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Abstract. We prove upper bounds on the sum of Betti numbers of tropical

prevarieties in dense and sparse settings. In the dense setting the bound is in

terms of the volume of Minkowski sum of Newton polytopes of defining tropical
polynomials, or, alternatively, via the maximal degree of these polynomials.

In sparse setting, the bound involves the number of the monomials.

1. Introduction

In this paper we are concerned with upper bounds on Betti numbers of tropical
prevarieties. Basic definitions and statements regarding tropical algebra can be
found in [12, 14].

Each tropical polynomial f in n variables can be represented as min{L1, . . . , Lm},
where L1, . . . , Lm are linear functions on Rn (called tropical monomials) with non-
negative integer coefficients at variables. For a monomial Lj its degree is the sum
of these integer coefficients, the maximum among the degrees of the monomials is
called the (tropical) degree of f . With any tropical polynomial f we associate a
concave piece-wise linear function

L(x) := min
1≤j≤m

{Lj(x)}

defined on Rn. A tropical hypersurface V := V (f) ⊂ Rn is the set of all points
in Rn at which L(x) is not smooth. Any point x ∈ V is called a zero of f . A
tropical prevariety is an intersection of a finite number of tropical hypersurfaces, in
other words, the set of all common tropical zeroes of a finite system of multivariate
tropical polynomials.

Let V := V (f1, . . . , fk) ⊂ Rn be the tropical prevariety defined by a system
f1, . . . , fk of tropical polynomials in n variables of degrees not exceeding d. In case
k = n, the Tropical Bezout Theorem [14] states that the number of all stable tropical
zeroes (counted with multiplicities) of the system f1, . . . , fk equals the product of
the degrees of its polynomials. For arbitrary k, the upper bound(

k + 7n

3n

)
d3n

on the number of connected components of V was obtained in [5]. In case k ≤ n,
the number of maximal faces of transversal intersections of tropical hypersurfaces
defined by polynomials fi, 1 ≤ i ≤ k, was expressed in [1, 15] in terms of mixed
Minkowski volumes of Newton polytopes of polynomials fi. In [2], for k = n, this
number was bounded from above using the new concept of a discrete mixed volume
for sparse tropical polynomials.

The structure of this paper is as follows.

2010 Mathematics Subject Classification 14T05

1



2 DIMA GRIGORIEV AND NICOLAI VOROBJOV

In Section 1 we prove the upper bound

22(n+1)n! Voln(P1 + · · ·+ Pk)

on the sum of Betti numbers of a tropical prevariety V via the n-dimensional
volume of Minkowski sum of Newton polytopes P1, . . . , Pk of tropical polynomials
f1, . . . , fk. In terms of the maxi deg fi = d this implies the bound

(1.1) 22(n+1)(kd)n.

Note that in [5] a naive upper bound((
k + 7n

3n

)
d3n

)n

was mentioned. Also in [5], an example is constructed of a prevariety defined by kn
polynomials of degrees at most d, containing (kd/4)n zero-dimensional connected
components. Comparing this lower bound with (1.1), we see a gap within a factor
nn. An interesting challenge is to close this gap.

In Section 2 we assume that each tropical polynomial fi, 1 ≤ i ≤ k is m-sparse,
i.e., consists of at most m monomials. In this setting we prove the upper bound

n22n+1

(
k
(
m
2

)
n

)
on the sum of Betti numbers of V . We give an example of a prevariety, with k = n,
for which this bound is close to sharp up to the factor mn.

Results in Section 1 can be related to the classical upper bounds on Betti numbers
of real algebraic and semi-algebraic sets obtained by Petrovskii, Oleinik, Milnor
and Thom, and developed further by various authors. In particular, Milnor [13]
proved that if a semi-algebraic set X ⊂ Rn is defined by a system of k non-strict
polynomial inequalities of degrees less than d, then b(X) ≤ (ckd)n for an absolute
constant c > 0 (compare with (1.1)). Note that in the case when X is defined by an
arbitrary Boolean combination of inequalities, there is a bound bi(X) ≤ (cνkd)n

for ν = min{i+ 1, n− i, k} and an absolute constant c > 0 [7].
The bound in Section 2 can be viewed as a tropical counterpart of the bounds

on Betti numbers for fewnomials [11, 8, 3].

2. Betti numbers for dense tropical polynomials

Recall the notation V := V (f1, . . . , fk) for a tropical prevariety in Rn of all com-
mon tropical zeroes of tropical polynomials f1, . . . , fk. Then V is a finite polyhedral
fan [4] (in Lemmas 3.1, 3.3 below, we provide an explicit representation of V as a
fan).

Let Pi ⊂ Rn, 1 ≤ i ≤ k, be the Newton polytope of fi. Let Voln(P1 + · · ·+ Pk)
denote the n-dimensional volume of the Minkowski sum of polytopes. Without loss
of generality we assume that this volume is positive.

Theorem 2.1. The number of faces of all dimensions of V does not exceed

(2n+1 − 1)n! Voln(P1 + · · ·+ Pk).

Before proving this theorem, let us extract some corollaries regarding Betti num-
bers.
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Semi-algebraic local triviality [10] implies that for any sufficiently large positive
r ∈ R the intersection W := V ∩ Sr, where the simplex

Sr = {(x1, . . . , xn) ∈ Rn| xj ≥ −r, 1 ≤ j ≤ n, x1 + · · ·+ xn ≤ r},
is homotopy equivalent to V .

Since V is a polyhedral fan, the set W has a natural structure of a finite poly-
hedral (and hence CW) complex. If φ(V ) is the number of all faces of V , then
the number φ(W ) of all faces of W does not exceed (2n+1 − 1)φ(V ) because S has
2n+1 − 1 faces. Therefore, Theorem 2.1 implies the bound

φ(W ) ≤ (2n+1 − 1)2n! Voln(P1 + · · ·+ Pk).

We will use notations bℓ(X) := rank Hℓ(X,R), where Hℓ(X,R) is a singular ℓth
homology group, and

b(X) :=
∑

0≤ℓ≤dimX

bℓ(X).

Recalling that b(V ) = b(W ), and applying to the CW complex W the Week
Morse Inequality b(W ) ≤ φ(W ) [6, Corollary 3.7], we deduce the following upper
bound from Theorem 2.1.

Corollary 2.2. The sum of Betti numbers of V satisfies the inequality

(2.1) b(V ) ≤ (2n+1 − 1)2n! Voln(P1 + · · ·+ Pk).

Let d = max1≤i≤k deg fi. Then each Pi is contained in the simplex

{(x1, . . . , xn) ∈ Rn| xj ≥ 0, 1 ≤ j ≤ n, x1 + · · ·+ xn ≤ d}.
Hence, in terms of d, the inequality (2.1) can be presented in the following form.

Corollary 2.3. The sum of Betti numbers of V satisfies the inequality

b(V ) ≤ (2n+1 − 1)2(kd)n.

Proof of Theorem 2.1. Let Qi ⊂ Rn+1, 1 ≤ i ≤ k be the extended Newton polytope
of fi [1, 14, 15] . Let Q be the top of Q1 + · · · +Qk, which is the set of all points
(x, a) ∈ Q1 + · · · + Qk such that there are no points (x, b) ∈ Q1 + · · · + Qk with
b > a. Note that for the projection map π : Rn+1 → Rn along the last coordinate
we have π(Q) = π(Q1 + · · ·+Qk) = P1 + · · ·+ Pk.

Let F be a face of Q. Its dual, G(F ), is the set of all supporting hyperplanes for
Q (subset of the set of all suporting hyperplanes for Q1 + · · ·+Qk) such that their
intersections with Q coincide with F . Then G(F ) can be identified with a face of
the dual polytope to Q1 + · · ·+Qk, and we have dimF + dimG(F ) = n (see, e.g.,
[2, 1, 15]). Observe that F is representable as a Minkowski sum F = F1 + · · ·+Fk,
where each Fi is a face of Qi such that any H ∈ G(F ) is a supporting hyperplane
for Q and H ∩ Qi = Fi. We say that a face F of Q is tropical if dimFi ≥ 1 for
all 1 ≤ i ≤ k. Then V coincides with the union of polytopes G(F ) for all tropical
faces F (cf. [1, 15]).

Decompose each n-dimensional face of Q into n-dimensional closed simplices
without adding new vertices. The number of all subsimplices of these simplices is
not less than the total number of faces of V . Since each n-dimensional simplex S
in the decomposition has integer vertices, we have Voln(π(S)) ≥ 1/n!. Therefore,
the number of all n-dimensional simplices in the decomposition does not exceed
n! Voln(P1+ · · ·+Pk). To complete the proof, it remains to notice that the number
of all subsimplices of an n-dimensionl simplex is 2n+1 − 1. �
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3. Betti numbers for sparse tropical polynomials

In this section we assume that each tropical polynomial fi, 1 ≤ i ≤ k is m-sparse,
i.e., contains at most m monomials. In other words, each fi can be represented as
min{Li,1, . . . , Li,m}, where Li,1, . . . , Li,m are linear functions on Rn. Though, by
definition, coefficients in Li,j at variables are non-negative integers, all results in
this section hold for arbitrary real coefficients.

Following [9], for any subset B of D := {(i, j)| 1 ≤ i ≤ k, 1 ≤ j ≤ m}, consider
the polyhedron UB consisting of all points x ∈ Rn such that

min
1≤j≤m

{Li,j(x)} = Li,j0(x) for every (i, j0) ∈ B

and

min
1≤j≤m

{Li,j(x)} < Li,j1(x) for every (i, j1) ̸∈ B.

Note that each set UB is open in its linear hull, and UB ⊂ V if and only if for each
1 ≤ i ≤ k there exist 1 ≤ j0 < j1 ≤ m such that (i, j0), (i, j1) ∈ B.

Denote by L(X) the linear hull of a set X ⊂ Rn.

Lemma 3.1. The interior of every face F of UB in L(F ) coincides with UB1
for

a suitable subset B1 ⊂ D such that B $ B1.

Proof. There exists a subset B1 ⊂ D such that dim(UB1
∩F ) = dim(F ). We prove

that B1 satisfies the requirements of the lemma. Observe that UB1 is contained in
L(F ) of F . The condition minj{Li,j(x)} = Li,j0(x) for every (i, j0) ∈ B and each
x ∈ L(UB) implies that (i, j0) ∈ B1. Hence, B ⊂ B1, and obviously B $ B1.

By [5, Theorem 4.4], for any two points in UB1
, their sufficiently small neigh-

bourhoods are homeomorphic (in fact, isomorphic) by a linear translation from one
point to another. Therefore, UB1

is contained in the interior of F in L(F ). It
remains to show that, conversely, UB1 contains the interior of F .

For contradiction, assume that there exists a point x in the interior of F such
that x ∈ UB1

∩ UB2
for some subset B2 ⊂ D different from B1. Choose any

(i, j2) ∈ B2 \ B1, and (i, j0) ∈ B such that minj{Li,j(y)} = Li,j0(y) for every
y ∈ L(UB). It follows that minj{Li,j(y)} = Li,j2(y) for every y ∈ L(F ). We get a
contradiction with the assumption that (i, j2) ̸∈ B1, hence UB1

contains the interior
of F in L(F ). �

Remark 3.2. Being a polyhedron, the set UB coincides with

{x ∈ Rn| min
j

{Li,j(x)} = Li,j0(x), 1 ≤ i ≤ k for every (i, j0) ∈ B}.

Lemma 3.3. For any subsets B1, B2 ⊂ D there exists a subset B ⊂ D such that
B ⊃ (B1 ∪B2) and UB = UB1 ∩ UB2 .

Proof. For any (i, j0) ∈ B1 ∪ B2, 1 ≤ i ≤ k and any x ∈ UB1 ∩ UB2 we have
minj{Li,j(x)} = Li,j0(x).

Define B as the set of all (i, j1) ∈ D such that minj{Li,j(x)} = Li,j1(x) for every

x ∈ UB1 ∩ UB2 . Hence, B ⊃ (B1 ∪B2). It remains to prove that UB = UB1 ∩ UB2 .
The inclusion UB ⊂ (UB1

∩ UB2
) follows from Remark 3.2. Conversely, since

UB1
∩ UB2

is a closed convex polyhedron, for every (i, j2) ∈ D \ B the set of all
x ∈ UB1

∩UB2
such that minj{Li,j(x)} < Li,j2(x) contains the interior of UB1

∩UB2
.

Hence, UB also contains this interior. It follows that (UB1
∩ UB2

) ⊂ UB . �
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Similar to [5], consider an arrangement A in Rn consisting of at most ℓ := k
(
m
2

)
hyperplanes of the form Li,j1 = Li,j2 for all 1 ≤ i ≤ k, 1 ≤ j1 < j2 ≤ m. Without
loss of generality, assume that n ≤ ℓ.

Observe that for every B ⊂ D the set UB is a face of A whenever UB ̸= ∅.
Then Lemmas 3.1 and 3.3 imply that the number of faces φ(V ) of V does not

exceed the number of faces φ(A) of A. According to [16], φ(A) ≤ n2n
(
ℓ
n

)
, thus

φ(V ) ≤ n2n
(
ℓ
n

)
. We proved the following theorem.

Theorem 3.4. The number of all faces of a tropical prevariety V ⊂ Rn defined by
k m-sparse tropical polynomials is at most

n2n
(
k
(
m
2

)
n

)
.

Using the same compactification argument as in the proof of Corollary 2.2, we
obtain the following corollary.

Corollary 3.5. The sum of Betti numbers of V satisfies the inequality

b(V ) ≤ n(2n+1 − 1)2n
(
k
(
m
2

)
n

)
.

In conclusion, we construct an example of a tropical prevariety with k = n
which shows that upper bounds in Theorem 3.4 and Corollary 3.5 differ from a
lower bound up to a factor mn.

Let fi, 1 ≤ i ≤ n be a tropical polynomial in one variable Xi, of degree m with
m tropical zeroes. Then the tropical prevariety defined by the system f1, . . . , fn
consists of exactly mn isolated points.
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