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Abstract. A straight-line additive computation which computes a set SZ of linear forms can be 
presented as a product of elementary matrices (one instruction of such a computation corresponds 
to a multiplication by an elementary matrix). For the general complexity measure no methods for 
obtaining nonlinear lower z?ounds for concrete natural sets of linear forms are known at the 
moment (under the general cchmplexity measure of & we mean the minimal number of multipliers 
in products computing JzZ). In the paper threz complexity measures (triangular, directed and a 
modification of the latter-reduced directed complexity) close in spirit each to others are defined 
and investigated. For these measures some ncjnlinear lower bounds are obtained. Moreover, the 
.problem of the exact explicit calculation of the directed complexity is solved for which a suitable 
algebraic apparatus (the generalized Bruhat decomposition) is developed. Apparatus is exposed in 
the appendix to the paper. 

1. Introduction and basic: notions 

Development of methods for obtaining nonlinear lower bounds in the algebraic 
computational complexity still remains an unsolved problem for the present. In the 
paper two models of computation (triangular and directed) are introduced, and 
nonlinear lower bounds of complexity are obtained for these models. Connections of 
the general model with the models under consideration are also discussed. There 
may be some independent interest in the technique of obtaining lower bounds of 
complexity in the considered restricted inodels bearing in mind the approach of 
obtaining lower bounds of complexity in the general model. 

In the paper the complexity of comptning of a set of linear forms by an additive 
straight-line computation is investigated. Additive computation (or simply compu- 
tation-other kinds of computations are not considered in the paper) is defined as 
usual with some modifications, convenient for our aims, in the following way: 

(1) a set of input variables x1, . . . , xn is fixed; 
(2) there: are registers y 1, . . . ,* yN, among which the registers yi,!, . . . , yi,, are 

distinguished; 
(3) at the initial moment the value of a register yi, (1 s j s n) is equal to xi, the 

value of any other register is equal to zero; 
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(4) the computation itself is a sequence of instructions of the form 

y&:=ay,+pyj (3 ~i,j,kav) 

where CY, /3 E F and F Is some field fixed henceforth; 
(5j the result of the computation is the set of n linear forms that are the values of 

<the registers yi,, e . . , yin at the end of computing (the value of a register at any 
moment is defined by the natural induction). 

The last condition (5) being not a serious restriction for the general complexity 
measure (charging to any instruction from (4) the u:rity weight), is very essential for 
the aims of the present paper. If some complexity measure of an additive compu- 
tation is fixed then, as usually, the complexity of a set of n linear forms over n 
variables is defined as the minimal complexity of additive computations computing 
this set of linear forms. 

Additive computations were researched earlier in a more common manner in [2,4, 
7, II], for instance. It would be fair to admit that additive computations were 
investigated far less than, for example, bilinear programs, although the difficulties in 
obtaining lower bounds are the same for the former, and on the other hand the 
additive computations are more clear an treating them is more simple than for many 
other models of computation. 

It is assumed in [2] and [4] that F is the field of real or complex numbers and that 
the coefficients of an instruction (see (4) above) satisfy the inequalities ICY 1 G 1, (p 1 s 1. 
Under this assumption on computations it is not difficult to produce an example of a 
set of linear forms with the coefficients *l with nonlinear complexity (in [4] the 
nonlineari:y of complexity is proved for the matrix of Fourier transform-its 
coefficients are the roots of unity). Let us write these forms as the rows of some 
square matrix. Namely, set A 1 = * ’ (-1 I), further define by induction 

A 
An An 

n+1 = 
-A, ) A,, l 

Then det A,,, = det(2Ai!,) = 22”(det A,)2 so det Atd = 2n’2”-1. [4] and the last equal- 
ity entail, under the assumption Ia I s 1, 1~ I s I., that the complexity of the set of 
for-ms, defined as rows of the matrice A,, is not less than log2 ldet AnI = n * 2”~‘. 

It is convenient to change the instructions from (4) by the instructions of the 
following kind which we call elementary: 

yi := yi + CUY, (k # j) and yi I= ayi where Q! E F 

(the transfer to rhe elementary instructions, as will be shown further, increases the 
estimates of complexity no more than triple a;ld on the other hand creates some 
technical advantages). Namely, instead of one instruction from (4), consider the 
following sequence of the elementary instructions: 

y& := 0 l y& 

Yk := y& + Cvyj ifi#k,j#k; 

Yk := yk + pyi 
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(b) yk := ayk 

Yk :=y&+flyj if i=k, j#k; 

(C) y&:=(Q!+fl)y& if i=j=k. 

After this change the problem of estimating of the general complexity c(A) of 
computing of the set of n linear forms (over n variables) which are the rows of n x n 
matrix A accepts the following matrix form: find some integer Nan, indices 
lsir<* l l < i, s Iv and the minimal integer c = c(A) such that there exists some 
N X N matrix which can be presented as a product of c elementary matrices (in other 
words the matrices corresponding to the elementary instructions\ and an fin x cz 
submatrix of this N x N matrix which is situated at the intersection of rows and 
columns with the indices il, . , . , i, is equal to A. Further we shall make use of 
this reformulation and use the matrix terms. Some more elegant form the problem 
under discussion accept in the case N = n (the absence of auxiliary memory) but even 
in this particular case there is no success in obtain...6 i-m nonlinear lower bounds for the 
general complexity measure. Meanwhile, the author conjectures that a solution of 
the problem under discussion in the case N = n would give a possibility for solving 
the problem in the general case. 

Also remark (actually it was made in [7]) that the complexity c(A) of an n x n 
matrix A is equal to n2 almost everywhere in the case of an infinite field F and is 
equal to n2/ln n (within a constant factor) in the case of a finite field. So the problem 
of obtaining a lower bound can be interpreted informally as the problem of 
producing a ‘concrete’ matrix from the ‘great’ set of matrices (filling in almost the 
whole space of all matrices) of the large complexity. 

Say briefly about further content of the paper. In Section 2 so-called triangular 
computations -will be introduced, for them a method for obtaining nonlinear lower 
bounds of (triangular) complexity will be described and a concrete implicit example 
of a matrix with non-linear triangular complexity will be produced. Notice at once 
that in proving its name the result of any triangular computation is an uppertri- 
angular matrix. 

In Section 3 the directed computations will be defined by which (distinguished 
from the triangular computations) already every matrix can be computed but the 
considerable restriction (compared with the measure c(A)) consists in the definition 
of the complexity (the directed complexity). A simple criterion in the terms lof minors 
of a matrix will be formulated on satisfying of which the directed complexity of a 
matrix is quadratic in the size of the matrix. 

Although-it is very easy to produce a matrix with the large directed complexity, it 
may be interesting that there is a success in the explicit calculation of the directed 
complexity (this will be done in Section 4). In order to calculate the directed 
complexity sharply (and effectively) the author was compelled to prove many 
algebraic assertions which is done in the appendix. The appendix itself probably 

presents special interest and can be entered into the immediate subiject of the paper 
by a stretch but the author couldn’t find the basic results of the apperldix in literature 



42 D. Yu. Girigor’ev 

ation of acquainted specialists in Chevalley groups was also unsuccessful). 
esides that and the major thing, the results of the appendix are really necessary for 

explicit calculation of the directed complexity and moreover this calculation itself 
presents the curious application of the algebraic methods its the computational 
complexity. By all of these reasons the author has decided to include the appendix 
into the paper. The author tried to write the appendix so that one can read it without 
any preliminary knowledge on Chevalley groups (all the necessary definitions are 
adduced and if a known result is used reference is made to where this result can be 
found). On the other hand in order to understand the main result (Theorem 4 in 
Section 4) one can only read definitions and formulations in the appendix not going 
deep into the proofs. Remark for the completeness that the author has generalized 
the results of the appendix to the classical Chevalley groups [ 12:]. 

It turns out that the directed complexity of a nonsingular matrix can be expressed 
as the length of the substituttion from Bruhat decomposition of this matrix (all the 
necessary definitions can be found in Section A.1 of the appendix). In order to 
express the directed complexity of an arbitrary matrix, the author has constructed the 
generalized Bruhat decomposition (see Theorem 16 in Section A.2 of the appendix) 
and in its terms calculation of the directed complexity has been a success. Technically 
difficult is the proof of Ihr: elimination of thr: auxiliary memory in the directed 
computations (see Theorems 13 and 19 in thie appendix), from which the explicit 
expression for the directed complexity can be already obtained relatively simply (see 
Theorem 4 in Section 4). 

In Section 5 the reduced directed complexity (which is more close to the general 
cumplexity measure than the directed complexity) will be introduced. For this 
measure too a criterion in terms of minors of a matrix can be formulated on satisfying 
of which thy reduced directed complexity of the matrix is quadratic in the size of the 
matrix. The examples of the matrices with the quadratic reduced directed complexity 
will be produced (over the field of rational numbers and also over finite fields). 
Making use of the existence of the linear superconcentrators it will be shown that the 
quadraTic: lower bound of the reduced directed complexity of a matrix A does not 
guaramee a nonlinear lower bound on the general complexity measure c(A). 

AS conc!usion of the main text it is noticed that a weak answer to the problem due 
to Yaliant [l 1; CZF be deduced from the method of [2, Section 11. 

2. TPiangular comgutatiorss 

By the observation made in Section 1, consider computations cor.taining only 
elementary instructions. The condition of the triangularity of a computation is in fact 
that in the computation only instructions of the following kind are used: 

Yk := CYYk or vk := yk + ayi where i > k. 

e result of a triangular computation is an uppertriangular matrix (i.e. a matrix with 
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zeroes below the diagonal). The triangular complexity ca(A) of an uppcrtri& rgular 
matrix A is defined (in the usual manner) as the minimal complexity of the triangular 
computations (the complexity of a triangular computation is equal to a numbe: of its 
instructions) computing A. 

Adopt the following notations: $’ is a matrix with the (i, j)-entry equal to cy and 
with the other entries equal to zero. Further, ei;’ = E + z(i$ where E is the unity 
matrix. 

Using the matrix larguage and taking into account that the computations under 
consideration satisfy c(ondition (5) in Section 1, we see that c*(A) for an upper- 
triangular n x n matrix A is equal to the minimal c for which there exists an upper- 
triangular N x N matrix B such that, for some indices 1 s kl < l l l <k, s N, the 

equality (%....,k, = A is fulfilled, where (B) k ,,_ k, denotes the submatrix of the 
matrix B situated at the intersection of the rows and the columns with the indices 
k l,s**, k, (a submatrix of such a kind we call the main submatrix), and moreover 
the matrix B can be presented as a product of c elementary uppertriangular matrices, 
i.e. B = ei:;,) l . l e$’ where iI ~j~,. . . , iC s jC. 

Theorem 1. Let an uppertriangular matrix A = (0” r) where U, V are, .qbviously, 
also uppertriangular matrices. Then 

c*(A) 2 cn( U) + cn( V) + rg W 

Proo2. Let U be m x m matrix. Using the notations introduced earlier B = 
iu1) . , c . . 
‘Ill 

l e ici, . %) Let B = (3 F2) where &, & are uppertriangular matrices and & is of 
the size k, x k,. 

For each pair of indices 1 s i, j s N the (i, j)-entry of matrix B is 

where the sum runs over such sets of indices 1 ,S 41~ l * l < qs s c for which i4, = i, 

ig, = j and i,,+, = j4, for all 1 S t C s ( 2,;; is Kronecker symbol). 
SetJ ={u: 1 su ~c,j~ ~k,},I={v.l~v~c,i,>k,~.Certainly,InJ=Cd.Inthe 

case when j- -= k, (or i > k,) only 4 E J (resp. q E I) can occur in the right part of 
equality (1). Hence for the subproducts (with order preservation) over indices from J 
and from J, the equalities nuPJ ei2”’ == B1 and analogously nccf e~~$,,,~,,-k, = B2 are 
fulfilled. Taking into account that (&)k, ,..., k, = U and @2)k,,+,-k, . . . . . k,-k,, = V we 

obtain the inequalities 

IJI~ca(U) and IIIEc~(V) (2) 

(IJI denotes the cardinality of the set J). 
Let {pl, . . . , pr} = (1, . . . , c)\(l us), where r = c -- III- IJI. 
Consider now a pair of indices i, j such that I ’ s k, c j. Ortie and only one index q/ 

(1 s 1 s S) equal to SOme pf (1 s f G r) occurs in each product in the right part of (1). 
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Therefore b,l can be expressed as a. sum 

(3) 

where the inner sums run over all1 sets of indices ul< l l l < u, and VI< l l l < oh 

satisfying the conditions: 
Qa) ICI,. . . 9 u, (u, < pf) are such elements of J that i,, = i, jU, = iPr and i,,, , = jut for 

all lGt<g; 
(b) vr, l ’ l 9 vh (V 1 > pf) are such elements of I that i VI = jP,, jO,, = j and i,,, , = jot for 

Denote in (3) the sum C, ,,.,,, UI1 eu, l . l au, by bJ(i,f) and Ll ,..., oh a,, l l l auk by 
b’( f, j). Further by f3( f) we denote the N x N matrix of rank 1 defined1 as the product 
of the column with the ith coordinate equal to bJ(i, f) (1 s i s N) by the row with the 
jth coordinate equal to b’( f, j). Aldopt the consent that the empty sum is equal to 
zero. 

Hence the uppertriangular N x N matrix (E F) = xlSfSr +,B (f) and taking into 
account that D contains W as a submatrix, we deduce the inequalities r 2 rg D 2 

rg W, Together with (2) this completes the proof of the theorem. 

We now produce a concrete example of an uppertriangular matrix with nonlinear 
triangular complexity. 

Corollary 2. Define by induction the following sequence of uppertriavzgular matrices : 
A I= t: :), . . .v &+I = & fn). Tl’zen c*(A,) = n l 2”~‘. 

P;risof. The lower bound can be deduced from Theorem 1 by induction on n. For 
proving the upper bound we construct by induction on n the natural triangular 
computation (which computes PL,, + 1 ). In ‘the first stage the upper copy of A,, is 
computed (by the induction hypothesis), in the second stage the unity matrix from the 
right upper corner of A in+i and in the third stage the lower copy of A, (also by the 
induction hypothesis). 

Observe that the function ca is equal to $n (n + 1) almost everywhere on the variety 
of all n X n uppertriangular matrices in the case of an infinite field F and CA is equal to 
n*/!n n within a constant factor almost everywhere in the case of a finite field F (the 
upper bound in the latter case can be proved by induction on n basing on the method 
suggested in [7])., 

We turn oulrsehes in conclusion of this section to one circumstance being a surprise 
at first sight. Obviously c*(A) s c(A) for every uppertriangular matrix A. It is 
natural tfo ask “is the converse valid?” It turns out that the answer on this question is 
negative. For example, define a 6 x 6 matrix A = e~~“e:‘:e~~e~~)e::‘e:14’, then c(A) s 
6. On the other hand using the method suggested in the proof of Theorem 1 and 
partitioning matrix L% in four blocks such that the upper left block is of the size 4 x 4 
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and the lower right one is of the size: 2 x 2, one can deduce that Q(A) 2 7 (remark 
that the immediate application of Theorem 1 does not yet entail this lower bound, 
one needs some additional speculations). 

A directed computation contains by definition instructions of the following three 
kinds: 

(a) Yi+l:= yi+l + ayi; 

(W yk := yk d- Cvyi where kCi; 

(c) yk := ayk 

3. Directed computations 

and set a measure of complexity of a directed computation, in other words the 
directed complexity (denote it by cd), equal to a number of instructions of kind (a). 
Denote by eld(A) the: minimal number of elementary matrices of the kind !yJ”+\,i in all 
the products A = n k e ik,lk %) containing the elementary matrices of the kinds einC\,i, e$ 
(k 2 i). The directed complexity cd(A) for a matrix A is defined in the usual manner . 
as the minimal complexity of al! dire& pd computations computing A. Certainly 
cd(A)<eld(A) (the inverse inequality will be proved in Section 4). Taking into 
account that the computations under consideration satisfy condition (5) from Section 
1, we obtain that cd(A) = min eld(C) where the minimum is taken over all C 
containing A as a main submatrix (see Section 2). Notice that cd(A) = 0 iff A is an 
uppertriangular matrix. 

We show that the directed complexity coincides with its following modification: 
instead of the instructions of kind (a) any instructions of the kind yk := yk + Cuyi for 
k > i are allowed, and the weight 2(k - i) - 1 is iattached to such an instruction. FOG 
checking of the coincidence it is convenient to use the matrix language. Denote 
further by Si E SN (1 G i < N) the matrix of transposition of the neighbouring indices 
i and (i + 1) (SN is the group of all substitutions of N elements). The equality 
Si - = ei+:!i+l ei,:‘+l eiS:!i ei,:L entails that cd(si) = 1. Using the equality I_P~; = 
SiSi+l ’ ’ l Sk-2 t?~~_gk-2. ’ ’ l si+lsi for k > ;, we obtain that cJtF&)) s 2(k - i) - I (k > 
i). One can easily deduce the desired coincidence from this inequality. 

We now formulate the simple criterion on fulfillment of which for an n X n matrix 
A the directed complexity cd(A) is equal to n2 within a constant factor. On the other 
hand the inequality cd(A) s $n (n - 1) follows from the results of Section 4. 

Lemma 3. Let a matrix A = ( E r) where U and V are some square matrices. Then 
cd(A) 2 (rg B)2. 

Proof. The lemma can be simply proved with the help of the results of Section 4 and 
of the method suggested in the proof of Theorem 1. We expose here the more 
immediate proof. 
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orrespond in the usual manner to a directed computation of the complexity cd(A) 
computing A the oriented acyclic graph G with the number of vertices equal to the 
number of all instructions of the kinds (a), (b) and (c) in the computation under 
consideration (see e.g. [ 10, 113). Mark a vertex corresponding to an instruction 

& + t%y{ (or to an instruction y& :=ay&) by the label k. Choose some rX r 
D) nonsingular submatrix of the matrix D and let it be situated at the 

intersection of the rows with the indices [I, . . . , I, and the columns with the indices 

81, ..*, ir* 
e results of [l@] (see also [3]) entail that r paths in the graph G without mutual 

intersections in vertices can be dratun from the input vertices of the graph G marked 
by the labels ill, . . . , ii, to the output vertices with the labels ii,, . . . , il, (remember the 
consents adopted in the items (3) and (5) from Section 1: the set of the input variables 

gut in the registers yi,, . p . , yin at the beginning of computing, the result of the 
ca*mputation is pu+ in these registers at the end of computing). Without loss of 
generality we can suppose that ,rcth path passes from the vertex with the label ii, to the 
vertex with the label ilk. Consider the labels along the kth path. The label either does 
not increase along 0Tte e..- G?gz GP increases with one, therefore the contribution to 
cJA ) of the weights of the instructions corresponding to the vertices on krh path is no 
less than ilk - ilk. C)n the other hand maxl,&~r{ih}Cminl,&,:,{ilr,) (because the 
matrix D is situated in A below the diagonal), hence cd(A) a x1 eks, (ilk - ii, ) a r2. 
This completes the proof of the lemma. 

Consider the n x n matrix V = x 1 Gil n z 1.‘,,+ 1 -i. The equality cd( V) = $z (n - 1) can 
be dedued from Theorem 4 in Section 4 (the inequality cd(V) 2 $(n - 1)2 follows 
already from Lemma 3). On the other hand V = (1 n)(2 n - 1) l l l ([fn] n + 1 - [in]) 
is the product of [$z “j transpositions. A transposition (i j) equals to e ijr2) e i; ) e),: ‘) e i; ). 

Hen= C( V) s 2n, i.e., the: general complexity can be far less than the directed one. 

41. Eqpiici~ calnrlation 
Bruhat decrompwition 

of the directed complexity by means of the generalized 

In tLe present section we obtain (basing on the results of the appendix) the explicit 
calculation of the directed, complexity of a set of linear forms (speaking in the matrix 
language we deal with the coefficient matrix of a set). In the formulations and proofs 
- s a ukje the notations introduced in the appendix. vc 4 

Let A be an n X n matrix, the substitution WA E Sn be its completion constructed in 
Theorem 16 of Section A.2 of the appendix. Further let T1, T2 G Y-the space of all 
uppertriangular matrices (i.e. not nc?.cessary nonsingular matrices with zeroes below 
the diagonal), w E Sn. For the function I see the beginning of Section A.1 of the 
appendix and also the definition immediately after Theorem 16 of Section A.2 of the 
appendix. 
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Theorem 4. cd(A) = I(A) = I( WA) = n~in,~,~‘w~ I (w ). 

Proof. The equality l(A) = I( WA) is valid by definition from Section A.2 of the 
appendix, the equality Z(wJ = minAEyW.r I(w) follows from Theorem 16. 

Let A = T~Iv& be a generalized Bruhat decomposition of A (see Theorem 16 
and the definition after it). Present WA = Si, l l l si, where I = I(A) (see the beginning 
of Section A.1 of the appendix). It is shown in Section 3 that cd(si) = 1 therefore 
cd(A) s I(A). 

Obviously, it is sufficient to prove the inverse inequality under the assumption that 
the field F is algebraically closed. Further we apply the auxiliary function &(A) 
introduced in Section 3. 

Lemma 5. eld(A) = I(A). 

Proof. The inequality el&A)s l(A) can be proved with the help of the equality 
cd(si) = 1 (cf. the above proof of the inequality cd(A) d l(A)). 

Conversely, let 

A =; &‘, (“1 

where a number of the elementary multipliers of the kind ei”+\, i is equal to t = eld(A j. 
Let E be a parameter. Change in the decomposition (*) each singular elerren:?ry 
multiplier (which is necessary of the kind e&” ) by the elementary matrix ei,j ‘+ ). As a 
result we obtain the decomposition of the matrix A, for every E E F (remark that 
A0 ==A) instead of the decomposition (*). Moreover all the elementary matrices 
from the right part of this decomposition are nonsingular when E # 0, so A, is also 
nonsingular for E # 0. If A = A0 E {A, : E # 0) (the bar over a set denotes its closure in 
Zarisky topology in the variety A, of all n x F-Z matric& then f(A) s max,,o /(A,), 

according to (b) of Corollary 18 of Section A.2 of the appendix. 
We now ascertain the inequality /(A,) s I for E # 0. Let 9 c Y be the space of all 

nonsingular uppertriangular matrices. We make use of the following well-known 
result (see e.g. [l, Ch. 4, Section 21, or [a, Lemma 12,7]or [8, Lemma 25, Section 31): 
for every substitul;ion w E Sn and each 1 G i c n, 

iBW9? ’ k3SiB c tBW93 V %WSiB. (4) 

Fix E ii~ 0. Let 

C=A, =ei, l * l eif, ei, eirl+l l l l eif2 ei, etf2+, l l n ei,f ei,eif,+, l l l e;,,+, (**) 

be the above constructed decomposition of A,? into a product of nonsingular 
elementary matrices (denoted by e with some indices). Among them ei,, . . . , ei, are 
all the matrices of the kind ei”+\,i occuring in the decomposition (**) (remmber that 
t =eld(A)). Let Ctk’= ei, * l l ei,, ei, eifl+, l l l eifk elk eirk+, * l * eirk+, (1 s k s t) be a 
subproduct (from the left and without gaps) of the above constructed product (**). 
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The decomposition under consideration of C”’ contains k matrices ei,, . . . , ej, of 

the kind e:z\.,, among thle matrices ei,, . . . , eh of the same kind in (**). 
Deduce by the induct.ion on k that I(C”‘) G k (of course C(‘) = C = A,). Let 
a’ ’ = Br w& be the Bruhat decomposition (see Proposition 11 from Section A. 1 of 

the appendix), where IQ E Sn, Br, I32 E B and Z(C?‘) = I( IQ) G k by the induction 
hypothesis. Then according to (4) 

for some 1 s i c n (here we use the equality ei*+:,i = si e~~~~lsi). Hence f(C”+“) G 
k + 1 (see the definition of the function in Section A.1 of the appendix). 

Thus !(A, j = I(C”‘j S t = &(A> for E #: 0. Recalling that l(A) G maxE ,ol(A,) as 
proved earlier we have f(A) s: el&I). The lemma is proved. 

To complete the proof of the theorem, remember that cd(A) = min el&Cj where 
the minimum is taken over all C containing A as a main submatrix. The inequality 

1Q C) is fulfilled by Theorem 19 from the appendix, Lemma 5 entails that 
I(C) =s eld(Cj and finally we obtain i(A j G cd(A) which was to be proved. 

Corollary 6. (a) If A is a main submatrix of a matrix C, then cd(A) s cd(C); 
(b) c& 9 does not depend on a -field F (i.e. cd(A j is preserved if one considers a 

matrix A over an extension of Fj; 
(c) Q(A) is semicontinuous as a function of A, i.e. cd(A) s maxCEs3/c.,U, cd(C) if 

Ad; 
Cd) ma?c&.& cd(A) = in (n - 1) and cd(,Aj is quadratic in n without a constant factor 

almost everywhere for any field F (cd(A) = $n (n - 1) almost everywhere in the case of 
an infinite field j ; 

(e) cd(,A) can be culculated in polynomial time for a matrix A with rational entries 
(in jixct n 3 operations over the entries are suficien t). 

A sketch of the proof. (a) Use Theorem 19 of Section A.2 of the appendix. 
(b) Apply Lemma 10 of Section A.1 of the appendix and the equality cd(A) -= 

I( WA). 
(c) FoHiows from (b) of Corollary 18 of Section A.2 of the appendix. 
(dj The first part can be deduced from Prylposition 12 of Section A. 1 of thle 

appendix; for the proof of the second part use Lemma 3 of Section 3 (the assertion in 
parenthesis follows from the Chevalley theorem-see Proposition 12). 

(e) One can check it basing on the constructing of WA in the proof of Theorem 16 
of Section A.2 of the appendix and on the constructing of the incomplete sample UA 
in the proof of (cj of Proposition 14 from Section A.2 of the appendix. 
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There is shown at the end of Section 3 that it is very simply to produce an n x rt 

matrix A with the directed compliexity c&A) quadratic in n and with the general 
complexity c(A) linear in ~1. One of the reasons of this phenomenon consists in the 
fact that the directed complexity of a set of linear forms depends essentially on the 
order in which these forms are numerated. The reduced directed corrnplexity 

considered in the present section is deprived of this drawback. 

5. Reduced directed complexity 

The reduced directed complexity of n x n matrix A is defined as 

&A,) = min cd( wlAw2). 
W.W2ES” 

The value of cz (A) does not depend on the choice of a field F (this follows from 
Corollary 6(b) in Section 4). 

Lemma 7. If the rank of each [in] x [in] submatrix of a matrix A is no less than r, then 
cz (A) a r2. 

This lemma can be easily deduced from Lemma 3 in Section 3. 
A matrix A satisfying the condition formulated in Lemma 7 for r = [$z] can be 

produced without great difficulties over an infinite (or with a sufficiently large 
cardinality compared with n) field F. 

Check for example that an n x 82 matrix @a = (2”) for F = Q satisfies the condition 
under consideration from Lemma 7. Moreover show that any minor of the matrix Qi,, 
does not vanish. Consider some rk x k submatrix D of the matrix Gn situated at the 
intersection of the rows with the indices il c l l l c ik and the columns with the indices 

j6<* l l <jk. Then 

M= c hjk+l-I < c ifjdk+l-1) 
lslsk lslsk 

where IT E Sk is any nonidentical substitution. This can be deduced, for instance, by 
presenting w = Si, l l l Sir where I = I(n) is the length of 77 (see Section A.1 of the 
appendix). Lemma 10 of Section A.1 of the appendix then entails that each 

transposition Si, (1 G m s I) increases the number of inversions of a substitution 

IS’ l l ’ Si,_, $1 (i.e. its length) by one. It is not difficult to deduce from this, by the 

induction on m, that each multiplier si,, increases the expression in the right part of 

the desired inequality. The proved inequality entails that det D = 

(-1) 
k(k-1)/22M +4 . 2M+l for some integer 4, so deg D f 0. 

A more difficult thing is the production of examples in the case of a finite field F. 
Considerations exposed above are not applicable here as for instance there does not 
exist a 2n x 2n matrix (for n > 3) over the field consisting of two elements in which 
every n x n minor does not vanish (there does not even exist an n X 2n matrix with 

this 
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Let C be a k x n matrix. The minimal number of unities in all nonzero linear 
combinations of the rows of C is called the cc;ding distance of C (see [6, Chalpter 11). 

t k(n, d) be the largest possible values of k when n and d are fixed. IJtilize the 
following estimation (see h4, Chapter 41): if d/n < $, then k(n, d) - rt (1 - H(d/n)) for 
Ta n, where H(q) = -qlog~q-(1-qjlog~(1-q)istheentropy(O~q~1). 

e function H increases on the interval [0, $1. 0bviously H (0) = 0 and H(i) > $ 
hence H(y) = f for some unique 0 *: y C i. Set d - ‘yn, k = k(n, d) - in for scme 
ufficiently large even n and let Cn be some $n x y1 matrix with coding distance d. 

Define A, as an n x n matrix consisting of two &z x n submatrices situated at the first 
$n and last ln rows both equal to CIF, i.e. A, = (z), 

P Ition 8. C$ (A,) > en2 for some E > 0 independent of n. 

Pro~f.FixD=w~A,~w~(w~,w~~S,,).LetI=w~({l,..., $I}),J=~~({$z+~ ,..., n}). 

ither 

I r&t + 1,. . . , n)f& or IJn{$n +l,. . .,, n>l&. 

In the following we assume that (In{$+l,...,n]l&. Let t= 

(In + 1, , , . , n)l. 
We let D’ denote a t x n submatrix of the matrix D situated at the rows of D with 

indicesfromthesetI&+l,..., n}. Let D1 be a t x $z submatrix of matrix D’ 
situated at the columns of D’ with indices from the set (1, . . . , in} and let D2 be a 
t x $n submatrix of matrix D’ situated at the columns with indices from the set 
{$n+l,..., n ). Estimate P = rg 3,. 

Consider some (t - r) x t matrix V with linear independent rows and VD1 = 0. 
Then the coding distance of t!re (; - r) x $z matrix C’D2 is no less than d. As 
d/in--2y=i, (t--r)sk($z,d)-$z(l-H(;Zr)j. Therefore r&n(H(2y)-$=yln 
(yt>O because H(2y)>H(y)=i). 

Using Lemma 7 and the fact that matrix D1 is situated in D below the diagonal, we 
obtain that cf i&! 3 r2 > en 2. 

Certainly c$ (A) 6 in (.lz - 1) for an rz x n matrix A. If a field F is infinite, then 
cz (A) := $z (n - 1) almost everywhere (cf. Corollary 6(d) in Section 4). If a field F is 
finite, then c:(A) is quadratic in yt almost everywhere; this can be deduced by 
proving that for almost every R x n matrix over a finite field the rank of each 
[in ] x [in] submatrix is greater than $n and application of Lemma ‘7). 

Proposition 9. 1f a field F is infinite, then there exists a sequence of’ matrices ( V,,}, =I 
( V’ is cm n x n matrix) such that the general complexity c ( Vn ) is linear in n and cz ( V,,) 
is quadratic in n. 

Proof. Let {Gn},lal be a sequence of superconcentrators (6, is an n -superconcen- 
tratorj with the number of edges linear in n (see e.g. [lo]). Fix n and supply the ith 
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edge (in some fixed numeration) of the graph G,, with a parameter &. Correspond toI 

the input vertices of G, the variables x1, . . . , xn. If some values from the field F are: 
attached to the parameters {pi}, then the linear form over the variables x1, , . , , AS, 

with the coefficients from F can be corresponded naturally to e#ach vertex of the 
graph Gn. By this the linear forms vl, . . . , v,, are corresponded to tlhe output vertices, 

We show that the values from F can be attached to (pi} so that in n x n matrix vy 
withrowsvl,. . ., v, each of its minors is distinguished from zero. Suppose contrarily 
that some k X k submatrix situated at the intersection of the rows with the indices 

il , . . . , jk (corresponding to the forms vi,, . . . , vir, j and the columns with the indices 
1 l,***, Ik (corresponding to the variables xi,, . . . , xg ) is singular flor any attaching the 
values to the parameters {pi}. As G, is a superconcentr@ar, k paths from the input 
vertices &, . . . , Zk to the output verticesjl, . . . , jk can be passed such that these paths 
have no common vertices. Attach to the parameters, corresplonding to the edges 
belonging to the considered k paths, the value one and attach the value zero to the 
other parameters. By this attaching the k x k minor under consideration is equal to 
=tl which contradicts the accepted assumption. 

Now it is not difficult to check that for some attaching values to the parameters {PI} 
all the minors of the matrix vfi do not vanish. Each minor is a polynomial over 
variables {pi} not vanishing identicaiiy as it was proved above. Hence such values 
from F can be attached to the parameters {pi} that all these polynomials (minors) arc: 
distinguished from zero implying that the field F is infinite. 

The general complexity c( Vn) is linear in n (it is no grea.ter than the number of 
edges in Gn) and cg ( V,, ) 2 in 2 according to Lemma 7 which completes the proof o’F 
the proposition. 

In conclusion, without any connection with the preceding text but with a connec- 
tion to the subject under investigation, we give, based on the method from [2, Section 
11, an incomplete answer to the problem due to Valiant (see problem 2 in [ 111). The 
question of Valiant is informally the following: Is the nonlinearity of the general 
complexity c(A) of an n x n matrix A guaranteed by the fulfilment of the following 
condition: if A = D + C for some matrices D, C, then eith,er rg D > &n or the number 
of nonzero entries in the matrix C is greater than En2 (fior some E > 0 independent 
of n)? 

The mcompleteness of the answer consists in the assumption that a straight-line 
computation (additive computation), computing a set of linear forms a 1, . . . , a,, 

being the rows of a matrix A, satisfies the following restriction (condition (**) in 12.1): 
Correspond the oriented below acyclic graph G to a straight-line computation in the 
usual manner and let G’” (16 i c n) denote the subgraph of graph G generated 13~ 
the vertices of G situated above the vertex uj, to which a linear form ai is attached 
(in other words from each vertex of the graph G’” the oriented below path can be 
passeld to the vertex Ui, ;and conversely each vertex with this property is in 
G”‘). The cansidered restriction consists in assuming that every G”’ (1 s i G 11) 

is a tree. 
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The method suggested in [2, Section l] entails in particular that if an n x n matrix 
A satisfies the condition due to Valiant, then the complexity (i.e. the number of 
instruuztions) of eiery straight-line computation computing A and satisfying the 
fwmulated restriction is greater than n lg n/lg lg ra within a constant factor. 

upper& Monotony of the length of a substitution in the generalized Bruhaa 
decompsitfon 

AA. B&at decomposition and the monotony of the length of a substitution irl 
u,snsitzgular case 

In &is section information (necessary for proving Theorem 4 of Section 4) about 
h of a substitution, Bruhat decomposition (see [ 1,8]), is exposed and also the 

mon~~~ony of the length of a substitution in the nonsingular case is proved. 
For any substitution w E Sn its length Z(w) is defined as the least 2 such that w can 

be presented as a product of 5 transpositions of neighbouring indices, i.e. 
w = §i, l * l si, where Si is the transposition of the indices i and (i + 1) (1 d i < n JO 
Any presentation of w in a product of I = Z(w) transpositions of the kind si is called 
a reduced presentation (scPme properties of the function I can be found in [l. Chapter 
4, Section I]). The following lemma is well known but, as the author WM not able 
to give a corresponding reference, we give its proof. 

Lemma 1Q. The length I( IV) is equal to the number I(w) of inversions in w, i.e. the 
number of pairs i <j such thcct w(i) > w(j). 

Proof. As I&u) s I(u) + 1 (1 s i C n) for every u E &, we obtain inequality I(w) G 
I( w ) by induction on I( w ). 

Proof of the inverse inequality by induction on I(w). If I(w) > 0, then there exists 
1 G i c n such that w(i): w(i + 1). Therefore I(siw) = I(w) - 1 and by th.e induction 
hypothesis, I(siw) = I( w j - 1. On the other hand I( W) d I(siw) + 1 = I(W). 

The lemma is proved. 

It follows from the proof of this lemma that maxWEs l(w) = $z(n - 1) is achieved 
by the substitution v = (1 n )(2 M - 1) l 9 l ([in] n + 1 - [ln]) (cf. the end of Section 3). 

The relation of the partial order on Sn is introduced in the following manner (see 
[S, Section 8, Lemma 531). Define w’s w iff w’ is equal to a product of some 
subsequence (preserving the order of the multipliers) of transpositions of the neigh- 
bouring indices chosen from some reduced presentation w = si, l l l si, where I = 

l(w). It turns out that the definition of the partial order does not depend on a choice 
of a reduced presentation (see [S, Section 8, Lemma 53]), i.e. if w = si, 0 l l sit is 
ano;:her reduced presentation an3 w’ G w, then w’ is equal to a product of some 
subs!equence of transpositzans from the presentation w = sil l l l sil. Obviously 1( w’) 6 
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I(w) when w’ < w and if moreover w’ # w, then I( w’) c f(w). This entails that W’ := w 

implying that w’s w and w G w’. Put w’< w if w’ G w and w’ # w. 
The substitution v satisfies the condition w < v for every w E S,,. For proving this, 

suppose the contrary and let w # v be some substitution relatively maximal to the 
order G . Consider any rediuced presentation w = si, l l * si, (I = I( w )). There exists 
1 G i < n such that w(i) < w(i + 1) because w # v. By Lemma 10, I(siw) = I(w) + 1 and 
hence SOW = sisil l l l Sir is a reduced presentation of siw. This entails w < siw which 
contradicts with the assumption. 

Denote by 3 the variety of all nonsingular uppertriangular matrices (i.e. matrices 
with zeroes below the diagonal and nonzero entries on the diagonal). 

Proposition 11 (see [8, Section 3, Theorem 41, or [1, Chapter 4, Section 2], or [3, 
Lemma 12.6]). Every nonsingular n x n matrix A can be presented in a form A = 
BI w~B2 (Bruhat decomposition) for some B,, B2 E 3 and unique WA E S,,. 

Proof. One can find a proof of the uniqueness of WA in the referred literature; 
besides that the more general statement will be proved in Section A.2 of the present 
appendix (see Proposition 14). This leaves only the effective construction of the 
substitution w = WA proceeding from a matrix _A (see [g, Section 31). 

Execute some elementary uppertriangular transformations over the rows of the 
matrix A, i.e. a transformation consists in adding to a row some other row (multiplied 
by an element of F) with a greater index, according to the following rule, If, for 
instance, the first from the left nonzero entry in ith row for some i is situated in the 
same kth column as the first from the left nonzero entry in jth row for s,ome j and i < j, 
then we add to ith row the jth row multiplied by a suitable coefficient from F in order 
to let the (i, k)-entry vanish. Lose this rule as long as it is applicable (the choice of a 
pair ,i, j at step of the described process is not necessary unique). As a result we obtain 
a matrix A’ = BIA satisfying the following property. Let the first from the left 
nonzero entry of ith row (1 - I -= ’ s n) be situated in a cell with the coordinates (i, w(i)), 

then w(i) # w(j) implying that i f j. It is not difficult to check that w E Sit is the 
desired substitution. The described process contains less than n2 elementary rrans- 
formations. 

The proposition is proved. 

One can deduce from the construction in the proof of Proposition 11 that the 
matrices & and B2 are defined over the same field F as a matrix A, and that the 
substitution WA does not depend on the field, i.e. w A is preserved on its extension. 
Therefore extending the field F we can assume (without loss of generality) in the 
formulation of Proposition 12 and in the proofs of Proposition 12 and Theorem 13 
that the field F is algebraically closed. 

Irl traduce the notation I(A) = /(WA) for every nonsingular n X n matrix A where 
WA E Sfl can be found by Bruhat decomposition of A (the function f does not depend 
on the field F by the above observation). 
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R~QIIB 12. l(A) = dim 9?Aa -dim 58 (certainly dim a = in (n + 1)) where dim 
is understood in the sense of the algebraic geometry (see 15, Chapter 11). 

Proof. The proof is essentially based on the following theorem of Chevalley (see [8, 
Section 8, Theorem 231): 

where the bar denotes the closure in Zariski topology in the variety GL, = GL, (F) of 
all nonsingular n x n matrices. The proof is by induction on l(A). We can assume that 
A = w = WA E S,, because 3?A9 = Bw,&. 

Each efement of the Boolean algebra with the operations of union, intersection 
and supplement, generated by the sets closed in Zarisky topology is called a 
constructive set ir, the algebraic geometry (see [S, Chapter 1:). The set 99w9? is 
constructive by the theorem of Chevalley about the constructivity of the image of a 
constructive set under a regular morphism (see [S, Chapter 11) as @?wa is the image 
or' the constructive set a )(. 98 c GL, x GL, under the regular morphism ( CI, Cz) + 
Cl wC2 to the variety GLII. Therefore 9w9? can be presented as a finite union 
‘J#%,‘iK) where ‘@i, ‘y;: are closed in GL,, ‘@i is irreducible, Vi c Qi and %i\Vi # 0 
for all i. Hence Bw!%~=U~%~ and Bw’~ c UiVi for every W’ < IV by the theorem of -- 
Chcvalley about the structure of &~6?. So 

dim 9~7% s dim t_ J “u; 

= max dim Vi <( max dim %i = dim $!?wB. 
i i 

From this inequality we obtain the inequality i(w) < dim %IwB -dim 9 for every 
w E Sn by induction on I(w). Suppose that the strict inequality I(w’) < 
dim sBw’9 -dim a is fulfilled for some w’ E &, then I(w) C dim @w93 -,dim 9 for 
every w = siw’ where index i is such that w’(i) C w’(i + 1) (such i exists when w’ # v), 
obviously w’ c w. Thus f(u) < dim !%&I - dim &? under the supposed inequality 
becarnse v is the unique maximal element of Sn relatively to the order s as it was 
shown earlier. T)n the other hand the theorem of Chevalfey about the structure of 
99~9 entails that 9Jva = GL, (taking into account that v 3 w for each w E S,.), 
therefore dim %&9 = n2. This contradicts with the assumed inequality becztisz 
!(u) = $n(n - l), 

l l <k, s N, i.e. A is 
situated in ci at the intersection of the rows and the columns with the indices 
ki, kn. . I ., 

WC turn ourselves to the main theorem of the present section. 

Theorem 13, Let A be a main submatrix of a matrix C and A, C be nonsingular. 
Therr I(A) s l(C). 
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Prssf. The general plan: compare dim @%93(“) and dim 3’N’C@“’ and make 
use of Proposition 12 (9P is the variety of all nonsingular uppertriangular n x n 
matrices). 

SetI={kl ,..., k,},J-(l,..., N}\I. For the convenience of notation (in order to 
represent a partitioning of a matrix in blocks) renumerate indices 1, . . . , N (by some 
uniquely defined substit*ution w E SN) in order to put the indices from I at the 
beginning, the indices from J at the end of the new numeration with preserving the 
order in I and in J (i.e. v(ki) = i for 1 G i G n and rr(jt) < n( j2) for ji < j2, ji EJ 
jz E J). Then represent C’ = K’v-” = (2 E). The matrix A is uppertriangular under 
the initial numeration iff it is uppertriangular under the new numeration after 
renumerating (the analogous is valid for D) but certainly the uppertriangularity of 
C’ does not necessary entail the uppertriangularity of C and vice versa. Obtain 
YoAQo= WA= w E S,, by Bruhat decomposition where Yo, Q. 5 @(“I (see Proposi- 
tion 11). 

Estimate from below the dimension of the variety consisting of all the matrices H 
**hich can be presented in the following form: 

where X, Y, 2, P, Q, R run over all the matrices (of corresponding sizes) satisfying 

the condition tliat the matrices (c $j and (’ Q () R ) are nonsingular uppertriangdar 

under the initial numeration of the indices (i.e. n-‘(t &r and 7~-‘(: $r are 
nonsingular uppertriangular). In particular X, Z, P, R, Yo, Qo are nonsingular and 
uppertriangular under the initial and under the new numerations. Obviously 

H= ( XK, AQoP XYoMQoQ + UR) 
(YYoA+ZG)QoP (I(Y,A+ZG)QoQ+(YYoU+~~)R ) 

where T, Ll, Lz, M denote the blocks in the middle matrix. 
It can be deduced by direct calculation that 

M=Z(D-GA-‘U)R+LIT-‘Lz. (6) 

Define the isomorphism (in the sense of the algebraic geometry) of the variety 
~2 = {(T, L1, L2, M)} (i.e. the variety of all cl-tuples with components defined by the 
formulas above-we utilize further the similar notations) onto some variet,y 9 by the 
formula 

(T, Ll, L2, W + (T, Ll, 452, A4 41 T-942). 

Mence the dimension we are estimating satisfies (according to (5)) the inequality 

oim(%‘N’C93’N’) > dim{(H)} = dim & = dim 9. 
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Consider the following sequence of two regular projections: 

Proposition 12 entails that dim(( T j} = /iA) + in (n + 1). Estimate dim % from the 
low. The further speculations are based on the theorem on dimensions of 

the layers (see [5, Chapter 1-j). FTor appiication of this theorem the irreducibility 
of the varieties 9, %, ((T )} has to be ascertained. The irreducibility of {(T j} follows 
from the fact that {(T)} is the image of an irreducible variety @) x @ under the 
regular morphism1 ( BJ , &) -) LB1 IV&;, analogously the irreducibility of 9 which is 
isomorphic to {(I-i)) can be proved; the variety %’ is the image of 9 under the 
morphism q and therefore %’ is also irreducible. 

The matrix D - GA-’ U is nonsingular because 

F-Fence for every fixed matrix T the dimension oE its inverse image (layer) under the 
morphism # ts equal to I(D - GA-’ Uj 2- &V -n)(N -n + 1) according to (6) and 
Proposition 1%. Therefore 

d’im %=dim{(T))+ffD-GA-“U)+i(N-n)(N-n +l) 

aI(A)+$n(n+l)+f(N-n)(N-n+l) 

by the theorem on dimensions of the layers. 
We turn ourselves to the estimation of the dimension of a layer of the morphism p. 

We suppose the matrices X, 2, P, R to be fixed, hence the dimension of the layer 
under estimation is no less than the dimension of the variety {(XwQ, YwP>} = 
{(XYoAQ&, YYoAQoP)) with the running matr&s Q, Y (satisfying of course the 
conditions of uppertriangularity of the matrices K’(: $)v and &*(c $r consi- 
dered above). 

Adopt the following convention on the notations. For example Ai,j denotes the 
(i, j)-entry of matrix A (and so on). Return to the initial numeration preserving for 
the matrices the same notations, as under the new numeration, with the following 
modificatron evoking no misunderstandings: for instance Yj,k, denotes the (j, k,)- 
entry of the matrix ~-l(* ’ y &r; this cell is situatek.I in fact, as it can be easily seen, in 
the submatrix Y (and so on). 

Let j E .I’, ki E I. Then we obtain from the expression for L1 that 

where Hzki = xr L1 Jj,hGA,~Q~,+P~,ki is fixed as the matrices 2, P are hxed. 
Jt follows from’ (7) that Hj,k, - Hikl = Yj,k,-ltljPkl,kl because P is nonsingular 

uppertriangular. Hence for arbitrary value of Hj,k,(J 3 j < k w-~~l~) we determilze a 

unique Yj,k, +, (if j> k,-lclr, then Yj,k,--l(l) = 0). The number of indices j E J 
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satisfying the inequality j c k ,,,+I) is equal to kw-+lI - w -‘( 1). Analogously we 
de:termine a unique Yi,k, - I [*I for j C k,,+(2) for arbitrary value of Hi,k2 because in the 
expression Hi,kz-Hikz from (7) only Yj,k,-l,I, (already defined) and Yi.k, +, can 
occur. The number of indices j E J satisfying the inequality j C k W -I(:) equals to 
k,,-](2) - w-‘(2). Continuing like this we determine a unique Yi,k, lt3, for arbitrary 
value of Hj,B for j < k,- lt3) etc. At the end of this process we determine a unique 

Yi.kw-l~,> for arbitrary value of &, for j < k ,,,- qnJ. 
We obtain from the expression for L:! that 

where Hi,,] is fixed as above. Speculating as earlier one can see that H ,l:,,,j - Hi,,i = 

Xk,.k,Qk,,,,.i because X is non-singular uppertriangular. Therefore for arbitrary 

value of H k,,i we determine a unique Qkwc,,,j for j :a k r,,(n). The number of indices 
j E J satisfying the inequality j > k,c,, is equal to (N - n) - (k,,,, - w (n )). After that 
we determine unique Qk,ct._,I,i for arbitrary value of Hk,, ,_i for j > k,,,,. 1). The 
number of indices j E J satisfying the inequality j > k w(n- 1) is equal to (Rf - n I- 

(k w(n-1) - w(n - 1)) etc. At the end of this process we determine a uniquely C?k,,,,.i 
for arbitrary value of Hk,,i for j > k,cl,. 

As a result we deduce that the d’ rmctiziion of every layer of the morphism q is no 

less than 

C (ki-i)+ C ((N-n)-(ki-i))=n(N-n) 
ISiGn lsisn 

because the entries Hi.ki (j c kw_l(i)) of the submatrix L1 and the entries Hk,., 
(j > k,(i)) of the sbbmataix L2 run independently arbitrary values from the field F 

(when P, R, X, Z fixed). 
Application of the theorem on dimensions of the layers to the morphism q entails 

the estimations 

Using this inequality and Proposition 12 we obtain that 

I(C)=dim(&‘%B’N’)-$N(N+ l)adim 9 -$N(N+ I)aZ(A) 

which was to be proved. 

A.2. Generalized Bruhat dtcompositition and the monotony of the length cf a 
substitution in the general case 

We let 9 denote the variety of all not necessarily nonsingular uppertriangular 
matrices (i.e. the matrices with zeroes below the diagonal). Every n x n matrix A (not 

, necessarily nonsingular) can be presented in the form A = T1 wT2 (see Proposition 14 

below) where w E Sn, TI, T2 E 9. Unlike the nonsingular case (see Proposition 11 
above) a substitution w is not necessarily unique. Nevertheless for every matrix A 
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there exisfts and can be effectively constructed (see Theorem 16 below) the unique 
substituticut WA E & such that A E Tw,& and WA G w (see Section A.1 of the 
appendix) for any ov E & satisfying the condition A E TWX Set l(A) = 1( WA). It will 
be shown in Theorem 19 baseid on Theorem 13 that l(A) s 1 (C) for a main submatrix 
A of a matrix C 

For every n t x n2 matrix A we define the following auxiliary function VA ( m9 k) over 
the pairs of the natural numbers 0 GmGnl,OGk~n2.SetrA(m,k)(form,k~l) 
qua1 to the rank of the m x k submatrix A’m*k) (utilize this notation also further) of 

lfhe matrix A situated in the lower left corner of A (i.e. A(‘n*k) is the submatrix of A 
situated at the intersection of the rows with the indices n I- m + 1, . . . , nl and the 
columns with the indices 1 , . . . 9 k). And set r,,_, (0, k) = rA( m, 0) = 0. One can easily 
check the following properties of the function r = r,& 

(1) Qsr(m, k)smin{m, k); 
(2) r(m, k)sr(m+l, k)sr(m, k)+l, r(m, k)sr(m, k+l)sr(m, k)+l; 
(3) ifr(m+1,k)=r(m,k~1)=r(m,k)~l,thenr(m+1,k+1)=r(m,k)+2. 

Deiinltfon. An incomplete sample is a matrix with the entries from the set (0, 1); 

moreover each two unities stay in the different rows and in the different columns. 

PropositCon 14, (a) For any function r satisfying the conditions (I), (2) and (3) 
formulated aboue, there exists the unique incomplete sample u such that r = r,; 

(b) rT,Ari G rA (in#equality for the functions means inequality for all values of 
arguments) where Tl, ?‘& g, besides that r&A& = rA where &, &E a; 

Cc) for every matrix A there exists (and can be easily constructed) the unique 
incomplete sample uA such thut A = B1uAB2 for some BI, B2 E 9 (this entails in 
particular as a consequence the uniqueness of the substitution in Bruhat decom- 
pos!tion-see Proposition 1.1 in Section AS of the appendix) ; 

Cd) any n x n matrix ‘1 can be presented in the form A = Tl wT2 for some w E S, and 
T,, T;!E~-. 

Pmof. (a) Define the matrix u with the entries from (0,l) according to the following 
rules: set u al--m.k+l =l (m,kaO) iff r(m,k)=r(m+l,k)=r(m,k+l)= 
r(m+l, k+l)-1. 

We check at first that so defined matrix u is an incomplete sample. Observe that 
proper@ (3) of the function r can be reformuIated in the following manner: if 
r(m + 1, k):.r(m, k), then r(m + 1, k + l)> r(m, k + 1); from this we deduce by 
induction on (I-k) that r(m + I, l)> r(m, I) when Ia k (or by analogous refca- 
mulation of property (3): if r(m, k + l)> r(m, k), then r(m + 1, k + l)> r(m + 1, k) 
and we obtain hy induction that r(1, k + 1) > r(1, k) for I 2 m). Suppose that 

- &q-m,k+l = 1lnl-m,k”+l = 1 for some k’> k. Then according to tihe construction of u, 
the inequality r(m + 1, k + 1) > r(m, k + 1) is valid and hence property (3) of r 
entails the inequality r(nq + 1, k’) > r(m, k’) but this contradicts to the equality 
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~k,--‘,++l= 1. Analogously, the assumption ~k,-,~,k,.l = t:,,_,~,k+t = 1 leads to a 
contradiction when m’ > m. Thus the matrix u isI an incomplete sample. 

NOW we deduce the equality r,(m, k) = r(m, k) by induction on m, k. Assume that 
the equalities r&‘, k’) = r(m’, k’) are proved for all m's w? + 1, k’s k + I with the 
exception of the case m’ = m + 1, k’= k + 1. Then check the equality r&r + 1, 
k + 1) = r(m + 1, k + 1) by analysis of cases. As u is an incomplete sample, I,,(&, k’) 
is equal to the number of unities in the submatrix u(~‘*“‘. 

(cy) Let r(m, k) = r(m + 1, k) = r(m, k -b 1). As r(m, k) = r,(m, k) = r,(m, k + 1) = 
a,(m + 1, k) by the induction hypothesis, the last (the most right) column of the 
matrix u (m*k+ *) is equal to zero; analogously the first (the most upper) row of this 
matrix is equal to zero. If r(m + 1, k + 1) = r(m, k), then u’, 1 _m,k + 1 = 0 according to 
the construction of u and r,(m + 1, k + 1) = r,(m, k) = r(m, k) = r(m + 1, k + I), else 
if r(m + I!, k + I) = r(m, k)+ 1, then ~~~~~~~~~ = 1 according to the construction of u 
andr,(m~t1,k+1)=r~,(m,k)+l=r~m,k)+l=r(wl+1,k+l). 

(0) Let r(m, k + 3) > r(m, k) or r(m + 1, k)> r(m, k). In any of these c:\ses 
U n1-ml,‘&+1 = 0 and the number of unities in the submatrix u(~+**~+~) i? equar to 
ru(m+l, k+l)=r,,(m, k)+(r,(m+l, k)-r,(m, k))+(r,,(m, k+l)-r,(m, k)). 

The function r satisfies the same equality and so ;z (m + 1, k + 1) = r(m + 1, i + 1) 
by the induction hypothesis. 

The uniqueness of the incomplete sample u’ satisfying the condition rut = Y follows 
from the above exposed construction oi’ zi and the fact that if uk, -‘71,k + 1 = d then 
r,,f(m, k) = r,#(m, k + I) = r,l(m + 1, k) = r,f(m + 1, k + 1) - 1, 

(b) The second part is obvious, the first part can be deduced from the second part 
taking into account that every matrix T: ,_ = 9 can be presented as a product of the 
matrices from $3 and of the singular diagonal matrices of the kind & ” = E -I- zJ,y I’ 
(remember the notations adopted in Section 2: $” is the matrix with the (i, j)-entry 
equal to y and the other entries equal to zero, E is the unity matrix). It remains to 
observe that multiplication by the matrix ei;” from tlhe left or from the right does not 
increase the function r. 

(c) The construction Df the desired incomplete sample is close to the construction 
of the substitution in Proposition 11. Namely, execute elementary uppertriangular 
transformations over the rows of the matrix A according to the following rule as long 
as it is possible. If the first from the left nonzero entries of the ith and fib rows (i <i) 
are situated in the same kth column, then add to ith row the jth row multiplied by 
some suitable coefficient from the field F in order to let the (i, k)-entry vanish (a 
choice of a pair i, j is not necessarily unique). As a result of these transformations we 
obtain a matrix A’ = BIA (B1 E a) in which the first nonzero entries of all nonzero 
rows are situated in mutually different columns. Define the incomplete sample 
u = UA: we set u&j = 1 iff the first from the left nonzero entry of the ith row is situated 
in the jth column. One can easily see that II = /YBz for some BZ E 3. 

IfA=B1uB2=B~u’B~ forsomeincompletesamplesu,u’andB1,B2,B’1,B~ ~3, 
then (b) of the present proposition entails the equalities rA = r, = r,, from this and (a) 
of the present proposition the equality u = u’ can be deduced. 
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(d) Let A = B B ( ]II 2 see (c) of the present proposition). it is sufficient to present u 

inaformIr= Ti w I$ Complete. arbitrarily the incomplete sample u by unities up to 

f;orne substitution w E Sn. Let u =C__ z;,‘.;,, then set T’1 =&sk z$,, Ti = 
. 

1 .I “I ,_= k z$,. The sin \p’le checking ends the proof of the proposition. 

We assume in (a) of the following proposition that the field F is infinite. The 
formulation of the result of (b) of the following proposition does not depend on the 
choice of the field F, therefore this assumption is not essential for the result of (b). 

bqmition 15. (a) Let A be rectangular n X m matrix and rA G r for some function r 
satisfying the above formulated conditions (l), (2) and (3). Then A E (C : rc = r) (as 

cparlier the bar denotes the closure in Zariski topology in the space of all matrices); 
is) Foreverypairqfsubstitutions wl, w2eS,, therelation WI s w2 (seeSectionA.1 of 

the appendix) is equivalent to the inequality r,,,, s rHr2. 

Praof. According to (a) and (c) of Proposition 14 one can assume that AS is equal to 
an incomplete sample UA and besides that one can find the incomplete sample u such 

that r,, = r. Carry the proof by the induction on m + n. 
We let L = F[E, em-‘] denote the ring of Loran polynomials over one variable. Any 

0 f p E t can be uniquely presented in the form p = E NpI for some integer N and the 
usual polynomial p1 over E with nonvanished free term; the integer IV is called the 

degree of p. The induction hypothesis consists in the following: 
(CU j Already the nonsingular uppertriangular n x n matrix B1 and nonsi!lgular 

uppertriangular m X m matrix B 2 (oiler the ring I!,), corresponding to n x m 
incomplete sample UA and to the n X m incomplete sample u, are constructed; 

(p) Each entry of the matrix &uBz belongs to the ring P = F[E] of the usual 
polynomials; 

( y ) the matrix (B1 z1B2)free, consisting of th.e free terms of the entries of the matrix 

BluB2, is equal to u& 
The inductive step will consist in the construction of the matrices B ‘1, B b satisfying 

the conditions (a!), (@) and (y) and corresponding to the (n + 1) x m incomplete 
sample u x obtained from UA by adding of a first 1 X m row d and to the (n i- 1) x m 
incnrr@ete sample ur obtained from u by adding of a first 1 x m row. 

Let s = IA (n + 1, m j bie e zual to the number of unities in the incomplete sample u L, 
let 1 G fJl< l l l < qs 5 m densote the indices of the columns colrltaining these s unities. 

For every 1 x m vector q w::: denote by rf”) the projection of the vector q on the space 
generated by the orts with r.he indices ql, . . . , q3 (so $) is an 1 x s vector). Let the 
unities of the incomplete sa;nple u’ be situated in the cells with the coordinates (ti, tl), 

(I;, t*), . . . where 1=stI<t2<- and l<t:an+l, lst+rn for each i. The 
inequality 1 = rA(fl f 1, 41) s r&z + I,~I) cntaik that tl S q 1 ; then the iwquality 
2 = r&z f 1, 92) s r&z -t- 1. q2) entails that t +q2; after that we obtain inequality 
13 G 43 etc. 
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We construct the matrix Bi by adding some first row (bl, . . . , 6,) (which will be 
defined below) to the matrix B1 ; the matrix I?; will be obtained from the matrix B2 
by some modificatlan described below. Let 91 (1~ I s s) denote the row with the 
index tl of the n:%-5~ B2. Consider the s x s matrix G with the Ith row equal to 
0:“’ (1~ I s s). So G~J is equal to the (tl, q/)-entry of the matrix B2. Consider also 
a matrix G’ = G + e”E for such a large natural number M that G’ is nonsingular 
and besides that M is greater than the absolute value of the degree of each entry 

(with a negative degree) of the matrix B 1. Modify the matrix B2 by adding the 
polynomial eM to any (tl, q&entry of B2 for all 1 s I s s (so the modified matrix Bz 
is uppertriangular as before because tl< qi; we preserve the same notation for the 

modified matrix Bz). Let (0:)‘“’ denote the row with the index I (1~ I ss) of the 

matrix G’. 
For some natural number A& each entry of the matrix G1 = E MIG’ belongs to P. 

The matrix G, can be reduced by some sequence of elementary transformations over 

P to the diagonal form with nonzero entries 4L g* the diagonal. Therefore there exist 
br;, . . . , bt: E L such that 

and moreover each coefficient of the vector C1__,_ b,;(&)“’ belongs to P. We can 
assume that 6,; # 0 for all 1 s I =Z s, adding if necessary to each 6,; the polynomial F J% 
for arbitrary natural number A& which is greater than the absolute value of the 
degree of every entry (with a negative degree) of the matrix &. Set all the other 
coefficients of the vector (& . . . , b,,) equal to Ed,. Thus the matrix B; is defined. 

Set each (ti, j)-entry of the matrix Bh equal to E M3 (when ti s j, 1s i s s and j Z 41 
for all 1s I s s) where the natural number M3 is greater than the absolute value of 
degree of every entry (with a negative degree) of the matrix Bi. Preserve the other 
entries of the matrix B2 without exchanging (remember that we consider the 
modified matrix B2). This completes the description of the matrix B;. 

According to the choice of the numbers M, A43 the conditions (a), and ( y) are 
fulfilled for the submatrix Blu& of the matrix B{ u’Bb (the polynomials containing 
only positive powers of E have been added to the entries of the matrix BluBz by the 
changes in the entries of the matrix B2). Taking into account the choice of the vector 

(61, l l l , 6,) and of the numbers i&, A&, we obtain the conditions (0) and (y) for the 
first row of the matrix B\u’Bi (the equality (8) and the choice of I& entail it for 
the coefficients of the first row with the coordinates ql, . . . , qp ; for all the 

other coefficients one can deduce this based on the choice of A& and 
M3-these coefficients contain only positive powers of E). That matrix B’, is 
invertible, follows from non-vanishing of b 1. 

Thus the conditions (a!), (p) and (y) are valid for the m&rices Bi and B; 

corresponding to the incomplete samples L&, u ‘. We have considered the case when a 

row is added to each of the matrices &fA and u. Analogously the case of adding of a 

column can be considered. 
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The: equality r&(e jU&(E) = ru = r is fulfilled for almost arbitrarily fixed E # 0 by the 
condition (CU) and by (b) of Proposition 14, on the other hand the con&tions (0) and 
(y) entail that UA E{&(E)u&(E): E f 0). This completes the proof of (a) of the 
present proposition. 

(b) Consider the set & = {A E GL,: rA S rW2}. It is closed in Zarisky topology in 
GL, as the inequality rA S IrW, is equivalent to the system 3 of vanishing of some 
minors of the matrix A (namely for every m, k, if r,,(m, k) = g, then insert into the 
system 28 all the minors of the sizes greater than g of the matrix A’“*k’). (b) of 
Proposi.tion 14 entails that 93w&S9 c Ju and therefore 3~29 c JK 

Conversely, the inclusion @w&3 DJ! follows from (a) the present proposition. 
The equality & = Sw$3 = u,,,, aw& is valid by the theorem of Chevalley on 

the structure of 93w#S; from this equality one can easily deduce (b) of the present 
proposition. 

Theorem 16 (Generalized Bruhat decomposition). For arbitrary yt x n mo trix A there 
exists the unique substitution WA E Sn such that A E FwAy, and for every w E S,, such 
that A E 9~9’ the inequality r,, s rw is fulfilled (and so WA G w according to (6) of 
Proposition 15). 

Proof. Making use :,f (c) of Proposition 14, we can bound ourselves to the case that 
A = u = c, S ISm z (;:j, is an n x n incomplete sample. 

1 he construction of the substitution matrix w, proceeds in two stages. The 
construction consists of finding of the cells in wU in which entries equal to unities. 

Stage 1 I Construct the sequence of the incomplete samples uo = u, u 1, . . . such that 
for each q the matrix u~+~ is a submatrix of the matrix u, (the matrix u, is of the size 
(n -4) x (n -4)). Assume that q steps of the first stage have proceeded and as a result 
of these steps the incomplete sample u, has been constructed; and that in the not yet 
constructed to the end matrix, wU q unities are already put in some cells (at each 
step of the first stage one unity is put in some cell of w,). 

Before describing of (q + l)%h step of the first stage we make a remark about the 
notations. If a matrix G is a susmatrix of the matrix D, then each cell of the matrix G 
has coordinates in the matrix (3 and in the matrix D. So every time when misunder- 
standings can arise we define more precisely which coordinates are considered. 

(4 + 1 )th step of the first stag? (q 3 0). Assume that llii = 1 (the choice of a cell (i, j) 
is not necessarily unique), moreover the cell (i, j) is situated also in the matrix u, and 
has ?he coordinates (i”‘, j’“‘) in u, where i”’ 2 jiq), in other words this cell is situated 
not above the diagonal in the matrix u,. Then put unity at the cell (i, j) in the matrix 
w,. The matrix uq+l is obtaineid from the matrix u, by eliminating its row with the 
index i”’ and its column with the index j’“‘. If there is no unity satisfying the 
formulated properties in the matrix u, then pass to the second stage of the con- 
struction of W, not executing the (q + 1)th step of the first stage. After execution of 
the ,(q + 1)th step of the first stage we pass to the (q+2)th step. 
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Let 1 < q. If a cell in the matrix u, is situated not below the diagonal, then it 
is also in the matrix ul situated not below the diagonal. 

It is sufficient to prove the lemma for the case q = 1+ 1 (for the completion of the 

proof use the induction on q - 1). 
So let the matrix u, be obtained from the matrix LQ by eliminating its row with 

index i”’ and its column with index j(l), where (i”‘, j”‘) are coordinates in the matrix 
ul. Assume that a cell with the coordinates (I”’ l (I) 1 , j1 ) of the matrix ul is situated in the 
matrix u, not below the diagonal. First we check that either ii” C i”’ or j:” > j? 

Suppose to the contrary that 

(9) 
As i”’ > ‘(I) -_I according to construction at the first stage, ii” aj’/’ + 2. The cell with the 
coordinates (i”’ ‘(‘) 1 , J 1 ) in the matrix ul has the coordinates (i:” - 1, j:“) in the matrix U, 
under the supposition (9). This contradicts the fact that this cell is situated in the 
matrix u, not below the diagonal, i.e. ii” - 1 G j:“. Thus (9) is impossible. 

The coordinates of the cell (i:“, jy’) under consideration are equal (in the matrix 

u,) to 

(CU) (i:“, j:“) if z  

*‘I), ,’ i:“, j’” > j:” 

or 

.(I) 41) (PI (h 911 
_ 1) if i”‘> i:“, j”‘< j:" (10) 

or 

(y) (i:” - 1, j:” _ 1) if i’” < i:“, j’” < j:“. 

Based on the fact that this cell is situated in the matrix u, ncli below the diagonal, 
we deduce that in each of these cases (a), (p) and ( y) this cell is situated in the matrix 
u/ also not below the diagonal. For instance i:” <j:” - 1 in case (p), consequently 
iif’ < - j:". The lemma is proved. 

We turn ourselves to the description of the second stage of the construction of UPS,. 

Stage 2: Let k steps of the first stage have proceeded. and as a result an 

(n-k)x(n-k) incomplete sample uk with all its unities situated above the diagonal 

has been constructed. Choose (n - k) cells of the matrix u situated at the diagonal in 
the matrix uk and complete the construction of the substitution w, putting unities in 

these cells. 
Let the unities put in w, in the first stage successively be situated in the cells with 

the coordinates (il, jl), . . . , (ik, jk) (one can easily see from the construction at the 
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first stage that the unities are situated in these cells in the matrix u, remember that 

H = C,QlW?I 2 $), i.e. the unity has been put in the cell with the coordinates (is jl) in 
the matrix wU at the Ith step. In the second stage the. unities have been put in the cells 
with the coordinates (pr, ?I), . . . , (pn-k, tn-k) and moreover PI C l l l <pn-k, tl< 

***an_+ (here and further on, if the contrary is noft specified, all the coordinates are 
understood as coordinates in the matrix w,). 

We show that u = T1 w& for some T,, T2 E 9. If m 3 2 > k, then the cell with the 
coordinates (ir, jl) is situated also in the matrix uk, and as the entry of the matrix u 
(and therefore of the matrix uk) in this cell is unity, the cell under consideration is 
situated in the matrix uk above its diagonal (otherwise we should execute the 
(k + 1 )th step of the first stage noz passing on to the second stage). Hence there exists a 
unique 1 sql G n - k such that tq, = jl and theref ore the inequality pq, > ii is valid by 
force of the observed earlier. Introduce the matrix Tl as the incomplete sample in 
which the unities are situated in the cells with the coordinates (il, il), . . . , (ik, ik) and 
in the cells with the the coordinates (ik+l, pqk+,), . . . , (i,, pqm) (all the other entries 
are equal to zeros). Set T2 equal to the unity matrix. The equality u = Tl w,Tz can be 
checked immediately. 

Now assume that u E 9w.Y for some w E Sn. Then (b) of Proposition 14 entails that 
rW 2 r;. Further on the inequality rW, G r,,, will be proved. Let 1~ f, g s n. Prove the 
inequality r,, (f, g) 6 r, (f, g) by analysis of two cases. 

Case I I Suppose that an f x g submatrix w lf.‘) of the matrix w, contains only 
unities which have been put in the matrix w, at the first stage of its construction. 

Then the number of unities in the matrix w LfV”’ is equal to r,,,, (f, g) s r, (f, g) 4 
r,&, g) (the equality rW, (f, g) = r,( f, g) in fact in this case is fulfilled). 

Case 2 : Suppose that the incomplete sample w if.” contains 4 > 0 unities (situated 
in the cells with the coordinates (p/+1, tl+l), n . . , ( P[+~, t, +g) for some I) which have 
been put in w, in the second stage of the construction and h unities which have been 
put in w, in the first stage (consequently tW, (f, g) = h + 4). 

3’hese assumptions entail the inequalities pl < n --f + 1~ p/+1 and tl+* s g < ~+~+l 
(setpO=Oandfn-_k+l = n + 1 by definition). There exist pi+1 - (n - f + 1) unities in the 
matrix w, situated in the cells with the values of the first coordinates between 
(n-f+l)andp !+I ; fix one of these unities situated in a cell with the coordinates (i, j), 

then (n -f + 1) d i <P[+~. These p1+1 - (E - f + 1) unities have been put in the first 
stage because the unities which have been put in the second stage cannot stay in the 
cells with the first coordinates strictly between pi and PI+~. Check the inequality 
j < tf+l for the pair (i, j) under consideration. Otherwise, as the cell with the 
coordinates (p/+1, ti+l) is situated at the diagonal in the matrix uk, this cell is situated 
not below the diagonal in the matrix uk’ by Lemma 17, where (k’ + 1) is the index of 
the step (of the first stage) at which the cell under consideration with the coordinates 
(i, j) has been eliminated. So this cell is situated above the dragonal in the matrix uk’ 
which contradicts the construction in the first stage. Thus the considered pI+l - 
h - f + 1) unities of the substitution wU are situated in the matrix M&‘*~) and obviously 
not in the matrix C’ := w~-Pl+~+l’f~+q’_ 
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Analogously (g - tr+,) unities put in the matrix wU in the first stage and situated in 
the cells with the values of the second coordinates greater than tl+q and not greater 

than g are also situated in the matrix w:‘*~’ and not situated in the matrix C. So there 
are q unities in the matrix C put in w, in the second stage and h’ = 

h -(PI+1 - (n -f+ 1)) -(g - tl+,) unities pi1.n in the first stage. 
The coordinates of the upper right cell of the matrix C are (PI+ 1, tl+,& and in the 

matrix uk its coordinates are (I + 1, 2 + 4). %‘or each unity put in the matrix wU in the 
first stage and situated in a cell with the ccordinates (id, jJ for some 1s d G k either 
id >pl+l orjd < tl +q is valid as the cell with the coordinates (p/+1, tl+,) is situated not 
below the diagonal in &fk and therefore this cell is situated not below the diagonal in 
the matrix u.d-1 by Lemma 17. On the oth<:r hand the cell with the coordinates (id, jd) 
is situated not above the diagonal in ;he matrix z&.l (that contradicts to the 
conjunction of the inequalities itI <1pl+l, jc > tl+,) according to the construction in the 
first stage. Observing lO(a, /3, y) In the prglof of Lemma 17, we obtain that for the cell 
with the coordinates (P~+~, tl+,) the difL o-r;nce between the values of its first and its 
second coordinate decreases by one, when transferring from the coordinates in the 
matrix &f&1 to the coordinates in the matrix ud (1s d 6 k), only in case 10(p), i.e. 
when id >pl+l and jd < tl+q. This difference is not changed in the cases 10( a, y ) (either 
id >pl+l Of jd < tl+q as has been proved earlier, therefore the difference under 
consideration cannot increase). The number of indices satisfying the conjunction of 
the inequalities id > pr+ 1, jti < tl+q is equal to the number of unities which have been 
put in the matrix w, in the first stage and are situated in the matrix C. SO this number 
is equal to h’. 

As a result of these speculations we deduce the equality 4 - 1 = (I + q) - (I+ 1) = 

(h+, -pI++h’, therefore g-t-f-n = h+q. 
As n = r,(n, n)sr,,,(f, g)+(n -f)+(n - ,cj by property (2) (just before Proposi- 

tion 14) of the function r, rW(f, g) af-~ g -n = h + q = rW,(f9 g). This completes the 
analysis of the second case. 

Thus we have shown that r,+ G r,,, i’or every w E Sn such that u E YwY (this and (b) 
of Proposition 15 entail that wU 5 w). The uniqueness of the substitution wU is 
evident. Namely, if for some w ’ E Sn such that u E Yw’Y the inequality rH’p s L is 
fulfilled for every w E Sn satisfying the condition u E YwY, then rWn = L, and hence 
w’= ++tU according to (a) of Proposition 14. This ends the proof of Theorem 16. 

emark. It can be deduced that rWA(i, j) = max{i + j - M, rA(i, j)} (we shall nut use this 
further). This equality determines uniquely the substitution WA by (a) of Proposition 
14. 

ion. The substitution wA constructed in Theorem 15 *;;lil! be called the 
vxpletion of the matrix A ; a decompoGtion A = T1 WA T2 where T1, T2 E 9 will be 
called generalized Bruhat decomposition. Set l(A) = I( WA). Then 1 (A) = 

minAETw$ I(w) by the preceding theorem. 
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It can be easily seen from the construction of WA in the proof of Theorem 16 that 
WA does not depend on the choice of a field F, i.e. WA is preserved on its extension, 
and the matrices 7’r, T2 in the generalized Bruhat decomposition can be defined over 
the same field F aa the matrix A. Therefore the function I does not depend on the 
field F. Assume an infiniteness of the field F in the following corollary. 

c0r011sry 18. 

da) - i%?#wa = YWY 

for every w E Sn (remember that the bar over a set denotes its closure in Zariski 
topology in the variety Jad, of all n x n matrices); 

(b) If 9 e “tin and A E @, then 1 (A) s malx y,g I( Y) (the semicontinuity of the 
function I )” 

Proof, Consider, as in the proof of (b) of Proposition 15, the following closed subset: 
A = {A E&: fA S rw} of the variety .I@,. Obviously & 2 YwY (according to (b) of 
Proposition 14), consequently Ju 3 9~9. 

If A Q A, then Theorem 16 entails the inequality r,, s r, for the completion WA of 
A. Therefore w A < w by (b) of Proposition 15 and A E UwtSw Yw’Y as A E Y!vAY. 
Thus Jld c lJ,%, YW’Y. 

If A E Uk”! Yw’Y and A E Yw’Y for some w’s W, then rA s r,# s rW according to 
(b) of Proposition 14 and to (b) of Proposition ‘r5. Applying (a) of Proposition 15, we 
obtain that {C E Jtln : rc = rw} 3 A, and the equ;i.lity {C E J& : rc = rw} = Bw% follows 

from (a) and (b) of Proposition 14. Finally the inclusion UweS w Yw’3 c 99 w9 
completes the proof of (a) of the corollary. 

(b) Theorem 16 entails that 3cU -- yES $rwy9. The equality UyEg Yw# = 
Uyf9 9wyY is valid as there are in fact 001y a finite number of mutually dis- 
tinguished sets among the sets { TwyY} y E3. Based on this and on the (a) of the 
present corollary, we deduce the following chain: 

therefore J! E YwY for some w s wy, YE 9. Hence WA d w s WY and l(A)= 
/(WA) c l(wk.-) = I( Y) by Theorem 16. 

As the formulation of the following theorem does not depend on the choice of the 
field F, we C~PI, without loss of generality, assume that F is algebraically closed. 

If A is a main s&matrix of (a matrix C, then l(A) s l(C). 



Additive complexity in directed computations 67 

Proof. Let A be an n x n matrix and C an N x N matrix. Denote by cp : A&, + M,, 

the natural projection ‘obliging’ the cells of an N x N matrix, which in the matrix 
C are situated outside its submatrix A (certainly cp (C) = A). I- 

Let + denot’e the restriction of cp on the closed set 9%&(cp is a regular morphism 
and so I@ is also a regular morphism, evidently e(C) = A). (a) of Corollary 18 entails 
that EN E YwcY (we denote by EN the unity N x N matrix). Of course @(EN ) = E,,, 
therefore the set % = $(%v&) A GL, is no”c empty and open in Zariski topology of 
the constructive set #(%I@). 

The set .Yw& is irreducible as the image of the irreducible set 9 x 9 (which is - 
isomorphic to FN(Nt-l) , under the regular morphism (7’1,7’2) + Tl PVC&, hence Yw,Y 
is also irreducible (otherwise, if SW&= vl u l l 9 u -Vd where each ‘r/“i is ckeosed, 
then *T)ri 3 Ywc.9 for some 1 s io s d and consequently -vi0 == ,Yw&Y-). 

As %vcg is irreducible, %I = +-I(%) n GLN is an not empty, open and every 
where dense subset in SQ_S. Check that +(‘4!&) 2 $(9w& Otherwise the inter- --- 
section Gtil n @-‘(#(:Tw&)\$(%~)) of two not empty open subsets of the set FwcYis 
empty which contradicts the irreducibility of 9wcY. 

(a) of Corollary 18 entails that I(C) -/ _ =- I,,C’j for any C’ E 421 c Ywc$= IJW i Wc’,. 9~9. 
Then C’ E GLN, e(C) E GL, for every C’ E %a and therefore Z(C) 2 l($(C’)) accord- 
ing to Theorem 13. 

Based on the inclusion A E: t,b(“& j n cl/(Tw&Tj shown above and the application of 
(b) of Corollary 18, we deduce that Z(A) s Z(+(C’)) for some C’E %I (actually this 
inequality is valid for almost all C’ E 92,). Finally we obtain the inequality I(A) = MT), 
which was to be proved. 
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