
Theoretical Computer Science 296 (2003) 167–177
www.elsevier.com/locate/tcs

Finding the most vital node of a shortest path�

Enrico Nardellia;b , Guido Proiettia;b;∗ , Peter Widmayerc
aDipartimento di Informatica, Universit�a di L’Aquila, Via Vetoio, 67010 L’Aquila, Italy
bIstituto di Analisi dei Sistemi ed Informatica “A. Ruberti”, CNR, Viale Manzoni 30,

00185 Roma, Italy
cInstitut f-ur Theoretische Informatik, ETH Zentrum, CLW C 2, Clausiusstrasse 49,

8092 Z-urich, Switzerland

Abstract

In an undirected, 2-node connected graph G = (V; E) with positive real edge lengths, the
distance between any two nodes r and s is the length of a shortest path between r and s in G.
The removal of a node and its incident edges from G may increase the distance from r to s. A
most vital node of a given shortest path from r to s is a node (other than r and s) whose removal
from G results in the largest increase of the distance from r to s. In the past, the problem of
0nding a most vital node of a given shortest path has been studied because of its implications
in network management, where it is important to know in advance which component failure will
a2ect network e3ciency the most. In this paper, we show that this problem can be solved in
O(m+n log n) time and O(m) space, where m and n denote the number of edges and the number
of nodes in G.
c© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Network survivability; Shortest path; Node vitality; Mechanism design

1. Introduction

The computational infrastructure throughout society is becoming increasingly large
and complex. Networks of workstations are vulnerable to attack and failure, and it is

� This work has been partially supported by the Research Training Network contract No.
HPRN-CT-1999-00104 funded by the European Union, by the CNR-Agenzia 2000 Program, under Grants
No. CNRC00CAB8 and CNRG003EF8, and by the Research Project REAL-WINE, partially funded by the
Italian Ministry of Education, University and Research.

∗ Corresponding author.
E-mail addresses: nardelli@di.univaq.it (E. Nardelli), proietti@di.univaq.it (G. Proietti),

widmayer@inf.ethz.ch (P. Widmayer).

0304-3975/03/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(02)00438 -3

168 E. Nardelli et al. / Theoretical Computer Science 296 (2003) 167–177

generally recognized that the survivability of our computing systems is a critical issue.
We are interested in a particular type of survivability: How is a communication network
a2ected by the failure of a component? In this paper, we consider the e2ect that a node
failure will have on a shortest path between two nodes. Our scenario assumes that each
message is routed along a shortest path in a communication graph from its source to
its destination. When a node on that path fails, we need to replace the old route by
a new one, preferably by a shortest path in the graph that does not contain the failed
node. Let us call this new route a replacement (shortest) path; it will in general be
longer than the path it replaces, but it certainly will never be shorter. From a network
management point of view, it is desirable to know for a shortest path ahead of time
which node failure will result in the longest replacement path. Such a node is called a
most vital node, because its failure degrades the transmission from the source to the
destination most strongly.
The problem of 0nding a most vital node of a shortest path has been de0ned and

motivated by Corley and Sha [3]. More precisely, they considered the more general
problem of 0nding the k most vital nodes of a shortest path, that is the k nodes whose
removal will increase the distance between the source and the destination node the
most, and they gave an exponential algorithm for solving the problem. For the case
k=1, an e3cient implementation of their algorithm requires O(mn + n2 log n) time,
where m and n denote the number of edges and the number of nodes in the underlying
graph. Note that this is not better than the trivial bound that we get by recomputing
from scratch the replacement shortest path for every node along the given shortest path.
Later on, Bar-Noy et al. [2] proved that, for arbitrary k, the problem is strongly NP-
hard. Finally, Venema et al. [14] studied the problem for k=1 in a parallel computing
environment, providing a polynomial algorithm.
In a related scenario, nodes are reliable, but edges can fail. The problem of 0nding

a most vital edge on a shortest path has been studied extensively in the past: We look
for an edge whose failure leads to the longest replacement path [1–3]. Now, naturally
a replacement path is just a path avoiding the failed edge. Let us assume that the
source and destination nodes lie in a 2-edge connected component of the given graph;
otherwise, a most vital edge is just a bridge between these nodes, and that is easy to
0nd. The fastest algorithm to compute most vital edges on a pointer machine runs in
O(m+n log n) time and O(m) space [7]; a recent paper [6] rediscovered this algorithm,
in the mechanism design framework. On a RAM, there is an algorithm that solves the
problem in O(m
(m; n)) time and O(m) space [9], where
(m; n) denotes the functional
inverse of the Ackermann function de0ned in [13]. Notice that with the same time and
space complexity, it is also possible to solve an interesting variant of the problem, in
which the vitality of an edge e=(u; v) is measured with respect to the length of a
shortest detour (i.e., a path not using e) from u to the destination node [8].
In this paper, we show that the problem of 0nding a most vital node for a shortest

path in a 2-node connected, undirected and positively weighted graph can be solved
on a pointer machine in O(m + n log n) time and O(m) space. The e3ciency of our
algorithm is based on two considerations. First, we make use of speci0c structural prop-
erties of replacement paths in the computation. This is realized by means of a priority
queue that stores certain distance values for certain nodes. Unfortunately, the priority

E. Nardelli et al. / Theoretical Computer Science 296 (2003) 167–177 169

queue contains both distance values that would lead to an incorrect result if they ever
would be used and the desired distance values leading to the correct result. The reason
for this mix is algorithmic performance: We have no way of e3ciently distinguishing
between both, but we make sure that the algorithm never uses the undesired values.
Second, we perform this computation incrementally as we visit the nodes along the
shortest path.
The paper is organized as follows: In Section 2, we de0ne the problem formally and

give the required basic de0nitions. In Section 3, we present the structural properties of
replacement paths, along with our algorithm. In Section 4, we show how to explicitly
compute all the replacement shortest paths, without any additional space and time
overhead. Finally, Section 4 discusses modi0cations and further applications, and lists
some open problems.

2. Basic de�nitions

Let G=(V; E) be an undirected graph, where V is the set of nodes and E⊆V ×V
is the set of edges. Let n and m denote the number of nodes and the number of
edges, respectively, and, for each e∈E, let w(e) be a positive real length. A graph
H=(V (H); E(H)) is called a subgraph of G if V (H)⊆V and E(H)⊆E. If V (H)=V
then H is called a spanning subgraph of G.
A simple path (or a path for short) in G is a subgraph P with V (P)={v0; v1; : : : ; vk |vi

�=vj for i �=j} and E(P)={(vi; vi+1)|06i¡k}, also denoted as P(v0; vk)=〈v0; : : : ; vk〉.
Path P(v0; vk) is said to go from v0 to vk or, alternatively, to be between v0 and vk . Its
length is the sum of the lengths of the path edges, and will be denoted as |P(v0; vk)|.
A graph G is connected if, for any two nodes u; v∈V , there exists a path in G going
from u to v. A connected acyclic spanning subgraph of G is called a spanning tree
of G. Let G − v denote the graph obtained by removing from G the node v and its
incident edges. A graph G is 2-node connected if for any v∈V , G − v is connected.
A path between two nodes r and s is shortest in G if it has minimum length among

all the paths in G between r and s. In this case, we denote the path by PG(r; s),
and its length, also known as the distance in G between r and s, by dG(r; s). For a
distinguished node r∈V , called the source, and all the nodes v∈V\{r}, a single-source
shortest paths tree (SPT) SG(r) in G is a spanning tree of G rooted in r and formed
by the union of shortest paths, with one shortest path from r to v for each v∈V\{r}.
Let PG−v(r; s) be a shortest path between r and s in G − v, named a replace-

ment shortest path for v, and let dG−v(r; s) denote its length. The most vital node
(MVN) problem with respect to PG(r; s) asks for 0nding a node v∗∈V\{r; s} such
that dG−v∗(r; s)¿dG−v(r; s), for any v∈V\{r; s}.

3. An e�cient solution of the MVN problem

Let PG(r; s)=〈v0; v1; : : : ; vk〉 be a shortest path between r=v0 and s=vk in G. First
of all, notice that a node (other than r and s) whose removal increases the distance

170 E. Nardelli et al. / Theoretical Computer Science 296 (2003) 167–177

Fig. 1. Node vi is removed from G: SG(r) is partitioned into a set of subtrees, with node sets Ui , Oi and
Di .

between r and s must belong to the node set {v1; : : : ; vk−1}. Therefore, in the following,
we will consider only the removal of the nodes along the path.

3.1. The structural properties of replacement shortest paths

In this section, we present the structural properties of replacement shortest paths that
will form the basis for the e3ciency of our algorithm.
Let SG(r) denote a SPT in G rooted at r and containing PG(r; s), and let vi; 16i6k−

1, be a node on PG(r; s). When node vi and its incident edges are removed from G,
SG(r) is partitioned into a set of subtrees, that we classify as follows (see Fig. 1):

1. The subtree of SG(r) containing the parent vi−1 of vi; we call the nodes of this
subtree the upwards nodes of vi, and we denote them as Ui.

2. The subtree of SG(r) containing the child vi+1 of vi; we call the nodes of this
subtree the downwards nodes of vi, and we denote them as Di.

3. All the remaining subtrees of SG(r); we call the nodes of the union of all these
subtrees the outwards nodes of vi, and we denote them as Oi.

In the rest of the paper, we will make use of the following properties, that hold for
i; j=1; : : : ; k − 1 and j �= i:

(P1) Ui ∪ Oi ∪Di=V\{vi};
(P2) Ui ;Oi and Di are pairwise disjoint;

(P3) Ui ⊂ Ui+1;

(P4) Di+1 ⊂ Di;

(P5) Oi ∩ Oj=∅:

E. Nardelli et al. / Theoretical Computer Science 296 (2003) 167–177 171

We start by observing that for nodes in Ui, the shortest path to r does not contain
vi. This immediately implies the following:

Lemma 1. For each node u∈Ui, dG(r; u)=dG−vi(r; u).

On the other hand, for nodes in Di, we have that the distance to s does not change
when vi is removed.

Lemma 2. For each node u∈Di, dG(s; u)=dG−vi(s; u).

Proof. Suppose, for the sake of contradiction, that dG(s; u) �=dG−vi(s; u). Let SG(s) be
a SPT in G rooted in s containing PG(r; s). From dG(s; u) �=dG−vi(s; u), it follows that
every shortest path in G between s and u, in particular PG(s; u) in SG(s), contains vi.
Therefore, PG(s; u) has to contain its parent vi+1 in SG(s). Hence, the edge ei=(vi; vi+1)
belongs to PG(s; u), and since subpaths of shortest paths are shortest paths, we have
that

dG(vi+1; u) = w(ei) + dG(vi; u)¿ dG(vi; u):

On the other hand, by the fact that u∈Di, we have that PG(r; u) in SG(r) contains
vi and vi+1. Hence, since subpaths of shortest paths are shortest paths, we have that

dG(vi; u) = w(ei) + dG(vi+1; u)¿ dG(vi+1; u);

that is, we have a contradiction.

Let E(Ui∪Oi ;Di) ⊂ E be the cut induced by Di in G − vi, i.e., the set of edges
of G − vi with one end node in Ui∪Oi and the other one in Di. In the following, an
edge f=(x; y)∈E(Ui∪Oi ;Di) will be considered as having node y in Di. Edges in
E(Ui∪Oi ;Di) will be named the crossing edges associated with vi. Since any replace-
ment shortest path for node vi must use a crossing edge, the length of the path can be
expressed as follows:

dG−vi(r; s) = min
f=(x;y)∈E(Ui∪Oi ;Di)

{dG−vi(r; x) + w(f) + dG−vi(y; s)}: (1)

This immediately suggests an algorithm to solve the MVN problem, but unfortunately
we do not know how to compute all the dG−vi(r; x) distances su3ciently fast, since
this might require the computation, for each node vi on PG(r; s), of the SPT rooted in
r in G−vi. Therefore, let us look at replacement shortest paths more closely. In a path
in G− vi from r to s, let us call the path node y∈Di closest to r the entry node (into
Di) of the path. We can prove that, to minimize (1), not all the distances in G − vi
between r and nodes in Ui∪Oi need to be computed:

Lemma 3. Any replacement shortest path for node vi can be expressed as a concate-
nation of PG−vi−Di(r; x), edge (x; y) and PG(y; s), where y is the entry node into Di,
PG−vi−Di(r; x) is a shortest path from r to x in G− vi−Di, and PG(y; s) is a shortest
path from y to s in G.

172 E. Nardelli et al. / Theoretical Computer Science 296 (2003) 167–177

Proof. Since r is not contained in Di, but s is, there is a 0rst node on the path traced
from r towards s that belongs to Di. Call that node y, and call its predecessor on
the path x. This proves the 0rst and second part of the claim. Part three is due to
Lemma 2.

3.2. Computing components of distances

Lemma 3 allows us to compute replacement shortest paths as follows. First, we com-
pute in G a SPT rooted in s. This gives us all distances dG−vi(y; s) for y∈Di ; i=1; : : : ;
k − 1. Second, we compute all paths PG−vi−Di(r; x) from r to x∈Ui∪Oi ; i=1; : : : ;
k − 1. This is described in more detail in the following paragraph. Third, we compose
these distance components by inspecting all crossing edges as we go along the nodes
vi; i=1; : : : ; k − 1. This is described in more detail in Section 3.3.
For x∈Ui, from Lemma 1 we have dG−vi−Di(r; x)=dG(r; x), and therefore the SPT

SG(r) gives us all these values. The remaining more interesting task is the computation
of dG−vi−Di(r; x) for x∈Oi. We propose to do this as follows, making use of SG(r).
When node vi; 16i6k − 1, is removed, we consider the subtree of SG(r) induced by
Ui – which is of course a SPT rooted in r of the subgraph of G induced by the node
set Ui. Then we compute the distance from r to all the nodes in Oi in the subgraph of
G induced by Ui∪Oi. We do this by applying Dijkstra’s algorithm [4] in the following
way to the nodes in Oi, starting from the precomputed distances for Ui. Let E(Ui ;Oi)
be the subset of edges in E having one end node in Ui and the other one in Oi, let
E(Ui ; x) be the subset of edges in E(Ui ;Oi) having one end node in Ui and the other
one in x∈Oi, and let E(Oi ;Oi) be the subset of edges in E having both end nodes in
Oi. We create an initially empty heap Hi, inserting into it all the nodes x∈Oi, with
key

k(x) =

{
min

f=(u;x)∈E(Ui ;x)
{dG−vi(r; u) + w(f)} if E(Ui ; x) �= ∅;

+∞ otherwise:
(2)

Afterwards, we extract the minimum k(x) from Hi, corresponding to dG−vi−Di(r; x).
Then, we update the keys of adjacent nodes still appearing in Hi, by making use of
edges in E(Oi ;Oi), exactly as in Dijkstra’s algorithm. The algorithm iterates until Hi

is empty.
This algorithm has an e3cient implementation, as expressed in the following lemma:

Lemma 4. The values dG−vi−Di(r; x) for all nodes x∈Oi ; i=1; : : : ; k − 1, can be com-
puted in O(m+ n log n) time and O(m) space.

Proof. The initial computation of SG(r) takes O(m + n log n) time and O(m) space
[5]. Throughout the k − 1 iterations in our algorithm, k − 1=O(n) heaps are created.
Let ni denote the number of nodes of Oi, and let mi= |E(Ui ;Oi)∪E(Oi ;Oi)|. On heap
Hi, we perform O(ni) Insert operations, and from Lemma 1, key initialization can be
performed in O(mi) time once SG(r) has been computed. Moreover, we perform O(ni)

E. Nardelli et al. / Theoretical Computer Science 296 (2003) 167–177 173

ExtractMin and O(mi) DecreaseKey operations. By using Fibonacci heaps [5], for all
the nodes x∈Oi, dG−vi−Di(r; x) can then be computed in O(mi + ni log ni) time.
Since each DecreaseKey operation is associated with an edge of G, and each edge

of G is considered at most twice, and given that sets Oi are disjoint, we 0nally have
that the total time is

k−1∑
i=1

O(mi + ni log ni) = O(m+ n log n):

3.3. Combining components of distances

We are now ready to combine the distance components computed so far. We 0rst
give a description of the algorithm, and we then analyze its correctness and its time
and space complexity.
We consider the nodes v1; : : : ; vk−1 in this order along PG(r; s), and when the node

vi is considered, we maintain in a heap H the set of nodes Di associated with it.
For each node y∈Di, we consider the subset of edges in E(Ui∪Oi ;Di) incident to y,
denoted as E(Ui∪Oi ; y). In the heap, with node y a key k(y) is associated that satis0es
the following condition immediately before a FindMin operation on H is performed:

k(y) = min
f=(x;y)∈E(Ui∪Oi ;y)

{dG−vi−Di(r; x) + w(f) + dG(y; s)}: (3)

Notice that in general, this key value is not the length of a shortest path in G−vi from
r to s through y, but, as we explained in Section 3.1, we cannot a2ord to maintain
these latter values. We will show later that these keys, however, give us su3cient
information to solve the problem.
The algorithm works in stages. At the beginning, the heap H is created for D0, that

is, all the nodes in the subtree D0 rooted at v1 in SG(r) are inserted, with arbitrarily
large keys associated. At the ith stage, we consider the node vi on PG(r; s), and we
update the heap in the following way:

Step 1: We remove from H the node vi and the nodes Oi associated with it.
(Comment: This leaves exactly the nodes in Di in H; we update their keys in Steps
2 and 3.)
Step 2: We consider all the nodes in Oi; for each such node x, we inspect its incident

edges, and we limit further actions on those crossing into Di. Let f=(x; y) be one of
these crossing edges, if any, and let

k ′ = dG−vi−Di(r; x) + w(f) + dG(y; s); (4)

where dG−vi−Di(r; x) has been computed by means of the procedure described in
Section 3.2. If k ′¡k(y), we decrease the key of y in H to value k ′. (Comment:
When this step is completed, all the crossing edges associated with vi and induced by
its removal have been exhausted.)
Step 3: We then consider all the nodes in vi−1∪Oi−1; for each node x in this set,

we look at its incident edges, and we limit further actions on those crossing into Di.

174 E. Nardelli et al. / Theoretical Computer Science 296 (2003) 167–177

Let f=(x; y) be one of these crossing edges, if any, and let

k ′ = dG(r; x) + w(f) + dG(y; s): (5)

If k ′¡k(y), we decrease the key of y in H to value k ′. (Comment: When this step
is completed, all the crossing edges associated with vi and induced by the reinsertion
of vi−1 have been exhausted, and the corresponding key maintenance in the heap is
complete.)
Step 4: We 0nally 0nd the minimum of H. (Comment: We will prove shortly that

the key associated with this minimum is exactly the length of a replacement shortest
path in G − vi between r and s, that is dG−vi(r; s).)

When all stages 1; : : : ; k − 1 have been completed, a most vital node can then be
determined as a node v∗ on PG(r; s) such that

dG−v∗(r; s) = max
i=1;:::;k−1

{dG−vi(r; s)}: (6)

Let us now prove that our algorithm indeed computes at each stage the length of a
corresponding replacement shortest path.

Lemma 5. The minimum key found in H at the ith stage is the length of a replace-
ment shortest path between r and s in G − vi.

Proof. We prove the lemma in two steps. First, we prove that each key in the heap
H, say k(y) for node y, is the length of a shortest path in G− vi from r to s through
the entry node y. The reason is that our algorithm inspects all crossing edges (x; y)
incident to y, and keeps track of the best.
Second, we prove that at least one node in the heap has a key corresponding to

the length of a replacement shortest path between r and s in G − vi. In fact, for
any replacement shortest path PG−vi(r; s), the corresponding entry node y is in H.
Let x be its predecessor on PG−vi(r; s). Then, k(y) equals the length of PG−vi(r; s),
because the pre0x of such a path from r to x is contained in G − vi − Di, and then
dG−vi−Di(r; x)=dG−vi(r; x). Therefore, (1) and (3) are both minimized when edge (x; y)
is considered, and k(y)=dG−vi(r; s).

The following theorem can 0nally be proved:

Theorem 1. A most vital node on a shortest path PG(r; s) between two nodes r and
s in a 2-node connected, undirected graph G=(V; E) with n nodes and m edges, with
positive real edge lengths, can be determined in O(m+ n log n) time and O(m) space.

Proof. The correctness of the above algorithm derives from Lemma 5. The time com-
plexity follows from that of Lemma 4 for the initial phase. This allows us to compute
(4) in O(1) time for each crossing edge. Clearly, (5) can be computed in O(1) time
for each crossing edge as well, once SG(r) and SG(s) have been computed. Globally,
we perform O(m) computations of (4) and (5), since a crossing edge is checked at

E. Nardelli et al. / Theoretical Computer Science 296 (2003) 167–177 175

most twice, once each in Steps 2 and 3. Then, we make use of a Fibonacci heap [5]
for maintaining H. Since each node of G is inserted into the heap and removed from
it at most once, we have a single MakeHeap, O(n) Insert, k−1=O(n) FindMin, O(n)
Delete and O(m) DecreaseKey operations (since a key may be decreased only when a
new crossing edge is considered), and thus we obtain a total time of O(m+n log n) for
heap operations. The time complexity for other tasks is, respectively, O(m + n log n)
time for computing SG(r) and SG(s), O(n) time for managing sets Oi ; i=1; : : : ; k − 1,
and O(n) time for computing (6). Finally, O(m) space is trivially enough to handle all
the operations. Thus, the claim follows.

4. Computing the replacement shortest paths

Implicitly, our algorithm computes not only the lengths of replacement paths, but
also the paths themselves, and it can be easily modi0ed to do so explicitly, without any
additional space and time overhead. In fact, let pr(v) and ps(v) denote the parent of a
node v in SG(r) and SG(s), respectively. Moreover, for a node v∈Oi, let p(v) denote
its parent in the (partial) SPT SG−vi(r) obtained from the incremental application of the
Dijkstra’s algorithm described in Section 3.2. Notice that for some of the nodes in V ,
this value will remain unde0ned, as a consequence of the above procedure. However,
as we already know, these nodes do not belong to any replacement shortest path.
By making use of the above pointers, we have that a replacement shortest path

PG−vi(r; s) between r and s in G − vi can be computed as follows. First of all, we
modify the heap H in such a way that it accommodates, along with each element y
it contains, also the respective crossing edge minimizing the associated key. Hence,
assume that fi=(xi; yi) denotes the edge associated with the minimum key found by
the algorithm at the ith stage. The path PG−vi(r; s) is computed by connecting paths
PG−vi(r; xi) and PG−vi(yi; s) through the edge fi. The latter path can be easily computed
starting from yi and by making use of the parents in SG(s). Concerning the former
path, we build it starting from xi, and by making use of parents from SG−vi(r) and from
SG(r), for the outwards and the upwards nodes of vi, respectively. More precisely, let
ui be the node of Ui (not necessarily distinct from xi) 0rst encountered when moving
from xi towards r. Such a node can be easily detected in O(1) time. Then, we have
that

PG−vi(r; s) =

〈
r; : : : ; pr(ui)︸ ︷︷ ︸
PG(r;pr(ui))

; ui; : : : ; p(xi); xi︸ ︷︷ ︸
PG−vi (ui ;xi)

; yi; ps(yi); : : : ; s︸ ︷︷ ︸
PG(yi;s)

〉
:

We therefore have the following:

Corollary 1. Given an undirected, 2-node connected graph G=(V; E) with n nodes and
m edges, with positive real edge lengths, and given a shortest path PG(r; s) between
two nodes r and s in G, the set of replacement shortest paths between r and s for
all the nodes of PG(r; s) can be computed in O(m+ n log n) time and O(m) space.

176 E. Nardelli et al. / Theoretical Computer Science 296 (2003) 167–177

5. Discussion

In this paper, we have presented a fast solution to the problem of 0nding a most
vital node along a shortest path PG(r; s) between two nodes r and s in a graph G. It
runs in O(m + n log n) time and O(m) space, which, as far as we know, is the 0rst
improvement over the trivial bound of O(nm+ n2 log n) time and O(m) space that we
get by recomputing a replacement shortest path between r and s from scratch after the
removal of each node along PG(r; s).
In some applications, such as transportation networks, it appears to be more realistic

to associate costs with both, nodes and edges, instead of only one type of network
components. Our approach also answers the corresponding more general question that
suggests itself: In a graph where both edges and nodes have a positive cost, and where
both edges and nodes can fail, what is a most vital edge or node on a shortest path? The
algorithm can be modi0ed slightly and still runs within the same asymptotic bounds
for this more general question, for two reasons. First, edge failures can be modelled
as node failures, when each edge is replaced by a path of length two with an extra
node in the center of that path; then, the failure of the extra node represents the fail-
ure of the original edge. Second, Dijkstra’s algorithm can be adapted easily to work
also for shortest path computations in graphs with costs on edges and nodes, where
the cost of a path is the sum of the costs of its edges and nodes. Obviously, both
modi0cations do not change the asymptotic bounds for the runtime and the storage
space.
Our algorithmic solution is also useful in quite a di2erent application context. In

large networks, components (nodes and edges) may be owned by di2erent owners.
The incentive of an owner of a component to forward a message, naturally, is to get
some reward. In standard economic terms, that reward is the price of the service of
forwarding the message. It is economically desirable that each owner declares the true
price for the service that its component o2ers, so as to allocate the overall resources
in a best possible way. Nevertheless, there is an incentive for owners to speculate
and ask for a higher price, in the hope of getting a higher pro0t. This leads to eco-
nomically suboptimal resource allocation and is therefore undesirable. A few studies
in the computer science literature have devoted their attention to setting the boundary
conditions in such a way that speculating with high prices does not pay o2. This is
known as mechanism design for sel0sh agents [10–12]. In [11], Nisan and Ronen are
explicitly suggesting a rewarding model for forwarding messages on paths, based on
microeconomic theory, that requires the computation of replacement path lengths for
edges. This model assumes that only edges charge a price for forwarding a message;
nodes perform their service for free. Here, again, it would be more realistic to have
a price for both, edges and nodes, than a limitation of the pricing to the edges alone.
A straightforward modi0cation of the charging scheme from [11] to node and edge
prices serves the desired purpose. Now, the modi0cation of our algorithm for node and
edge costs and failures is an e3cient implementation of the required replacement path
computations.
Our solution is e3cient, but it is still open whether it is optimal. Notice that to

improve our solution, a faster computation of a single source shortest paths tree must

E. Nardelli et al. / Theoretical Computer Science 296 (2003) 167–177 177

be provided. For more general settings there are still many open problems; one of them
deals with multiple edge or node failures on a shortest path.

References

[1] M.O. Ball, B.L. Golden, R.V. Vohra, Finding the most vital arcs in a network, Oper. Res. Lett. 8
(1989) 73–76.

[2] A. Bar-Noy, S. Khuller, B. Schieber, The complexity of 0nding most vital arcs and nodes, TR
CS-TR-3539, Institute for Advanced Studies, University of Maryland, College Park, MD, 1995.

[3] H.W. Corley, D.Y. Sha, Most vital links and nodes in weighted networks, Oper. Res. Lett. 1 (1982)
157–160.

[4] E.W. Dijkstra, A note on two problems in connection with graphs, Numer. Math. 1 (1959) 269–271.
[5] M.L. Fredman, R.E. Tarjan, Fibonacci heaps and their uses in improved network optimization algorithms,

J. ACM 34 (3) (1987) 596–615.
[6] J. Hershberger, S. Suri, Vickrey prices and shortest paths: what is an edge worth? Proc. 42nd Annu.

IEEE Symp. on Foundations of Computer Science (FOCS’01), 2001, pp. 252–260.
[7] K. Malik, A.K. Mittal, S.K. Gupta, The k most vital arcs in the shortest path problem, Oper. Res. Lett.

8 (1989) 223–227.
[8] E. Nardelli, G. Proietti, P. Widmayer, Finding the detour-critical edge of a shortest path between two

nodes, Inform. Process. Lett. 67 (1) (1998) 51–54.
[9] E. Nardelli, G. Proietti, P. Widmayer, A faster computation of the most vital edge of a shortest path

between two nodes, Inform. Process. Lett. 79 (2) (2001) 81–85.
[10] N. Nisan, Algorithms for sel0sh agents, Proc. 16th Symp. on Theoretical Aspects of Computer Science

(STACS’99), Lecture Notes in Comput. Sci., vol. 1563, Springer, Berlin, 1999, pp. 1–15.
[11] N. Nisan, A. Ronen, Algorithmic mechanism design, Proc. 31st Annu. ACM Symp. on Theory of

Computing (STOC’99), 1999, pp. 129–140.
[12] J.S. Rosenschein, G. Zlotkin, Rules of Encounter: Designing Conventions for Automated Negotiation

Among Computers, MIT Press, Cambridge, MA, 1994.
[13] R.E. Tarjan, E3ciency of a good but not linear set union algorithm, J. ACM 22 (1975) 215–225.
[14] S. Venema, H. Shen, F. Suraweera, A parallel algorithm for the single most vital vertex

problem with respect to single source shortest paths, Online Proc. First Internat. Conf. on
Parallel and Distributed Computing, Applications and Technologies (PDCAT’2000), Chapter 22,
http://www2.comp.polyu.edu.hk/PDCAT2000/publish.html.

