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a proof of it in a formal system such as resolution or (extended) Fregesystems. In fact, many algorithms for establishing propositional validity areessentially a search for a proof in a particular formal system. In recent years,several algebraic proof systems, including the Nullstellensatz system and thepolynomial calculus (also called the `Gr�obner' system) have been proposed:these systems are motivated in part by the desire to identify powerful proofsystems which support e�cient search algorithms and in part by the desireto extend lower bounds on proposition proof complexity to stronger proofsystems.The Nullstellensatz proof system is a propositional proof system based onHilbert's Nullstellensatz and was introduced in [1]. The polynomial calculus(PC) is a stronger propositional proof system introduced �rst by [7]. (See [12]and [5] for subsequent, more general treatments of algebraic proof systems.)In the polynomial calculus, one begins with an initial set of polynomialsand the goal is to prove that they cannot be simultaneously equal to zeroover a �eld F . A polynomial calculus (PC) derivation of Pl from a setof polynomials Q is a sequence of polynomials P1; : : : ; Pl such that eachpolynomial is either an initial polynomial from Q, or follows from one of thefollowing two rules: (i) If Pi and Pj are previous polynomials, then cPi+dPjcan be derived, where c; d 2 F ; (ii) if Pi is a previous polynomial and x isa variable, then xPi can be derived. The degree of a PC derivation is themaximum degree of the Pi's. We identify polynomials Pi with the equationsPi = 0 and a PC refutation of Q (a proof that the equations Q = 0 are notsolvable over F ) is simply a PC derivation of 1 (i.e., of 1 = 0).The de�nition of the polynomial calculus depends implicitly on the choiceof a �eld F such that all polynomials are over the �eld F . A number ofauthors also consider the polynomial calculus over rings ([5, 4]). The onlydi�erence in the de�nition of the PC system is that a PC refutation over aring is a derivation of r (i.e., of r = 0) for some non-zero r in the ring. Ourmain results apply to both �elds and rings.The mod p counting principle can be formulated as a set MODnpof constant-degree polynomials expressing the negation of the countingprinciple, and the present paper gives linear lower bounds on the degree ofpolynomial calculus refutations of MODnp over �elds of characteristic q 6= p.Some lower bounds on the degree of Nullstellensatz proofs of the mod pcounting principles have been given in prior work: [1] gave non-constantlower bounds and [5] gave lower bounds of the form n�. For the polynomialcalculus, the best lower bound on the degree of PC refutations of MODnpwas Kraj���cek's 
(log logn) lower bound based on a general lower bound forsymmetrically speci�ed polynomials [11].2



Polynomial calculus lower bounds have been obtained for other familiesof tautologies. Razborov [13] established pn lower bounds on the degree ofpolynomial calculus proofs of the pigeon-hole principle. Kraj���cek [11] proveslog log n lower bounds for a wide variety of symmetric tautologies.Recently, Grigoriev [8] succeeded in giving very simple linear lowerbounds on the degree of Nullstellensatz refutations of the Tseitin mod 2graph tautologies. The present work is motivated by this paper, and inparticular by the idea of working in the Fourier basis which greatly simpli�esthe argument.The present paper establishes linear lower bounds to the polynomialcalculus by proving that over a �eld of characteristic q - p, any PC refutationof the MODnp polynomials requires degree � � n, for a constant � whichdepends on p and q. In section 8 we generalize this linear lower bound to thepolynomial calculus over rings Zq provided p and q are relatively prime.As it is well-known to be easy to give constant degree polynomial calculus(and even Nullstellensatz) refutations of theMODnp polynomials over Fp, ourresults imply that the MODnp polynomials have a linear gap between proofcomplexity for the polynomial calculus over Fp and over Fq .It follows from a result of Kraj���cek [10] that our linear lower bounds onthe degree of PC refutations imply exponential lower bounds of AC0[q]-Fregeproofs of the mod p principles when Mod-q gates are present only at the top(root) of formulas.2 Tseitin tautologies: polynomial versionTseitin's (mod 2) graph tautologies are based on the following idea. LetGn be a connected undirected graph on n vertices, where each node in thegraph has an associated charge of either 0 or 1, and where the total sum ofthe charges is odd. Then it is impossible to choose a subset of the edges E 0from E so that for every vertex v 2 V , the number of E 0-edges incident to vis equal mod 2 to the charge of v. This impossibility follows from a simpleparity argument, since summing the degrees of all vertices in the subgraphcounts each edge twice, and so is even, whereas it should also be the sum ofall the charges, which is odd.For an r-regular graph Gn with n odd, and charges all 1, we can expressthis principle as the inconsistency of the following system of polynomialsover a �nite �eld F of characteristic di�erent from 2: There will be rn=2underlying variables, one for each edge of Gn. We will denote the variablecorresponding to the edge e = fi; jg from i to j by ye = yfi;jg. For each3



variable ye, we have the equation y2e � 1 = 0; this forces the variables to takeon values of either 1 or �1, with ye = �1 corresponding to the presence ofe in the subgraph E0. Secondly, corresponding to each vertex i in Gn, wewill have the equation 1+yfi;j1gyfi;j2g � � �yfi;jrg = 0, where j1; : : : ; jr are theneighbors of i in Gn. This corresponds to saying that the degree of i in thesubgraph E0 is odd. This set of equations, representing the Tseitin mod 2graph formula, will be denoted by TSn(2).For any prime p, we can generalize the above principle to obtain amod p version as follows. Again, we �x an underlying r-regular, undirectedgraph Gn, and then let G0n be the corresponding directed graph whereeach undirected edge is replaced by two directed edges. Each vertex in G0nwill have an associated label, or charge in [0; p � 1] such that the sum ofthe vertex charges is congruent to 1 mod p. The mod p principle statesthat it is impossible to assign values in [0; p � 1] to each of the directededges so that: (i) for any pair of complementary edges hi; ji and hj; ii,v(hi; ji) + v(hj; ii) � 0 (mod p), and (ii) for every vertex i, the sum of theedge values coming out of vertex i is congruent to the charge of that vertexmod p. Again, this is impossible since if we sum the edges in pairs, we obtain0 mod p, but summing them by vertices gives the total charge of 1 mod p.Let F be a �nite �eld with characteristic q 6= p that contains a primitivep-th root of unity !. Assume all charges of vertices are 1, and thatn � 1 (mod p). We can express the mod p Tseitin principle for G0n asthe unsatis�ability of the following system of polynomials over F : Wehave rn underlying variables ye, one for every directed edge e. For eachvariable ye we have the equation ype � 1 = 0; this forces variables to takeon values in 1; !; !2; : : : ; !p�1. (The power of ! corresponds to the valueassigned to e.) Secondly, for each vertex i in G0n, we will have the equationyhi;j1iyhi;j2i; : : : ; yhi;jri�! = 0, where j1; : : : ; jr are the neighbors of i. Third,for each edge e = hi; ji we have the equation yhi;jiyhj;ii � 1 = 0. This setof equations, representing the Tseitin mod p formula, will be denoted byTSn(p).3 The mod p principle and low degree reductionsA related principle is the mod p counting principle. Intuitively, it statesthat it is not possible to partition a set of size n into groups of size p, if nis congruent to 1 mod p. We will express this by polynomial equations asfollows. The underlying variables are xe, where e ranges over all p elementsubsets of [1; n]. The degree 2 equations expressing the negation of the4



principle are: (1) x2e � xe = 0 for each e; (2) xexf = 0, for each e; f suchthat e \ f 6= ; and e 6= f ; (3) 1�Pe;i2e xe = 0, for each i 2 [1; n]. Let theabove set of equations be denoted by MODnp .We want to show that a low degree PC refutation of the mod p countingprinciple implies a low degree PC refutation of the Tseitin mod p graphequations. To do this, we de�ne the following general notion of a low degreereduction.De�nition. Let P (x), Q(y) be two sets of polynomials over a �eld F .Then P is (d1; d2)-reducible to Q if: (1) For every yi, there is a degree d1de�nition of yi in terms of the x's. That is, for every i, there exists a degreed1 polynomial ri where yi will be viewed as being de�ned by ri(x1; : : : ; xn);(2) there exists a degree d2 PC derivation of the polynomials Q(r(x1; : : : ; xn))from the polynomials P (x).Lemma 1 Suppose that P (x) is (d1; d2)-reducible to Q(y). Then if there isa degree d3 PC refutation of Q(y), then there is a degree max(d2; d3d1) PCrefutation of P (x).Lemma 2 For all n and p, and for any �eld F of characteristic q, where q - p,and F includes the primitive p-th root of unity, TSn(p) is (d1; d2)-reducibleto MODmp over F , where m = n + nrp, d1 = 2pr and d2 = 2pr.Proof of Lemma 2. Let G0n be a directed Tseitin graph on n vertices,where n � 1 (mod p). That is, the underlying G0n is an r-regular graph; eachvertex of G0n has a charge of 1, and the edges of G0n are labeled with valuesfrom [0; p�1]. Thus, the total number of directed edges of G0n is rn. From Gwe will de�ne a universe U of size m, and a corresponding p-partition of thisuniverse, where m = n+nrp. In U , there will be one element correspondingto each vertex of G0n, and there will also be p elements corresponding toeach directed edge of G0n. We will denote the element of U corresponding tovertex i in G0n by (i), and the vector of p elements of U corresponding to theedge hi; ji in G0n will be denoted by (i; j; �) = h(i; j; 1); (i; j; 2); : : : ; (i; j; p)i.De�nition. The elements in U associated with node i will be (i), plusall elements (i; k; �). (That is, the rp elements corresponding to outgoingedges from i plus the element corresponding to node i.) The elements in Uassociated with the pair of nodes i; j will be the rp elements corresponding tothe directed edge hi; ji plus the rp elements corresponding to the directed edgehj; ii.The partition of U is de�ned as follows. We will consider node i inG0n, and the r labeled edges, (i; j1); (i; j2); : : : ; (i; jr), leading out of i, wherej1 < j2 < � � � < jr. Suppose that the values of these edges are: a1, a2,. . . ,ar.5



Then for each `, 1 � ` � r, we take the �rst a` elements in U from (i; j`; �),and group them with the �rst (p � a`) elements in U from (j`; i; �). (Thisgives us r p-partitions so far.) Note that the number of remaining, ungroupedelements associated with node i is (p � a1) + (p � a2) + � � �+ (p� ar) + 1,which is congruent to 0 mod p as long as (a1 + � � �+ ar) mod p = 1.We then group these remaining, ungrouped elements associated with i,p at a time, in accordance with the following ordering. Ungrouped elementsfrom (i; j1; �) are �rst, followed by ungrouped elements from (i; j2; �), andso on until we get to the ungrouped elements from (i; jr; �), and lastly theelement (i).It should be intuitively clear that if the values yi;j satisfy TSn(p), thatis, if they are set so that the mod p sum coming out of each vertex in G0n iscongruent to 1 mod p, and yi;jyj;i = 1 and ypi;j = 1, then the correspondingpartition of U is a proper p partition. We want to prove this now formally,with small-degree PC refutations. There are two steps to this reduction.First, for each variable xe underlying MODmp , we want to de�ne a degree atmost rp polynomial, call it re(y), in the yi;j variables that corresponds tothe above reduction. Secondly, we want to show that there is a small degreePC derivation of MODmp (re) from TSn(p).Step 1: De�ning re. We will �rst describe the de�ning polynomial re forxe. Recall that e is a particular p-set from U . In the above reduction, thevalid p-partitions are of two types: (i) where the elements of e are a subsetof the elements associated with a pair of nodes i; j in G0n; (ii) where theelements of e are a subset of the elements associated with a node i. Thus, ifthe underlying p elements from e are not one of these two types, then xe isjust set to 0.Now consider case (i); that is, the elements of e are a subset of theelements associated with the pair of nodes i; j. Suppose that e is the setf(i; j; 1); (i; j; 2); : : : ; (i; j; a1); (j; i; 1); : : : ; (j; i; p�a1)g. That is, e consists ofan initial segment of size a1 of the p elements associated with directed edgehi; ji and an initial segment of size p� a1 of the p elements associated withhj; ii. (If e is not of this form, then again xe is just 0.) Then xe should be 1if yi;j = !a1 , yj;i = !p�a1 and should be 0 otherwise. This is de�ned by thefollowing polynomial:Ya 6=a1(!a1 � !a)�1(yi;j � !a)� Yb6=p�a1(!p�a1 � !b)�1(yj;i � !b) (1)More generally, suppose that we want to de�ne a 0-1 valued variable x sothat x = 1 if y1 = !p1 and y2 = !p2 and ... and yk = !pk , and otherwise6



x = 0. Then this is accomplished by the following degree kp polynomial:Yi Yp6=pi(!pi � !p)�1(yi � !p) (2)Case (ii) is handled similarly but is somewhat more complicated. Nowthe elements of e are a subset of elements associated with i, and moreoverwe can assume without loss of generality that they must be end-segmentsof (i; jl1; �), (i; jl2; �); : : : ; (i; jll; �) plus possibly either (i) or a consecutivesegment of (i; jll+1; �). (Otherwise, xe is just set to zero.) Then xe should be1 if and only if there exists values a1; : : : ; ar assigned to the outgoing edges(i; j1); : : : ; (i; jr) such that the partition described in the reduction abovegroups the elements of e together. This is a big OR (translated as a sum)(of size at most pr) over the good values of a1; : : : ; ar that group e together.Thus, it is expressible by a polynomial in the variables yi;j1 ; yi;j2 ; : : : ; yi;jr ofdegree at most pr.Step 2: Deriving MODmp (re) from TSn(p). We will now describe how togive small degree PC derivations of the equations MODmp (re) from TSn(p).Recall that the equations in MODmp (re) are as follows.1. r2e � re = 0 for all p-sets e2. rerf = 0 for all e; f such that e \ f 6= 0, e 6= f3. Pe;u2e re � 1 = 0, for all u 2 [m].We want to show that for every equation E that we need to derive asdescribed above, that E is a tautological consequence of a small, constantnumber of equations from TSn(p). Then, since each equation of TSn(p)involves only a constant number of variables, by completeness of PC it willfollow that there is a small-degree derivation of each equation E.De�nition. Let f1 = 0; : : : ; fk = 0; g = 0 be polynomial equations overa �eld F with underlying variables x1; : : : ; xn. Then g is a tautologicalconsequence of f1; : : : ; fk if for every assignment� to the underlying variables,if all of the equations f1; : : : ; fk are satis�ed by �, then g = 0 is also satis�edby �.By generalizing slightly the completeness result in [5], (Theorem 5.2 part2), it can be shown that if g is a tautological consequence of f1; : : : ; fk, allwith underlying variables x1; : : : ; xn, and if f1; : : : ; fk includes the equationsxpi = 1 for all variables x, then there is a degree pn derivation of g fromf1; : : : ; fk.In light of the above, it is just a matter of verifying that each of the aboveequations E is a tautological consequence of a small number of equations7



from TSn(p) involving a small number of variables. In particular, equationsof type (1) require degree pr and equations of type (2) and (3) each requiredegree at most 2pr.This completes the proof of Lemma 2. 2.4 Intuition and an upper boundIn order to �rst give some intuition behind the lower bound for the Tseitintautologies, it is helpful to think about the natural PC refutation for theseequations. To be concrete, we consider the mod 2 case; the others are similar.Initially, the equations say that the number of edges out of a single vertexv is odd. These equations have degree r. Then in degree at most 2r, onecan combine two of these equations to say that the number of edges out of aset of vertices of size 2 is even. Continuing in this way, if S � V , then onecan derive an equation saying that the number of edges out of S, E(S), hasthe same parity as the size of S. This equation is most naturally expressedas m � 1 = 0 if jSj is even, and m + 1 = 0 if jSj is odd, where m is theproduct of the variables corresponding to edges E(S), that cross betweenS and its complement. Thus, the degree of this polynomial is equal to thesize of E(S). Proceeding this way, we eventually obtain two equations, onesaying that the number of edges out of a set S1 is odd, and the other onesaying that the number of edges out of a set S2 is even, where S1 and S2are disjoint, and S1 [ S2 = V . This will lead to a derivation of 1, since wehave now derived m + 1 and m � 1 for some monomial m. If Gn is highlyexpanding, the degree of this refutation will be large since at some point wemust pass through a relatively large set, and thus the polynomial expressingthat the number of edges out of this set must have the same parity as thesize of the set, will be large due to expansion.We want to show that the above almost completely characterizes whatcan be done with the initial equations. Suppose we have derived m� 1 = 0,where m is the set of edges E(S), such that jE(S)j= d, and jSj is even. (Orsimilarly, we have derived m + 1 = 0 when m is the set of edges of E(S)but now jSj is odd.) However, now it is possible to rewrite this equationin a slightly di�erent form so that it has smaller degree. In particular, wecan divide up the edges of m into two halves, m1 and m2 and rewrite theequation m � 1 = 0 instead as m1 �m2 = 0. This is derived from m � 1 indegree d by multiplying m�1 by edges ofm2, one at a time, thus transferringthe edges of m2 over to the second term, one at a time. This new equation,m1 � m2 = 0 has degree d0 = dd=2e, and in general is not derivable by a8



degree d0 PC refutation. The (degree d) equations that interest us are thislarger set of equations, which express the fact that the edges coming out ofa set S are even (or odd) by a pair of monomials.There are two key steps to making this intuition a proof. First, we mustshow that, although the PC proof can contain arbitrary polynomials, theimportant lines are equalities as above, or binomials if viewed as a di�erence.This is made formal in a very general way in section 5. Secondly, that theset of degree d equations described above, although not all provable withdegree d proofs, is more natural and thus easier to understand, and theyspan all of the degree d derivable PC polynomials. In contrast, an explicitconstruction of the exact set of degree d derivable PC polynomials (as doneby Razborov [13] for pigeonhole principle) seems much more di�cult.5 Binomial systems and bounds for PCIn the previous section, we reduced the problem of proving lower boundsfor the mod counting principles to that of proving lower bounds for theTseitin graph tautologies. The reason this is progress is that the Tseitingraph tautologies are expressed as a system of polynomials of a very simpleform: each polynomial is a binomial, the di�erence of two terms (i.e., theweighted sum of two monomials with coe�cients over the �eld.) (This factwas earlier used by Grigoriev [8] in giving lower bounds for Nullstellensatz.)A binomial a1m1 � a2m2 can be viewed as the equation between two terms,a1m1 = a2m2. Intuitively, an algebraic proof for a binomial system shouldbe expressible as a sequence of such equations.We next recall a general characterization of things provable in PCfrom [7], and then will show that this characterization can be re�ned forbinomial systems.De�nition. A degree d pseudo-ideal I is a vector space of degree at most dpolynomials so that if p 2 I and p has degree � d� 1, then xp 2 I for everyvariable x.Theorem 3 [7] Let P be a system of polynomials, and let Id(P ) be the setof all polynomials q that have a degree d PC proof from P . Then Id(P ) is ad-pseudo-ideal, and for any d-pseudo-ideal I containing P , Id(P ) � I.So pseudo-ideals capture provability in polynomial calculus. If equationalreasoning is complete for polynomial calculus for binomial systems, it shouldfollow that the pseudo-ideals for such systems are determined by which termsare \provably equal" from the system. In other words, pseudo-ideals should9



be determined by an equivalence relation on degree d terms with certainclosure properties. This is formalized below.De�nition. Let R be a ring and R� a multiplicative subgroup of R, and letx1; : : : ; xn be variables. (i.e., R� consists only of invertible elements and isclosed under products and inverses). An R�-term is a term whose coe�cientis from R�. An R�-binomial is the di�erence of two R�-terms. A d-Laurentrelation over R�-terms is an equivalence relation �d on R�-terms of degreeat most d with the following properties: Let t1; t2; be R�-terms of degree atmost d and let r 2 R�.(a) t1 �d t2 i� rt1 �d rt2; and(b) If t1 and t2 are degree at most d � 1, and t1 �d t2 then xit1 �d xit2 forany variable xi.If �d is a d-Laurent relation, we de�ne a corresponding set of binomialsB�d = ft1 � t2jt1 �d t2g and a set of polynomials S�d = SPANR(B�d), theset of linear combinations of binomials in B�d .R will usually be a �eld, but in section 8 we will need the more generalversion. Intuitively, �d represents the set of pairs of terms that can be provedequal using equational-type reasoning, where we are allowed to multiply bothsides of a known equation by a constant or variable, as long as we don'texceed degree d.We now show that lower bounds on polynomial calculus proofs can beestablished by exhibiting a non-trivial d-Laurent relation.Theorem 4 Let Q be a set of R� binomials. If �d is a d-Laurent relationwith Q � B�d and 1 6�d a for any a 2 R�; a 6= 1, then Q has no degree dpolynomial calculus refutation over R.The proof of this theorem follows from a sequence of lemmas that takeup the rest of this section. Lemma 5 is the main technical lemma, and theother lemmas describe how to use it to prove the theorem.Lemma 5 Assume �d is d-Laurent. Suppose f 2 S�d. Then f can berewritten as a linear combination f = PTj=1 aj(tj � t0j) of binomials fromB�d such that no monomial completely cancels out, i.e., every monomialtj ; t0j in the linear combination appears in f with non-zero coe�cient.Proof. Let f = Pj aj(tj � t0j), where each pair of monomials in the abovesum is a polynomial from B�d . We prove the lemma by induction on thenumber of distinct monomials in the above sum. At each step, if cancellationof a monomial occurs, we will rewrite f by an equivalent sum of elements ofRd such that the number of monomials in the new sum is strictly smaller.10



Assume m appears in the sum, without loss of generality in exactly the�rst T 0 di�erences, but has zero coe�cient in f . Because each elementaj 2 R�, and so has an inverse, by factoring out the coe�cient of m in eachterm, we can rewrite any elements that m appears in: ck(akm � a0km0k) =ckak(m� a0ka�1k m0k) = dk(m� tk) for some R� term tk. Also, by the closureproperties of �d for multiplication by constants from R�, m �d tk . Now,since m has coe�cient 0 in f ,Pk dk = 0.We claim that the sum of binomials containing m,PT 0k=1 dk(m� tk), canbe rewritten as PT 0k=2 dk(t1 � tk). This is because PT 0k=2 dk(t1 � tk) =(PT 0k=2 dk)(t1) � PT 0k=2 dktk = �d1(t1) � PT 0k=2 dktk = �PT 0k=1 dktk =(PT 0k=1 dk)m�PT 0k=1 dktk =PT 0k=1 dk(m� tk).Since �d is transitive, t1 � tk for all k. So this substitution rewrites f asa weighted sum of members of B�d . The new sum is without m and withoutany monomial not in the previous sum, so contains one fewer monomial. 2Lemma 6 If �d is d-Laurent, and there is a c 2 R; c 6= 0 with c 2 S�d, thenthere is an a 2 R�; a 6= 1 with 1 �d a.Proof. If c 2 S�d , by Lemma 5, c can be written as a sum of equivalentterms which only have monomials that appear in c, i.e, are constants. Thus,at least two distinct constants a �d a0, and then 1 �d a0a�1. 2Lemma 7 If �d is d-Laurent, then S�d is a degree d pseudo-ideal.Proof. By de�nition, S�d is a vector space of polynomials of degree atmost d, so we just need to show closure under multiplication by a variable,provided the total degree is at most d. Assume f 2 S�d has degree at mostd � 1. By Lemma 5, we can write f = PTi=1 ci(ti � t0i), where ti �d t0iand each ti; t0i comes from a monomial with non-zero coe�cient in f . Inparticular, each ti; t0i has degree at most d � 1. Therefore, xti � xt0i bythe second closure property in the de�nition of d-Laurent relation. Soxf =PTi=1 ci(xti � xt0i) 2 S�d . 2Proof (of Theorem 4). Let �d be a d-Laurent relation with Q � B�d ,and that 1 6�d a for any 1 6= a 2 R�. Assume Q has a polynomial calculusrefutation of degree d over R, i.e., proves some c 6= 0, c 2 R. Then c 2 S�d ,since the latter is a pseudo-ideal containing Q. But then 1 �d a for somea 6= 1; a 2 R�. This contradiction proves the theorem. 2.The notion of d-Laurent relations is similar to the de�nition of thed-Laurent proof system, which is an algebraic proof system introduced in [9]and shown therein to be closely related to the restriction of the polynomialcalculus to binomials in that lower bounds on the degree of Laurent proofsimply lower bounds on the degree of polynomial calculus proofs. [9] also11



introduces the related algebraic Thue systems and proves their equivalencewith Nullstellensatz proofs.6 PC lower bound for mod 2We �rst prove linear lower bounds for the Tseitin principle TSn(2) for poly-nomial calculus over �elds of characteristic q > 2, provided the underlyinggraph is an expander graph.De�nition. Let G = (V;E) be an undirected graph. G has expansion �if for any subset S of vertices with jSj � jV j=2, jN(S)j � (1 + �)jSj, whereN(S) is the set of nodes adjacent to nodes in S.Theorem 8 Let F be a �eld and let Gn have expansion �. For all d < �n=8,there is no degree d PC refutation of TSn(2) over F .Note that there is no restriction on the characteristic q of the �eld F .When q is an odd prime or zero, then the TSn(2) polynomials are unsatis�-able and therefore have a PC refutation over F , of degree which is necessarilylinear by the theorem. When q = 2, then the TSn(2) polynomials are easilyseen to be satis�able (trivially, since 1 = �1), and there is no PC-refutationof TSn(2) at all.It is an easy corollary of Theorem 8 and Lemmas 1 and 2 that over a �eldof characteristic q 6= 2, PC-refutations of theMODn2 polynomials require sizelinear in n: this is established as Corollary 18 below for general p in placeof 2.Preparatory to proving Theorem 8, we establish some de�nitions andlemmas. In what follows, we will reduce all polynomials by y2i;j = 1 for allvariables, thus obtaining only multilinear polynomials.De�nition. For a monomial m = Qi yfii , de�ne the multilinearization mof m to be Qi yfi mod 2i . For a multilinear monomial m we de�ne Em to bethe set of edges e such that ye is a factor of m.De�nition. For two sets A, B, A+2 B denotes the disjoint union of A andB.De�nition. Let S � V , where V is the set of vertices in Gn. Then E(S) isde�ned to be the set of edges with exactly one endpoint in S and one endpointoutside of S.Proposition 9 Let Gn be an expander graph with expansion �. If S � V ,jSj � n=2, then jE(S)j � �jSj. 12



Proof Since jSj � n=2, jN(S)j � (1 + �)jSj by the de�nition of expansion.Then jN(S)� Sj � �jSj, and each node in N(S)� S is the endpoint of atleast one edge in E(S).We shall prove Theorem 8 as a corollary to Theorem 4: for this, we letR = F and R� = f�1; 1g. The R�-terms are thus just the terms m and �mwhere m is a monomial.De�nition. We de�ne an equivalence relation �d on the R�-terms ofdegree at most d multilinear monomial, as follows. Let b1; b2 2 f0; 1g,(�1)b1m1 �d (�1)b2m2 if there exists a set S � V such that1. Em1m2 = E(S).2. jSj < n=2; and3. jSj � b2 � b1 (mod 2).We will show that there is no degree d < �n=8 PC refutation of TSn(2)by showing that that �d is a d-Laurent relation.Lemma 10 If d < �n=8, then the relation �d is an equivalence relation.Proof. It is easy to see from the de�nitions that (�1)bm �d (�1)bmand that (�1)b1m1 �d (�1)b2m2 i� (�1)b2m2 �d (�1)b1m1. We needto show that if (�1)b1m1 �d (�1)b2m2 and (�1)b2m2 �d (�1)b3m3, then(�1)b1m1 �d (�1)b3m3. Let S1 be the set of vertices such that E(S1) =Em1m2 , jS1j � b2� b1 (mod 2), jS1j < n=2, and similarly let S2 be the set ofvertices such that E(S2) = Em2m3 , jS2j � b3 � b2 (mod 2), jS2j < n=2. Wewant to show that S0 = S1+2S2 is a set of vertices such thatE(S0) = Em1m3 ,jS0j = b3� b1, and jS 0j < n=2. Intuitively, this is saying that if S1 has parityb2 � b1 which equals the parity of jE(S1)j, and S2 has parity b3 � b2, whichequals the parity of jE(S2)j, then S1 +2 S2 has parity b3 � b1, which equalsthe parity of jE(S1+2 S2)j. And furthermore, jS1 +2 S2j is not too large.Clearly, jS 0j mod 2 = jS1j mod 2+ jS2j mod 2 = b2�b1+b3�b2 = b3�b1:Also we have: E(S1 +2 S2) = E(S1) +2 E(S2) = Em1m2m2m3 = Em1m3 .It is left to show that jS 0j < n=2. Since jm1j; jm2j � d, it follows thatjE(S1)j � jm1m2j � 2d. Since Gn is an expander graph, Proposition 9implies that jE(S1)j � �jS1j, and thus it follows that jS1j � 2d=� < n=4.Similarly, jS2j � n=4. Thus, jS 0j � jS1j + jS2j < n=2. (In fact, sincejE(S0)j � jm1m3j � 2d, Proposition 9 further implies that jS 0j � n=4.) 2Lemma 11 For d � �n=8, �d is a d-Laurent relation.Proof. Let d � �n=8. We just established that �d is an equivalencerelation. Condition (a) of the de�nition of d-Laurent is trivially satis�edfrom the de�nition of �d. Also, since (xm1)(xm2) = m1m2 for any variablex, condition (b) of the de�nition of d-Laurent is also satis�ed. 2.13



Lemma 12 Every polynomial of TSn(2) is a binomial from B�d .Proof. There are two kinds of polynomials in TSn(2). For the equationsy2e � 1, we must show that y2e �d 1. This is easily done by taking S = ;and noting that since y2e = 1, the three conditions of the de�nition of �d aretrivially satis�ed. For the equations of the form 1+yfi;j1gyfi;j2g � � �yfi;jrg = 0,we must show that 1 �d (�1)yfi;j1gyfi;j2g � � �yfi;jrg. This is easily seen tohold with S = fig. 2Proof of Theorem 8. This is a consequence of Theorem 4. First, Lemma 11shows �d is d-Laurent. Second, Lemma 12 shows TSn(2) � B�d . It remainsto show that 1 6�d (�1). To prove this suppose 1 = (�1)0 �d (�1) = (�1)1holds with some set S satisfying the conditions of the de�nition �d. On theone hand, we must have jSj = 1 � 0 = 1 (mod 2), and also we must haveE(S) = ;. But on the other hand, jSj < n=2, so Lemma 9 implies E(S)is non-empty | a contradiction. Therefore, the hypotheses of Theorem 4hold, and there is no PC refutation of TSn(2) over F of degree d. 27 PC lower bound for the general caseThis section extends our linear lower bounds to the degrees of PC refutationsof TSn(p) over a �eld F of characteristic q.Theorem 13 Let F be a �eld of characteristic q containing a primitive p-throot of unity, and let Gn be an r-regular graph with expansion �. Then, forall d < �n=8, there is no degree d PC refutation of TSn(p) over F .As a corollary to this theorem and Lemmas 1 and 2, we shall prove (asCorollary 18) that when q - p, any PC refutation of the MODnp polynomialsover F requires linear degree.In order to express the TSn(p) polynomials, F must contain a p-thprimitive root of unity, !. We let R = F and R� be the powers of the rootof unity, i.e., R� = f1; !; !2; : : : ; !p�1g. For the rest of this section, it issu�cient to assume only that R is a ring (rather than a �eld). See section 8for more explanation of what it means for a ring to have a p-th root of unity.De�nition. Let A and B be two multisets. Then A +p B denotes themultiset, where if x occurs in A with multiplicity a, and in B with multiplicityb, then x occurs in A+pB with multiplicity (a+b) mod p. (Note that when Aand B are ordinary sets and p = 2, then A+2 B is simply the disjoint unionof A and B.)De�nition. Let S be a multiset over the vertices V in G, where vertex ioccurs in S with multiplicity si. E(S) will denote a multiset of edges from14



G0n as follows. Edge hi; ji occurs with multiplicity 0 if si� sj is negative, andoccurs with multiplicity si � sj otherwise.The size of S, jSj, is the number of nonzero elements in S i.e., the size of amultiset is the number of elements that appear at least once in the multiset.The size of E(S) is de�ned similarly.Proposition 14 LetGn be an expander graph with expansion �. If jSj � n=2,then jE(S)j � �jSj.Proof. For any edge e = (i; j) where i has non-zero multiplicity in S andj has 0 multiplicity in S, e has non-zero multiplicity in E(S). Thus theproposition follows from Proposition 9. (In fact, when members of S havedi�erent non-zero multiplicities, it only makes the size of E(S) increase.) 2De�nition. We de�ne the binary relation �d on the R�-terms !bm wherem is a degree at most d monomial and 0 � b < p. !b1m1 �d !b2m2 if thereexists a multiset S of vertices such that (i) The multiset of edges in m1m�12(after applying ypi;j = 1, and yi;jyj;i = 1) equals E(S); (ii) jSj < n=2; and(iii)Pi si � b2 � b1 (mod p).The next three lemmas are proved exactly analogously to Lemmas 10-12.Lemma 15 For d � �n=8, the relation �d is an equivalence relation.Lemma 16 For d � �n=8, �d is a d-Laurent relation.Lemma 17 Every polynomial of TSn(2) is a binomial from B�d .Proof of Theorem 13. Exactly as argued in the proof of Theorem 8,we have that 1 6�d a for any a 2 R� distinct from 1, i.e., 1 6�d !i for all0 < i < p � 1. Thus Theorem 13 follows from Theorem 4 using Lemmas16 and 17. 2Corollary 18 Let q � 2 be a prime such that q - p and let F be a �eld ofcharacteristic q. Any PC-refutation of the MODnp polynomials requires degree> �n, for some constant � > 0.Proof. Choose constants � and r so that there are r-regular graphs Gn ofexpansion � for all n. Let d1 = d2 = 2pr. Suppose MODmp has a degree d3PC refutation, where m = n + nrp. By Lemmas 1 and 2 TSn(p) has adegree d3d1 PC refutation, so by Theorem 13, d3d1 > �n=(8pr). Thus,d3 > �m=(16p2r2(1 + rp)). Since �, r, p, d are constants, this proves theCorollary. 2 15



8 Polynomial calculus over ringsWe now consider the polynomial calculus over rings instead of over �elds.For this, we consider a �xed ring R and the polynomials have coe�cientsfrom R. (By `ring' we always mean `commutative ring'.) Since the de�nitionof the polynomial calculus did not use any �eld-speci�c properties, e.g., sincethe de�nition did not depend on the existence of inverses, it is completelynatural to consider the polynomial calculus over rings. As before, we de�nea PC derivation to be a sequence of polynomials hPiii with the same rulesof addition and multiplication. However, we modify the de�nition of a PCrefutation ofQ to be a PC derivation that ends with a constant polynomialmwherem 2 R is non-zero (and its derivation thus corresponds to a derivationof the contradiction m = 0).It is known that the polynomial calculus over rings is complete with re-spect to Boolean reasoning, i.e., if the initial polynomials include x2 � x = 0for each variable x then any unsatis�able set of polynomials has a PCrefutation. However, the polynomial calculus over rings is not complete forgeneral derivations, see the examples in [4]. In this respect the polynomialcalculus over a �eld is stronger than the polynomial calculus over a ring. Onthe other hand, if the ring R isZmwherem = p1 �p2 for distinct primes p1; p2,then it is well-known that there are constant-degree polynomial calculusproofs of MODnp1 and MODnp2 . But Theorem 13 implies that there is nosingle �eld for which the polynomial calculus has constant degree proofs ofboth these principles.The situation is a little analogous to an important open problem incircuit complexity. Namely, Smolensky [14] showed that polynomial sizeconstant-depth circuits with mod-q gates cannot compute the mod-p functionfor distinct primes p; q. However, it is open whether this is true for compositevalues of q where p - q.We prove below that if p and q are relatively prime, then over the ring Zq,any PC refutation of MODnp requires degree � �n for some constant �. Thegeneral outline of the proof is similar to the approach used for the proof ofTheorem 13.In the next section, we do some preliminary work introducing ringswith roots of unity. Following that, we discuss the reduction of the Tseitinprinciple to the mod p counting principle and then discuss the lower boundfor Tseitin principle. 16



8.1 Rings with roots of unityWe are mostly interested in lower bounds on the degree of polynomialcalculus refutations over rings R = Zq; however, our method of proofdepends strongly on the use of p-th roots of unity, and on the existence ofinverses of certain terms involving the p-th root of unity. In this section,we prove that there exist rings containing Zq with the desired p-th roots ofunity.Theorem 19 Let p; q > 1 be relatively prime. Then there is a �nite ringR � Zq which contains a p-th root of unity ! such that(a) p is the least positive integer i such that !i = 1,(b) For all 0 � j < k < p, (!k � !j) has an inverse in R.Proof. First we shall give a simple proof for the case where q is a productof distinct primes q = r1 � r2 � � �rm. For this, let GFr be the �eld of order rand let Fi = GFr[ pp1] be the extension of GFr obtained by adjoining ap-th root of unity. We use !i to denote a p-th root of unity in Fi. De�neR to be the ring with domain Qi Fi and component-wise addition andmultiplication. An element of R is an m-tuple ha1; : : : ; ami with ai 2 Fi.By the Chinese remainder theorem, a copy of Zq is embedded in R byn 7! hn mod r1; : : : ; n mod rmi. The element ha1; : : : ; ami has an inversein R i� each ai 6= 0. Letting ! = h!1; : : : ; !mi, it is easy to see that ! is ap-th root of unity in R and satis�es property (a). Likewise, !ki � !ji 2 Fi isnon-zero for all i and thus (!k � !j)�1 exists in R.Now consider the general case, where q is not a product of distinctprimes. (We don't use any special properties of Zq beyond the fact that p�1exists in Zq, which follows from the fact that p and q are relatively prime.)Consider a primitive p-th root of unity, �, over the �eld of rationals. As aroot of unity, � is a root of the polynomial xp�1 + xp�2 + � � �+ x2 + x + 1.Likewise, for any ` < p dividing p, �p=` is a primitive `-th root of unity, so� is a root of x(`�1)p=` + x(`�2)p=` + � � �+ xp=` + 1. It follows that there is anon-constant polynomial Q(x) which is the greatest common divisor of eachof these polynomials which has � as a root. Furthermore, by Gauss's lemma,we may choose the polynomial Q(x) with leading coe�cient 1 and integercoe�cients. We de�ne R to be the extension ring Zq[!]=(Q(!)). Formally,this means we de�ne an equivalence relation on the set Zq[!] of univariatepolynomials over Zq byf � g $ 9h 2 Zq[!]; f(!)� g(!) = h(!) �Q(!):Clearly this is an equivalence relation, and addition and multiplicationrespect �. The ring R = Zq[!]=(Q(!)) =df Zq[!]=� has domain the set17



of �-equivalence classes (but we generally abuse notation by writing f 2 Rinstead of [f ] 2 R, etc.) Clearly R is a ring. In R, each polynomialx(`�1)p=` + x(`�2)p=` + � � �+ xp=` + 1 is equal to zero, since it is a multipleof Q. Therefore !p = 1 in R (i.e., wp � 1) since(! � 1) � (!p�1 + !p�2 + � � �+ ! + 1) = !p � 1:Also note that no constant ofZq becomes equal to zero inR: this is immediatefrom the fact that Q is a non-constant, monic polynomial over Zq.It remains to prove that if k 6= `, 0 � k; ` < p, then (!k � !`) has a(multiplicative) inverse in R. Since (!k � !l) = !`(!k�` � 1) and !` hasinverse in R, it will su�ce to prove that (!k � 1) has an inverse in R for all1 � k < p.De�ne i0 = 0 and in+1 = in+k mod p. Let ` be the least value such thati` = 0; of course ` divides p. Therefore the values i0; : : : ; i`�1 are distinctand enumerate all the values in f0; p=`; 2p=`; : : : ; (`� 1)p=`g. For 0 � j < `,let v(j) be the value such that iv(j) = j, 0 � v(j) < `. De�nef(!) = `�1Xj=0 v(j)!j = `�1Xn=0n � !in :Claim: (!k � 1)f(!) = ` holds in R.Since ` has an inverse in Zq, the claim immediately implies that (!k � 1)has in inverse in R, namely, `�1f(!).In R we have(!k � 1) � f(!) = `�1Xn=0n!in+k � `�1Xn=0n!in= X̀n=1(n� 1)!in � `�1Xn=1n!in= (`� 1) � !i` � `�1Xn=1!in= (`� 1) � 1 + 1� `�1Xn=0!in= `� `�1Xn=0!in = `� `�1Xn=0!np=`= `� 0 = `:18



That completes the proof of the claim and of Theorem 19 2For the next two sections, we shall consider p and q to be �xed and let Rbe as in Theorem 19.8.2 Low degree reductionsLemma 1 clearly still applies to the polynomial calculus over rings, butLemma 2 needs to be reproved for rings. Let q; p; R be as in the previoustheorem.Lemma 20 Over the ring R, TSn(p) is (d1; d2) reducible to MODmp , wherem = n+ nrp, d1 = 2pr and d2 = 2pr.Proof. The reduction is exactly the same as the reduction used for theproof of Lemma 2. Examination of the de�nition of re in Step 1 of that proofreveals that the only place where inverses were used was in the polynomials(1) and (2) and these were inverses of elements of the form !a1 � !a whichdo exist in R. So it remains to re-do Step 2 of the proof of Lemma 2.Recall that we must �nd small degree PC derivations of MODmp (re)equations:1. r2e � re = 0 for all p-sets e2. rerf = 0 for all e; f such that e \ f 6= 0, e 6= f3. Pe;u2e re � 1 = 0, for all u 2 [m].As discussed before, each single equation is a tautological consequence ofa constant number of equations of TSn(p). We now need to extend thecompleteness theorem of [5], Theorem 5.2, to apply to the polynomialcalculus over R.Lemma 21 Let z1; : : : ; zk be variables, and f(~z) be a polynomial.Suppose that in the ring R, f(z1; : : : ; zk) = 0 for all values ofz1; : : : ; zk 2 f1; !; !2; : : : ; !p�1g. Then there is PC derivation of f(~z) fromthe polynomials zpi � 1, of degree � pk � deg(f).Proof. We give the proof for the case k = 1 and leave it the reader toformulate the proof by induction for the case k > 1. (All the essentialdi�culties arise already in the case k = 1.) Let Pa be the polynomial(z1 � !0)(z1 � !1) � � �(z1 � !a�1)(z1 � !a+1) � � �(z1 � !p�1):Note that Pa � (z1� !a) is the polynomial zp1 � 1 (this is immediate from thefact that they are the same polynomial in each �eld Fqi).19



Claim: Let c = f(!a) 2 R. The polynomial Pa � (f(z1)� c) is PC derivablefrom zpi � 1 in degree (p� 1) � deg(f).The claim is proved by induction on the size of the polynomial f . Thebase case where f is a constant is trivial. The second base case where f(z1) isjust z1 is immediate from the observation above that Pa � (z1�!a) = zp1 � 1.The induction steps of addition and multiplication are handled by thefollowing two constructions:Pa � (f � c) Pa � (g � d)Pa � ((f + g)� (c+ d))and Pa � (f � c)Pa � (fg � cg) Pa � (g � d)Pa � (cg � cd)Pa � (fg � cd)and this proves the claim.Now let Pà be the polynomialQ i�`i6=a (z1�!i). We only use this polynomialwhen a � `.Claim: Let ` � 0 and let c = f(!a) 2 R. The polynomial Pà � f(z1) is PCderivable from zpi � 1 in degree (p� 1) deg(f).The second claim is proved by induction on `. The base case, where ` = 0is already established by the �rst claim, since P 0a = Pa. For the inductionstep, let a � ` + 1. The induction hypothesis tells us that P `̀f(z1) andPà � f(z1) are both PC derivable. Subtracting these gives(!` � !a)P `+1a � f(z1):Since (!` � !a) is invertible in R, we may multiply by (!` � !a)�1 to deriveP `+1a � f(z1), and the claim is proved.The base case k = 1 of Lemma 20 is immediate from the second claim,with ` = p. The argument for the induction step is similar and is left to thereader. 28.3 PC lower bound for ringsWe now prove the main theorems giving lower bounds the degrees of of PCderivations overZq. Fix p; q;R as above.20



Theorem 22 Let Gn be an r-regular graph with expansion �. Then, for alld < �n=4, there is no degree d PC refutation of TSn(p) over R.This plus Lemmas 1 and 20 immediately imply:Corollary 23 Let p; q � 2 be relatively prime. Any PC-refutation over Zqof the MODnp polynomials requires degree > �n, for some constant � > 0.The constant � depends on p and q. To prove Theorem 22, weneed merely note that the proof of Theorem 13 still applies: We takeR� = f1; !; !2; : : : ; !p�1g and then, as already noted near the beginning ofsection 7, the proof of Theorem 13 establishes Theorem 22.9 Concluding remarks(1) Our proof of the lower bounds for polynomial calculus proofs of themod p principles proceeded by �rst transforming the mod p principle fromadditive form into the equivalent `multiplicative' Tseitin principles TSn(p).In the additive form, variables take on values 0 through p � 1, whereasin the multiplicative form variables range over powers of the p-th root ofunity !. This transformation into multiplicative form is seemingly necessary,since unsatis�able sets of degree d binomial polynomials over variables thattake on 0=1 values (i.e., where the initial polynomials include x2 � x) havedegree d+ 1 polynomial calculus refutations, assuming we are working overa �eld. This can be proved by noting that x1x2 � � �xk � y1y2 � � �yn = 0 isequivalent to the set of Horn clauses x1 ^ � � � ^ xk ! yj (1 � j � n) andy1 ^ � � � ^ yn ! xi (1 � i � k). Similarly, x1 � � �xk � 1 = 0 is equivalentto the set of unit Horn clauses ! xi. and the monomial x1 � � �xk = 0 isequivalent to the Horn clause x1 ^ � � � ^ xk !?. Conversely, a Horn clausex1 ^ � � �xk ! y is equivalent to the binomial identity x1 � � �xk = x1 � � �xky;and other Horn clauses can be translated analogously.Then, if a set of binomial polynomials including x2 � x for all variablesx is unsatis�able, the SLD-resolution refutation of the equivalent Hornclauses may be used to derive a polynomial calculus refutation with degreeno larger than one plus the degree of the initial polynomials. This PCrefutation proceeds as follows: for any equation x1x2 : : :xk = a with a anon-zero scalar, derive x1 = 1 by multiplying by (x1�1) and combining withx21 � x1 = 0. (If a =2 f0; 1g, then already a contradiction can be obtained.)Then x1 may be \erased" from all terms. This is iterated until an equationa = 0 is derived for some non-zero scalar a. If, on the other hand, nosuch equation is obtained, the polynomials can be satis�ed by the truth21



assignment which gives all processed variables the value 1, and gives theremaining variables the value 0.(2) Our proofs of the lower bounds for polynomial calculus proofs areclosely related to the lower bounds of [8] for Nullstellensatz refutations ofbinomial systems. Thus a natural question is whether the Nullstellensatzproof system and the polynomial calculus proof systems are equivalent withrespect to binomials systems, i.e., whether any degree d polynomial calculusrefutation of binomials can be transformed into a degree d Nullstellensatzrefutation. This, however, is not the case: [6] have shown that the inductionprinciple is a binomial system which has constant degree polynomial calculusrefutations, but requires log n-degree Nullstellensatz proofs, and [9] hasobtained the same results for binomial systems expressing a graph principlerelated to the Tseitin principle. The former separation uses 0=1 valuedvariables and the latter uses �1 valued variables. In addition, the inductionprinciple can be translated into multiplicative form, and this is a binomialsystem over �1 valued variables which has constant degree PC refutationsand requires logarithmic degree Nullstellensatz refutations.(3) The proof of our main result can alternatively be proven by a directreduction to resolution [3]. In particular, if one begins with binomialequations, plus extra equations x2i = 1, then it can be shown that if thereis a PC refutation of the equations of degree d, then there is a resolutionrefutation of clause-width O(d) of the corresponding unsatis�able formulaobtained by converting the binomial equations in the natural way. Thus,our linear lower bounds for the Tseitin graph tautologies can be obtainedas a corollary to the corresponding result for resolution of Urquhart [15].The idea behind the reduction is to �rst observe that any line in an optimaldegree PC refutation over GFp is a binomial, and thus can be transformedinto a linear equation (mod p) where the number of variables in the linearequation is at most twice the PC degree. (See [2].) And secondly, show thatany linear equation (mod p) involving d variables can be expressed as a CNFformula of clause width d, and such that each width d CNF formula can bederived from the previous one by a small-width resolution refutation.Acknowledgement. We thank A. Wadsworth for discussions about ringextensions.References[1] P. Beame, R. Impagliazzo, J. Kraj���cek, T. Pitassi, andP. Pudl�ak, Lower bounds on Hilbert's Nullstellensatz and propositional22
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