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Abstract. A straight-line additive computation which computes a set o/ of linear forms can be
presented as a product of elementary matrices (one instruction of such a computation corresponds
to a multiplication by an elementary matrix). For the general complexity measure no methods for
obtaining nonlinear lower bounds for concrete natural sets of linear forms are known at the
moment (under the general ccmplexity measure of &/ we mean the minimal number of multipliers
in products computing s¢). In the paper thres cumplexity measures (triangular, directed and a
modification of the latter—reduced directed complexity) close in spirit each to others are defined
and investigated. For these measures some n-nlinear lower bounds are obtained. Moreover, the
‘problem of the exact explicit calculation of the directed complexity is solved for which a suitable
algebraic apparatus (the generalized Bruhat decomposition) is d2veloped. Apparatus is exposed in
the appendix to the paper.

1. Introduction and basic notions

Development of methods for obtaining nonlinear lower bounds in the algebraic
computational complexity still remains an unsolved problem for the present. In the
paper two models of computation (triangular and directed) are introduced, and
nonlinear lower bounds of complexity are obtained for these models. Connections of
the general model with the models under consideration are also discussed. There
may be some independent interest in the technique of obtaining lower bounds of
complexity in the considered restricted models bearing in mind the approach of
obtaining lower bounds of complexity in the general model.

In the paper the complexity of computing of a set of linear forms by &n additive
straight-line computation is investigatec. Additive computation (or simply compu-
tation—other kinds of computations are not considered in the paper) is defined as
usual with some modifications, convenient for our aims, in the following way:

(1) a set of input variables x,, ..., x, is fixed;

(2) there are registers y;,....yn, among which the registers y;,...,y; are
distinguished;

(3) at the initial moment the value of a register y;, (1<j=<n) is equal to x;, the
value of any other register is equal to zero;
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(4) the computation itself is a sequen=e of instructions of the form
Ve =ay;+By; (1<i,jk<N)

whavs - I
where a, B € F and F is some field fixed henceforth;

(53 the result of the computation is the set of n linear forms that are the values of
the registers y;,,..., y;, &t the end of computing (the value of a register at any
moment is deﬁned by the natural induction).

The last condition {3) being not a serious restriction for the general compliexity
measure (charging to any instruction from (4) the u:ity weight), is very essential for
the aims of the present paper. If some compiexity measure of an additive compu-
tation is fixed then, as usually, the complexity of a set of n linear forms over n
variables is defined as the minimal complexity of additive computations computing
this set of linear forms.

Additive computations were researched earlier in a mo~e common mannerin[2, 4,
7, 11], for instance. It would be fair to admit that additive computations were
investigated far less than, for example, bilinear programs, although the difficulties in
obtaining lower bounds are the same for the former, and on the other hand the
additive computations are more clear and treating them is more simple than for many
other models of computation.

It is assumed in [2] and [4] that F is the field of real or complex numbers and that
the coefficients of an instruction (see (4) above) satisfy the inequalities |a| <1, |8] < 1.
Under this assumption on computations it is not difficult to produce an example of a
set of linear forms with the coefficients +1 with nonlinear complexity (in [4] the
nonlinearily of complexity is proved for the matrix of Fourier transform—its
coefficients are the roots of unity). Let us write these forms as the rows of some
square matrix. Namely, set A, = (-1 1), further define by induction

A, A,
a )

Then det A,.; =det(2A}) =2"(det A,)* so det A, =2">""". [4] and the last equal-
ity entail, under the assumption |a|<1, || =<1, that the complexity of the set of
forms, defined as rows of the matrice A,, is not less than log, |det A, |=n - 2"

It is convenient to change the instructions from (4) by the instructions of the
following kind which we call elementary:

An+l = (

yi=yi+ay;, (i#j) and vy, =ay, where a € F

(the transfer to the elementary instructions, as will be shown further, increases the
estimates of complexity no more than triple and on the other hand creates some
technical advantages). Namely, instead of one instruction from (4), consider the
following sequence of the elementary instructions:

(a) Ve =0y,
Ve =ye+ay; fi#k,j#k,

Vi = yi + By
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Vi
Vi :=yk+_Byi ifi=k,_].?ék;

© ye=la+B)yifi=j=k.

After this change the problem of estimating of the general complexity c(A) of
computing of the set of n linear forms (over n variables) which are the rows of n x n
matrix A accepts the following matrix form: find some integer N =n, indices
1=i;<---<i, <N and the minimal integer ¢ = c(A) such that there exists some
N x N matrix which can be presented as a product of ¢ elementary matrices (in other
words the matrices corresponding to the elementary instructions' and an n Xn
submatrix of this N X N matrix which is situated at the intersection of rows and
columns with the indices iy, ..., i, is equal to A. Further we shall make use of
this reformulation and use the matrix terms. Some more elegant form the problem
under discussion accept in the case N = n (the absence of auxiliary memory) but even
in this particular case there is nc success in obtaining nonlinear lower bounds for the
general complexity measure. Meanwhile, the author conjectures that a solution of
the problem under discussion in the case N = n would give a possibility for solving
the problem in the general case.

Also remark (actually it was made in [7]) that the complexity c(A) of an n X n
matrix A is equal to n” almost everywhere in the case of an infiniic field F and is
equal to n2/In n (within a constant factor) in the case of a finite field. So the problem
of obtaining a lower bound can be interpreted informally as the problem of
producing a ‘concrete’ matrix from the ‘great’ set of matrices (filling in almost the
whole space of all matrices) of the large complexity.

Say briefly about further content of the paper. In Section 2 so-called triangular
computations will be introduced, for them a method for obtaining nonlinear lower
bounds of (triangular) complexity will be described and a concrete implicit example
of a matrix with non-linear triangular complexity will be produced. Notice at once
that in proving its name the result of any triangular computation is an uppertri-
angular matrix.

In Section 3 the directed computations will be defined by which (distinguished
from the triangular computations) already every matrix can be computed but the
considerable restriction (compared with the measure c(A)) consists in the definition
of the complexity (the directed complexity). A simple criterion in the terms of minors
of a matrix will be formulated on satisfying of which the directed complexity of a
matrix is quadratic in the size of the matrix.

Although.it is very easy to produce a matrix with the large directed compiexity, it
may be interesting that there is a success in the expiicit calculation of the directed
complexity (this will be done in Section 4). In order to calculate the directed
compiexity sharply (and effectively) the author was compelled to prove many
algebraic assertions which is done in the appendix. The appendix itself probably
presents special interest and can be entered into the immediate subject of the paper
by a stretch but the author couldn’t find the basic results of the appendix in literature
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(interrogation of acquainted specialists in Chevalley groups was also unsuccessiulj.
Besides that and the major thing, the results of the appendix are really necessary for
explicit calculation of the directed complexity and moreover this caiculation itseif
presents the curious application of the algebraic methods to the computational
complexity. By all of these reasons the author has decided to include the appendix
into the paper. The author tried to write the appendix so that one can read it without
any preliminary knowledge on Chevalley groups (all the necessary definitions are
adduced and if a known result is used reference is made to where this result can be
found}. On the other hand in crder to understand the main result (Theorem 4 in
Section 4) one can only read definitions and formulations in the appendix not going
deep into the proofs. Remark for the completeness that the author has generalized
the results of ine appendix to the classical Chevalley groups [12].

It turns out that the directed complexity of a nonsingular matrix can be expressed
as the length of the substitution from Bruhat decomposition of this matrix (all the
necessary definitions can be found in Section A.1 of the appendix). In order to
express the directed complexity of an arbitrary matrix, the author has constructed the
generalized Bruhat decomposition (see Thecrem 16 in Section A.2 of the appendix)
and in its terms calculation cf the directed ccmplexity has been a success. Technically
difficult is the proof of tlie elimination of the auxiliary memory in the directed
computations (see Theorems 13 and 19 in the appendix), from which the explicit
expression for the directed complexity can be zlready obtained relatively simply (see
Theorem 4 in Section 4).

In Section 5 the reduccd directed complexity (which is more close to the general
complexity measure than the directed complexity) will be introduced. For this
measure too a criterion in terms of minors of a matrix can be formulated on satisfying
of whicl: th¢ reduced directed complexity of the matrix is quadratic in the size of the
matrix. The examples of the matrices with the quadratic reduced directed complexity
will be produced (over the field of rational numbers and also over finite fields).
Making use of the existence of the linear superconcentrators it will be shown ii:at the
quadra’ic lower bound of the reduced directed complexity of a matrix A does not
guaraniee a nonlinear lower bound on the general complexity measure c(A).

As conclusion of the main text it is noticed that a weak answer to the problem due
to Valiant [11] c2n be deduced from the method of [2, Section 1].

2. Triangular computations

By the observation made in Section 1, consider computations coi.taining only
elementary instructions. The condition of the triangularity of a computation is in fact
that in the computation only instructions of the following kind are used:

Vi =ay, Or v.=y.+ay; wherei>k.

The result of a triangular computation is an uppertriangular matrix (i.e. a matrix with
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zeroes below the diagonal). The triangular complexity cA(A) of an uppertriz 1galar
matrix A is defined (in the usual manner) as the minimal complexity of the triangular
computations (the complexity of a triangular computation is equal to a numbe. of its
instructions) computing A.

Adopt the following notations: z{;*’ is a matrix with the (i, j)-entry equal to & and
with the other entries equal to zero. Further, e’ = E +2, where E is the unity
matrix.

Using the matrix larguage and taking into account that the computations under
consideration satisfy condition (5) in Section 1, we see that c5(A) for an upper-
triangular n X n matrix A is equal to the minimal ¢ for which there exists an upper-
triangular N X N matrix B such that, for some indices 1<k;<---<k, <N, the
equality (B),,..x, = A is fulfilled, where (B)xy,.... «, denotes the submatrix of the
matrix B situated at the intersection of the rows and the columns with the indices
ki, ..., k, (a submatrix of such a kind we call the main submatrix), and moreover
the matrix B can be presented as a product of ¢ elementary uppertriangular matrices,

ie. B=eis) - - el where iy <ji,..., i <j.

......

Theorem 1. Let an uppertriangular matrix A =(§ %) where U, V are, abviously,
also uppertriangular matrices. Then

cA(A)BcA(U)+cA(V)+rg W.

Prooi. Let U be m >< m matrix. Using the notations introduced earlier B =
el el LetB = (% Bz) where B;, B, are uppertriangular matrices and B, is of
the size k,, X k.

For each pair of indices 1=<i, j<N the (i, j)-entry of matrix B is
b,,=2aql .’ ‘aqs+8,-,- (1)

where the sum runs over such sets of indices 1=<¢; <- - -<q,<c for which i;, =1,
jo. =] and i, , = j, for all 1<t <s (¢, is Kronecker symbol).

SetJ ={u:l<u<c,ju<kmhI={v.1<v<c,i,>kn} Certainly,] nJ =0.Inthe
case when j<k,, (or i>k,) only geJ (resp. q €I) can occur in the right part of
equality (1). Hence for the subproducts (with order preservation) over indices from I
and from J, the equalities [],,., e\’ = B; and analogous Vet it = Bz are
fulfilled. Taking into account that (31), = U and (By)«k,,,,—kn
obtain the inequalities

...........

IJl?CA(U) and lII?CA(V) (2)

(|J| denotes the cardinality of the set J).

Let {ps,...,p}={1,..., c\NL UJ), where r=c~|I|-|J|.

Consider now a pair of indices i/, j such that i < k,, <j. One and only one index g,
(1< /<s) equal to some p; (1 <f=<r) occurs in each product in the right part of (1).



herefore b,; can be expressed as a sum

. \ (2
Dy ngl\ L a,,, C iy, }a,,,\vlL a,, " avh} (€))]
where the inner sums run over all sets of indices u;<--:<u, and v; <+ <oy
satisfying the conditions:

(@) uy,..., U (ug <py) are such elements of J that i,, =i, j,, =i, and i,,,, = j,, for
alll=1<g;

(® v1,..., v, (03> py) are such clements of I that i, =j,, j,, =jand i, ., =, for
all1=¢<h.

Denote in (3) the sum $,, , o, -, by b/, f) and X, @+ - ay, by
b'(f, j). Further by B(j) we denote the N x N matrix of rank 1 defined as the product
of the column with the ith coordinate equal to b” (i, f) (1 <i < N)) by the row with the
jth coordinate equal to b'(f, j). Adopt the consent that the empty sum is equal to
zero.

Hence the uppertrianguiar N X N matrix (§ 5)=Y,.,, a,B(f) and taking into
account that D contains W as a submatrix, we deduce the inequalities r =rg D =
rg W. Together with (2) this completes the proof of the theorem.

We now produce a concrete exaniple of an uppertriangular matrix with nonlinear
triangular complexity.

Corollary 2. Define by induction the following sequence of uppertriangular matrices:
A= 1., Apr=(o &) Then ca(A,)=n-2""".

P:oof. The lower bound can be deduced from Theorem 1 by induction on n. For
proving the upper bound we construct by induction on »n the natural triangular
computation (which computes A,.1). In the first stage the upper copy of A, is
computed (by the induction hypothesis), in the second stage the unity matrix from the

right upper corner of A, .; and in the third stage the lower copy of A, (also by the
induction hypothesis).

Observe that the function c, is equal to In(n+1)almost everywhere on the variety
of all n X n uppertriangular matrices in the case of an infinite field F and c » is equal to
n?/in n within a constant factor almost everywhere in the case of a finite field F (the
upper bound in the latter case can be proved by induction on n basing on the method
suggested in [7]).

We turn ourselves in conclusion of this section to one circumstance being a surprise
at first sight. Obviously ca(A)=c(A) for every uppertriangular matrix A. It is
natural to ask “is the converse valid?”” It turns out that the answer on this question is
negative. For example, define a 6 X 6 matrix A = e5;"e{YesseScessely, then c(A) <
6. On the other hand using the method suggested in the proof of Theorem 1 and
partitioning matrix A in four blocks such that the upper left block is of the size 4 x4
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and the lower right one is of the size 2 X2, one can deduce that cA(A)=7 (remark
that the immediate application of Theorem ! does not yet entail this lower bound,
one needs some additional speculations).

3. Directed computations

A directed computation contains by definition instructions of the following three
kinds:

(@) Yi+1'=Yir1t+ay;;

(b) yi = yr +ay; where k <i;

(€) yx=ayk
and set a measure of complexity of a directed computation, in other words the
directed complexity (denote it by c4), equal to a number of instructions of kind (a).
Denote by els(A) the minimal number of elementary matrices of the kind 2% ; in all
the products A =[], '%’ containing the elementary matrices of the kinds €3 ;, €%
(k =1i). The directed complexity c4(A) for a matrix A is defined in the usual manner
as the minimal complexity of ai! directed computations computing A. Certainly
ca(A)<elq(A) (the inverse inequality will be proved in Section 4). Taking into
account that the computations under consideration satisfy condition (5) from Section
1, we obtain that cq(A)=minely(C) where the minimum is taken over all C
containing A as a main submatrix (see Section 2). Notice that ca(A)=0iff A is an
uppertriangular matrix.

We show that the directed complexity coincides with its following modification:
instead of the instructions of kind (a) any instructions of the kind y, = yi +ay; for
k > i are allowed, and the weight 2(k —i)— 1 is attached to such an instruction. Fo:
checking of the coincidence it is convenient to use the matrix language. Denote
further by s; € Sy (1 <i < N) the matrix of transposition of the neighbouring indices
i and (i+1) (Sy is the group of all substitutions of N elements). The equality
si=e el el el entails that ca(s)=1. Using the equality e =
SiSiv1 " Skz €0 _1Sk—2* * * Si18; for k >, we obtain that cq(eie) <2(k —i)—1 (k >
i). One can easily deduce the desired coincidence from this inequality.

We now formulate the simple criterion on fulfillment of which for an n X n matrix
A the directed compiexity c4(A) is equal to n? within a constant factor. On the other
hand the inequality c4(A) < In(n —1) follows from the results of Section 4.

Lemma 3. Let a matrix A= (5 V) where U and V are some square matrices. Then
ca(A)=(rg D)*.

Proof. The lemma can be simply proved with the help of the results of Section 4 and
of the method suggested in the proof of Theorem 1. We expose here the more
immediate proof.
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Correspond in the usual manner to a directed computation of the complexity ca(A)
computing A the oriented acyclic graph G with the number of vertices equal to the
number of all instructions of the kinds (a), (b) and (c) in the computation under
consideration {see e.g. [10, 11]). Mark a vertex corresponding to an instruction
Y& = yr +ay; (or to an instruction y. = ay,) by the label k. Choose some rXxr
(r =rg D) nonsingular submatrix of the matrix D and let it be situated at the
intersection of the rows with the indices /4, . . ., /, and the columns with the indices
Jiseeosfn

The results of [10] (see also [9]) entail that r paths in the graph G without mutual
intersections in vertices can be drawn from the input vertices of the graph G marked
by thelabels i, . . ., i, to the output vertices with the labels iy, . . ., i, (remember the
consents adopted in the items (3) and (5) from Section 1: the set of the input variables
is put in the registers y,, ..., y;, at the beginning of computing, the result of the
cosnputation is pu* in these registers at the end of computing). Without loss of
generality we can suppose that kth path passes from the vertex with the label i;, to the
vertex with the label i;,. Consider the labels along the kth path. The label either does
not increase along one edge o1 iiicreases with one, therefore the contribution to
ca(A) of the vreights of the instructions corresponding to the vertices on kth pathis no
less than i, —i,. On the other hand max;<.<.{i; }<min;<.<.{i,} (because the
matrix D is situated in A below the diagonal), hence co(A) =Y, _, _ (i}, —i;)=r".
This completes the proof of the lemma.

Consider the n xn matrix V=% _ _ 20, 1-. The equality ca(V) =3n(n —1) can
be deduczd from Theorem 4 in Section 4 (the inequality ca(V)=3(n —1)* follows
already from Lemma 3). On the otherhand V=(1n)2n-1)-- - (3nln+1-[3n])
is the prod-:ct of [34 ] transpositions. A transposition (i j) equalsto e} 2’ e}’ e " e,
Hence c(V')<2n, i.e., the general complexity can be far less than the directed one.

4. Explicit calculation of the directed complexity by means of the generalized
Bruhat decompasition

In ti:c present section we obtain (basing on the results of the appendix) the explicit
calculation of the directed complexity of a set of linear forms (speaking in the matrix
language we deal with the coefficient matrix of a set). In the formulations and proofs
v*2 use the notations introduced in the appendix.

iet A be an n X n matrix, the substitution w, € S, be its completion constructed in
Theorem 16 of Section A.2 of the appendix. Further let T, T, € 7—the space of all
uppertriangular matrices (i.e. not necessary nonsingular matrices with zeroes below
the diagonal), w € §,.. For the function / see the beginning of Section A.1 of the

appendix and also the definition immediately after Theorem 16 of Section A.2 of the
appendix.
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Theorem 4. c4(A)=I(A) =Il(Wa) =minscgwg [(W).

Froof. The equality /(A)=/(w,) is valid by definition from Section A.2 of the
appendix, the equality /(wa) =min acgw.- [(w) follows from Theorem 16.

Let A =TywaT; be a generalized Bruhat decomposition of A (see Theorem 16
and the definition after it). Present wa =s,, - - - 5;, where / = [(A) (see the beginning
of Section A.1 of the appendix). It is shown in Section 3 that c4(s;) =1 therefore
ca(A)<I(A).

Obviously, it is sufficient to prove the inverse inequality under the assumption that
the field F is algebraically closed. Further we apply the auxiliary function ¢ig(A)
introduced in Section 3.

Lemma 5. ely(A)=[(A).

Proof. The inequality el4(A)=<I[(A) can be proved with the help of the equaiity
ca(s;) =1 (cf. the above pioof of the inequality c4(A) <I(A)).

Convercaly lat
Lonversely, et

A= l;l ei’:ﬂ)’ (%)
where a number of the elementary multipliers of the kind e} ; is equaltor=el4(A).
Let € be a parameter. Change in the dccomposition () each singular elemen.ary
multiplier (which is necessary of the kind e!;"’) by the elementary matrixe!;'*"'. Asa
result we obtain the decomposition of the matrix A, for every € € F (remark that
Ao =A) instead of the decomposition (*). Moreover all the elementary matrices
from the right part of this decomposition are nonsingular when ¢ # 0, so A, is also
nonsingularfor e #0.If A = Age {A.: ¢ # 0} (the bar over a set denotes its closure in
Zarisky topology in the variety #, of all n X n matrices), then [(A) <Smax. -0 [(A,),
according to (b) of Corollary 18 of Section A.2 of the appendix.

We now ascertain the inequality /(A.) <1 for ¢ # 0. Let B = J be the space of all
nonsingular uppertriangular matrices. We make use of the following well-known
result (see e.g.[1, Ch. 4, Section 2], or[3, Lemma 12.7] or [8, Lemma 25, Section 3]):
for every substitution w € S,, and each 1 <i<n,

BwRB + Bs:B < BwRB L Bws:B. 4)
Fix € #0. Let
C =AE = eil " e eifl e“ eih«-l “ e eifz el2 eff2+l s e‘." eileif,+l “ . ei,’*l (**)

be the above constructed decomposition of A, into a product of nonsingular
elementary matrices (denoted by e with some indices). Among them ¢, .. ., ¢;, are
all the matrices of the kind e|3) ; occuring in the decomposition (++) (remmber that
t=els(A)). Let CX=e; e, €, i,, " ey eei.. e, (1sks<t)bea

subproduct (from the left and without gaps) of the above constructed product (#+).
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The decomposition under consideration of C**’ contains & matrices e;,, . .., ¢, of
the kind e}, among the matrices ¢;,, . . ., ¢, of the same kind in ().

Deduce by the induction on k that /(C'*)<k (of course C""=C=A,). Let
C'*' = B,w,B; be the Bruhat decomposition (see Proposition 11 from Section A.1 of
the appendix), where w, €S, By, B.€ 3 and I{(C™) = l(wi) < k by the induction
hypothesis. Then according to (4)

C"“*"e BwB e%) B < Bw,BsRBs: B
(BB O Bwi.siB) - (5:B)< BwisiB U Bw, R

for some 1<i<n (here we use the equality (%), =s;ei7+1s,). Hence [(C** V)<
% + 1 (see the definition of the function in Section A.1 of the appendix).

Thus l(A,}=I(C'")<t=el4(A) for € # 0. Recalling that /(A) <max. .ol(A,) as
proved earlier we have /(A) =< el4(A). The lemma is proved.

To compleie the proof of the theorem, remember that c4(A) = min ely(C) where
the minimum is taken over all C containing A as a main submatrix. The inequality
1(A)Y=I(C) is fulfilied by Theorem 19 from the appendix, Lemma 5 entails that
[(C) = el4(C) and finally we obtain /(A) << c4(A) which was to be proved.

Corollary 6. (a) If A is a main submatrix of a matrix C, then c4(A) < c4(C);

(b) ca(A) does not depend on a field F (i.e. ca(A) is preserved if one considers a
matrix A over an extension of F);

() calA) is semicontinuous as a function of A, i.e. cqslA)<maxc.yc.u, ca(C) if
Ae¥;

(d) maxacu, ca(lA)= in(n- 1) and c4(A) is quadratic in n without a constant factor
almost everywhere for any field F (ca(A) = 3n(n —1) almost everywhere in the case of
an infinite field);

(e) cq(A) can be calculated in polynomial time for a matrix A with rational entries
(in fact n® operations over the entries are sufficient).

A sketch of the pioof. (a) Use Theorem 19 of Section A.2 of the appendix.

(b) Apply Lemma 10 of Section A.1 of the appendix and the equality c4(A) =
l(wgy).

(c) Foliows from (b) of Corollary 18 of Section A.2 of the appendix.

(d) The first gart can be deduced from Priposition 12 of Section A.1 of the
appendix; for the proof of the second part use Lemma 3 of Section 3 (the assertion in
parenthesis follows from the Chevalley theorem—see Proposition 12).

(e) One can check it basing on the constructing of w, in the proof of Theorem 16
of Section A.2 of the appendix and on the constructing of the incomplete sample ua
in the proof of (c) of Proposition 14 from Section A.2 of the appendix.
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5. Reduced directed complexity

There is shown at the end of Section 3 that it is very simply to produce an n x n
matrix A with the directed complexity c4(A) quadratic in n and with the general
complexity c(A) linear in n. One of the reasons of this phenomenon consists in the
fact that the directed complexity cf a set of linear forms depends essentially on the
order in which these forms are numerated. The reduced directed complexity
considered in the present section is deprived of this drawback.

The reduced directed complexity of # X n matrix A is defined as

ci(A)= min cq(w,Aw,).
wi,waeS,
The value of ¢} (A) does not depend on the choice of a field F (this follows from
Corollary 6(b) in Section 4).

Lemma 7. If the rank of each [3n]1x[3n] submatrix of a matrix A is no less than r, then
* 2
Cd (A) 2r-,

This lemma can be easily deduced from Lemmaz 2 in Section 3.

A matrix A satisfying the condition formulated in Lemma 7 for r = [%n] can be
produced without great difficulties over an infinite (or with a sufficiently large
cardinality compared with n) field F.

Check for example that an n X #n matrix @, = (27) for F = Q satisfies the condition
under consideration from Lemma 7. Moreover show that any minor of the matrix @,
does not vanish. Consider some & X k submatrix D of the matrix &, situated at the
intersection of the rows with the indices i; < * * <, and the columns with the indices
Ji<+++<jr. Then

M= Y ji1a< itfmik+1-1)
1si<k 1=sl<k

where 7 € Si is any nonidentical substitution. This can be deduced, for instance, by
presenting 7w =s;, * * * 5;, Where [ =/(#) is the length of 7 (see Section A.1 of the
appendix). Lemma 10 of Section A.l1 of the appendix then entails that each
transposition s; . (1<m </) increases the number of inversions of a substitution
Si, ***Si,_, (i.e. its length) by one. It is not difficult to deduce from this, by the
induction on m, that each multiplier s;, increases the expression in the right part of
the desired inequality. The proved inequality entails that detD =
(=1)KE=D2aM o 0 2M*1 for some integer g, so deg D #0.

A more difficult thing is the production of examples in the case of a finite field F.
Considerations exposed above are not applicable here as for instance there does not
exist a 2n X 2n matrix (for n > 3) over the field consisting of two elements in which
every n X n minor does not vanish (there does not even exist an n X 2n matrix with
this .roperty). That is why for producing a matrix with the large reduced directed
complexity over a finite field we are compelled to make use of some constructions
from the coding theory. We restrict ourselves to the case of the field of two elements.
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Let C be a k xn matrix. The minimal rumber of unities in all nonzero linear
combinations of the rows of C is called the ccding distance of C (see [6, Chapter 1]).
Set k(n, d) be the largest possible values of k when n and d are fixed. Utilize the
following estimation (see [6, Chapter 4]): if d/n < 3, then k(n, d)~n(1—H(d/n))for
large n, where H(q) = —q log, g —(1—q) log>(1 —gq) is the entropy (0<g <1).

‘The function H increases on the interval [0, }]. Obviously H(0)=0 and H(})>3
hence H(y)=1 for some unique 0<y<}. Set d~vyn, k=k(n, d)~3n for scme
sufficiently large even n and let C, be some 37 X n matrix with coding distance d.
Define A, as an n X n matrix consisting of two 31 X n submatrices situated at the first
Yn and last in rows both equal to C,, i.e. A, =(&).

Proposition 8. C% (A,)> en® for some € >0 independent of n.

Proof. Fix D = w,A,wa(wy, w,€8,). LetI =wi({1,...,3n),J =wi(3n +1,...,n)).
Either

HAafn+1,...,0}=inorlJnfn+1,...,n}=in.

In the following we assume that |[In{n+1,...,n}=in. Let t=
dnfin+1,...,n}.

We let D’ denote a ¢ X n submatrix of the matrix D situated at the rows of D with
indices from the set / n{%n +1,...,n}.Let D;beat x 3n submatrix of matrix D'
situated at the columns of D’ with indices from the set {1, ...,3n} and let D, be a
1 X }n submatrix of matrix D' situated at the columns with indices from the set
{3n+1,...,n}. Estimate r =rg D,.

Consider some (f —r) Xt matrix V with linear independent rows and VD, =0.
Then the coding distance of the (¢ —r)x jn matrix VD, is no less than d. As
dfin ~2y <3, (t=r)<k(@Gn, d)~3n(1— H(2y)). Therefore r =3n(HQ2y)—3%) = yn
(y1>0 because H(2y)>H(y)=3).

Using l.emma 7 and the fact that matrix D is situated in D below the diagonal, we
obtain that c¥{A,)=r>>en’.

Certainly ¢ (A)<}n(n—1) for an n xn matrix A. If a field F is infinite, then
c%(A)=1n(n—-1) almost everywhere (cf. Corollary 6(d) in Section 4). If a field F is
finite, then c¥(A) is quadratic in n almost everywhere; this can be deduced by
proving that for almost every n Xn matrix over a finite field the rank of each
[3n]x[3n] submatrix is greater than n and application of Lemma 7).

Proposition 9. If a fieid F is infinite, then there exists a sequence of matrices {V,},=1
(V. is an n X n matrix) such that the general complexity c(V,) is linearinn and ¢k (V,)
is quadratic in n.

Proof. Let {G.,}.-1 be a sequence of superconcentrators (G, is an n-superconcen-
trator) with thie number of edges linear in n (see e.g. [10]). Fix n and supply the ith
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edge (in some fixed numeration) of the graph G, with a parameter 8. Correspond to

the input vertices of G, the variables x4, . . ., x,. If some values from the field F are
attached to the parameters {3;}, then the linear form over the variables x, ..., x,
with the coefficients from F can be corresponded naturally to each vertex of the
graph G,. By this the linear forms v4, . . . , v, are corresponded to the output vertices.

We show that the values from F can be attached to {8;} so that in n X n matrix V,
with rows vy, .. ., v, each of its minors is distinguisk.ed from zero. Suppose contrarily
that some k X k submatrix situated at the intersection of the rows with the indices
J1s - -+ » jx (corresponding to the forms v;,, . . ., v; } and the columns with the indices
li, ..., It (corresponding to the variables x,,, . . ., x;,) is singular for any attaching the
values to the parameters {3;}. As G, is a superconcentrator, k paths from the input
vertices [y, . . ., I to the output vertices jy, . . . , jr can be passed such that these paths
have no common vertices. Attach to the parameters, corresponding to the edges
belonging to the considered k paths, the value one and attach the value zero to the
other parameters. By this attaching the k X k minor under consideration is equal to
+1 which contradicis the accepted assumption.

Now it is not difficult to check that for some attaching values to the parameters {3,}
all the minors of the matrix V,, dc not vanish. Each minor is a polynomial over
variables {8;} not vanishing identicaiiy as it was proved above. Hence such values
from F can be attached to the parameters {3;} that all these polynomials (minors) are
distinguished from zero implying that the field F is infinite.

The general complexity c(V,,) is linear in n (it is no greater than the number of
edges in G,) and c% (V,,) =n? according to Lemma 7 which completes the proof of
the proposition.

In conclusion, without any connection with the preceding text but with a connec-
tion to the subject under investigation, we give, based on the method from [2, Section
1], an incomplete answer to the problem due to Valiant (see problem 2 in [11]). The
question of Valiant is informally the following: Is the nonlinearity of the general
complexity c(A) of an n X n matrix A guaranteed by the fulfilment of the following
condition: if A = D + C for some matrices D, C, then either rg D > er or the number
of nonzero entries in the matrix C is greater than en’ (for some ¢ > 0 independent
of n)?

The incompleteness of the answer consists in the assumption that a straight-line
computation (additive computation), computing a set of linear forms ay, ..., a,
being the rows of a matrix A, satisfies the following restriction (condition (+*) in [2]):
Correspond the oriented below acyclic graph G to a straight-line computation in the
usual manner and let G’ (1 <i <n) denote the subgraph of graph G generated by
the vertices of G situated above the vertex u; to which a linear form a; is attached
(in other words from each vertex of the graph G the oriented below path can be
passed to tire vertex u;, and conversely each vertex with this property is in
G'?). The considered restriction consists in assuming that every G'” (1<i<n)
is a tree.
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The method suggested in [2, Section 1] entails in particular that if an n X n matrix
A satisfies the condition due to Valiant, then the complexity (i.e. the number of
instructions) of every straight-line computation computing A and satisfying the
forinulated restriction is greater than n 1g n/lg lg n within a constant factor.

-ppendix. Monotony of the length of a substitution in the generalized Bruha:
decomposition

A.1. Brukat decomposition and ihe monotony of the length of a substitution in
ronsingular case

In this section information (necessary for proving Theorem 4 of Section 4) about
tne length of a substitution, Bruhat decomposition (see[1, 8]), is exposed and also the
monw:tony of the length of a substitution in the nonsingular case is proved.

For any substitution w € S,, its length [(w) is defined as the least / such that w can
be presented as a product of ! transpositions of neighbouring indices, i.e.
w=s; ---s;, where s; is the transposition of the indices i and (i+1) (1<i<n).
Any presentation of w in a product of / = [(w) transpositions of the kind s; is called
a reduced preser:tation (some properties of the function / can be found in [ 1, Chapter
4, Section 1]). The following lemma is well known but, as the author was not able
to give a corresponding reference, we give its proof.

Lemma 10. The length I(w) is equal to the number I(w) of inversions in w, i.e. the
number of pairs i <j such that w(i)> w(j).

Proof. As Isu)<I(u)+1(1<i<n)forevery ucS,, we obtain inequality I(w) <
l(w) by induction on /{w).

Proof of the inverse inequality by induction on I(w). If I(w)> 0, then there exists
1=<i<n such that w(i)> w(i +1). Therefore I(s;w)=I(w)—1 and by the induction
hypothesis, I(s;w) = I(w)—1. On the other hand I(w)<I(s;w)+1=I(w).

The lemma is proved.

It follows from the proof of this lemma that max,, s, l(w) = sn(n—1) is achieved
by the substitutionv = (1 n}(2n—1)- - ([31] n+1-[3n]) (cf. the end of Section 3).

The relation of the partial order on S, is introduced in the following manner (see
[8, Section 8, Lemma 53]). Define w'<w iff w' is equal to a product of some
subsequence (preserving the order of the multipliers) of transpositions of the neigh-
bouring indices chosen from some reduced presentation w=s;,, - - - 5, where /=
I(w). It turns out that the definition of the partiai order does not depend cn a choice
of a reduced presentation (see [8, Section 8, Lemma 53]), i.e. if w=s; - - s; is
anovher reduced presentation and w'<w, then w' is equal to a product of some
subsequence of transposit:ons from the presentation w =s;, - - - ;. Obviously I(w') <
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[(w) when w' < w and if moreover w'# w, then /(w') <[/(w). This entails that w' = w
implying that w'sw and wsw'.Put w'<w if w'sw and w'# w,

The substitution v satisfies the condition w < v for every w € S,,. For proving this,
suppose the contrary and let w # v be some substitution relatively maximal to the
order <. Consider any reduced presentation w =s;, * - * 53, ({ = [(w)). There exists
1=<i<nsuchthat w(i) <w(i + 1) because w # v. By Lemma 10, /(s;w) = l(w)+ 1 and
hence s;w =s;5;, * * * 5;, is a reduced presentation of s;w. This entails w <s;w which
contradicts with the assumption.

Denote by & the variety of all nonsingular uppertriangular matrices (i.e. matrices
with zeroes below the diagonal and nonzero entries on the diagonal).

Proposition 11 (see [8, Section 3, Theorem 4], or [1, Chapter 4, Section 2}, or [3,
Lemma 12.6)). Every nonsingular n X n matrix A can be presented in a forr1 A =
BiwaB, (Bruhat decomposition) for some By, B, € B and unique wa € S,,.

Proof. One can find a proof of the uniqueness of w, in the referred literature;
besides that the more general statement will be proved in Section A.2 of the present
appendix (see Proposition 14). This leaves only the effective construction of the
substitution w = w, proceeding from a matrix A {scc {8, Section 3]).

Execute some elementary uppertriangular transformations over the rows of the
matrix A, i.e. a transformation consists in adding to a row some other row (multiplied
by an element of F) with a greater index, according to the following rule. If, for
instance, the first from the left nonzero entry in ith row for some / is situated in the
same kth column as the first from the left nonzero entry in jth row for some j and i </,
then we add to ith row the jth row multiplied by a suitable coefficient from F in order
to let the (i, k)-entry vanish. Use this rule as long as it is applicable (the choice of a
pair i, j at step of the described process is not necessary unique). As a result we obtain
a matrix A'= B;A satisfying the following property. Let the first from the left
nonzero entry of ith row (1 <i =< n) be situated in a cell with the coordinates (i, w(i)),
then w(i)# w(j) implying that i #j. It is not difficult to check that weS, is the
desired substitution. The described process contains less than n’ elementary trans-
formations.

The proposition is proved.

One can deduce from the construction in the proof of Proposition 11 that the
matrices B; and B, are defined over the same field F as a matrix A, and that the
substitution w4 does not depend on the field, i.e. wa is preserved on its extension.
Therefore extending the field F we can assume (without loss of generality) in the
formulation of Proposition 12 and in the proofs of Proposition 12 and Theorem 13
that the field F is algebraically closed.

Introduce the notation /(A) = /(w,4) for every nonsingular n X n matrix A where
wa € S, can be found by Bruhat decomposition of A (the function / does not depend
on the field F by the above observation).
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Proposition 12, /(A) = dim BAB —dim B (certainly dim B =in(n +1)) where dim
is understood in the sense of the algebraic geometry (see [S, Chapter 1]).

Proof. The proof is essentially based on the following theorem of Chevalley (see [8,
Section 8, Theorem 23]):

BwR = U Bw'R

where the bar denotes the closure in Zariski topology in the variety GL, = GL,, (F) of
all nonsingular n X n matrices. The proof is by induction on /(A). We can assume that
Az=w=ws€S, because BAB = Bw .

Each element of the Boolean algebra with the operations of union, intersection
and supplement, generated by the sets closed in Zarisky topology is called a
constructive set it the algebraic geometry (see [5, Chapter 17). The set BwRB is
constructive by the theorem of Chevalley about the constructivity of the image of a
constructive set under a regular morphism (see [5, Chapter 1]) as BwB is the image
of the constructive set % x B < GL, X GL, under the regular morphism (C;, C,) -
CywC, to the variety GL,. Therefore Bw% can be presented as a finite union
Ji(%,37;) where U;, V; are closed in GL,, 4, is irreducible, ¥; < %; and %,\V; # &
for all i. Hence BwRB =) %; and Bw'B <,V for every w' < w by the theorem of
Chevalley about the structure of %w. So

dim Bw'B <dimJ ¥

= max dim ¥ < max dim U; = dim BwA.

From this inequality we cbtain the inequality /{w) <dim Bw% —dim 3 for every
weS, by induction on /(w). Suppose that the strict inequality I(w')<
dim Bw'B —dim Z is fulfilled for some w'e S, then {(w)<dim BwAB - dim B for
every w = s;w’ where index § is such that w'(i) < w'(i + 1) (such i exists when w' # v),
obviously w'<w. Thus /(v)<dim Bv#B —dim B under the supposed inequality
because v is the unique maximal element of S, relatively to the order < as it was
show earlier. On the other hand the theorem of Chevaliey about the structure of
BwR entails that %v% GL, (taking into account that v=w for each weS,),
therefore dim Bv% =n>. This contradicts with the assumed inequality becuuse
I(v) = in(n — 1), which completes the proof of the proposition.

Remember (see Section 2) that an n X n submatrix A of an N X N matrix C is
called a main submatrix if A =(C),,, «, for some 1<k;<:--:<k,<N,ie. Ais
situated in C at the intersection of the rows and the columns with the indices
kis...,kn

We turn ourselves to the main theorem of the present section.

Thevrem 13. Let A be a main submatrix of a matrix C and A, C be nonsingular.
Then I(A)< (C).
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n: com p re dim 3" AB"™ and dim B3'CA"™’ and make
use of Proposition 12 (8" is the variety of all nonsingular uppertriangular n x n
matrices).

SetI ={ky,...,k.},J={1,..., N\l For the convenience of notation (in order to
represent a partitioning of a matrix in blocks) renumerate indices 1, . . ., N (by some
uniquely defined substitution 7 € Sy) in order to put the indices from I at the
beginning, the indices from J at the end of the new numeration with preserving the
order in I and in J (i.e. w(k;)=i for 1<i<n and #(j;)<w(j,) for j;<j,, j1€J,
j2€J). Then represent C' = wCr™"' = (& 5). The matrix A is uppertriangular under
the initial numeration iff it is uppertriangular under the new numeration after
renumerating (the analogous is valid for D) but certainly the uppertriangularity of
C' does not necessary entail the uppertriangularity of C and vice versa. Obtain
YoAQo= w4 =w e S, by Bruhat decomposition where Yo, Qo< B (see Proposi-
tion 11).

Estimate from below the dimension of the variety consisting of all the matrices H
which can be presented in the following form:

(X 0\/¥, 0\ _/Q O PO) (N~ (N) -1
H_(Y z)(o E)C(O E)(OR emdB T CR )

where X, Y, Z, P, Q, R run over all the matrices (of corresponding sizes) satisfying
the condition that the matrices (3 2) and ({ 2) are nonsingular uppertriangullar
under the initial numeration of the indices (i.e. # (¥ 27 and 7= '(§ $)m are
nonsingular uppertriangular). In particular X, Z, P, R, Y,, Qo are nonsingular and

uppertriangular under the initial and unider the new numerations. Obviously

| e neal 1
i1 CIicral pi

H= (AP XYo(AQoQ + UR) )

(YYoA+ZG)QoP (YY,A+ZG)QuQ+(YY, U +ZD)R
(£, w)
L, M

where T, L, L,, M denote the blocks in the middle matrix.
It can be deduced by direct calculation that

M=Z(D-GA'UR+L,T'L,. (6)

Define the isomorphism (in the sense of the algebraic geometry) of the variety
A ={(T, L, L,, M)} (i.e. the variety of all 4-tuples with components defined by the
formulas above—we utilize further the similar notations) onto some variety & by the
formula

(T, Ly, Ly, M)~ (T, Ly, Ly, M—L,T"'L,).
Hence the dimension we are estimating satisfies (according to (5)) the inequality

aim(@"'CB'"™) = dim{(H)} = dim & = dim 9.
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Consider the following sequence of two regular projections:
@5 €={(T,M=L,T"'L)} S {(T)}.

Proposition 12 entails that dim{(T")} = I{A) +3n(n + 1). Estimate dira € from the
below. The further speculations are based on the theorem on dimensions of
the layers (see [5, Chapter 1]). For appiication of this theorem the irreducibility
of the varieties 9, €, {(T )} has to be ascertained. The irreducibility of {(T )} follows
from the fact that {(T')} is the image of an irreducible variety 8™ x 3" under the
regular morphism (B,, B») - B1wB,; analogously the irreducibility of 2 which is
isomorphic to {(H)} can be proved; the variety € is the image of & under the
morphism ¢ and therefore € is also irreducible.

The matrix D ~ GA ™' U is nonsingular because

( E 0) (A U ) _ (A U )
-GA"' E/\G D/ \0 D-GA™'U/
Hence for every fixed matrix 7" the dimension of its inverse image (layer) under the

morphism ¢ is equal to (D ~GA™'U)-=-3(N ~n)(N —n +1) according to (6) and
Proposition 12. Therefore

dim € =dim{(T)}+ D ~-GA 'U)+:(N-n)(N-n+1)
=[(A)+in(n+1)+IN-n)(N-n+1)

by the theorem on dimensions of the layers.

We turn ourselves to the estimation of the dimension of a layer of the morphism ¢.
We suppose the matrices X, Z, P, R to be fixed, hence the dimension of the layer
under estimation is no less than the dimension of the variety {(XwQ, YwP)}=
{(XYoAQoQ, YY,AQ,P)} with the running matrices Q, Y (satisfying of course the
conditions of uppertriangularity of the matrices = '(¥ 27 and = '(§ £)m consi-
dered above).

Adopt the following convention on the notations. For example A;; denotes the
(i, j)-entry of matrix A (and so on). Return to the initial numeration preserving for
the matrices the same notations, as under the new numeration, with the following
modification evoking no misunderstandings: for instance Yj, denotes the (j, k,,)-
entry of the matrix 7' (% 2)7r; this cell is situated in fact, as it can be easily seen, in
the submatrix Y (and so on). ,

Let jeJ, ki€ I. Then we obtain from the expression for L, that

Hj,, = kZ , Yk Paooria t Hix, (7)
n€E

where Hyy, =Y, Z1G),.Q0 . P, is fixed as the matrices Z, P are fixed.

It follows from (7) that Hj;, ~Hyy, = Yik.-14,Pk.k, because P is nonsingular
uppertriangular. Hence for arbitrary value of Hj, (J 3j<k,11,) we determinc a
unique Y, -1, (f j>k.-11), then Yk, 10, =0). The number of indices jeJ
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satisfying the inequality j<k,-14 is equal to k,-1q,—w '(1). Analogously we
determine a unique Y ;4 -1, for j <k, -1 for arbitrary value of H;,, because in the
expression H;,— H{x, from (7) only Y -1, (already defined) and Y ,_ .1, can
occur. The number of indices jeJ satisfying the inequality j <k, -1 equals to
k.-(2)—w~'(2). Continuing like this we determine a unique Y ;,_ -1, fOr arbitrary
value of Hj,, for j <k,-13, etc. At the end of this process we determine a unique
Y k.-1.., for arbitrary value of Hj, for j <k, -1().
We obtain from the expression for L, that

—- (1]
Hij= Y XixeQuueorit He,i
kgEI

where HY,; is fixed as above. Speculating as earlier one can see that H, , — H i =
Xk, Qk,.,i because X is non-singular uppertriangular. Therefore for arbitrary
value of H,; we determine a unique Qy,,,,,, for j > k). The number of indices
j € J satisfying the inequality j > k,,(») is equal to (N —n) — (k..(,y— w(n)). After that
we determine unique Qy,,,_,,; for arbitrary value of Hy, ,; for j>k..1). The
number of indices jeJ satisfying the inequality j >k, ,—1, is equal to (N —n)—
(Kwn-1)—w(n—1)) etc. At the end of this process we determine a uniquely Qy
for arbitrary value of H,, ; for j >k, ).

As a result we deduce that the dimension of every layer of the morphism ¢ is no
less than

wilnl

«
b2
i

I=si<

(ki=i)+ T ((N=m)=(ki=D)=n(N=n)
because the entries H;., (j<k.-1;) of the submatrix L, and the entries H,,

(/> kw() of the submatrix L, run independently arbitrary values from the field F
(when P, R, X, Z fixed).

Application of the theorem on dimensions of the layers to the morphism ¢ entails
the estimations

dim @ =n(N —n)+dim € =[(A)+3N(N +1).
Using this inequality and Proposition 12 we obttain that
1(C)=dim(BN'CB™M)-IN(N+1)=dim @ -N(N+1)=1(A)

which was to be proved.

A.2. Generalized Bruhat decompositition and the monotony of the length of a
substitution in the general case

We let 7 denote the variety of all not necessarily nonsingular uppertriangular
matrices (i.e. the matrices with zeroes below the diagonal). Every n X n matrix A (not
necessarily nonsingular) can be presented in the form A = T;wT, (see Proposition 14
below) where we S,, Ti, T>€ 7. Unlike the nonsingular case (see Proposition 11
above) a substitution w is not necessarily unique. Nevertheless for every matrix A
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there exists and can be effectively constructed (see Theorem 16 beiow) the unique
substitution wa S, such that Ae IwaT and wa<w (see Section A.1 of the
appendix) for any w € S, satisfying the condition A € IwJ. Set [(A) = l(w,). It will
be shown in Theorem 19 based on Theorem 13 that /(A) < I(C) for a main submatrix
A of a matrix C.

For every n; X n, matrix A we define the following auxiliary function 4 (m, k) over
the pairs of the natural numbers 0<m <n,, 0<k <n,. Set ra(m, k) (for m, k =1)
equal to the rank of the m X k submatrix A“™" (utilize this notation also further) of
the matrix A situated in the lower left corner of A (i.e. A"™ is the submatrix of A
situated at the intersection of the rows with the indices n,—m+1, ..., n; and the
columns with the indices 1, ..., k). And set 74(0, k) =ra(m, 0) =0. One can easily
check the following properties of the function r =r4:

(1) 0= r(m, k)<min{m, k),

Q) rimk)srim+1,k)sr(im k)+1, r(im, k)<rim k+1)<r(m, k)+1;

3) ifrim+1,k)=rim,k+1)=r(mk)+1,thenr(im+1,k+1)=r(m, k)+2.

Definition. An incompiete sample is a matrix with the entries from the set {0, 1};
moreover each two unities stay in the different rows and in the different columns.

Proposition 14. (a) For any function r satisfying the conditions (1), (2) and (3)
formulated above, there exists the unique incomplete sample u such thatr=r,;

(b) rr,ar, <ra (inequality for the functions means inequality for all values of
arguments) where Ty, T>€ T, besides that rg, ap, = ra where By, B€ R

(€) for every matrix A there exists (and can be easily constructed) the unique
incomplete sample u, such that A = BiusB, for some By, B, R (this entails in
particular as a consequence the uniqueness of the substitution in Bruhat decom-
position—see Proposition 11 in Section A.1 of the appendix);

(d) anyn X nmatrix A can be presented in the form A = TywT), for some w € S,, and
T, T,ed.

Proof. (a) Define the matrix u with the entries from {0, 1} according to the following
rules: set Uy mrs1=1 (M k=0) if r(imk)=r(m+1,k)=r(m k+1)=
rim+1,k+1)-1.

We check at first that so defined matrix « is an incomplete sample. Observe that
property (3) of the function r can be reformulated in the following manner: if
rim+1,k)>r(m, k), then r(im+1,k+1)>r(m, k+1); from this we deduce by
induction on (/-k) that r(m+1,1)>r(m, ) when =k (or by analogous refor-
mulation of property (3): if r(m, k+1)>r(m, k), then rim+1, k +1)>r(m+1, k)
and we obtain by induction that r(,, k+1)>r(l, k) for I=m). Suppose that
Uny-mk+1 = n,-mi'+1 = 1 for some k' > k. Then according to the construction of u,
the inequality r(m+1,k +1)>r(m, k+1) is valid and hence property (3) of r
entails the inequality 7(m +1, k’)>r(m, k') but this contradicts to the equality



Additive complexity in directed computations 59

Un,~mi+1=1. Analogously, the assumption u,,_mi+1 = n,-mx+1 =1 leads to a
contradiction when m'>m. Thus the matrix u is an incominlete sample.

Now we deduce the equality r,(m, k) = r(m, k) by induction on m, k. Assume that
the equalities ,(m', k') = r(m’, k') are proved for all m'< m1 +1, k' <k + 1 with the
exception of the case m'=m+1, k'=k+1. Then check the equality r,(m +1,
k+1)=r(m+1, k +1) by analysis of cases. As u is an incomplete sample, r,(m’, k')
is equal to the number of unities in the submatrix """,

(a) Let r(m, k)=r(m+1,k)=r(m, k-1). As r(m,k)=r,(m, k)=r,(m, k+1)=
r.(m+1, k) by the induction hypothesis, the last (the most right) column of the
matrix u™**" is equal to zero; analogously the first (the most upper) row of this
matrix is equal to zero. If r(m +1, k +1) =r(m, k), then u,,_mi+1 =0 according to
the constructionof u and r,(m+ 1, k+ 1) =r,(m k)=r(m, k)=r(m+1, k +1), else
if rim+1,k+1)=r(m,k)+1, then u,,_mr+1 =1 according to the construction of u
and r,(m+ 1, k+)=r.(mk)+1=rim k)+1=r(m+1,k+1).

(B) Let r(m,k+1)>r(m,k) or r(im+1,k)>r(m,k). In any of these cises
Un,-mi+1 =0 and the number of unities in the submatrix «*"**" is equa; to
rim+1L,k+1)=r,m k)+(r,(m+1,k)—r.,(m, k) + (r.(m, k +1)—r.(m, k)).

The function r satisfies the same equality and so r,(m+1, k+1)=r(m+1,5k +1)
by the induction hypothesis.

The uniqueness of the incomplete sample u' satisfying the condition r,. = r [ollows
from the above exposed construction of x and the fact that if u,,-m«+1 = 1. then
reim, k)y=r,(m k+1)=r,(m+1,k)=r,(m+1,k+1)—1,

(b) The seconxi part is obvious, the first part can be dedtced from the second part
taking into account that every matrix 7. € J can be presented as a product of the

matrices from 98 and of the singular diagonal matrices of the kind e¢{;" = E +z{;"

{remember the notations adopted in Section 2: z|;’ is the matrix with the (i, /)-entry
equal to y and the other entries equal to zero, E i3 the unity matrix). It remains to
observe that multiplication by the matrix e{; " from the left or from the right does not
increase the function r.

(c) The construction >f the desired incomplete sample is close to the construction
of the substitution in Proposition 11. Namely, exccute elementary uppertriangular
transformations over the rows of the matrix A according to the following rule as long
as it is possible. If the first from the left nonzero entries of the ith and jth rows (i <j)
are situated in the same kth column, then add to ith row the jth row multiplied by
some suitable coefficient from the field F in order to let the (i, k)-entry vanish (a
choice of a pair i, j is not necessarily unique). As a result of these transformations we
obtain a matrix A’ = B, A (B; € %) in which the first nonzero entries of all nonzero
rows are situated in mutually different columns. Define the incomplete sample
u = uas: we set u;; = 1 iff the first from the left nonzero entry of the ith row is situated
in the jth column. One can casily see that u = A'B, for some B € 3.

I{ A = B,uB, = Biu'B) for some incomplete samples u, u' and By, B,, B1, B> € B,
then (b) of the present proposition entails the equalities 74 = r, = r, from this and (a)
of the present proposition the equality u = u' can be deduced.
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(d) Let A = B,uB; (see (c) of the present proposition). it is sufficient to present u
in a form u = Tiw 5. Complete arbitrarily the incomplete sample u by unities up to
some substitution weS,. Let u=Y __ zi), then set T1 =% __, ziu, T5 =
) I zi}). The simple checking ends the proof of the proposition.

We assume in (a) of the following proposition that the field F is infinite. The
formulation of the result of (b) of the following proposition does not depend on the
choice of the field F, therefore this assumption is not essential for the result of (b).

Proposition 15. (a) Let A be rectangular n X m matrix and ra <r for some function r
satisfying the above formulated conditions (1), (2) and (3). Then Ae{C :r.=r} (as
carlier the bar denotes the closure in Zariski topology in the space of all matrices);

ib) For every pair of substitutions w,, w2 € S,, the relation w, < w, (see Section A.1 of
the appendix) is equivalent to the inequality r,,, <r,,.

Proof. Accordingto (a) and (c) of Proposition 14 one can assume that AS is equal to
an incomplete sample u4 and besides that one can find the incomplete sample u such
that r, = r. Carry the proof by the induction on m +n.

We let L = F[e, ¢ '] denote the ring of Loran polynomials over one variable. Any
0 # p € L can be uniquely presented in the form p = £ "p, for some integer N and the
usual polynomial p; over £ with nonvanished free term; the integer N is called the
degree of p. The induction hypothesis consists in the following:

(a) Already the nonsingular uppertriangular n X n matrix B; and nonsingular
uppertriangular m Xm matrix B, (over the ring L), corresponding to nXxXm
incomplete sample u, and to the n X m incomplete sample u, are constructed;

(B) Each entry of the matrix B,uB; belongs to the ring P = F[e] of the usual
polynomials;

(y) the matrix (B uB,)", consisting of ¢he free terms of the entries of the matrix
B]MBz, is equal to U,.

The inductive step will consist in the construction of the matrices B, B; satisfying
the conditions (a), (8) and (y) and corresponding to the (n +1) X m incomplete
sample u4 obtained from u, by adding of a first 1 X m row d and to the (n + 1) xm
incomnlete sample u’ obtained from u by adding of a first 1 X m row.

Lets = ra(n + 1, m)be ecual to the number of unities in the incomplete sample ua,
let1=iq,<---<gq,<m derote the indices of the columns containing these s unities.
For every 1 X m vector ; we: denote by n'* the projection of the vector n on the space
generated by the orts with the indices q,, .. ., ¢, (so "’ is an 1 x s vector). Let the
unities of the incomplete sample u’ be situated in the celis with the coordinates (¢1, 1),
(:12,03),... where 1=, <f,<--- and 1=t/<sn+1, 1<, <m for each /. The
inequality 1 =raln+1,q,)sr,(n+1,q;) 2ntails that 1, <g,; then the irequality
2=raln+1,g;)<r.(n+1.¢q) entails that 1, =<q,; after that we obtain inequality
3=qg; etc.
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We construct the matrix B} by adding some first row (b4, ..., b,.) (Which will be
defined below) to the matrix B,; the matrix B3 will be obtained frorn the matrix B,
by some modificatiun described below. Let 6, (1 </=<s5) denote the row with the
index #, of the r:ai;ix B,. Consider the s X s matrix G with the /th row equal to
6" (1<l<s). So G, is equal to the (#, q;)-entry of the matrix B,. Consider also
a matiix G' = G + ¢™E for such a large natural number M that G' is nonsingular
and besides that M is greater than the absolute value of the degree of each entry
(with a negative degree) of the matrix B;. Modify the matrix B, by adding the
polynomial e to any (t, q;)-entry of B, for all 1 </<s (so the modified matrix B,
is uppertriangular as before because #; < q;; we preserve the same notation for the
modified matrix B,). Let (8})*’ denote the row with the index / (1</<s) of the
matrix G'.

For some natural number M, each entry of the matrix G, = ¢""'G’ belongs to P.
The matrix G, can be reduced by some sequence of elementary transformations over
P to ihe diagonal form with nonzero entries 2t thie diagonal. Therefore there exist
Diis « -+ » by € L such that

free
(= bate”) =a® ®)
and moreover each coefficient of the vector ¥,_,_. 5,(8;)""’ belongs to P. We can
assume that b, # 0 for all 1 </ <s, adding if necessary to each b,; the polynomial ¢ M:
for arbitrary natural number M, which is greater than the absolute value of the
degree of every entry (with a negative degree) of the matrix B,. Set all the other
coefficients of the vector (b4, ..., bx) equal to £™2. Thus the matrix B} is defined.

Set each (¢, j)-entry of the matrix B} equal to ¢"* (when t;<j, I <i<sandj#q
for all 1 </<ys) where the natural number Mj; is greater than the absolute value of
degree of every entry (with a negative degree) of the matrix Bj. Preserve the other
entries of the matrix B, without exchanging (remember that we consider the
modified matrix B,). This completes the description of the matrix B.

According to the choice of the numbers M, M- the corditions (J), and (y) are
fulfilled for the submatrix B,uB5 of the matrix Biu'B> (the polynomials containing
only positive powers of ¢ have been added to the entries of the matrix B uB; by the
changes in the entries of the matrix B,). Taking into account the choice of the vector
(b1, ..., b,)and of the numbers M,, M3, we obtain the conditions (3) and () for the
first row of the matrix Biu'B5 (the equality (8) and the choice of M- entail it for
the coefficients of the first row with the coordinates qi,...,q,; for all the
other coefficients one can deduce this based on the choice of M, and
M;—these coefficients contain only positive powers of ¢). That matrix B} is
invertible, follows from non-vanishing of b;.

Thus the conditions (@), (8) and (y) are valid for the matrices B} and B:
corresponding to the incompiete samples s, '. We have considered the case whena
row is added to each of the matrices u, and u. Analogously the case of adding of a
column can be considered.
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The equality 7s,(juB,e) = ru = 7 is fulfilled for almost arbitrarily fixed £ # 0 by the
condition (a) and by (b) of Proposition 14, on the other hand the conditions (8) and
{y) entail that u, €{Bi(e)uB>(g): ¢ #0}. This completes the proof of (a) of the
present proposition.

(b) Consider the set i ={A e GL,: ra<r,,}. It is closed in Zarisky topology in
GL, as the inequality r4 <r,, is equivalent to the system £ of vanishing of some
mincrs of the matrix A (namely for every m, k, if r,,(m, k) = g, then insert into the
system £ all the minors of the sizes greater than g of the matrix A (b) of
Proposition 14 entails that Bw,% < # and therefore Bw,B< A.

Conversely, the inclusion Bw,% > £ follows from (a) the present propesition.

The equality # = Bw,B =\, .., Bw.AB is valid by the theorem of Chevalley on
the structure of Bw,%; from this equality one can easily deduce (b) of the present
proposition.

Theorem 16 (Generalized Bruhat decomposition). For arbitrary r X n matrix A there
exists the unique substitution wa € S, such that A € TwaJ, and for every w € S,, such
that A € Iw3 the inequality r,,, <r, is fulfilled (and so wa <w according to (b) of
Proposition 15).

Proof. Making use of (c) of Proposition 14, we can bound ourselves to the case that
A=u=Y,_,..z is an n xn incomplete sample.

The construction of the substitution matrix w, proceeds in two stages. The
construction consists of finding of the cells in w, in which entries equal to uaities.

&tage 1: Construct the sequence of the incomplete samples o = u, u, . . . such that
for each g the matrix u,. is a submatrix of the matrix u, (the matrix u, is of the size
{n — q) X (n —q)). Assume that q steps of the first stage have proceeded and as a result
of these steps the incomplete sample u, has been constructed; and that in the not yet
constructed to the end matrix w, g unities are already put in some cells (at each
step of the first stage one unity is put in some cell of w,).

Before describing of (q + 1)th step of the first stage we make a remark about the
notations. If a matrix G is a submatrix of the matrix D, then each cell of the matrix G
has coordinates in the matrix & and in the matrix D. So every time when misunder-
standings can arise we define more precisely which coordinates are considered.

(¢ + 1)th step of the first stage (q = 0). Assume that u; = 1 (the choice of a cell (i, j)
is not necessarily unique), moreover the cell (4, j) is situated also in the matrix u, and
has the coordinates (i'”, j*") in u, where i'” = j'*, in other words this cell is situated
not above the diagonal in the matrix u,. Then put unity at the cell (i, j) in the matrix
w,. The matrix u,.; is obtained from the matrix u, by eliminating its row with the
index i and its column with the index j'“. If there is no unity satisfying the
forrulated properties in the matrix u, then pass to the second stage of the con-
struction of w, not executing the (g + 1)th step of the first stage. After execution of
the (g + 1)th step of the first stage we pass to the (q+2)th step.
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Before describing the second stage, we observe the following useful property of
the matrices u,.

Lemmal7. Let! <q. If acell in the matrix u, is situated not below the diagonal, then it
is also in the matrix u, situated not below the diagonal.

It is sufficient to prove the lemma for the case ¢ =/ +1 (for the completion of the
proof use the induction on g - ).

So let the matrix u, be obtained from the matrix «; by eliminating its row with
index i” and its column with index j, where (i", j") are coordinates in the matrix
u;. Assume that a cell with the coordinates (1(1”, 1‘1") of the matrix u; is situated in the
matrix u, not below the diagonal. First we check that either i{’ <i' or j{" >;'".

Suppose to the contrary that

)

. . (1 1
iy >l(), ().

i <j (9)

As i = j'¥ according to construction at the first stage, i\’ =" + 2. The cell with the
coordinates (i1, ji) in the matrix u, has the coordinates (i{” — 1, ji) in the matrix u,
under the supposition (9). This contradicts the fact that this cell is situated in the
matrix u, not below the diagonal, i.c. i’ —1<j{". Thus (9) is impossible.

The coordinates of the cell (1‘1”, J "’ ) under consideration are equal (in the matrix

ug) to
M D DS D D
(@) (v, ) if i 1,1 >
or

(B) (1(11)7] 1) if l-(l) (l) ](l)<](1) (10)
or
(v) @=L, -1 i <, <Y

Based on the fact that this cell is situated in the matrix u, nci below the diagonal,
we deduce that in each of these cases (a), (8) and () this cell is situated in the matrix
u, also not below the diagonal. For instance i’ <j{" =1 in case (8), consequently

i’ <j{". The lemma is proved.

We turn ourselves to the description of the second stage of the construction of w,.

Stage 2: Let k steps of the first stage have proceeded and as a result an
(n — k) X (n — k) incomplete sample u, with all its unities situatzd above the diagonal
has been constructed. Choose (n — k) cells of the matrix u situated at the diagonsl in
the matrix u, and complete the construction of the substitution w, putting unities in
these cells.

Let the unities put in w, in the first stage successively be situated in the cells with
the coordinates (i1, j1),. . ., (ix, jx) (One can easily see from the construction at the
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first stage that the unities are situated in these cells in the matrix u, remember that
U =Y, .1<m 2 i) i-€. the unity has been put in the cell with the coordinates (i, j;) in
the matrix w, at the /th step. In the second stage the unities have been put in the cells
with the coordinates (py, #1),...,(Pn—k ta-x) and moreover p;1<:: <p,_i, H1 <
<+« <, (here and further on, if the contrary is not specified, all the coordinates are
understocd as coordinates in the matrix w,).

We show that u = T 1w, T, for some Ty, To€ . If m =1[> k, then the cell with the
coordinates (i, ji) is situated also in the matrix u,, and as the entry of the matrix u
{and therefore of the matrix u,) in this cell is unity, the celi under consideration is
situated in the matrix u, above its diagonal (otherwise we should execute the
(k +1)th step of the first stage no« passing on to the second stage). Hence there exists a
unique 1<g, <n —k such that 1, = j, and therefore the inequality p,, > i, is valid by
force of the observed earlier. Introduce the matrix T as the incomplete sample in
which the unities are situated in the cells with the coordinates (iy, i), . . ., (ix, ix) and
in the cells with the the coordinates (ix.1, Pa,.,)s - - - » (im, Pq,,) (all the other entries
are equal to zeros). Set T, equal to the unity matrix. The equality u = T;w, T> can be
checked immediately.

Now assume that u € 7wJ for some w < S,,. Then (b) of Proposition 14 entails that
rw = iy. Further on the inequality r,,, <r,, will be proved. Let 1 <f, g <n. Prove the
inequality r,, (f, g)<r. (f, g) by analysis of two cases.

Case 1: Suppose that an fX g submatrix w'/® of the matrix w,, contains only
unities which have been put in the matrix w, at the first stage of its construction.

Then the number of unities in the matrix w'/® is equal to r, (f, g)<r.(f,g)<
r.(f, 8) (the equality r,, (f, g) = r.(f, g) in fact in this case is fulfilled).

Case 2: Suppose that the incomplete sample w'/**’ contains g > 0 unities (situated
in the celis with the coordinates (pi.1, t1+1), . . . , ( Pr+q» ti+q) fOr some !) which have
been put in w, in the second stage of the construction and / unities which have been
put in w, in the first stage (consequently r,, (f, g)=h+q).

These assumptions entail the inequalities py<n —f+1<p;.; and fj,,<g< Hiq+1
(set po=0and t,_,.1 = n + 1 by definition). There exist p;, — (n — f + 1) unities in the
matrix w, situated in the cells with the values of the first coordinates between
(n —f+1) and p;.1; fix one of these unities situated in a cell with the coordinates (i, §),
then (n —f+1)<i<p,,;. These pi+1- (n —f+1) unities have been put in the first
stage because the unities which have been put in the second stage cannot stay in the
cells with the first coordinates strictly between p; and p;.;. Check the inequality
j<t.i for the pair (i, j) under consideration. Otherwise, as the cell with the
coordinates (.1, ;1) is situated at thc diagonal in the matrix u,, this cell is situated
not below the diagonal in the matrix u,- by Lemma 17, where (k' + 1) is the index of
the step (of the first stage) at which the cell under consideration with the coordinates
(, j) has been eliminated. So this cell is situated above the diagonal in the matrix u;’
which contradicts the construction in the first stage. Thus the considered pi.;—
(n —f+1) unities of the substitution w, are situated in the matrix w'*’ and obviously

. . —pr, i+l
not in the matrix (' = w'" Pr=1*bhed),
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Analogously (g - #.4) unities put in the matrix w, in the first stage and situated in
the cells with the values of the second cocrdinates greater than 7., and not greater
than g are also situated in the matrix w'* and not situated in the matrix C. So there
are q unities in the matrix C put in w, in the second stage and h'=
h—=(pi+1—(n—f+1))—(g —t1+4) unities put in the first stage.

The coordinates of the upper right cell of the matrix C are (p;.1, #1+¢) and in the
matrix u, its coordinates are (! + 1, / +¢q). For each unity put in the matrix w,, in the
first stage and situated in a cell with the ccordinates (i4, j;) for some 1 <d <k either
iq > pi+1 OT jg <l.44 is valid as the cell with the coordinates (p;.1, ti+4) is situated not
below the diagonal in i, and therefore this cell is situated not below the diagonal in
the matrix #,_, by Lemma 17. On the oth<r hand the cell with the coordinates (iy, ji)
is situated not above the diagonal in the matrix u,_; (that contradicts to the
conjunction of the inequalities iy < pi.1, j« > t+4) according to the construction in the
first stage. Observing 10(a, B, v) in the proof of Lemma 17, we obtain that for the cell
with the coordinates (p;.1, ti+4) the difference between the values of its first and its
second coordinate decreases by one, when transferring from the coordinates in the
matrix u,_; to the coordinates in the matrix u, (1<d <k), only in case 10(B), i.e.
when i; > p;+1 and j; < f.,. This difference is not changed in the cases 10(a, 7) (either
ig>pi+1 OF ja<t., as has been proved earlier, therefore the difference under
consideration cannot increase). The number of indices satisfying the conjunction of
the inequalities iy > py.1, Jo < li+4 is €qual to the number of unities which have been
put in the matrix w, in the first stage and are situated in the matrix C. So this number
is equal to h'.

As a result of these speculations we deduce the equality g—1=(/+q)—(l+1)=
(t+q — P1+1) — h', therefore g+f—n=h+q. .

As n=r,(n,n)<r,(f, g)+(n—f)+(n—g) by property (2) (just before Proposi-
tion 14) of the function r, r.(f, g)=f+ g —n=h+q =r, (f, g). This completes the
analysis of the second case.

Thus we have shown that r,,, <r,, ior every w € S, such that u € JwJ (this and (b)
of Proposition 15 entail that w, <w). The uniqueness of the substitution w, is
evident. Namely, if for some w’< S, such that u € Tw'J the inequality r, <r, is
fulfilled for every w € S, satisfying the condition u € FwJ, then r,,, =r,,, and hence
w' = w, according to (a) of Proposition 14. This ends the proof of Theorem 16.

Remark. It canbe deduced that r,, (i, j) = max{i +j — n, ra(i, j)} (we shall not use this
further). This equality determines uniquely the substitution w4 by (a) of Proposition
14,

Definition. The substitution w, constructed in Theorem 15 will be called the
r~iapletion of the matrix A ; a decomposition A = TywaT, where Ty, T,€ T will be
called generalized Bruhat decomposition. Set [(A)=Il(wa). Then [(A)=
min ocgwg [(w) by the preceding theorem.
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It can be easily seen from the construction of w, in the proof of Theorem 16 that
wa does not depend on the choice of a field F, i.e. w, is preserved on its extension,
and the matrices T, T, in the generalized Bruhat decomposition can be defined over
the same field F as the matrix A. Therefore the function / does not depead on the
field F. Assume an infiniteness of the field F in the following corollary.

Corollary 18.

(a) BwR=TwT
= U 9’w'9’={A€./ﬂ,,:fA$rw}

wsw

for every w € S, (remembcr that the bar over a set denotes its ciosure in Zariski
topology in the variety .{,, of all n X n matrices);

(b) If ¥ M, and Ae T, then I(A)<maxyca!(Y) (the semicontinuity of the
function l).

Proof. Consider, as in the proof of (b) of Propcsition 15, the following closed subset:
M={AeM,: ra<r,} of the variety ./, Obviously .# >IwT (according to (b) of
Proposition 14), consequently /4 > TwJ.

If A € M, then Theorem 16 entails the inequality #,,, <r, for the completion w4 of
A. Therefore ws < w by (b) of Proposition 15 and Ael,, .., Iw'T as A€ TwaJT.
Thus M <, . Iw'T.

IfAel, <, Iw'T and A € Tw'T forsome w' < w,thenrs <r, <r, accordingto
(b) of Proposition 14 and to (b) of Proposition 5. Applying (a) of Proposition 15, we
obtain that {C e #,, :rc =r,}3 A, and the equality {C € M, :rc = 1.} = BwRB follows
from (a) and {(b) of Proposition 14. Finally the inciusion \,.., Iw'T <« BwRB
completes the proof of (a) of the corollary.

(b) Theorem 16 entails that ¥ | jy.q ¥wy7. The equality Uycqg TwyT =
Uyea IwyT is valid as there are in fact oaly a finite number of mutually dis-
tinguished sets among the sets {TwyJ}y.q. Based on this and on the (a) of the
present coroliary, we deduce the following chain:

AeWc U IwyT=U Iwy,9=U U Iwg,

Ye¥ Ye%w YeEWU wswy

therefore A€ JwT for some w<wy, Ye¥. Hence wasws<wy and [(A)=
liwa)<l(wy)=1(Y) by Theorem 16.

As the formulation of the following theorem does not depend on the choice of the
field F, we can, without loss of generality, assume that F is algebraically closed.

Theorem 19. If A is a main submatrix of a matrix C, then 1(A) < 1(C).
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Proof. Let A be an n Xn matrix and C an N X N matrix. Denote by o : .#n =/,
the natural projection ‘obliging’ the cells of an N X N matrix, which in the matrix
C are situated outside its submatrix A (ceitainly ¢ (C)=A).

Let ¢ denote the restriction of ¢ on the closed set TwcT (¢ is aregular morphism
and so ¢ is also a regular morphism, evidently ¢/(C) = A). (a) of Corollary 18 entails
that Ey € TwcT (we denote by En the unity N X N matrix). Of course ¢/(En) = E,,
therefore the set % = ¢ (IwcT) N GL, is nut empty and open in Zariski topology of
the constructive set ¢{TwcT).

The set TwcT is irreducible as the image of the irreducible set 7 x I (which is
isomorphicto FN™*" under the regular morphism (T3, T>)» TywcT», hence TweT
is also irreducible (ctherwise, if TwcT =V U - -+ U ¥, where each V; is closed,
then V; > IwcT for some 1 <iy<d and consequently ¥ = TwcT).

As TwcT is irreducible, U; = ¢ (%) AGLy is an not empty, open and every
where dense subset in TwcJ. Check that ¢(U,) > ¢(TwcT. ). Otherwise the inter-
section 4, N Y~ (YW(Twe D\ (A)) of two not empty open subsets of the set TwT'is
empty which contradicts the irreducibility of TwcJ.

(a) of Corollary 18 entailsthat /(C) = /(C"yiorany C' € Uy = TwoT =\ < v, TWT.
Then C'e GLn, ¢(C') € GL,, forevery C' € U, and therefore [(C') = I(¢(C")) accord-
ing to Theorem 13.

Based on the inclusion A € ¢(%.) N ¢ (TwcT) shown above and the application of
(b) of Corollary 18, we deduce that /(A)<[(¢(C')) for some C’e€ %, (actually this
inequality is valid for almost all C' € ;). Finally we obtain the inequality /(A) = 1( ('),
whick was to be proved.
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