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Abstract

We prove lower bounds for approximate computations of piecewise polyno-
mial functions which, in particular, apply for round-off computations of such
functions.

The goal of this paper is to prove lower bounds for approximated computations.
As it is customary for lower bounds, we consider some form of algebraic tree as
our computational model (cf. [Biirgisser, Clausen, and Shokrollahi 1996] or [Blum,
Cucker, Shub, and Smale 1998] for algebraic trees). But, unlike the usual proofs
of lower bounds, which deal with decision problems, we will consider computations
of real functions. That is, we consider trees computing functions f : R" — IR
and, also unlike the usual results on lower bounds, we will allow for approximate
computations. To understand the nature of our results let us look first at an example.

Example 1 Given a strictly convex compact polygon P C IR? consider the function

f:IR? — IR defined by
f(e) = max{c, z)?.
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Obviously, there is a partition of IR? into a finite number of regions V; and for
each such region there is a vertex v; of P such that f(¢) = (e, v;)? for all ¢ € V;.

Let T be an algebraic computation tree computing f of Example 1. Then the
number of leaves of T' is at least the number of 2-dimensional regions V; with pairwise
different v;. This follows from the fact that two different polynomials in R[z, y] can
not coincide, as functions, on an open subset of IR?. Therefore, since computation
trees are binary, we have that the depth of 7" is at least the log, of this number. This
argument is independent of the fact that the input space is R? (any IR™ could be
considered instead; just replace polygon by polyhedra and R[z, y] by RR[z1,. .., 2,]).
We intend to replicate it for approximate computations.

Now consider a tree T" which computes a é-approximation of f in the sense that
the output T'(c) satisfies | f(c¢) — T(c)| < 6 for all ¢ € IR2.

If 6 # 0 a lower bound like the one above is no longer valid. To see why, consider
a regular n-sided polygon inscribed in the unit circunference centered at the origin.
For large n the polygon becomes “close” to the circumference and for n large enough
f(c) is 6-approximated by ||c||? = ¢? 4 3. And this function can be computed with
only three operations. So the log, n bound above is far to apply.

Thus, in order to obtain meaningfull lower bounds one needs to impose some
condition on the value of 6. We devote the next section to define the main concepts
of the paper and to state our main theorem, where this condition is made explicit.
In Section 3 we extend our main result to round-off trees i.e., trees whose arithmetic
operations are subject to some form of error. Finally, in Section 4, we briefly discuss
extensions to other settings such as randomized or parallel trees.

1 Piecewise Polynomial Functions and Round-off Com-
putation Trees

In this paper we will only deal with trees whose computation nodes perform ad-
ditions, subtractions or multiplications.! It is immediate to prove that such a tree
(with exact arithmetic) computes a very specific kind of functions, which we describe
in the next definition.

Definition 1 A function f: R"™ — IR is called piecewise polynomial if there exists
a finite partition R™ = U;V; of IR™ into semi-algebraic sets V; and for each 7 a
polynomial f; € R[z1,...,®,] such that fjy, = f;.

Without loss of generality we will assume that if « # j then f; # f;.

The function f of Example 1 is piecewise polynomial. Another example of this
kind of function is provided by quantifier elimination in the theory of the reals.
Such a procedure defines a piecewise polynomial function by associating, to each

!The extension of our results to the case of trees allowing divisions is an open problem.



tuple of coefficients of an input formula, a vector of coefficients of an equivalent
quantifier-free formula.

Apparently, computation of piecewise polynomial (or more generally, rational)
functions was considered for the first time over the complex numbers rather than
over the reals, as in our case, by Strassen [1983] for the problem of computing GCDs
of univariate polynomials.

Before defining what we mean by approximation we emphasize that we are
considering computation trees rather than decision trees. In particular we recall
that, associated to any leaf n of a computation tree T, there is a polynomial
gy € R[zq,...,2,] such that, for any input € R™ which reaches 7 in the course
of the computation, the output 7'(z) of T' coincides with g,() (cf. [Blum, Cucker,
Shub, and Smale 1998] for details).

Definition 2 Let T be an algebraic computation tree with input space IR™ and
output space IR, and let f:IR" — IR be a function.

We say that T approzimates f with absolute accuracy ¢ if for every input z € R"
the output 7'(z) of T satisfies |[T(z) — f(x)| < 6.

We say that T approzimates f with relative accuracy 6 if for every input € R™
the output T'(z) of T satisfies |T'(z) — f(z)| < 8| f(=)].

Remark 1

1) Approximate algorithms for a problem are a current practice to improve the
efficiency over the known algorithms computing the exact solutions of that problem.
2) To the best of our knowledge very little is know on lower bounds for approxi-
mate (or round-off) computations. A worth noting exception is a paper by Rene-
gar [Renegar 1987] which gives lower bounds for approximating zeros of univariate
polynomials.

We now describe the condition we will impose on ¢ in order to obtain lower
bounds for the depth of approximate computations. This condition takes the form
of a bound 6 < I where I' is a quantity depending only on the piecewise function f
(rather than on the tree). We actually provide a family of conditions parameterized
by a positive parameter 7 whose meaning will be discussed soon.

Let 7 > 0. If f is piecewise polynomial we define

w(t) = #{¢ | Vi contains an n-dimensional cube of side 7}.
For the rest of this paper we assume that 7 satisfies w(7) > 0. Let
B; =inf{b € IR | there exist cubes as above which are contained in [—b,b]"}.

Denote by I, the set of indices ¢ satisfiying the condition in the definition of w(7)
and let
d. = ma}xdegree (fi) and Cr = min ||f; = filloo
o oy
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where polynomials are identified with their vectors of coefficients. Define

_1)2 n
R ( . )LZT“)
7T 2 \(D,+1)B, \N;,
where D, = max{d.,w(r)}, N; = w(7)D.n + 1, and
g _ | B B>
7 BP-=1 if B, < 1.

We can now state our main theorem.

Theorem 1 IfT approximates a piecewise polynomial function f with absolute ac-
curacy 6 and
6< T,

then the depth k of T satisfies
k > logy w(T).

Remark 2 Before proving Theorem 1 it may be helpful to say a few words on the
meaning of 7. Let I be the set of indices such that dim V; = n. Then, we can define

7™ = inf{r | V; contains an n-dimensional cube of side r for all 7 € I}.

For 7 > 7* the inclusion I; C I may be strict and therefore w(7) may be smaller
than w(7*). But, in exchange, we have D, > D « and C; > C'7*. Therefore, I'; may
be greater than I'-x. We conclude that by increasing 7 beyond 7* the lower bound
may be decreased but the accuracy requirement may be relaxed. The exact form of
this trade-off will depend on the function f at hand and when applying Theorem 1
we will choose a 7 which best fits our interests.

In proving Theorem 1 the following lemma is essential.
Lemma 1 Let f € Rzy,...,z,] with degree, (f) < d and M = ||f||e. Let

bi,...,bp, € R, |b;] < B, N €¢ N, N > d, and consider the uniform grid S with
mesh T /N in the cube

Let S C S with |S] = s. If

5>5n:N”<1—(1—%)n):N”—(N—d)”



then there exists x € S such that
2(d—41)2 1, d£d2+1) n
M| (=
@) > a ((d+1)B (% )

where
B B ifB>1
"1 B*' ifB<1.

Proor. By induction on n.

BASE CASE, n = 1. In this case, s; = d, so assume there is a subset Sy of S
having d + 1 points wo, ..., wy in S such that |f(w;)| < a for i = 0,...,d. Then,
interpolating f at these points we express each coefficient of f as a fraction

erso ag f(x)

where

Wy, Wy GSO
0<j<i<d

is the determinant of the Vandermonde matrix

L owy wi ... wi

Low w? ... wi
V= )

1 wy w?l - w&l

and a, are the determinants of suitable minors of V. The smallest possible value of
|A| occurs when wy, ..., wy are consecutive in S (i.e. w; —w;—; = 7/N) and in this

case we have
d(d+1) d

d N\ d—it+1 S0
iT T\ 2
SR ()
=1 N N =1

On the other hand, by bounding each of the d! terms in the definition of determinant
we have |a;| < BEd'if B> 1 and laz| < BY1d!if B < 1. That is, |a,| < Bd!.
Therefore, the absolute value of each coefficient of f is less than

(d+ 1)Bdla < (d+1)Ba

d(d — d(d —1)2
L (T

d 2

the last inequality since H i > 971 for all d > 1. But then
=1

(d+ 1)Ba

M<—
@D (@ip
)TQ£_41L_1

T
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which is in contradiction with the definition of .
INDUCTION STEP, n > 2. Write f = Y, f1X! where f; € R[z,] and X' is a

monomial in z1,...,2,-1. Now, take f7, such that ||f1|lcc = M. By the base of
the induction, for all but at most d points = in the set
T 2T Nt
L= bn_ 7bn_ _7bn_ _7"-7bn_ —:bn
{ T T+ N T+ N T+ N }
we have
, d(d—1)
Y (2@—41) _1%) 2
. 1
(@) > ——75 1)

Therefore, there are more than s, —dN"~! points in § whose last coordinate satisfies
(1). We conclude that there exists one such point #* € L such that, moreover,

n—dN™1
S0 {z, ="} > SNi_d

Now apply the inductive hypothesis to the polynomial f;, —.« € R[z1,..., 2, 1]

= Sp—1-

using that
w2\
M (2 z %)
firumselle > ——77 775
and the conclusion follows. a

2 Proof of Theorem 1

Recall that I, is the set of indices ¢ satisfiying the condition of the definition of
w(r), D = max{w(7),d.}, and N; = w(7)D.n+ 1. Let i € I; and consider the
grid § C V; asin Lemma 1. We say that a leaf n of T is attached to V; if 1 is reached
by at least N /w(r) points of 5.

We claim that one leaf of T' can not be attached to two different sets V,. From this
claim it follows that k > logy w(7). Indeed, if k < log, w(7) then |Leaves(T")| < w(T)
and, by the pigeonhole principle, there is a leaf of T" attached to V;. So, every V;
has a leaf attached to it. And, by hypothesis, each leaf of T is attached to at most
one V;. But then |Leaves(T')| > w(7) and therefore, k > log, w(7).

To prove the claim, assume that there exist sets V; and V;, ¢+ # j € I, such
that a leaf 1 is attached to both of them. Let g, be the polynomial computed along
the branch leading to n and C' = || f; — fi|lco. Then either ||f;i — gyl|lcc > C'/2 or
Ifi = gnllee > C"/2. We can assume, w.lo.g., that the first inequality holds.

Let S C S be the set of points reaching the leaf n. Then,

5] > T
w(T)

6




Since N; > w(7)D,n, we have

D.n
Sl > N1
||> TN

T

=N*"'Dn>N"— (N, - D))"

Thus we can apply Lemma 1 to the polynomial f = f; — g, with M = C’/2,d = D,
and B = B, and we deduce that there is a point € § such that

(Dr—1)” Dr(Dr4n\ "
Chf 27 Losr 2
i(a) — P > T,
@) =gal0)l > 5 ((DT—I—l)BT (N) ) -

since ¢’ > C,. But this, together with the hypothesis on I';, contradicts the fact
that |T(2) — fi(z)] < 6. O

A lower bound for relative approximations easily follows from the proof of The-
orem 1. Let

H, = :
L S COL

Corollary 1 If T approzimates a piecewise polynomial function f with relative ac-

curacy 6 and

6§FT

=

then the depth k of T satisfies
k > logy w(T).

a

Remark 3 In the sequel we will state our results only for approximations with
absolute accuracy 8. Results for those with relative accuracy 6, such as Corollary 1,
follow immediately from the former.

Remark 4 The lower bound in Theorem 1 (or that in Corollary 1) is on the depth
of T. A more involved issue is the consideration of the topological complexity of f
(cf. [Smale 1987] for this concept, see also [Vassiliev 1992]), i.e. the number of leaves
of T'. This number is essentially the amount of branching necessary for solving the
problem. In our discussion of Example 1 we saw that the topological complexity of
[ is at least the number of 2-dimensional regions V; with pairwise different v»; which
is at least w(r) for each 7 > 0.

For the problem MAX, consisting of finding the largest coordinate of an input
x € R™ and for which the number of pieces is n, the question of the topological
complexity is open (see [Grigoriev, Karpinski, and Yao 1998] for the discussion and
the exponential lower bound for ternary rathen than the usual binary computation
trees).



Implicit in the proof of Theorem 1 is the fact that, if & = log, w(7), then the
topological complexity of 7', TC(T'), satisfies TC(T) > w(r). It is unclear to us
whether one can trade topological for arithmetical complexity, that is, whether one
can reduce the topological complexity of an approximated computation at the ex-
pense of increasing the degree of the computed polynomials. We can prove, however,
a trade-off between these complexities (and the approximation accuracy §). Let T
be an algebraic computation tree and g, the polynomial computed at leaf 5. Define

dr = max  degree .
T n a leaf of T & (977)

Note that dr < 2% where k is the depth of T. Now define D1y = max{d,,dr} and

(D(r 1) -1)?
1

D 7, T (D 7, T +1)
2

C,
T =5

1 .
(D) + 1)Bir (Wf
with B, 1) as in Section 1. The arguments of Theorem 1 yield the following.
Theorem 2 If T approximates f with absolute accuracy 6 and

6 < T
then the topological complexity TC(T) of T satisfies

TC(T) > w(T).

3 Round-off trees

A round-off tree is an algebraic computation T" whose arithmetic operations are sub-
ject to some form of error. Typical examples arise when considering computations
in floating-point or fixed-point arithmetic.

In what follows, we will prove lower bounds for round-off trees. We will not
rely on any special kind of error. These errors can be produced by rounding or by
chopping, and can satisfy bounds either for their absolute or relative magnitude.
Actually, the only hypothesis for our lower bounds to hold will be the usual bound
on the outcome’s accuracy and an additional hypothesis requiring that the sequence
of arithmetic operation performed by the tree produces an equally accurate result.
Let’s describe this more precisely.

If nis a leave of T', denote by g, the polynomial computed with exact arithmetic
along the path ending in n and by g, the function computed along this path when
errors are allowed.



Definition 3 Let T be a round-off tree with input space IR”™ and output space R,
and let f:IR™ — IR be a function.

We say that T approzimates f with absolute accuracy ¢ if for every input z € R"
the output 7'(2) of T' satisfies

1) [T(e) - f(2)] < 8, and
2) If the round-off computation of 7" with input z leads to the leave 5
then [7(2) — ga(2)] < 6.

Similarly, we say that T approzimates [ with relative accuracy 6 upon replacing
6 by 8| f(2)] in the two conditions above.

Remark 5 Notice that the adjectives “absolute” and “relative” can apply to both
the errors occuring along the computation (round-off errors) and the accuracy of
its outcome. However, there is no need to bound in the same way the accuracy
and the round-off errors and one finds instances of algorithms with combinations
of different kinds. For instance, algorithms in numerical linear algebra, say for
linear equation solving, usualy consider both relative round-off errors and relative
accuracy (see [Demmel 1997]); relative round-off errors are actually common in
numerical analysis since they correspond to floating-point arithmetic. The main
result of [Cucker and Smale 1997] considers absolute round-off errors but infinite
accuracy in the answer (the problem considered there, being decisional, does not
allow for approximate answers). Also, for some results on integration (cf. [Koiran
1995]), absolute accuracy is considered for exact algorithms. The list of combinations
may continue but we will stop here.

A version of Theorem 1 for round-off trees follows.

Theorem 3 Let T be a round-off tree with depth k. If T approximates a piecewise
polynomial function f with absolute accuracy 6 and

b<
-2
then k > logy w(T).

Proor.  One proceeds as in the proof of Theorem 1 to show that if & < log,(w(7)
then there is a point z € R™ whose computation ends in a leave i of T' satisfying

|f(z) = gn(x)| > T7.

But since T é-approximates f we have

T, r.
JE-TEI<6< T ma @) —g <o
the latter since T'(2) = g,(2). Therefore | f(2)—g,(2)| < I'; which is a contradiction.

a



4 Extensions

Theorem 1 can be extended to some contexts where trees are endowed with addi-
tional capabilities. In this section we briefly discuss how this is carried out for two
such capabilities: randomization and parallelism. We will state our results only for
exact approximation trees. The result for round-off trees holds as well in the case
of randomized trees but we do not know how to prove it for parallel trees.

4.1 Randomized Trees

One can define randomized versions of approximation trees by allowing “coin toss-
ing” and requiring the output to be a é-approximation with high probability. More
precisely, we consider trees with input space IR™ x {0,1}™ (for the arguments which
follow the exact value of m is not important) and we fix a confidence degree o satis-
fying 0 < ¢ < 1. Then, such a tree approximates f with absolute accuracy é when,
for each 2 € R™ and for at least 02™ points bin {0, 1}, we have |T'(z,b)— f(z)| < 6.

Assume that this happens and let X be the union of the grids S associated to
the sets V; with ¢ € I.. Then there exists a point b* € {0,1}™ such that for at least
o|X| points in X we have |T(z,b) — f(z)| < 6. Fix the coin tossing b* and call these
points good (with respect to b*).

Lemma 2 At least 57~w(T) sets V; contain more than $NT good points.

Proor.  Let a be the number of sets V; containing more than §N good points.
Then o
|good points| < aN + (w(7) — a)Nf§

and since the number of good points is at least o Nw(7) the result follows. O

To replicate the proof of Theorem 1 we now consider the deterministic tree
resulting from replacing the coin tossing by the fixed point 0* and we modify the
quantities appearing in the definition of I'; to allow for the confidence o. Thus, we
define I(; ) to be the subset of I with those indices ¢ such that V; satisfies Lemma 2.
Then, one defines d(; ), C(+ 5}, D(70), N(70) and I'(; 5y as in Section 1.

Notice that d(,,) < d-, C(; ) > 5, etc. and so ' ,) > T';.

Theorem 4 IfT is a randomized tree which approximates f with absolute accuracy
6 and confidence o, and
6 < T

T,0)

then the depth k of T satisfies

k > log, (%w(r)) .

10



SKETCH OF PROOF. We say that a leaf n is attached to V; if 5 is reached by at
least N(”TJ)/w(T) good points in 5.
Again, we claim that a leaf can not be attached to two different sets V; and from

this claim it follows the theorem. Indeed, if

k < logg (%w(r))

then |Leaves(7T)| < ow(7)/2 and, by the pigeonhole principle, there is a leaf of T
attached to V;. So, every V; has a leaf attached to it. And, by hypothesis, each leaf
of T is attached to at most one V;. But then

|Leaves(T")| >

o
2—0 2

and therefore, k > log,(Sw(7)).
The claim is proved as in Theorem 1. a

Remark 6 When dealing with decision problems, the confidence degree o is as-
sumed to be greater than 1/2 (or in other words, the probability error e = 1 —0¢
is assumed to be smaller than 1/2). This is due to the fact that an algorithm con-
sisting of tossing a coin and answering Yes or No according to the outcome of that
coin tossing (and independently of the input) is already a probabilistic algorithm of
confidence 1/2. Theorem 4 shows that such a simple algorithm is not going to work
in the non-decisional case.

We also mention that a complexity lower bound for a probabilistic tree deciding
an arrangement of hyperplanes or a polyhedron was obtained in [Grigoriev 1998].
This bound is logarithmic in the number of faces.

4.2 Parallel Trees

Parallel computations can be modelled by a particular kind of trees. If p denotes the
number of processors, at each computational node, the tree performs an arithmetic
operation and stores its result in at most p coordinates of the state space. Also, at
each branching node, the sign of at most p such coordinates is tested, giving thus
rise to 2P possible outcomes. An elementary computation yields an upper bound of
2P leaves for such a tree with depth k. Since in most parallel models the number
of processors is bounded by 2% this upper bound becomes ok2*,

If the computations are performed exactly (without errors) it turns out that most
of these leaves are irrelevant in the sense that there are no points in IR™ reaching
them. More precisely, Yao [1981] (see also [Montana and Pardo 1993]) shows that

in this case, the number of leaves which are reached by points in IR™ is bounded by

11



Notice that from this it follows the inequality

P ¢10g |Leaves(T)|) ‘

n

We remark that an upper bound close to the latter lower one (for small dimen-
sions) for the parallel complexity of deciding an arrangement of hyperplanes or a
polyhedron (as in Remark 6) was given in [Grigoriev 1997].

An almost verbatim repetition of the proof of Theorem 1 yields the following
which, we recall, we can only prove for exact trees.

Theorem 5 If T is a parallel tree which approzimates f with absolute accuracy 6

and
6 < T,

then the depth k of T satisfies

k> Q

Remark 7 The requirement of exact arithmetic for 7" in Theorem 5 seems unavoid-
able if we want to use Yao’s bound on the number of relevant leaves. To see why,
consider a set of s lines in IR? given by linear polynomials (1, ..., (, and assume that
these lines pass through a common point £. Now consider a branch node which tests
the signs of ¢1,...,{; at a point . If x = £ and round-off errors are allowed when
computing (;(£), ¢ =1,...,s, we may get up to 2° possible outcomes.
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