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e�cient search algorithms and in part by the desire toextend lower bounds on proposition proof complexityto stronger proof systems.The Nullstellensatz proof system is a propositionalproof system based on Hilbert's Nullstellensatz andwas introduced in [1]. The polynomial calculus (PC)is a stronger propositional proof system introduced�rst by [4]. (See [8] and [3] for subsequent, moregeneral treatments of algebraic proof systems.) In thepolynomial calculus, one begins with an initial set ofpolynomials and the goal is to prove that they cannotbe simultaneously equal to zero over a �eld F . Apolynomial calculus (PC) derivation of Pl from a set ofpolynomials Q is a sequence of polynomials P1; : : : ; Plsuch that each polynomial is either an initial polynomialfrom Q, or follows from one of the following two rules:(i) If Pi and Pj are previous polynomials, then cPi+dPjcan be derived, where c; d 2 F ; (ii) if Pi is a previouspolynomial, then xPi can be derived. The degree of aPC derivation is the maximum degree of the Pi's. Weidentify polynomials Pi with the equations Pi = 0 anda PC refutation of Q (a proof that the equations Q = 0are not solvable over F ) is simply a PC derivation of 1(i.e., of 1 = 0).The de�nition of the polynomial calculus dependsimplicitly on the choice of a �eld F such that allpolynomials are over the �eld F . A number of authorsalso consider the polynomial calculus over rings ([3, 2]).The only di�erence in the de�nition of the PC systemis that a PC refutation over a ring is a derivation of r(i.e., of r = 0) for some non-zero r in the ring. Ourmain results apply to both �elds and rings.The mod p counting principle can be formulated asa set MODnp of constant-degree polynomials expressingthe negation of the counting principle, and the presentpaper gives linear lower bounds on the degree ofpolynomial calculus refutations of MODnp over �eldsof characteristic q 6= p. A couple lower bounds on the



degree of Nullstellensatz proofs of the mod p countingprinciples have been given in prior work: [1] gavenon-constant lower bounds and [3] gave lower bounds ofthe form n�. For the polynomial calculus, the best lowerbound on the degree of PC refutations of MODnp wasKraj���cek's 
(log logn) lower bound based on a generallower bound for symmetrically speci�ed polynomials [7].A couple polynomial calculus lower bounds havebeen obtained for other families of tautologies.Razborov [9] established pn lower bounds on thedegree of polynomial calculus proofs of the pigeon-holeprinciple. Kraj���cek [7] proves log logn lower bounds fora wide variety of symmetric tautologies.Recently, Grigoriev [5] succeeded in giving very sim-ple linear lower bounds on the degree of Nullstellensatzrefutations of the Tseitin mod 2 graph tautologies.The present work is motivated by this paper, and inparticular by the idea of working in the Fourier basiswhich greatly simpli�es the argument.The present paper establishes linear lower boundsto the polynomial calculus by proving that over a �eldof characteristic q - p, any PC refutation of the MODnppolynomials requires degree � �n, for a constant � whichdepends on p and q. In section 8 we generalize thislinear lower bound to the polynomial calculus overrings Zq provided p and q are relatively prime.As it is well-known to be easy to give constantdegree polynomial calculus (and even Nullstellensatz)refutations of the MODnp polynomials over Fp, ourresults imply that the MODnp polynomials have alinear gap between proof complexity for the polynomialcalculus over Fp and over Fq.It follows from a result of Kraj���cek [6] that ourlinear lower bounds on the degree of PC refutationsimply exponential lower bounds of AC0[q]-Frege proofsof the mod p principles when Mod-q gates are presentonly at the top (root) of formulas.2 Tseitin tautologies: polynomial versionTseitin's (mod 2) graph tautologies are based on thefollowing idea. Let Gn be a connected undirectedgraph on n vertices, where each node in the graph hasan associated charge of either 0 or 1, and where thetotal sum of the charges is odd. Then it is impossible tochoose a subset of the edges E0 from E so that for everyvertex v 2 V , the number of E0-edges incident to v isequal mod 2 to the charge of v. This impossibilityfollows from a simple parity argument, since summingthe degrees of all vertices in the subgraph counts eachedge twice, and so is even, whereas it should also bethe sum of all the charges, which is odd.For an r-regular graph Gn with n odd, and chargesall 1, we can express this principle as the inconsistencyof the following system of polynomials over a �nite �eld

F of characteristic di�erent from 2: There will be rn=2underlying variables, one for each edge of Gn. We willdenote the variable corresponding to the edge e = fi; jgfrom i to j by ye = yfi;jg. For each variable ye, wehave the equation y2e � 1 = 0; this forces the variablesto take on values of either 1 or �1, with ye = �1corresponding to the presence of e in the subgraph E0.Secondly, corresponding to each vertex i in Gn, we willhave the equation 1+yfi;j1gyfi;j2g � � �yfi;jrg = 0, wherej1; : : : ; jr are the neighbors of i inGn. This correspondsto saying that the degree of i in the subgraph E0 is odd.This set of equations, representing the Tseitin mod 2graph formula, will be denoted by TSn(2).For any prime p, we can generalize the aboveprinciple to obtain a mod p version as follows. Again,we �x an underlying r-regular, undirected graph Gn,and then let G0n be the corresponding directed graphwhere each undirected edge is replaced by two directededges. Each vertex in G0n will have an associatedlabel, or charge in [0; p � 1] such that the sum of thevertex charges is congruent to 1 mod p. The mod pprinciple states that it is impossible to assign valuesin [0; p � 1] to each of the directed edges so that:(i) for any pair of complementary edges hi; ji and hj; ii,v(hi; ji)+v(hj; ii) � 0 (mod p), and (ii) for every vertexi, the sum of the edge values coming out of vertex i iscongruent to the charge of that vertex mod p. Again,this is impossible since if we sum the edges in pairs, weobtain 0 mod p, but summing them by vertices givesthe total charge of 1 mod p.Let F be a �nite �eld with characteristic q 6= p thatcontains a primitive p-th root of unity !. Assume allcharges of vertices are 1, and that n � 1 (mod p). Wecan express the mod p Tseitin principle for G0n as theunsatis�ability of the following system of polynomialsover F : We have rn underlying variables ye, onefor every directed edge e. For each variable ye wehave the equation ype � 1 = 0; this forces variables totake on values in 1; !; !2; : : : ; !p�1. (The power of! corresponds to the value assigned to e.) Secondly,for each vertex i in G0n, we will have the equationyhi;j1iyhi;j2i; : : : ; yhi;jri�! = 0, where j1; : : : ; jr are theneighbors of i. Third, for each edge e = hi; ji we havethe equation yhi;jiyhj;ii � 1 = 0. This set of equations,representing the Tseitin mod p formula, will be denotedby TSn(p).3 The mod p principle and low degree reductionsA related principle is the mod p counting principle.Intuitively, it states that it is not possible to partitiona set of size n into groups of size p, if n is congruent to1 mod p. We will express this by polynomial equationsas follows. The underlying variables are xe, where eranges over all p element subsets of [1; n]. The degree 2



equations expressing the negation of the principle are:(1) x2e � xe = 0 for each e; (2) xexf = 0, for each e; fsuch that e \ f 6= ; and e 6= f ; (3) 1 �Pe;i2e xe = 0,for each i 2 [1; n]. Let the above set of equations bedenoted by MODnp .We want to show that a low degree PC refutation ofthe mod p counting principle implies a low degree PCrefutation of the Tseitin mod p graph equations. Todo this, we de�ne the following general notion of a lowdegree reduction.De�nition. Let P (x), Q(y) be two sets of polynomialsover a �eld F . Then P is (d1; d2)-reducible to Q if:(1) For every yi, there is a degree d1 de�nition of yiin terms of the x's. That is, for every i, there exists adegree d1 polynomial ri where yi will be viewed as beingde�ned by ri(x1; : : : ; xn); (2) there exists a degree d2PC derivation of the polynomials Q(r(x1; : : : ; xn)) fromthe polynomials P (x).Lemma 1 Suppose that P (x) is (d1; d2)-reducible toQ(y). Then if there is a degree d3 PC refutation of Q(y),then there is a degree max(d2; d3d1) PC refutation ofP (x).Lemma 2 For all n and p, and for any �eld F ofcharacteristic q, where q - p, and F includes theprimitive p-th root of unity, TSn(p) is (d1; d2)-reducibleto MODmp over F , where m = n + nrp, d1 = 2pr andd2 = 2pr.Proof of Lemma 2. Let G0n be a directed Tseitingraph on n vertices, where n � 1 (mod p). That is, theunderlying G0n is an r-regular graph; each vertex of G0nhas a charge of 1, and the edges of G0n are labeled withvalues from [0; p�1]. Thus, the total number of directededges of G0n is rn. FromG we will de�ne a universe U ofsize m, and a corresponding p-partition of this universe,where m = n + nrp. In U , there will be one elementcorresponding to each vertex of G0n, and there will alsobe p elements corresponding to each directed edge ofG0n. We will denote the element of U corresponding tovertex i in G0n by (i), and the vector of p elements of Ucorresponding to the edge hi; ji in G0n will be denotedby (i; j; �) = h(i; j; 1); (i; j; 2); : : : ; (i; j; p)i.De�nition. The elements in U associated with nodei will be (i), plus all elements (i; k; �). (That is, therp elements corresponding to outgoing edges from i plusthe element corresponding to node i.) The elements inU associated with the pair of nodes i; j will be the rpelements corresponding to the directed edge hi; ji plusthe rp elements corresponding to the directed edge hj; ii.The partition of U is de�ned as follows. Wewill consider node i in G0n, and the r labelededges, (i; j1); (i; j2); : : : ; (i; jr), leading out of i, wherej1 < j2 < � � � < jr. Suppose that the values of theseedges are: a1, a2,. . . ,ar. Then for each `, 1 � ` � r, wetake the �rst a` elements in U from (i; j`; �), and group

them with the �rst (p�a`) elements in U from (j`; i; �).(This gives us r p-partitions so far.) Note that the num-ber of remaining, ungrouped elements associated withnode i is (p�a1)+(p�a2)+� � �+(p�ar)+1, which is con-gruent to 0 mod p as long as (a1+ � � �+ ar) mod p = 1.We then group these remaining, ungrouped elementsassociated with i, p at a time, in accordance with thefollowing ordering. Ungrouped elements from (i; j1; �)are �rst, followed by ungrouped elements from (i; j2; �),and so on until we get to the ungrouped elements from(i; jr; �), and lastly the element (i).It should be intuitively clear that if the values yi;jsatisfy TSn(p), that is, if they are set so that the mod psum coming out of each vertex in G0n is congruentto 1 mod p, and yi;jyj;i = 1 and ypi;j = 1, then thecorresponding partition of U is a proper p partition.We want to prove this now formally, with small-degreePC refutations. There are two steps to this reduction.First, for each variable xe underlying MODmp , we wantto de�ne a degree at most rp polynomial, call it re(y),in the yi;j variables that corresponds to the abovereduction. Secondly, we want to show that there is asmall degree PC derivation of MODmp (re) from TSn(p).Step 1: De�ning re. We will �rst describe thede�ning polynomial re for xe. Recall that e is aparticular p-set from U . In the above reduction,the valid p-partitions are of two types: (i) where theelements of e are a subset of the elements associatedwith a pair of nodes i; j in G0n; (ii) where the elementsof e are a subset of the elements associated with a nodei. Thus, if the underlying p elements from e are notone of these two types, then xe is just set to 0.Now consider case (i); that is, the elements ofe are a subset of the elements associated with thepair of nodes i; j. Suppose that e is the setf(i; j; 1); (i; j; 2); : : : ; (i; j; a1); (j; i; 1); : : : ; (j; i; p � a1)g.That is, e consists of an initial segment of size a1 of thep elements associated with directed edge hi; ji and aninitial segment of size p�a1 of the p elements associatedwith hj; ii. (If e is not of this form, then again xe is just0.) Then xe should be 1 if yi;j = !a1 , yj;i = !p�a1 andshould be 0 otherwise. This is de�ned by the followingpolynomial:Ya6=a1(!a1�!a)�1(yi;j�!a)� Yb6=p�a1(!p�a1�!b)�1(yj;i�!b)(1)More generally, suppose that we want to de�ne a 0-1valued variable x so that x = 1 if y1 = !p1 and y2 = !p2and ... and yk = !pk , and otherwise x = 0. Then thisis accomplished by the following degree kp polynomial:Yi Yp 6=pi(!pi � !p)�1(yi � !p) (2)



Case (ii) is handled similarly but is somewhat morecomplicated. Now the elements of e are a subsetof elements associated with i, and moreover we canassume without loss of generality that they must be end-segments of (i; jl1; �), (i; jl2; �); : : : ; (i; jll; �) plus possi-bly either (i) or a consecutive segment of (i; jll+1 ; �).(Otherwise, xe is just set to zero.) Then xe should be1 if and only if there exists values a1; : : : ; ar assignedto the outgoing edges (i; j1); : : : ; (i; jr) such that thepartition described in the reduction above groups theelements of e together. This is a big OR (translatedas a sum) (of size at most pr) over the good values ofa1; : : : ; ar that group e together. Thus, it is expressibleby a polynomial in the variables yi;j1 ; yi;j2; : : : ; yi;jr ofdegree at most pr.Step 2: Deriving MODmp (re) from TSn(p). We willnow describe how to give small degree PC derivationsof the equations MODmp (re) from TSn(p). Recall thatthe equations in MODmp (re) are as follows.1. r2e � re = 0 for all p-sets e2. rerf = 0 for all e; f such that e \ f 6= 0, e 6= f3. Pe;u2e re � 1 = 0, for all u 2 [m].We want to show that for every equation E thatwe need to derive as described above, that E is atautological consequence of a small, constant numberof equations from TSn(p). Then, since each equationof TSn(p) involves only a constant number of variables,by completeness of PC it will follow that there is asmall-degree derivation of each equation E.De�nition. Let f1 = 0; : : : ; fk = 0; g = 0 be polyno-mial equations over a �eld F with underlying variablesx1; : : : ; xn. Then g is a tautological consequence off1; : : : ; fk if for every assignment � to the underlyingvariables, if all of the equations f1; : : : ; fk are satis�edby �, then g = 0 is also satis�ed by �.By generalizing slightly the completeness resultin [3], (Theorem 5.2 part 2), it can be shown thatif g is a tautological consequence of f1; : : : ; fk, allwith underlying variables x1; : : : ; xn, and if f1; : : : ; fkincludes the equations xpi = 1 for all variables x, thenthere is a degree pn derivation of g from f1; : : : ; fk.In light of the above, it is just a matter of verifyingthat each of the above equations E is a tautologicalconsequence of a small number of equations fromTSn(p) involving a small number of variables. Inparticular, equations of type (1) require degree pr andequations of type (2) and (3) each require degree atmost 2pr.This completes the proof of Lemma 2. 2.4 Intuition and an upper boundIn order to �rst give some intuition behind the lowerbound for the Tseitin tautologies, it is helpful to think

about the natural PC refutation for these equations.To be concrete, we consider the mod 2 case; the othersare similar.Initially, the equations say that the number of edgesout of a single vertex v is odd. These equations havedegree r. Then in degree at most 2r, one can combinetwo of these equations to say that the number of edgesout of a set of vertices of size 2 is even. Continuingin this way, if S � V , then one can derive an equationsaying that the number of edges out of S, E(S), hasthe same parity as the size of S. This equation is mostnaturally expressed as m � 1 = 0 if jSj is even, andm + 1 = 0 if jSj is odd, where m is the product ofthe variables corresponding to edges E(S), that crossbetween S and its complement. Thus, the degree ofthis polynomial is equal to the size of E(S). Proceedingthis way, we eventually obtain two equations, one sayingthat the number of edges out of a set S1 is odd, andthe other one saying that the number of edges out ofa set S2 is even, where S1 and S2 are disjoint, andS1 [ S2 = V . This will lead to a derivation of 1,since we have now derived m + 1 and m � 1 for somemonomial m. If Gn is highly expanding, the degreeof this refutation will be large since at some point wemust pass through a relatively large set, and thus thepolynomial expressing that the number of edges out ofthis set must have the same parity as the size of theset, will be large due to expansion.We want to show that the above almost completelycharacterizes what can be done with the initial equa-tions. Suppose we have derived m � 1 = 0, where mis the set of edges E(S), such that jE(S)j = d, andjSj is even. (Or similarly, we have derived m + 1 = 0when m is the set of edges of E(S) but now jSj is odd.)However, now it is possible to rewrite this equation ina slightly di�erent form so that it has smaller degree.In particular, we can divide up the edges of m into twohalves, m1 and m2 and rewrite the equation m� 1 = 0instead as m1 � m2 = 0. This is derived from m � 1in degree d by multiplying m � 1 by edges of m2, oneat a time, thus transferring the edges of m2 over tothe second term, one at a time. This new equation,m1 � m2 = 0 has degree d0 = dd=2e, and in generalis not derivable by a degree d0 PC refutation. The(degree d) equations that interest us are this largerset of equations, which express the fact that the edgescoming out of a set S are even (or odd) by a pair ofmonomials.There are two key steps to making this intuitiona proof. First, we must show that, although the PCproof can contain arbitrary polynomials, the importantlines are equalities as above, or binomials if viewed asa di�erence. This is made formal in a very generalway in section 5. Secondly, that the set of degree dequations described above, although not all provable



with degree d proofs, is more natural and thus easier tounderstand, and they span all of the degree d derivablePC polynomials. In contrast, an explicit construction ofthe exact set of degree d derivable PC polynomials (asdone by Razborov [9] for pigeonhole principle) seemsmuch more di�cult.5 Binomial systems and bounds for PCIn the previous section, we reduced the problem ofproving lower bounds for the mod counting principlesto that of proving lower bounds for the Tseitin graphtautologies. The reason this is progress is that theTseitin graph tautologies are expressed as a system ofpolynomials of a very simple form: each polynomialis a binomial, the di�erence of two terms (i.e., theweighted sum of two monomials with coe�cients overthe �eld.) (This fact was earlier used by Grigoriev [5]in giving lower bounds for Nullstellensatz.) A binomiala1m1 � a2m2 can be viewed as the equation betweentwo terms, a1m1 = a2m2. Intuitively, an algebraicproof for a binomial system should be expressible asa sequence of such equations. In the �nal paper, weshall formalize this intuition by giving a formal de�-nition of the Laurent proof system on such equations,and showing equivalence to PC for binomial systems.However, we will only present the consequences of thischaracterization that we need for the lower bound inthis version.We use a general characterization of things provablein PC, and then show that this characterization can bere�ned for binomial systems. This characterization isfrom [4].De�nition. A degree d pseudo-ideal I is a vector spaceof degree at most d polynomials so that if p 2 I and phas degree � d� 1, then xp 2 I for every variable x.Theorem 3 [4] Let P be a system of polynomials, andlet Id(P ) be the set of all polynomials q that have a degreed PC proof from P . Then Id(P ) is a d-pseudo-ideal,and for any d-pseudo-ideal I containing P , Id(P ) � I.So pseudo-ideals capture provability in polynomialcalculus. If equational reasoning is complete for poly-nomial calculus for binomial systems, it should followthat the pseudo-ideals for such systems are determinedby which terms are \provably equal" from the system.In other words, pseudo-ideals should be determined byan equivalence relation on degree d terms with certainclosure properties. This is formalized below.De�nition. Let R be a ring and R� a multiplicativesubgroup of R, and let x1; : : : ; xn be variables. (i.e., R�consists only of invertible elements and is closed underproducts and inverses). An R�-term is a term whosecoe�cient is from R�. An R�-binomial is the di�erenceof two R�-terms. A d-Laurent relation over R�-terms

is an equivalence relation �d on R�-terms of degreeat most d with the following properties: Let t1; t2; beR�-terms of degree at most d and let r 2 R�.(a) t1 �d t2 i� rt1 �d rt2; and(b) If t1 and t2 are degree at most d � 1, and t1 �d t2then xit1 �d xit2 for any variable xi.If �d is a d-Laurent relation, we de�ne a correspondingset of binomials B�d = ft1 � t2jt1 �d t2g and a setof polynomials S�d = SPANR(B�d ), the set of linearcombinations of binomials in B�d .R will usually be a �eld, but in section 8 we will needthe more general version. Intuitively, �d represents theset of pairs of terms that can be proved equal usingequational-type reasoning, where we are allowed tomultiply both sides of a known equation by a constantor variable, as long as we don't exceed degree d.We now show that lower bounds on polynomialcalculus proofs can be established by exhibiting a non-trivial d-Laurent relation.Theorem 4 Let Q be a set of R� binomials. If �dis a d-Laurent relation with Q � B�d and 1 6�d a forany a 2 R�; a 6= 1, then Q has no degree d polynomialcalculus refutation over R.The proof of this theorem follows from a sequence oflemmas that take up the rest of this section. Lemma 5is the main technical lemma, and the other lemmasdescribe how to use it to prove the theorem.Lemma 5 Assume �d is d-Laurent. Suppose f 2 S�d .Then f can be rewritten as a linear combination f =PTj=1 aj(tj � t0j) of binomials from B�d such that nomonomial completely cancels out, i.e., every monomialtj ; t0j in the linear combination appears in f with non-zero coe�cient.Proof. Let f = Pj aj(tj � t0j), where each pair ofmonomials in the above sum is a polynomial from B�d .We prove the lemma by induction on the number ofdistinct monomials in the above sum. At each step,if cancellation of a monomial occurs, we will rewritef by an equivalent sum of elements of Rd such thatthe number of monomials in the new sum is strictlysmaller.Assume m appears in the sum, without loss ofgenerality in exactly the �rst T 0 di�erences, but has zerocoe�cient in f . Because each element aj 2 R�, and sohas an inverse, by factoring out the coe�cient of m ineach term, we can rewrite any elements that m appearsin: ck(akm�a0km0k) = ckak(m�a0ka�1k m0k) = dk(m�tk)for some R� term tk. Also, by the closure properties of�d for multiplication by constants from R�, m �d tk.Now, since m has coe�cient 0 in f , Pk dk = 0.We claim that the sum of binomials containing m,PT 0k=1 dk(m� tk), can be rewritten asPT 0k=2 dk(t1� tk).This is because PT 0k=2 dk(t1 � tk) = (PT 0k=2 dk)(t1) �



PT 0k=2 dktk = �d1(t1) �PT 0k=2 dktk = �PT 0k=1 dktk =(PT 0k=1 dk)m�PT 0k=1 dktk =PT 0k=1 dk(m � tk).Since �d is transitive, t1 � tk for all k. So thissubstitution rewrites f as a weighted sum of membersof B�d . The new sum is without m and without anymonomial not in the previous sum, so contains onefewer monomial. 2Lemma 6 If �d is d-Laurent, and there is a c 2 R; c 6=0 with c 2 S�d , then there is an a 2 R�; a 6= 1 with1 �d a.Proof. If c 2 S�d , by Lemma 5, c can be written asa sum of equivalent terms which only have monomialsthat appear in c, i.e, are constants. Thus, at least twodistinct constants a �d a0, and then 1 �d a0a�1. 2Lemma 7 If �d is d-Laurent, then S�d is a degree dpseudo-ideal.Proof. By de�nition, S�d is a vector space of poly-nomials of degree at most d, so we just need to showclosure under multiplication by a variable, providedthe total degree is at most d. Assume f 2 S�dhas degree at most d � 1. By Lemma 5, we canwrite f = PTi=1 ci(ti � t0i), where ti �d t0i and eachti; t0i comes from a monomial with non-zero coe�cientin f . In particular, each ti; t0i has degree at mostd � 1. Therefore, xti � xt0i by the second closureproperty in the de�nition of d-Laurent relation. Soxf =PTi=1 ci(xti � xt0i) 2 S�d . 2Proof (of Theorem 4). Let �d be a d-Laurentrelation with Q � B�d , and that 1 6�d a for any1 6= a 2 R�. Assume Q has a polynomial calculusrefutation of degree d over R, i.e., proves some c 6= 0,c 2 R. Then c 2 S�d , since the latter is a pseudo-idealcontaining Q. But then 1 �d a for some a 6= 1; a 2 R�.This contradiction proves the theorem. 2.6 PC lower bound for mod 2We �rst prove linear lower bounds for the Tseitinprinciple TSn(2) for polynomial calculus over �elds ofcharacteristic q > 2, provided the underlying graph isan expander graph.De�nition. Let G = (V;E) be an undirected graph.G has expansion � if for any subset S of vertices withjSj � jV j=2, jN (S)j � (1 + �)jSj, where N (S) is the setof nodes adjacent to nodes in S.Theorem 8 Let F be a �eld and let Gn have expansion�. For all d < �n=8, there is no degree d PC refutationof TSn(2) over F .Note that there is no restriction on the charac-teristic q of the �eld F . When q is an odd prime orzero, then the TSn(2) polynomials are unsatis�able andtherefore have a PC refutation over F , of degree whichis necessarily linear by the theorem. When q = 2, then

the TSn(2) polynomials are easily seen to be satis�able(trivially, since 1 = �1), and there is no PC-refutationof TSn(2) at all.It is an easy corollary of Theorem 8 and Lemmas1 and 2 that over a �eld of characteristic q 6= 2, PC-refutations of the MODn2 polynomials require size linearin n: this is established as Corollary 18 below for generalp in place of 2.Preparatory to proving Theorem 8, we establishsome de�nitions and lemmas. In what follows, we willreduce all polynomials by y2i;j = 1 for all variables, thusobtaining only multilinear polynomials.De�nition. For a monomial m = Qi yfii , de�ne themultilinearization m of m to be Qi yfi mod 2i . For amultilinear monomial m we de�ne Em to be the set ofedges e such that ye is a factor of m.De�nition. For two sets A, B, A +2 B denotes thedisjoint union of A and B.De�nition. Let S � V , where V is the set of verticesin Gn. Then E(S) is de�ned to be the set of edges withexactly one endpoint in S and one endpoint outside ofS.Proposition 9 Let Gn be an expander graph withexpansion �. If S � V , jSj � n=2, then jE(S)j � �jSj.Proof Since jSj � n=2, jN (S)j � (1 + �)jSj by thede�nition of expansion. Then jN (S) � Sj � �jSj, andeach node in N (S) � S is the endpoint of at least oneedge in E(S).We shall prove Theorem 8 as a corollary to Theo-rem 4: for this, we let R = F and R� = f�1; 1g. TheR�-terms are thus just the terms m and �m where m isa monomial.De�nition. We de�ne an equivalence relation �d onthe R�-terms of degree at most d multilinear monomial,as follows. Let b1; b2 2 f0; 1g, (�1)b1m1 �d (�1)b2m2if there exists a set S � V such that1. Em1m2 = E(S).2. jSj < n=2; and3. jSj � b2 � b1 (mod 2).We will show that there is no degree d < �n=8 PCrefutation of TSn(2) by showing that that �d is ad-Laurent relation.Lemma 10 If d < �n=8, then the relation �d is anequivalence relation.Proof. It is easy to see from the de�nitions that(�1)bm �d (�1)bm and that (�1)b1m1 �d (�1)b2m2i� (�1)b2m2 �d (�1)b1m1. We need to show that if(�1)b1m1 �d (�1)b2m2 and (�1)b2m2 �d (�1)b3m3,then (�1)b1m1 �d (�1)b3m3. Let S1 be the set of ver-tices such that E(S1) = Em1m2 , jS1j � b2� b1 (mod 2),jS1j < n=2, and similarly let S2 be the set of verticessuch that E(S2) = Em2m3 , jS2j � b3 � b2 (mod 2),



jS2j < n=2. We want to show that S0 = S1 +2 S2 is aset of vertices such that E(S0) = Em1m3 , jS0j = b3� b1,and jS0j < n=2. Intuitively, this is saying that if S1has parity b2 � b1 which equals the parity of jE(S1)j,and S2 has parity b3 � b2, which equals the parity ofjE(S2)j, then S1 +2 S2 has parity b3 � b1, which equalsthe parity of jE(S1+2S2)j. And furthermore, jS1+2S2jis not too large.Clearly, jS0j mod 2 = jS1j mod 2+ jS2j mod 2 = b2�b1 + b3 � b2 = b3 � b1: Also we have: E(S1 +2 S2) =E(S1) +2 E(S2) = Em1m2m2m3 = Em1m3 .It is left to show that jS0j < n=2. Since jm1j; jm2j �d, it follows that jE(S1)j � jm1m2j � 2d. Since Gn is anexpander graph, Proposition 9 implies that jE(S1)j ��jS1j, and thus it follows that jS1j � 2d=� < n=4.Similarly, jS2j � n=4. Thus, jS0j � jS1j + jS2j < n=2.In fact, since jE(S0)j � jm1m3j � 2d, Proposition 9further implies that jS0j � n=4. 2Lemma 11 For d � �n=8, �d is a d-Laurent relation.Proof. Let d � �n=8. We just established that �d isan equivalence relation. Condition (a) of the de�nitionof d-Laurent is trivially satis�ed from the de�nitionof �d. Also, the fact that (�1)b1m1 �d (�1)b2m2 isde�ned in terms of the linearization of m1m2 meansthat condition (b) of the de�nition of d-Laurent is alsosatis�ed. 2.Lemma 12 Every polynomial of TSn(2) is a binomialfrom B�d .Proof. There are two kinds of polynomials in TSn(2).For the equations y2e � 1, we must show that y2e �d 1.This is easily done by taking S = ; and noting thatsince y2e1 = 1, the three conditions of the de�nitionof �d are trivially satis�ed. For the equations of theform 1+ yfi;j1gyfi;j2g � � �yfi;jrg = 0, we must show that1 �d (�1)yfi;j1gyfi;j2g � � �yfi;jrg. This is easily seen tohold with S = fig. 2Proof of Theorem 8. This is a consequence ofTheorem 4. First, Lemma 11 shows �d is d-Laurent.Second, Lemma 12 shows TSn(2) � B�d . It remains toshow that 1 6�d (�1). To prove this suppose 1 �d (�1)holds with some set S satisfying the conditions of thede�nition �d. Now we must have E(S) = ;. Buton the other hand, jSj < n=2, so Lemma 9 impliesE(S) is non-empty | a contradiction. Therefore, thehypotheses of Theorem 4 hold, and there is no PCrefutation of TSn(2) over F of degree d. 27 PC lower bound for the general caseThis section proves the following theorem giving linearlower bounds on the degree of PC refutations of TSn(p)over a �eld F of characteristic q.Theorem 13 Let F be a �eld of characteristic q, andlet Gn be an r-regular graph with expansion �. Then,

for all d < �n=8, there is no degree d PC refutation ofTSn(p) over F .As a corollary to this theorem and Lemmas 1 and 2,we shall prove (as Corollary 18) that when q - p, any PCrefutation of the MODnp polynomials over F requireslinear degree.In order to express the TSn(p) polynomials, F mustcontain a p-th primitive root of unity, !. We letR = F and R� be the powers of the root of unity, i.e.,R� = f1; !; !2; : : : ; !p�1g. For the rest of this section,it is su�cient to assume only that R is a ring (ratherthan a �eld). See section 8 for more explanation ofwhat it means for a ring to have a p-th root of unity.De�nition. Let A and B be two multisets sets. ThenA +p B denotes the multiset, where if x occurs in Awith multiplicity a mod p, and in B with multiplicityb mod p, then x occurs in A +p B with multiplicity(a + b) mod p. Note that when A and B are ordinarysets and p = 2, then A+2B is simply the disjoint unionof A and B.De�nition. Let S = fs1; : : : ; sng, where each si 2[0; p � 1]. We will think of S as a multiset over thevertices V in G, where vertex i occurs in the set withmultiplicity si. E(S) will denote a multiset of edgesfrom G0n as follows. Edge hi; ji occurs with multiplicity0 if si � sj is negative, and occurs with multiplicitysi � sj otherwise.The size of S, jSj, will be k if and only if the numberof nonzero elements in S is k. In other words, the sizeof a multiset is the number of elements that appear atleast once in the multiset. The size of E(S) is de�nedsimilarly.Proposition 14 Let Gn be an expander graph withexpansion �. If jSj � n=2, then jE(S)j � �jSj.Proof. Even though S and E(S) are multisets andthe de�nition of `size' is correspondingly modi�ed,the proof of Proposition 9 still applies word-for-word.(In fact, when members of S have di�erent non-zeromultiplicities, it only makes the size of E(S) increase.)2De�nition. We de�ne the binary relation �d on theR�-terms !bm where m is a degree at most d monomialand 0 � b < p. !b1m1 �d !b2m2 if there exists amultiset S of vertices such that (i) The multiset of edgesin m1m�12 (after applying ypi;j = 1, and yi;jyj;i = 1)equals E(S); (ii) jSj < n=2; and (iii) Pi si � b2 �b1 (mod p).The next three lemmas are proved exactly analo-gously to Lemmas 10-12.Lemma 15 For d � �n=8, the relation �d is anequivalence relation.Lemma 16 For d � �n=8, �d is a d-Laurent relation.



Lemma 17 Every polynomial of TSn(2) is a binomialfrom B�d .Proof of Theorem 13. Exactly as argued in the proofof Theorem 8, we have that 1 6�d a for any a 2 R�distinct from 1, i.e., 1 6�d !i for all 0 < i < p� 1. ThusTheorem 13 follows from Theorem 4 using Lemmas16 and 17. 2Corollary 18 Let q � 2 be a prime such that q - p andlet F be a �eld of characteristic q. Any PC-refutation ofthe MODnp polynomials requires degree > �n, for someconstant � > 0.Proof. Choose constants � and r so that thereare r-regular graphs Gn of expansion � for all n.Let d1 = d2 = 2pr. Suppose MODmp has a de-gree d3 PC refutation, where m = n + nrp. ByLemmas 1 and 2 TSn(p) has a degree d3d1 PCrefutation, so by Theorem 13, d3d1 > �n=(8pr). Thus,d3 > �m=(16p2r2(1+rp)). Since �, r, p, d are constants,this proves the Corollary. 28 Polynomial calculus over ringsWe now consider the polynomial calculus over ringsinstead of over �elds. For this, we consider a �xedring R and the polynomials have coe�cients from R.(By `ring' we always mean `commutative ring'.) Sincethe de�nition of the polynomial calculus did not use any�eld-speci�c properties, e.g., since the de�nition didnot depend on the existence of inverses, it is completelynatural to consider the polynomial calculus over rings.As before, we de�ne a PC derivation to be a sequenceof polynomials hPiii with the same rules of additionand multiplication. However, we modify the de�nitionof a PC refutation of Q to be a PC derivation that endswith a constant polynomialm where m 2 R is non-zero(and its derivation thus corresponds to a derivation ofthe contradiction m = 0).It is known that the polynomial calculus over ringsis complete with respect to Boolean reasoning, i.e.,if the initial polynomials include x2 � x = 0 for eachvariable x then any unsatis�able set of polynomials hasa PC refutation. However, the polynomial calculusover rings is not complete for general derivations, seethe examples in [2]. In this respect the polynomialcalculus over a �eld is stronger than the polynomialcalculus over a ring. On the other hand, if the ring Ris Zm where m = p1 � p2 for distinct primes p1; p2,then it is well-known that there are constant-degreepolynomial calculus proofs ofMODnp1 and MODnp2 . ButTheorem 13 implies that there is no single �eld for whichthe polynomial calculus has constant degree proofs ofboth these principles.The situation is a little analogous to an importantopen problem in circuit complexity. Namely, Smolen-sky [10] showed that polynomial size constant-depth

circuits with mod-q gates cannot compute the mod-pfunction for distinct primes p; q. However, it is openwhether this is true for composite values of q wherep - q.We prove below that if p and q are relatively prime,then over the ring Zq , any PC refutation of MODnprequires degree � �n for some constant �. The generaloutline of the proof is similar to the approach used forthe proof of Theorem 13.In the next section, we do some preliminary workintroducing rings with roots of unity. Following that,we discuss the reduction of the Tseitin principle to themod p counting principle and then discuss the lowerbound for Tseitin principle.8.1 Rings with roots of unityWe are mostly interested in lower bounds on the degreeof polynomial calculus refutations over rings R = Zq;however, our method of proof depends strongly onthe use of p-th roots of unity, and on the existenceof inverses of certain terms involving the p-th root ofunity. In this section, we prove that there exist ringscontaining Zq with the desired p-th roots of unity.Theorem 19 Let p; q > 1 be relatively prime. Thenthere is a �nite ring R � Zq which contains a p-th rootof unity ! such that(a) p is the least positive integer i such that !i = 1,(b) For all 0 � j < k < p, (!k � !j) has an inversein R.Proof. First we shall give a simple proof for the casewhere q is a product of distinct primes q = r1 �r2 � � � rm.For this, let GFr be the �eld of order r and let Fi =GFr[ pp1] be the extension of GFr obtained by adjoininga p-th root of unity. We use !i to denote a p-th root ofunity in Fi. De�ne R to be the ring with domainQi Fiand component-wise addition and multiplication. Anelement of R is an m-tuple ha1; : : : ; ami with ai 2 Fi.By the Chinese remainder theorem, a copy of Zq isembedded in R by n 7! hn mod r1; : : : ; n mod rmi. Theelement ha1; : : : ; ami has an inverse in R i� each ai 6= 0.Letting ! = h!1; : : : ; !mi, it is easy to see that ! isa p-th root of unity in R and satis�es property (a).Likewise, !ki � !ji 2 Fi is non-zero for all i and thus(!k � !j)�1 exists in R.Now consider the general case, where q is not aproduct of distinct primes. (We don't use any specialproperties of Zq beyond the fact that p�1 exists in Zq ,which follows from the fact that p and q are relativelyprime.) Consider a primitive p-th root of unity, �,over the �eld of rationals. As a root of unity, � isa root of the polynomial xp�1 + xp�2 + � � � + x2 +x + 1. Likewise, for any ` < p dividing p, �p=` is aprimitive `-th root of unity, so � is a root of x(`�1)p=`+x(`�2)p=` + � � � + xp=` + 1. It follows that there is a



non-constant polynomial Q(x) which is the greatestcommon divisor of each of these polynomials which has� as a root. Furthermore, by Gauss's lemma, we maychoose the polynomial Q(x) with leading coe�cient 1and integer coe�cients. We de�ne R to be the extensionring Zq [!]=(Q(!)). Formally, this means we de�nean equivalence relation on the set Zq[!] of univariatepolynomials over Zq byf � g $ 9h 2 Zq [!]; f(!) � g(!) = h(!) �Q(!):Clearly this is an equivalence relation, and ad-dition and multiplication respect �. The ringR = Zq [!]=(Q(!)) =df Zq [!]=� has domain theset of �-equivalence classes (but we generally abusenotation by writing f 2 R instead of [f ] 2 R,etc.) Clearly R is a ring. In R, each polynomialx(`�1)p=` + x(`�2)p=` + � � �+ xp=` + 1 is equal to zero,since it is a multiple of Q. Therefore !p = 1 in R (i.e.,wp � 1) since(! � 1) � (!p�1 + !p�2 + � � �+ ! + 1) = !p � 1:Also note that no constant of Zq becomes equal tozero in R: this is immediate from the fact that Q is anon-constant, monic polynomial over Zq .It remains to prove that if k 6= `, 0 � k; ` < p, then(!k � !`) has a (multiplicative) inverse in R. Since(!k � !l) = !`(!k�` � 1) and !` has inverse in R, itwill su�ce to prove that (!k � 1) has an inverse in Rfor all 1 � k < p.De�ne i0 = 0 and in+1 = in + k mod p. Let ` bethe least value such that i` = 0; of course ` divides p.Therefore the values i0; : : : ; i`�1 are distinct and enu-merate all the values in f0; p=`; 2p=`; : : : ; (` � 1)p=`g.For 0 � j < `, let v(j) be the value such that iv(j) = j,0 � v(j) < `. De�nef(!) = `�1Xj=0 v(j)!j = `�1Xn=0n � !in :Claim: (!k � 1)f(!) = ` holds in R.Since ` has an inverse in Zq , the claim immediatelyimplies that (!k � 1) has in inverse in R, namely,`�1f(!).In R we have(!k � 1) � f(!) = `�1Xn=0n!in+k � `�1Xn=0n!in= X̀n=1(n� 1)!in � `�1Xn=1n!in= (` � 1) � !i` � `�1Xn=1!in

= (` � 1) � 1 + 1� `�1Xn=0!in= `� `�1Xn=0!in = `� `�1Xn=0!np=`= `� 0 = `:That completes the proof of the claim and of Theo-rem 19 2For the next two sections, we shall consider p and qto be �xed and let R be as in Theorem 19.8.2 Low degree reductionsLemma 1 clearly still applies to the polynomial calculusover rings, but Lemma 2 needs to be reproved for rings.Let q; p;R be as in the previous theorem.Lemma 20 Over the ring R, TSn(p) is (d1; d2) re-ducible to MODmp , where m = n + nrp, d1 = 2pr andd2 = 2pr.Proof. The reduction is exactly the same as thereduction used for the proof of Lemma 2. Examinationof the de�nition of re in Step 1 of that proof revealsthat the only place where inverses were used was inthe polynomials (1) and (2) and these were inverses ofelements of the form !a1 � !a which do exist in R. Soit remains to re-do Step 2 of the proof of Lemma 2.Recall that we must �nd small degree PC derivationsof MODmp (re) equations:1. r2e � re = 0 for all p-sets e2. rerf = 0 for all e; f such that e \ f 6= 0, e 6= f3. Pe;u2e re � 1 = 0, for all u 2 [m].As discussed before, each single equation is a tauto-logical consequence of a constant number of equationsof TSn(p). We now need to extend the completenesstheorem of [3], Theorem 5.2, to apply to the polynomialcalculus over R.Lemma 21 Let z1; : : : ; zk be variables, and f(~z) be apolynomial. Suppose that in the ring R, f(z1; : : : ; zk) =0 for all values of z1; : : : ; zk 2 f1; !; !2; : : : ; !p�1g.Then there is PC derivation of f(~z) from the polynomialszpi � 1, of degree � pk � deg(f).Proof. We give the proof for the case k = 1 and leaveit the reader to formulate the proof by induction for thecase k > 1. (All the essential di�culties arise alreadyin the case k = 1.) Let Pa be the polynomial(z1�!0)(z1�!1) � � � (z1�!a�1)(z1�!a+1) � � � (z1�!p�1):Note that Pa � (z1 � !a) is the polynomial zp1 � 1 (thisis immediate from the fact that they are the samepolynomial in each �eld Fqi).



Claim: Let c = f(!a) 2 R. The polynomial Pa �(f(z1) � c) is PC derivable from zpi � 1 in degree (p �1) � deg(f).The claim is proved by induction on the size ofthe polynomial f . The base case where f is aconstant is trivial. The second base case where f(z1)is just z1 is immediate from the observation above thatPa � (z1�!a) = zp1 � 1. The induction steps of additionand multiplication are handled by the following twoconstructions:Pa � (f � c) Pa � (g � d)Pa � ((f + g) � (c + d))and Pa � (f � c)Pa � (fg � cg) Pa � (g � d)Pa � (cg � cd)Pa � (fg � cd)and this proves the claim.Now let Pà be the polynomial Q i�`i6=a (z1 � !i). Weonly use this polynomial when a � `.Claim: Let ` � 0 and let c = f(!a) 2 R. Thepolynomial Pà � f(z1) is PC derivable from zpi � 1 indegree (p � 1) deg(f).The second claim is proved by induction on `. Thebase case, where ` = 0 is already established by the �rstclaim, since P 0a = Pa. For the induction step, let a �` + 1. The induction hypothesis tells us that P `̀f(z1)and Pà �f(z1) are both PC derivable. Subtracting thesegives (!` � !a)P `+1a � f(z1):Since (!` � !a) is invertible in R, we may multiply by(!` � !a)�1 to derive P `+1a � f(z1), and the claim isproved.The base case k = 1 of Lemma 20 is immediate fromthe second claim, with ` = p. The argument for theinduction step is similar and is left to the reader. 28.3 PC lower bound for ringsWe now prove the main theorems giving lower boundsthe degrees of of PC derivations over Zq. Fix p; q;R asabove.Theorem 22 Let Gn be an r-regular graph with expan-sion �. Then, for all d < �n=4, there is no degree d PCrefutation of TSn(p) over R.This plus Lemmas 1 and 20 immediately imply:Corollary 23 Let p; q � 2 be relatively prime. Any PC-refutation over Zq of the MODnp polynomials requiresdegree > �n, for some constant � > 0.
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