations of the form w = w1w2 . . . wk, with k > 0 and w1, . . . , wk ∈ L \ {ε}.

The membership of a string in the GF(2)-star of a language is expressed through GF(2)-concatenation
as follows.

Lemma 1. For every language L, a string w is in L~ if and only if the number of representations w = uv,
with u ∈ L \ {ε} and v ∈ L~, is odd.

Proof. Let nw be the number of representations of w as w = w1w2 . . . wk, where k > 0, w1, w2, . . . , wk 6= ε
and w1, w2, . . . , wk ∈ L. For each ` ∈ {1, . . . , k}, let nw,` be the number of such representations satisfying

|w1| = `. Then, nw =
∑|w|

`=1 nw,`. By Definition 1, w ∈ L~ if and only if nw is odd, which holds if and only
if the number of odd summands nw,` is odd. Each nw,` is odd if and only if the string w is representable
as w = uv, with |u| = `, u ∈ L and v ∈ L~. Therefore, the string w is in L~ if and only if it has an odd
number of representations w = uv, with u ∈ L, u 6= ε and v ∈ L~.

Exactly the same representation holds for the GF(2)-inverse.

Lemma 2. For every language L with ε ∈ L, a non-empty string w is in L−1 if and only if the number of
representations w = uv, with u ∈ L \ {ε} and v ∈ L−1, is odd.

Proof. The condition that the number of representations w = uv, where u ∈ L \ {ε} and v ∈ L−1, is odd,
means exactly that the string w belongs to the GF(2)-concatenation (L4{ε})�L−1. The latter expression
is transformed as follows.

(L4{ε})� L−1 = (L� L−1)4L−1 = {ε}4L−1

Since w 6= ε, the membership of w in this language is equivalent to w ∈ L−1.

Theorem 2. For every language L ⊆ Σ∗ with ε ∈ L, the inverse L−1 equals the star L~.

Proof. It is claimed that if the sets L−1 and L~ coincide on all strings of length less than n, then they also
coincide on all strings of length n. This is true for strings of length zero, as ε ∈ L−1 and ε ∈ L~.

Let w be a string of length n. Then, by Lemma 2, w ∈ L−1 if and only if w has an odd number of
representations as w = uv, with u ∈ L, u 6= ε and v ∈ L−1. Since |v| < |w|, by the induction hypothesis,
v ∈ L−1 if and only if v ∈ L~. Therefore, w has an odd number of representations w = uv, where u ∈ L,
u 6= ε and v ∈ L~, and, by Lemma 1, w ∈ L~. It follows that w ∈ L−1 is equivalent to w ∈ L~.

4

3. GF(2)-operations on regular languages

For every operation on languages, the first basic question is whether it preserves the class of regular
languages. If it does, the next question is its descriptional complexity, that is, how large an automaton is
necessary to represent this operation on finite automata of a given size. The closure property holds both for
GF(2)-concatenation and for GF(2)-inverse, and deterministic finite automata (DFA) implementing these
operations, which are optimal with respect to the number of states, are constructed below.

Theorem 3. Let A = (Σ, P, p0, η, E) and B = (Σ, Q, q0, δ, F) be two DFA. Then the language L(A)�L(B)
is recognized by a DFA C with the set of states P × 2Q.

Proof. The automaton C should accept an input string w if and only if the number of partitions w = uv,
with u accepted by A and v accepted by B, is odd. The automaton C uses states of the form (p, S), with
p ∈ P and S ⊆ Q. In the first component p, it simulates the computation of A on the same input string,
while S is the set of all states reached an odd number of times in the ongoing simulated computations of B.

The initial state of C depends on whetherA accepts the empty string. If it does, then a single computation
of B is started from the beginning, and the initial state of C is (p0, {q0}). Otherwise, if A does not accept
ε, then nothing is started yet, and the initial state of C shall be (p0,∅).

When C reads the next input symbol a ∈ Σ in a state (p, S), the simulated A proceeds to the state
p′ = η(p, a). Each ongoing computation of B, currently in a state q ∈ S, proceeds to the next state
q′ = δ(q, a). However, if the same state q′ is reached in this way from two different states in S, then, from
this point on, these two computations are indistinguishable, and both either accept or reject; this means that
they contribute an even number of partitions satisfying the definition of GF(2)-concatenation, and both can
be cancelled out. The only states of B that have to be remembered are those reachable by an odd number
of computation paths. For this reason, the states of simulated computations of B at the next step are

S′ = { q′ | the number of states q ∈ S, with q′ = δ(q, a), is odd }

Furthermore, if A is in an accepting state, this indicates a possible partition of the input string at this point,
and a new computation of B on the remaining suffix beginning in the state q0 should be started. However,
if one of the ongoing computations of B is already in the state q0, then these two states cancel each other.
Overall, the transition of C by a symbol a in a state (p, S) is defined as follows.

π((p, S), a) =

{
(η(p, a), S′), if η(p, a) /∈ E
(η(p, a), S′4{q0}), if η(p, a) ∈ E

When C finishes reading an input string w, it is in a state (p, S), where p is the state of A upon reading
the same string w, while S is the set of all such states q of B, that the number of partitions w = uv, with u
accepted by A, and with B finishing reading v in the state q, is odd. Accordingly, a state (p, S) is marked
as accepting, if S contains an odd number of accepting states of B.

F ′ =
{

(p, S)
∣∣ |S ∩ F | is odd

}
This completes the construction.

As shown in the next theorem, using all states in P × 2Q is necessary in the worst case.

Theorem 4. For every m,n > 3, there exist languages K and L over an alphabet {a, b}, recognized by an m-
state DFA and by an n-state DFA, respectively, for which every DFA recognizing their GF(2)-concatenation
K � L must have at least m · 2n states.

Proof. The witness languages are defined by the following automata. For K, this is an m-state DFA
A = (Σ, P, 0, η, E), with P = {0, . . . ,m− 1} and E = {m− 1}. It counts the number of symbols a modulo
m, ignoring all symbols b.

η(i, a) = i for all i ∈ P
η(i, b) = i+ 1 (mod m) for all i ∈ P

5

a a a a

...
0 1 m–2 m–1

b b

b
b b b

...
0 1 n–3 n–2

a a b

a

n–1

a,b

Figure 1: A pair of an m-state and an n-state DFA, for which the GF(2)-concatenation requires m · 2n states.

The n-state DFA recognizing L is B = (Σ, Q, 0, δ, F), with Q = {0, . . . , n − 1} and E = {n − 1}, and with
the following transitions.

δ(i, a) =

{
i+ 1, if 0 6 i 6 n− 2

n− 1, if i = n− 1

δ(i, b) =

i, if 0 6 i 6 n− 3

n− 1, if i = n− 2

n− 2, if i = n− 1

Let C = (Σ, Q′, (0,∅), δ′, F ′), with Q′ = { (p, S) | p ∈ P, S ⊆ Q }, be the automaton defined in Theorem 3,
which recognizes the GF(2)-concatenation of L(A) and L(B). Its set of accepting states is F ′ = { (p, S) |
p ∈ P, n− 1 ∈ S }.

It is claimed that every state (p, S) ∈ Q′ is reachable from the initial state (0,∅) by some string, and
that every two states of C are distinguished by a string that is accepted from one of them and not from the
other. This shall confirm that every DFA recognizing the same language must have at least m · 2n states.

The reachability is first proved for states of the following form.

Claim 1. Every state of the form (0, S), with S ⊆ Q and 0 /∈ S, is reachable, that is, there is a string
u0,S ∈ Σ∗, with δ′((0,∅), u0,S) = (0, S).

Let S = {i1, . . . , ik}, with 1 6 i1 < . . . < ik 6 n− 1. It is claimed that the state (0, S) is reached by the
string u0,S = bmaik−ik−1bm . . . ai2−i1bmai1 .

The computation is made of substrings that operate as follows. First, for each state (0, S), with S 6= ∅
and 0, n − 2, n − 1 /∈ S, by reading the string bm, the automaton moves from the state (0, S) to the state
(0, {0} ∪ S), because, according to the transition function of B, none of the states in S are affected, while
the first component, by the transitions of A, makes a full circle and finally contributes the state 0 to S.
Second, for each state (0, S) and for each number j > 0, with maxS + j 6 n− 1, by reading the string aj ,
the automaton moves from the state (0, S) to the state (0, { i+ j | i ∈ S }).

In this way, in the course of the computation on u0,S , all states in S are added one by one.

Claim 2. Each state (p, S), with p 6= 0 and 0 /∈ S, is reachable by a string up,S ∈ Σ∗, with δ′((0,∅), up,S) =
(p, S).

There are the following cases to consider.

Case I: either both n − 2 and n − 1 are in S, or none of them are. If p 6= m − 1, then the state (p, S) is
reachable from (0, S) by the string bp. If p = m− 1, then (m− 1, S) is reachable from (0, S) by b2m−1.

Case II: one of n− 2 and n− 1 is in S, and the other is not.

If p is even and p 6= m− 1, then (p, S) is reachable from (0, S) by bp.
6

If p is odd and p 6= m−1, then (p, S) is reachable by bp from a state (0, T), where T = S4{n−2, n−1}.
If p = m− 1, then (p, S) is reachable by b2m−1 from a state (0, T), where T = S4{n− 2, n− 1}.

All states with S containing the zero are reached analogously.

Claim 3. Every state (p, S), with 0 ∈ S, is reachable by a string up,S ∈ Σ∗.

Case I: either both n − 2 and n − 1 are in S, or none of them are. If p 6= m − 1, then the state (p, S) is
reachable from (n − 2, S \ {0}) by the string bp+2. If p = m − 1, then (m − 1, S) is reachable from
(n− 2, S \ {0}) by b1.

Case II: one of n− 2 and n− 1 is in S, and the other is not.

If p is even and p 6= m− 1, then (p, S) is reachable from (0, S \ {0}) by bp+2.

If p is odd and p 6= m− 1, then (p, S) is reachable by bp+2 from a state (0, T), where T = S4{0, n−
2, n− 1}.
If p = m− 1, then (p, S) is reachable by b1 from a state (0, T), where T = S4{0, n− 2, n− 1}.

This completes the reachability argument.

Claim 4. All states are pairwise distinguishable, that is, for any two distinct states (p, S) and (p′, S′) in
Q′, there is a string w(p,S),(p′,S′) that is accepted from one of these states and rejected from the other.

Case I: p = p′ and S 6= S′.

Let i = maxS4S′. Then the string an−1−i is accepted from exactly one of the states (p, S) and (p, S′).
To be more precise, if the number of elements greater than i in S is even, then an−1−i is accepted
from (p, S) and rejected from (p, S′), and if the number of elements of S exceeding i is odd, then the
same string is rejected from (p, S) and accepted from (p, S′).

Case II: p 6= m− 1, p′ = m− 1.

Upon reading the string an−1 from the state (p, S), the automaton enters either the rejecting state
(p,∅), or the accepting state (p, {n−1}), and if it reads any further symbols a, it remains in the same
state. If the same string an−1 is read from the state (m− 1, S′), the automaton may enter either the
rejecting state (m− 1, {0, 1, . . . , n− 2}) or the accepting state (m− 1, {0, 1, . . . , n− 2, n− 1}), and by
reading any further symbols a the automaton alternates between these two states. Therefore, one of
the strings an−1 and an distinguishes between these two states.

Case III: p < p′ < m− 1.

Then, by the string bm−1−p′ , the automaton moves from (p, S) to some state (j, T), with j < m − 1,
whereas from the state (p′, S′) it goes to some state (m− 1, T ′). As proved in the previous case, these
two states have a distinguishing string.

This establishes the precise state complexity of GF(2)-concatenation for DFA as m · 2n. To compare,
the state complexity of the classical concatenation is m2n − 2n−1, as proved by Maslov [16], see also Yu
et al. [29]. For the base operation, the umambiguous concatenation, Daley et al. [6] proved that its state
complexity is m2n−1 − 2n−2.

The number of states in an NFA representing GF(2)-concatenation of two NFA remains open: the only
available construction is by determinizing the given automata and then applying Theorem 3, which yields
an upper bound of 2m · 22n

states. On the other hand, for the class of symmetric difference automata
(⊕FA), studied by van Zijl [30], an automaton for GF(2)-concatenation can be naturally obtained by a
series composition of two automata, using m+ n states.

The closure of the regular languages under the GF(2)-inverse and the GF(2)-star, is established by the
following construction.

7

a b a,b

0 1 2
b a

a

a,b

{0,2}{1 }

q0'

{0 }a

b

a,b

a {2 }

a,b

Figure 2: Example of construction according to Theorem 5: (left) the original DFA; (right) the resulting DFA.

Theorem 5. For every n-state DFA A = (Σ, Q, q0, δ, F), the language L(A)~ is recognized by a DFA C
with the set of states 2Q ∪ {q′0}.

Proof. The construction relies on the representation of the GF(2)-star according to Lemma 1. Let A =
(Σ, Q, q0, δ, F). The states of C are all subsets of Q and a new initial state q′0, and C = (Σ, 2Q∪{q′0}, q′0, δ′, F ′).

The automaton C should accept an input string w if and only if the number of partitions w = u1 . . . un,
with ui ∈ L(A), is odd. While considering different partitions of this form, C simulates multiple copies of
A, storing the set of their states in its own state S, with S ⊆ 2Q.

The automaton C initially invokes one copy of A that begins reading the input string w. Whenever the
computations of A being simulated visit accepting states, the automaton C may start a new computation of
A on the suffix of the input string beginning at the current position. All these computations are simulated
simultaneously, so that, after finishing reading the input string, the automaton could test whether the
number of successful computations is odd.

The transition in the state q′0 by each symbol a ∈ Σ produces a singleton state corresponding to a single
computation of A.

π(q′0, a) = {δ(q0, a)}

For every subset-state S, the transition by a ∈ Σ simulates all transitions from all states q ∈ S, and cancels
out all states reached an even number of times.

π(S, a) =

{
{ q | the number of states p with δ(p, a) = q is odd }, if |S ∩ F | is even

{ q | the number of states p with δ(p, a) = q is odd }4δ(q0, a), if |S ∩ F | is odd

The initial state q′0 is accepting, and a subset-state is accepting if it contains an odd number of accepting
states of A.

F ′ =
{
S
∣∣ |S ∩ F | is odd

}
∪ {q′0}

The correctness statement for the construction takes the following form. Let S be the state of C after
reading a string w. Then, S is the set of all states q ∈ Q, that the number of the following partitions
is odd: these are partitions of w into w = u1 . . . uk, where u1, . . . , uk are all non-empty, each ui, with
i ∈ {1, . . . , k − 1}, is accepted by A, while the computation of A on uk beginning in the state q0 finishes
in the state q. The statement is established by induction on the length of the string, a formal proof is
omitted.

Example 6 (continued from Example 5). The 3-state DFA in Figure 5(left) recognizes the language a∗b∗.
The DFA obtained for this automaton according to Theorem 5 is presented in Figure 5(right), and it recog-
nizes its GF(2)-inverse {ε, a, b, ba}.

This construction is optimal as well, and it is optimal even for the special case of GF(2)-inverses—that
is, for languages containing the empty string.

8

a
c

a
c

b b b
a
c

b b

...

c a
0 1 2 n–2

n–1
a

c

a

c

Figure 3: An n-state DFA, for which the GF(2)-inverse requires 2n + 1 states.

Theorem 6. For every n > 3, there exist a language L over an alphabet Σ = {a, b, c}, with ε ∈ L, which is
recognized by a DFA with n states, whereas every DFA recognizing its GF(2)-inverse L−1 must have at least
2n + 1 states.

Proof. The witness language is given by an n-state DFA A = (Σ, Q, 0, δ, F) with the set of states Q = {0, . . .,
n− 1}, where 0 is the initial state, and the accepting states are 0 and n− 1. The transitions in each state
i ∈ Q are defined as follows.

δ(a, i) = min(i+ 1, n− 1)

δ(b, i) = i

δ(c, i) = max(i− 1, 0)

The automaton is illustrated in Figure 3.
Let C = (Σ, 2Q ∪ {q′0}, q′0, δ′, F ′) be the DFA constructed for A by Theorem 5. It is claimed that every

subset S ⊆ Q is reachable from the initial state q′0 by some string, and that for every two states of C, there
exists a string that is accepted from one of them and not from the other. This shall confirm that every DFA
recognizing the same language must have at least 2n + 1 states.

Claim 5. Every state is reachable, that is, for each state S ⊆ Q there is a string uS ∈ Σ∗, with δ′(q′0, uS) = S.

Case I: 0 /∈ S and n− 1 ∈ S. Let S = {i1, i2, . . . , ik, n− 1}, with i1 > 0. Then the state S is reached by a
string uS = an−1(ba)(baca)ik−ik−1−1(ba) . . . (baca)i2−i1−1ba(baca)i1−1

Case II: 0 ∈ S and n − 1 ∈ S. Then the state S = {0, i1, . . . , n − 1} is reached from the state S \ {0} =
{i1, . . . n − 1} by b, since δ′(T, b) =

⋃
i∈T δ

′(i, b) =
⋃

i∈T δ(i, b)4δ(0, b) = S. The state S \ {0} is
reachable by Case I.

Case III: maxS < n − 1. All states containing n − 1 have now been proved reachable, and it remains to
reach all states with a smaller maximum element. The proof is by induction on k = maxS. The base
case, k = n − 1, has been established above. For the induction step, if all states with the maximum
element k are reachable, then each state S = {i1, i2 . . . k − 1} with the maximum element k − 1 is
reached from T = {i1 + 1, i2 + 1 . . . k} by c.

For the pairwise distinguishability of states, first, there is a special case of distinguishing the initial state
from every subset-state.

Claim 6. The state q′0 is distinguishable from each state S ⊆ Q, that is, there is a string wq′0,S
that is

accepted from one of q′0, S and rejected from the other.

1. If S ⊆ {0, 1}, then b is accepted from q′0, but not from S, since δ′({0}, b) = ∅; δ′({0, 1}, b) = {1};
δ′({1}, b) = {1}; δ′(q′0, b) = {0}.

2. If S * {0, 1}, let i = maxS; it is known that i > 2. Then the string ci is accepted from S, but not from
q′0, as δ′(S, ci) = {0} and δ′(q′0, c

i) = ∅.

Claim 7. All subset-states are pairwise distinguishable, that is, for any two distinct states S, S′ ⊆ Q, there
is a string wS,S′ that is accepted from one of S, S′ and rejected from the other.

9

Sum Concatenation Star
Unambiguous (]) mn− 1 [14] (unamb·) m2n−1 − 2n−2 [6] (unamb∗) 3

82n + 1 [14]
Classical (∪) mn [16] (·) m2n − 2n−1 [16] (∗) 3

42n [16]
GF(2) (4) mn [4] (�) m · 2n (~/−1) 2n + 1

Table 1: State complexity of unambiguous, classical and GF(2)-variants of sum, concatenation and star.

Case I: ∅ and S. Since S 6= ∅, let i = maxS. Then the string ci is accepted from S, but not from ∅.

Case II: S, S′ 6= ∅, S 6= S′. Let i = maxS4S′, and assume, without loss of generality, that i ∈ S and
i /∈ S′. Then the string ci is accepted from S and rejected from S′.

The state complexity of unambiguous, classical and GF(2)-variants of the three main operations on
formal languages is compared in Table 1. All results refer to DFA.

For NFA, the GF(2)-star is representable using 22n

+ 1 states. On the other hand, for ⊕FA, the same
operation can be naturally represented using n+ 1 states.

Calculations carried out by the authors suggest that the GF(2)-inverse over the unary alphabet appar-
ently requires DFA with 2n−1 +1 states, with the worst-case examples producing DFA with period 2n−1−1.

4. Formal grammars with GF(2)-operations

In the ordinary kind of formal grammars, called “context-free grammars” in Chomsky’s tradition, the
available operations are union and concatenation. Other grammar families, such as linear grammars or
conjunctive grammars [18], differ from the ordinary grammars in the sets of operations allowed in the rules:
in linear grammars, the operations include concatenation with a single symbol on either side, as well as
union, whereas in conjunctive grammars, the operations are union, intersection and concatenation. This
paper initiates the study of a new model, the GF(2)-grammars, with the operations of symmetric difference
and GF(2)-concatenation.

One should note that none of the aforementioned grammar families involves any context dependencies,
all of them are in a certain sense “context-free”, and differ only in the set of allowed operations. Hence,
grammars with union and concatenation (those that Chomsky named “context-free”) shall be referred to
as ordinary grammars [20], to distinguish them from the GF(2)-grammars, which are defined in almost the
same way.

Definition 2. A GF(2)-grammar is a quadruple G = (Σ, N,R, S), in which:

• Σ is the alphabet of the language;

• N is the set of nonterminal symbols, each representing a syntactic category defined in the grammar,
that is, a property that each string may have or not have;

• every rule in R is of the form A→ X1� . . .�X`, with ` > 0 and X1, . . . X` ∈ Σ∪N , which represents
all strings that have an odd number of partitions into w1 . . . w`, with each wi representable as Xi;

• the initial symbol S ∈ N stands for the syntactic category of all well-formed sentences in the language.

A grammar is linear GF(2), if, in each rule, at most one of X1, . . . , X` is a nonterminal symbol.

Whenever there are multiple rules for some nonterminal symbol, there is an implicit exclusive OR con-
nective between them, similar to the implicit disjunction in ordinary grammars. Accordingly, these rules
can be denoted using the sum modulo 2 operator (⊕), so that two rules, A→ B � C and A→ D � E, can
be written down as A→ (B � C)⊕ (D � E).

10

The general plan is to define the language described by a grammar, so that it is a solution of the
corresponding system of language equations in variables N , where the sum modulo 2 operator is implemented
as the symmetric difference of languages. For each variable, the system has the following equation with this
variable on the left-hand side and an expression representing all its rules on the right-hand side.

A =
i

A→X1�...�X`∈R
X1 � . . .�X` (A ∈ N) (*)

For each Xi that is a symbol, Xi = a ∈ Σ, it denotes the singleton language {a}. This is the same kind of
system as for ordinary grammars [8], only the operations have changed.

However, changing the operations leads to certain complications: in particular, in some cases, this system
has no solutions. For instance, such is the system corresponding to the grammar with two rules, S → S�S
and S → ε. The general theory of weighted grammars with weights from a semiring—see, for instance, a
survey by Petre and Salomaa [22]—is not applicable here, because it relies upon certain monotonicity and
continuity conditions, which do not hold for coefficients in GF(2). The given example of a grammar has
no intuitive meaning either, and the natural solution is to eliminate these degenerate cases from the very
beginning. For this reason, the proposed definition imposes a restrition upon a grammar: the number of
parse trees for every string must be finite.

Definition 3. For each GF(2)-grammar G = (Σ, N,R, S), let Ĝ = (Σ, N, R̂, S) be the corresponding ordi-

nary grammar with R̂ containing a rule A → X1 . . . X` for each rule A → X1 � . . . �X` in R. Assuming
that, for all A ∈ N and w ∈ Σ∗, the number of parse trees of w as A in Ĝ is finite, the language LG(A) is

defined as the set of all strings w with an odd number of parse trees as A in Ĝ. If the finiteness condition
does not hold, then G is considered ill-formed.

The languages thus defined satisfy the system of language equations, and hence implement the desired
definition.

Proposition 2. Let G = (Σ, N,R, S) be a GF(2)-grammar that satisfies the condition in Definition 3. Then
the substitution A = LG(A) for all A ∈ N is a solution of the system (*).

The following example of a grammar is given to illustrate their intuitive meaning and their formal
definition.

Example 7. The GF(2)-grammar given below describes the language {ab, abbb}, because the GF(2)-
concatenation in the rule for S contains two strings with a unique partition (ab, abbb), and excludes the
string abb with two partitions.

S → A�B
A→ a ⊕ ab

B → b ⊕ bb

Another way of seeing this is to observe that the corresponding ordinary grammar given below defines four
parse trees: one for ab, two for abb and one for abbb, shown in Figure 4. The two parse trees for abb cancel
each other.

S → AB

A→ a | ab
B → b | bb

What kind of languages can be described by GF(2)-grammars? First of all, if an unambiguous grammar
is transcribed as a GF(2)-grammar, it still defines the same language, because each string has either a unique
parse tree or none at all. On the other hand, taking any ambiguous grammar and reinterpreting it as a
GF(2)-grammar leads to some simple non-trivial examples of these grammars.

11

a

A

b b

S

B

a

A

b b

S

B

a

A

b

S

B

b b b

S

B

a

A

Figure 4: Four parse trees in the grammar in Example 7.

Example 8. The linear GF(2)-grammar given below describes the language { a`bmcn | ` = m or m =
n, but not both }.

S → A⊕ C
A→ aA⊕B
B → bBc⊕ ε
C → Cc⊕D
D → aDb⊕ ε

Here, as well as in all later examples, the GF(2)-concatenation with fixed strings u and v is denoted simply
by uLv, owing to the fact that {u} · L · {v} = {u} � L� {v} for every language L.

This language is not representable by any ordinary grammar, which can be proved by a standard argument
based on Ogden’s lemma. Although it is natural to expect that the language { a`bmcn | ` = m or m = n },
which is described by a similarly defined ordinary grammar, cannot be defined by any GF(2)-grammar, it
is unclear whether this is indeed true, and how such statements could be proved.

Example 9. The following linear GF(2)-grammar describes the language { ambn |
(
m+n
n

)
is odd }.

S → aS ⊕ Sb⊕ ab

Indeed, the number of parse trees of each string ambn in the grammar S → aS | Sb | ab is
(
m+n
n

)
.

The next example is a language related to the standard example {ww | w ∈ {a, b}∗ }. The comple-
ment of the latter language to the set of even-length strings is the language {uv | u, v ∈ {a, b}∗, |u| =
|v|, u and v differ in at least one position }, and an inherently ambiguous ordinary grammar describing this
language is known. Once that grammar is reformulated as a GF(2)-grammar, the following language is
obtained.

Example 10. The following GF(2)-grammar describes the language {uv | u, v ∈ {a, b}∗, |u| =
|v|, u and v differ in an odd number of positions }.

S → (A�B)⊕ (B �A)

A→ aAa⊕ aAb⊕ bAa⊕ bAb⊕ a
B → aBa⊕ aBb⊕ bBa⊕ bBb⊕ b

In particular, it is not known whether conjunctive grammars can describe any languages of this kind [18,
Prob. 6].

The next example of a GF(2)-grammar describes a non-regular language over a unary alphabet. The
first example of a language equation for a non-regular unary language was given by Leiss [15], who used an
equation of the form X = ϕ(X), with ϕ using the operations of concatenation and complementation. For

12

conjunctive grammars, that is, for language equations with union, intersection and concatenation, the first
example of a representable unary language was discovered by Jeż [10], and, based on his ideas, some fairly
sophisticated unary languages were represented later [11, 12, 21].

For GF(2)-grammars, at the moment, there is only a small example of a grammar for the language
{ a2n | n > 0 }. The grammar is based on an interesting fact that, over the unary alphabet, the GF(2)-
square L� L doubles the length of each string.

Lemma 3. Let L ⊆ a∗ be a unary language. Then L� L = { a2n | an ∈ L }.

Proof. Indeed, for a string a`, where ` is not twice the length of any string in L, each partition a` = ai ·a`−i,
with ai, a`−i ∈ L, has a symmetric partition a` = a`−i · ai, and therefore the number of such partitions is
always even. On the other hand, a string a2n, with an ∈ L, has one more partition a2n = an · an, which is
symmetric to itself, making the total number of partitions odd.

Example 11. The following grammar describes the language { a2n | n > 0 }.

S → (S � S)⊕ a

Since the square S � S doubles the length of each string, this equation is equivalent to the following one.

S = { a2n | an ∈ S, n > 1 } ∪ {a}

Its unique solution is, obviously, the desired language.
Alternatively, one can verify that the grammar describes the desired language directly by the definition:

the number of parse trees of a string a` in the ordinary grammar S → SS | a is the (` − 1)-th Catalan
number, which is odd if and only if ` is a power of 2.

The latter example indicates that GF(2)-grammars are not in all respects symmetric to ordinary gram-
mars with concatenation and disjunction: whereas ordinary grammars over a unary alphabet can define only
regular languages, GF(2)-grammars are strictly more powerful in this case.

It follows from Christol’s [5] theorem that a unary language L ⊆ a∗ is described by a unary GF(2)-
grammar if and only if it is a 2-automatic set, that is, the set of binary representations of the lengths of
strings in L is a regular language over {0, 1}. In particular, the language { a3n | n > 0 } is not described by
any GF(2)-grammar. This shows that, over a unary alphabet, the expressive power of GF(2)-grammars is
strictly between ordinary grammars and unambiguous conjunctive grammars [13].

5. Normal form and parsing for GF(2)-grammars

In order to develop parsing algorithms for GF(2)-grammars and to assess their computational complexity,
it is convenient to obtain a normal form for these grammars first. The following adaptation of the Chomsky
normal form shall be established.

Theorem 7. Every GF(2)-grammar can be effectively transformed in polynomial time to a GF(2)-grammar
that describes the same language, and has all rules of the form A→ B �C, with B,C ∈ N , or A→ a, with
a ∈ Σ.

Notably, every grammar in the normal form satisfies the condition in Definition 3, because the height of
parse trees is bounded by the length of the string.

The transformation follows the standard procedure. First, long rules are cut into rules with at most two
symbols on the right-hand side, Next, null rules of the form A → ε are eliminated. The next step is the
elimination of unit rules of the form A → B, with B ∈ N . Finally, all occurrences of terminal symbols on
the right-hand sides are moved to separate rules.

The elimination of null rules begins with determining all nonterminals that define the empty string.

13

Lemma 4. For every ordinary grammar G = (Σ, N,R, S) with finitely many parse trees of ε from each A ∈
N , the set ⊕-Nullable = {A | the number of parses of ε from A is odd } can be constructed in polynomial
time.

Sketch of a proof. Since the number of parse trees is finite, the set ⊕-Nullable is well-defined, and the
only question is how to construct it efficiently.

The method of constructing the set ⊕-Nullable of all nonterminals that have an odd number of parse
trees of ε is based on the following observation: as long as the number of parse trees of ε from A is finite, no
path in this tree may contain multiple copies of the same nonterminal symbol B. Indeed, if there is such a
cyclic segment in one of the paths, then this segment could be reduplicated, as in the pumping lemma, thus
obtaining infinitely many parse trees of ε. This implies that, for any two distinct nonterminals A and B, it
cannot be the case that B occurs in some parse tree of ε from A, and at the same time A occurs in some
parse tree of ε from B. This induces a partial order of presence in each other’s parse trees of ε on the set
of nonterminals, with A � B if there is a parse tree of ε from A that contains B.

In order to compute this partial order, one can begin with computing the classical set Nullable, which
consists of all nonterminals that have at least one parse tree of ε. Then, whenever there is a rule A→ θBθ′,
with θ, θ′ ∈ Nullable∗ and B ∈ N , one can infer that A � B. It remains to compute the transitive closure
of this relation.

Then, in order to determine the number of parse trees of ε from each nonterminal A, it is sufficient to
calculate it in this order, from lesser to greater elements.

Using this set, the null rules are removed by the standard construction, modified to use parity instead
of existence.

Lemma 5. For every GF(2) grammar G = (Σ, N,R, S), let G′ = (Σ, N,R′, S) be another GF(2) grammar
that contains a rule A→ X1� . . .�X`, if ` > 1 and the number of rules A→ θ0�X1� θ1� . . .�X`� θ` in
R, with each θi being a GF(2)-concatenation of zero or more nonterminals in ⊕-Nullable, is odd. Then,
in the new grammar, every A ∈ N defines the language LG′(A) = LG(A) \ {ε}.

Sketch of a proof. Let w be a non-empty string. For each parse tree of w from A in G, let A→ θ0 �X1 �
θ1� . . .�X`� θ` be the rule in its root, where X1, . . . , X` are all its children with non-empty substrings in
their subtrees, and θ0, . . . , θ` ∈ N∗. If at least one of θi is not in ⊕-Nullable, then there is an even number
of such trees, and they do not affect the total number of parse trees of w. If, θ0, . . . , θ` ∈ ⊕-Nullable∗,
then the number of these trees is given by the following expression, where n(u,X) denotes the number of
parse trees of u as X. ∑

w=w1...w`

∏̀
i=1

n(wi, Xi)

In the new grammar G′, the parity of n(wi, Xi) is preserved, and the rule A→ X1� . . .�X` defines all the
same parse trees of w.

There is also a similar “parity” version of the classical unit rules elimination.

Lemma 6. For every GF(2) grammar G = (Σ, N,R, S) with no rules of the form A → ε, let G′ =
(Σ, N,R′, S) be another GF(2) grammar that contains a rule A→ X1 � . . .�X`, with ` > 2 or X1 ∈ Σ, if
there is an odd number of chains of the form A → B1, B1 → B2, . . . , Bn−1 → Bn, Bn → X1 � . . . �X`.
Then, for every A ∈ N , LG′(A) = LG(A).

Sketch of a proof. All chains of this form are of bounded length, because the original grammar satisfies the
condition in Definition 3. Thus, the parity of this number is well-defined.

The parse trees in the new grammar are obtained by condensing all chains in parse trees of the original
grammar. Furthermore, the condition on the parity of the number of chains ensures that a condensed parse
tree exists in the new grammar if and only if the number of different expanded parse trees in the original
grammar is odd.

14

The proof of Theorem 7 follows through the three lemmata above.
With the normal form theorem established, an adaptation of the Cocke–Kasami–Younger algorithm

running in cubic time follows immediately. The fact that this algorithm can be employed to compute
weights over an arbitrary semiring is folklore, and for GF(2) it is stated as follows.

Let G = (Σ, N,R, S) be a GF(2)-grammar in the normal form. Given an input string w = a1 . . . an, the
algorithm constructs the following sets inductively on the length of substring.

Ti,j = {A ∈ N | ai+1 . . . aj ∈ LG(A) } (for 0 6 i < j 6 n)

For each one-symbol substring, the set is Tj−1,j = {A | A → aj ∈ R }, and for every longer substring it is
determined by the following expression.

Pi,j =

j−1i

k=i+1

Ti,k × Tk,j

Ti,j = {A | the number of rules A→ BC, with (B,C) ∈ Pi,j , is odd }

Overall, there are O(n2) elements in the table, each of them is calculated in time O(n), and thus the
algorithm works in time O(n3).

Using Valiant’s [28] algorithm, the same table Ti,j can be constructed in time O(nω), where O(nω) is an
upper bound on the number of operations needed to multiply a pair of n× n matrices in GF(2).

Theorem 8. Every language described by a GF(2)-grammar is in DTIME(nω).

In fact, practical algorithms for matrix multiplication over GF(2) are substantially faster than those for
Boolean matrix multiplication: for smaller matrices there is a particularly efficient implementation of the
Four Russians method [1], and for larger matrices one can apply Strassen’s algorithm directly in GF(2).
This makes the algorithm even more efficient than the parsing algorithms for ordinary grammars.

6. Complexity of GF(2)-grammars

In order to assess the practical value of GF(2)-grammars, it is important to know the computational
complexity of their main decision problems.

The first natural decision problem to be investigated is whether a given grammar satisfies the condition
on the finiteness of the number of parse trees.

Lemma 7. Let G = (Σ, N,R, S) be an ordinary grammar, in which every nonterminal symbol is used in
some parse tree. Then, a string with infinitely many parse trees exists if and only if there is a sequence of
rules A1 → η1A2θ1, A2 → η2A3θ2, . . . , Ak → ηkA1θk, for some k > 1, A1, . . . , Ak ∈ N , ηi, θi ∈ Nullable∗.

Proof. ⇐○ Assume that such a sequence exists. It is known that there exists a parse tree of some string w
containing A1. Then one can pump this parse tree by replacing A1 with a path of length k formed by this
sequence of rules, with subtrees deriving ε from each ηi and θi spawned off this path. The resulting larger
parse tree still describes the same string w, and repeating this procedure produces infinitely many parse
trees of w.
⇒○ Let w be a string with infinitely many parse trees. Then there exists a parse tree of height at least

(|w|+ 1) · (|N |+ 1). The longest path in this tree can be split into |w|+ 1 sections of length |N |+ 1 each.
Since there are |w|+1 sections in the path, and only |w| leaves labelled with symbols in the entire tree, there
is a section, in which no leaves are spawned off in either direction. The section itself is of length |N | + 1,
and therefore there is a repeated nonterminal symbol A in this section. The sequence of rules between the
two instances of A is as desired.

This characterization yields a polynomial-time algorithm for testing the condition in Definition 3 for a
given grammar.

15

Theorem 9. The problem of testing, for a given ordinary grammar G = (Σ, N,R, S), whether every string
has finitely many parses, is P-complete.

Proof. An algorithm for testing this condition works as folows. First, the set Nullable is constructed.
Then the condition in Lemma 7 is just a reachability problem in a graph. Each step can be carried out in
polynomial time.

The P-hardness of this problem is proved by the classical reduction from the Monotone Circuit Value
Problem by Golschlager [9]. A circuit with gates C0, . . . , Cn contains conjunction gates of the form Ci =
Cj ∧ Ck, with j, k < i, disjunction gates Ci = Cj ∨ Ck, with j, k < i, and constants Ci = 0 and Ci = 1.
In the reduction, the circuit is transformed to an ordinary grammar G = ({a}, {C0, . . . , Cn, S}, R, S), with
each gate represented by a nonterminal symbol that should define the empty string if and only if the gate
evaluates to 1. The grammar has a rule Ci → ε for constant 1, no rules for constant 0, a rule Ci → CjCk

for a conjunction gate, and two rules Ci → Cj | Ck for a disjunction gate. Finally, the rules for the initial
symbol are S → SS | Cn.

Now, if the circuit evaluates to 1, then LG(Cn) = {ε}, and there are infinitely many parse trees of ε, and
if the value of the circuit is 0, then LG(Cn) = ∅, and accordingly L(G) = ∅.

The next question concerns the complexity of the uniform membership problem, where both the string
and the grammar are given.

Theorem 10. The uniform membership problem for GF(2)-grammars, stated as “Given a GF(2) grammar
G and a string w, determine whether w is in L(G)”, is P-complete.

Sketch of a proof. The problem is solved in polynomial time by first transforming the given grammar to the
normal form and then applying the cubic-time parsing algorithm. For a grammar G, this can be implemented
in time |G|2 · |w|3.

The P-hardness is proved by another reduction from the Circuit Value Problem (CVP). This time,
let a circuit with gates C0, . . . , Cn have conjunction gates Ci = Cj ∧ Ck, with j, k < i, negation gates
Ci = ¬Cj , with j < i, and constants Ci = 0 and Ci = 1. In the corresponding GF(2)-grammar, each gate
is represented by a nonterminal symbol that should define ε if and only if the gate has value 1. Again,
constant 1 is represented by a rule Ci → ε, there are no rules for constant 0, a conjunction gate turns into
Ci → CjCk, whereas a negation gate has two rules, Ci → Cj ⊕ ε. The last gate Cn is the initial symbol of
the grammar.

The number of parse trees of ε at every next nonterminal symbol is at most the number at the previous
nonterminal symbol, squared. Accordingly, the total number of parse trees of ε is finite, and the grammar
is well-formed.

The system of language equations corresponding to the grammar directly expresses the desired Boolean
equations for the values in the gates. Therefore, it defines the empty string if and only if the circuit evaluates
to 1.

Thus, the complexity of the uniform membership problem for GF(2)-grammars is the same as for ordinary
grammars and for conjunctive grammars.

For the fixed membership problem, which is in NC2 for ordinary grammars and P-complete for conjunctive
grammars, GF(2)-grammars have it in NC2. This practically very important property is established by a
variant of the algorithm for ordinary grammars independently discovered by Brent and Goldschlager [3] and
by Rytter [24]. This algorithm requires more substantial changes than in the algorithms considered so far.
The original Brent–Goldschlager–Rytter (log n)2-time parallel parsing algorithm determines the existence
of parse trees, and while doing so, it may consider the same tree an unspecified number of times. In the
algorithm for GF(2)-grammars, which has to test that the number of trees is odd, it is imperative that
every subtree is considered exactly once. In a different context, Rossmanith and Rytter [23] ensured this
property in a similar algorithm for unambiguous grammars. The following algorithm does this without the
unambiguity assumption.

16

C

B

E

A

i m j

k

– (j - i) . .– (j - i)1
3

> – (j - i)2
3

lowest such

A

A

D

ii j jk 2
3

Figure 5: GF(2)-grammar parsing in NC2: (left) a parse tree represented by A(i, j); (centre) a parse tree with a hole represented
by A

D
(i, k, `, j); (right) a critical node in a parse tree.

Theorem 11. Let G = (Σ, N,R, S) be a GF(2)-grammar. Then there is a uniform family of circuits for
testing strings of length n for being in L(G), which are of depth O((log n)2) and contain O(n7) nodes.

Sketch of a proof. In order to test whether a GF(2)-grammar defines a given string w = a1 . . . an, one should
consider the corresponding ordinary grammar G = (Σ, N,R, S) and determine the number of parse trees of
w modulo 2. The circuit computes the values of predicates of two kinds.

• For each A ∈ N , a predicate A(i, j), with 0 6 i < j 6 n, refers to a substring ai+1 . . . aj . It determines
whether the number of parse trees of this substring from A is odd.

• For A,D ∈ N , a predicate A
D (i, k, `, j), with 0 6 i 6 k 6 ` 6 j 6 n, refers to a substring with a gap,

which is a pair (ai+1 . . . ak, a`+1 . . . aj). It determines whether the number of the following trees is
odd: these are parse trees with A as the root and with a D-subtree removed, where the leaves left of
the path from A to D are ai+1 . . . ak, and the leaves right of that path are a`+1 . . . aj .

These predicates, illustrated in Figure 5(left, centre) are the same as used by Brent and Goldschlager [3]
and by Rytter [24], except for being concerned with the parity rather than with the existence of parse trees.
In other words, the Brent–Goldschlager–Rytter algorithm computes an element of a Boolean semiring for
each substring and for each substring with a gap, whereas the new algorithm should compute an element of
GF(2). In fact, the Brent–Goldschlager–Rytter algorithm essentially uses the fact that 1 ∨ 1 = 1, while in
the case of GF(2), a more careful calculation is needed.

The proposed circuit shall compute each of these O(n4) values of the form A(i, j) and A
D (i, k, `, j) in a

gate of its own. Furthermore, O(n3) intermediate gates shall be used to compute each of these values from
the values of other predicates.

Each parse tree τ matching the definition of A(i, j) is known to have at least one subtree containing
more than 1

3 (j − i) and at most 2
3 (j − i) leaves. For GF(2)-parsing, it is essential to define a unique subtree

with this property. Thus, let a critical node be the deepest node containing more than 2
3 (j − i) leaves in its

subtree; let it be called E, and let B and C be its children. Let ak+1 . . . am be the leaves in the B-subtree,
and let the leaves in the C-subtree be am+1 . . . a`. Each subtree has at most 2

3 (j − i) leaves, and at least
one of them must have more than 1

3 (j − i) leaves; the case when the C-subtree is larger is illustrated in
Figure 5(right).

Then the subtree τ can be split into two subtrees corresponding to B(k,m) and C(m, `), and a subtree
with a hole corresponding to A

E (i, k, `, j). The total number of parse trees of ai+1 . . . aj from A that can be
split with this particular placement of E, B and C is the product of these three numbers, and hence, A(i, j)

17

A

i j

C

B

E

s m k t

D

A

i j

C

B

E

s mk t

D

Figure 6: A critical node on the path from the root to the hole: (left) when the path continues to the left subtree, (right) when
the path continues to the right subtree.

is determined by the following formula.

A(i, j) =
∑

E→BC∈R
k,m,`: i6k<m<`6j

`−k> 2
3 (j−i)

1
3 (j−i)<max(m−k,`−m)6 2

3 (j−i)

A

E
(i, k, `, j) ·B(k,m) · C(m, `)

Each A(i, j) is a sum of O(n3) values, for different rules and different k, `,m. Modulo two, this can be
computed by a circuit with O(n3) gates of depth logO(n3) = O(log n). Since there are O(n2) different gates
A(i, j), they are computed in O(n5) gates.

If τ is a parse tree with a hole corresponding to the definition of A
D (i, k, `, j), then it contains a subtree

with more than 1
3 (k − i + j − `) and at most 2

3 (k − i + j − `) leaves as well. Depending on the position of
the hole D relative to this subtree—that is, whether the hole is in the subtree, right of the subtree or left of
the subtree—there are several cases to consider.

If D is in the subtree, then let E be the parent node of this subtree, let E → BC be the rule applied in
it, and assume that the next node on the path to D is C, as illustrated in Figure 6(left). Then the E-subtree
contains more than 2

3 (k − i+ j − `) leaves, whereas the C-subtree contains more than 1
3 (k − i+ j − `) and

at most 2
3 (k − i+ j − `) leaves. This is represented by the following formula.∑

E→BC∈R
s,m,t: i6s<m6k, `6t6j
k−s+t−`> 2

3 (k−i+j−`)
1
3 (k−s+t−`)<k−m+t−`6 2

3 (k−s+t−`)

A

E
(i, s, t, j) ·B(s,m) · C

D
(m, k, `, t)

The case when the next node on the path to D is B, as in Figure 6(right), is handled symmetrically.∑
E→BC∈R

s,m,t: i6s6k, `6m<t6j
k−s+t−`> 2

3 (k−i+j−`)
1
3 (k−s+t−`)<k−s+m−`6 2

3 (k−s+t−`)

A

E
(i, s, t, j) · B

D
(s, k, `,m) · C(m, t)

Another case is when the subtree containing more than 1
3 (k − i + j − `) and at most 2

3 (k − i + j − `)
leaves is to the left or to the right of the path from A to D. Then there exists a uniquely determined node

18

A

i js m t

B
C

D

k

E

A

i js m t

B
C

D

k

E

Figure 7: A critical node off the path from the root to the hole: (left) to the left of the path, (right) to the right of the path.

E on this path, with two descendants, B and C, one of which continues the path to D, whereas the other
contains more than 2

3 (k− i+ j − `) leaves. Assume that the large subtree is the B-subtree, as illustrated in
Figure 7(left). The next formula represents this case.∑

E→BC∈R
s,m,t: i6s<m6k, `6t6j

m−s> 2
3 (k−i+j−`)

A

E
(i, s, t, j) ·B(s,m) · C

D
(m, k, `, t)

In this case, the B-subtree may contain almost all leaves; the partition into more or less equal parts is then
ensured by the formula defining B(s,m).

For the case when the C-subtree contains more leaves, the formula is defined symmetrically and is
illustrated in Figure 7(right). ∑

E→BC∈R
s,m,t: i6s<m6k, `6t6j

t−m> 2
3 (k−i+j−`)

A

E
(i, s, t, j) · B

D
(s, k, `,m) · C(m, t)

The total number of parse trees with a hole corresponding to the definition of A
D (i, k, `, j) is a sum of

the four above formulae. Each of them is a sum of O(n3) values, over all rules and all k, `,m. Modulo two,
this is computed by a circuit with O(n3) gates of depth O(log n). Since there are O(n4) gates to compute
by these formulae, these parts of the circuit contain O(n7).

The last complexity question concerns linear GF(2) grammars, which have all rules of the form A→ uBv
or A → w, with B ∈ N and u, v, w ∈ Σ∗. Whereas ordinary linear grammars with the union operation
are known to have an NL-complete uniform membership problem [27], the same problem for linear GF(2)-
grammars is—by all means, predictably—complete for the complexity class ⊕L of all problems decided by
a nondeterministic logarithmic-space Turing machine that accepts by having an odd number of accepting
paths.

Theorem 12. The uniform membership problem for linear GF(2)-grammars is ⊕L-complete. Furthermore,
there exists a linear GF(2)-grammar that describes an ⊕L-complete language.

Sketch of a proof. The uniform membership problem for linear GF(2)-grammars is solved in ⊕L by attempt-
ing to parse a given string using two pointers, choosing each rule nondeterministically, under the model of
parity nondeterminism.

19

fixed membership uniform
time space class

Unambiguous linear (], lin·) O(n2) O((log n)2) in UL in UL
Linear (∪, lin·) O(n2) O((log n)2) NL-complete [27] NL-complete [27]
Linear GF(2) (4, lin·) O(n2) O((log n)2) ⊕L-complete ⊕L-complete
Unambiguous (],unamb·) O(n2) O((log n)2) in NC2 [23] P-complete
Ordinary (∪, ·) O(nω) [28] O((log n)2) in NC2 [3, 24] P-complete [9]
GF(2) (4,�) O(nω) O((logn)2) in NC2 P-complete
Conjunctive (∪,∩, ·) O(nω) [19] O(n) [18] P-complete [18] P-complete [18]

Table 2: Complexity of grammars with different operations.

The “hardest” linear GF(2)-grammar is based on the problem of testing whether the number of s-t-
paths in a given directed graph is odd; this problem is ⊕L-complete, see Damm [7]. A grammar for the
yes-instances of this problem can reuse the classical construction by Sudborough [27]: the encoding of graphs
remains the same, and the union operation in the grammar is replaced with the symmetric difference.

The complexity of grammar families is compared in Table 2.
It would be important to know whether the emptiness problem for GF(2)-grammars is decidable. How-

ever, the equivalence problem for the unambiguous grammars reduces to this problem, and whether it is
decidable is a major and long-standing open problem in formal language theory: two related problems in-
clude the equivalence problem for LR grammars [26] and the equivalence between an unambiguous grammar
and a regular language [25]: both problems are decidable, which was established by remarkably non-trivial
constructions. On the other hand, if the emptiness of GF(2)-grammars is undecidable, proving that would
require new methods.

7. Conclusion

Although formal languages can be generalized to formal power series over any semiring, only two semirings
correspond to formal languages as such, without multiplicities: these are the Boolean semiring and the
GF(2) field. The former is the classical case, whereas the latter kind of formal languages have been
investigated in this paper. This initial study has confirmed that language operations defined over GF(2)
give rise to models that share some of the general appeal of the classical models of formal language theory,
yet their properties are sufficiently different to warrant further study of these new operations.

An important question left open for GF(2)-grammars is developing a method for proving that some
languages are not described by any such grammar. At the moment, the only remaining tool is Christol’s
theorem [5] for formal power series, which is applicable only to languages over a unary alphabet. Perhaps for
linear GF(2)-grammars, which are a special case of linear conjunctive grammars [17], finding such a method
could be easier.

Acknowledgements

This work was supported by the Russian Science Foundation, project 18-11-00100.

References

[1] M. Albrecht, G. Bard, W. Hart, “Algorithm 898: Efficient multiplication of dense matrices over GF(2)”, ACM Transactions
on Mathematical Software, 37:1 (2010), article 9.

[2] E. Bakinova, A. Basharin, I. Batmanov, K. Lyubort, A. Okhotin, E. Sazhneva, “Formal languages over GF(2)”, Language
and Automata Theory and Applications (LATA 2018, Bar-Ilan near Tel Aviv, Israel, 9–11 April 2018), LNCS 10792,
68–79.

20

[3] R. P. Brent, L. M. Goldschlager, “A parallel algorithm for context-free parsing”, Australian Computer Science Commu-
nications, 6:7 (1984), 7.1–7.10.

[4] J. A. Brzozowski, “Quotient complexity of regular languages”, Journal of Automata, Languages and Combinatorics,
15:1/2 (2010), 71–89.

[5] G. Christol, “Ensembles presque periodiques k-reconnaissables”, Theoretical Computer Science, 9 (1979), 141–145.
[6] M. Daley, M. Domaratzki, K. Salomaa, “Orthogonal concatenation: Language equations and state complexity”, Journal

of Universal Computer Science, 16:5 (2010), 653-675.
[7] C. Damm, “Problems complete for ⊕L”, Information Processing Letters, 36 (1990), 247–250.
[8] S. Ginsburg, H. G. Rice, “Two families of languages related to ALGOL”, Journal of the ACM, 9 (1962), 350–371.
[9] L. M. Goldschlager, “The monotone and planar circuit value problems are log space complete for P”, SIGACT News, 9:2

(1977), 25–29.
[10] A. Jeż, “Conjunctive grammars can generate non-regular unary languages”, International Journal of Foundations of

Computer Science, 19:3 (2008), 597–615.
[11] A. Jeż, A. Okhotin, “Conjunctive grammars over a unary alphabet: undecidability and unbounded growth”, Theory of

Computing Systems, 46:1 (2010), 27–58.
[12] A. Jeż, A. Okhotin, “Complexity of equations over sets of natural numbers”, Theory of Computing Systems, 48:2 (2011),

319–342.
[13] A. Jeż, A. Okhotin, “Unambiguous conjunctive grammars over a one-symbol alphabet”, Theoretical Computer Science,

665 (2017), 13–39.
[14] G. Jirásková, A. Okhotin, “State complexity of unambiguous operations on deterministic finite automata”, Descriptional

Complexity of Formal Systems (DCFS 2018, Halifax, Canada, 25–27 July 2018), LNCS 10952, to appear.
[15] E. L. Leiss, “Unrestricted complementation in language equations over a one-letter alphabet”, Theoretical Computer

Science, 132 (1994), 71–93.
[16] A. N. Maslov, “Estimates of the number of states of finite automata”, Soviet Mathematics Doklady, 11 (1970), 1373–1375.
[17] A. Okhotin, “On the equivalence of linear conjunctive grammars to trellis automata”, RAIRO Informatique Théorique et

Applications, 38:1 (2004), 69–88.
[18] A. Okhotin, “Conjunctive and Boolean grammars: the true general case of the context-free grammars”, Computer Science

Review, 9 (2013), 27–59.
[19] A. Okhotin, “Parsing by matrix multiplication generalized to Boolean grammars”, Theoretical Computer Science, 516

(2014), 101–120.
[20] A. Okhotin, “Underlying principles and recurring ideas of formal grammars”, Language and Automata Theory and Ap-

plications (LATA 2018, Bar-Ilan near Tel Aviv, Israel, 9–11 April 2018), LNCS 10792, 36–59.
[21] A. Okhotin, P. Rondogiannis, “On the expressive power of univariate equations over sets of natural numbers”, Information

and Computation, 212 (2012), 1–14.
[22] I. Petre, A. Salomaa, “Algebraic systems and pushdown automata”, in: Droste, Kuich, Vogler (Eds.), Handbook of

Weighted Automata, Springer, 2009, 257–289.
[23] P. Rossmanith, W. Rytter, “Observation on log(n) time parallel recognition of unambiguous cfl’s”, Information Processing

Letters, 44:5 (1992), 267–272.
[24] W. Rytter, “On the recognition of context-free languages”, Fundamentals of Computation Theory (FCT 1985, Cottbus,

Germany), LNCS 208, 315–322.
[25] A. L. Semenov, “Algorithmic problems for power series and for context-free grammars”, Doklady Akademii Nauk SSSR,

212 (1973), 50–52.
[26] G. Sénizergues, “L(A) = L(B)? decidability results from complete formal systems”, Theoretical Computer Science,

251:1–2 (2001), 1–166.
[27] I. H. Sudborough, “A note on tape-bounded complexity classes and linear context-free languages”, Journal of the ACM,

22:4 (1975), 499–500.
[28] L. G. Valiant, “General context-free recognition in less than cubic time”, Journal of Computer and System Sciences, 10:2

(1975), 308–314.
[29] S. Yu, Q. Zhuang, K. Salomaa, “The state complexity of some basic operations on regular languages”, Theoretical Computer

Science, 125 (1994), 315–328.
[30] L. van Zijl, “On binary ⊕-NFAs and succinct descriptions of regular languages”, Theoretical Computer Science, 328:1–2

(2004), 161–170.

21

