Linear Gaps Between Degrees for the Polynomial Calculus Modulo Distinct Primes
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Abstract

This paper gives nearly optimal lower bounds on the
minimum degree of polynomial calculus refutations of
Tseitin’s graph tautologies and the mod p counting
principles, p > 2. The lower bounds apply to the
polynomial calculus over fields or rings. These are
the first linear lower bounds for polynomial calculus;
moreover, they distinguish linearly between proofs over
fields of characteristic ¢ and r, ¢ # r, and more
generally distinguish linearly the rings 7, and 7, where
¢ and r do not have the identical prime factors.

1 Introduction

The problem of recognizing when a proposition formula
is a tautology is dual to the satisfiability problem and
is therefore central to computer science. A principal
method of establishing that a formula is a tautology
is to find a proof of it in a formal system such as
resolution or (extended) Frege systems. In fact, many
algorithms for establishing propositional validity are
essentially a search for a proof in a particular formal
system. In recent years, several algebraic proof systems,
including the Nullstellensatz system and the polynomial
calculus (also called the ‘Grobner’ system) have been
proposed: these systems are motivated in part by the
desire to identify powerful proof systems which support
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efficient search algorithms and in part by the desire to
extend lower bounds on proposition proof complexity
to stronger proof systems.

The Nullstellensatz proof system is a propositional
proof system based on Hilbert’s Nullstellensatz and
was introduced in [1]. The polynomial calculus (PC)
is a stronger propositional proof system introduced
first by [4]. (See [8] and [3] for subsequent, more
general treatments of algebraic proof systems.) In the
polynomial calculus, one begins with an initial set of
polynomials and the goal is to prove that they cannot
be simultaneously equal to zero over a field F'. A
polynomial calculus (PC) derivation of P; from a set of
polynomials @ is a sequence of polynomials Py, ..., P
such that each polynomialis either an initial polynomial
from @, or follows from one of the following two rules:
(1) If P; and P; are previous polynomials, then ¢P;+dP;
can be derived, where ¢,d € F; (ii) if P; is a previous
polynomial, then xP; can be derived. The degree of a
PC derivation is the maximum degree of the P;’s. We
identify polynomials P; with the equations P; = 0 and
a PC refutation of Q (a proof that the equations @ = 0
are not solvable over I') is simply a PC derivation of 1
(i.e., of 1 =0).

The definition of the polynomial calculus depends
implicitly on the choice of a field F' such that all
polynomials are over the field F'. A number of authors
also consider the polynomial calculus over rings ([3, 2]).
The only difference in the definition of the PC system
is that a PC refutation over a ring is a derivation of r
(i.e., of r = 0) for some non-zero r in the ring. Our
main results apply to both fields and rings.

The mod p counting principle can be formulated as
a set MOD?” of constant-degree polynomials expressing
the negation of the counting principle, and the present
paper gives linear lower bounds on the degree of
polynomial calculus refutations of MOD} over fields
of characteristic ¢ # p. A couple lower bounds on the



degree of Nullstellensatz proofs of the mod p counting
principles have been given in prior work: [1] gave
non-constant lower bounds and [3] gave lower bounds of
the form n¢. For the polynomial calculus, the best lower
bound on the degree of PC refutations of MOD} was
Krajicek’s Q(loglogn) lower bound based on a general
lower bound for symmetrically specified polynomials [7].

A couple polynomial calculus lower bounds have
been obtained for other families of tautologies.
Razborov [9] established /n lower bounds on the
degree of polynomial calculus proofs of the pigeon-hole
principle. Krajicek [7] proves loglog n lower bounds for
a wide variety of symmetric tautologies.

Recently, Grigoriev [5] succeeded in giving very sim-
ple linear lower bounds on the degree of Nullstellensatz
refutations of the Tseitin mod 2 graph tautologies.
The present work 1s motivated by this paper, and in
particular by the idea of working in the Fourier basis
which greatly simplifies the argument.

The present paper establishes linear lower bounds
to the polynomial calculus by proving that over a field
of characteristic ¢ { p, any PC refutation of the MOD}
polynomials requires degree é - n, for a constant 6 which
depends on p and ¢. In section 8 we generalize this
linear lower bound to the polynomial calculus over
rings 7, provided p and ¢ are relatively prime.

As it is well-known to be easy to give constant
degree polynomial calculus (and even Nullstellensatz)
refutations of the MODZ polynomials over Fj,, our
results imply that the MODZ polynomials have a
linear gap between proof complexity for the polynomial
calculus over F, and over Fj.

It follows from a result of Kraji¢ek [6] that our
linear lower bounds on the degree of PC refutations
imply exponential lower bounds of AC?[g]-Frege proofs
of the mod p principles when Mod-q gates are present
only at the top (root) of formulas.

2 Tseitin tautologies: polynomial version

Tseitin’s (mod 2) graph tautologies are based on the
following idea. Let G, be a connected undirected
graph on n vertices, where each node in the graph has
an associated charge of either 0 or 1, and where the
total sum of the charges is odd. Then it is impossible to
choose a subset of the edges £’ from F so that for every
vertex v € V', the number of E’-edges incident to v is
equal mod 2 to the charge of v. This impossibility
follows from a simple parity argument, since summing
the degrees of all vertices in the subgraph counts each
edge twice, and so is even, whereas it should also be
the sum of all the charges, which is odd.

For an r-regular graph G,, with n odd, and charges
all 1, we can express this principle as the inconsistency
of the following system of polynomials over a finite field

F of characteristic different from 2: There will be rn/2
underlying variables, one for each edge of G,. We will
denote the variable corresponding to the edge e = {i, j}
from i to j by ye = yy;53. For each variable y., we
have the equation y? — 1 = 0; this forces the variables
to take on values of either 1 or —1, with y. = —1
corresponding to the presence of e in the subgraph E’.
Secondly, corresponding to each vertex ¢ in G, we will
have the equation 1+ yr; ;11915521 - - Ygi,jry = 0, where
jl, ..., jrare the neighbors of 7 in (G,,. This corresponds
to saying that the degree of 7 in the subgraph E’ is odd.
This set of equations, representing the Tseitin mod 2
graph formula, will be denoted by T5,(2).

For any prime p, we can generalize the above
principle to obtain a mod p version as follows. Again,
we fix an underlying r-regular, undirected graph G,
and then let GJ be the corresponding directed graph
where each undirected edge is replaced by two directed
edges. FEach vertex in (7, will have an associated
label, or charge in [0,p — 1] such that the sum of the
vertex charges is congruent to 1 mod p. The mod p
principle states that it is impossible to assign values
in [0,p — 1] to each of the directed edges so that:
(i) for any pair of complementary edges (i, j) and {j, i},
v({i, 7)) +v({j, 1)) = 0 (mod p), and (ii) for every vertex
t, the sum of the edge values coming out of vertex ¢ is
congruent to the charge of that vertex mod p. Again,
this is impossible since if we sum the edges in pairs, we
obtain 0 mod p, but summing them by vertices gives
the total charge of 1 mod p.

Let F' be a finite field with characteristic ¢ # p that
contains a primitive p-th root of unity w. Assume all
charges of vertices are 1, and that n = 1 (mod p). We
can express the mod p Tseitin principle for G/, as the
unsatisfiability of the following system of polynomials
over F: We have rn underlying variables y., one
for every directed edge e. For each variable y, we
have the equation y? — 1 = 0; this forces variables to
take on values in 1,w,w? ... ,wP~!. (The power of
w corresponds to the value assigned to e.) Secondly,
for each vertex ¢ in G, we will have the equation
Yi 1) Y2 - Y jry —w = 0, where j1,... jr are the
neighbors of ¢. Third, for each edge e = (¢, j)} we have
the equation y; jyy(;s) — 1 = 0. This set of equations,
representing the Tseitin mod p formula, will be denoted

by TS, (p).

3 The mod p principle and low degree reductions

A related principle 1s the mod p counting principle.
Intuitively, 1t states that it is not possible to partition
a set of size n into groups of size p, if n is congruent to
1 mod p. We will express this by polynomial equations
as follows. The underlying variables are z., where e
ranges over all p element subsets of [1, n]. The degree 2



equations expressing the negation of the principle are:
(1) #2 — z. = 0 for each e; (2) z.x; = 0, for each e, f
such that e N f # @ and e # f; (3) 1 — docice e =0,
for each i € [1,n]. Let the above set of equations be
denoted by MOD}.

We want to show that a low degree PC refutation of
the mod p counting principle implies a low degree PC
refutation of the Tseitin mod p graph equations. To
do this, we define the following general notion of a low

degree reduction.

Definition. Let P(T), Q(Y) be two sets of polynomials
over a field . Then P is (di,ds)-reducible to Q@ if:
(1) For every y;, there is a degree dy definition of y;
m terms of the x’s. That is, for every i, there exists a
degree di polynomaial r; where y; will be viewed as being
defined by ri(xy1,...,2n); (2) there exists a degree ds
PC derivation of the polynomials Q(F(x1,...,2y)) from
the polynomials P(T).

Lemma 1 Suppose that P(z) is (dy,ds2)-reducible to
Q(y). Then ifthere is a degree ds PC refutation of Q(y),
then there is a degree mawx(da, dsdy) PC refutation of
P(z).

Lemma 2 For all n and p, and for any field F' of
characteristic q, where q 1 p, and F includes the
primitive p-th root of unity, TS,(p) is (dy, d2)-reducible
to MOD;” over F', where m = n+ nrp, di = 2pr and
dy = 2pr.

Proof of Lemma 2. Let Gl be a directed Tseitin
graph on n vertices, where n = 1 (mod p). That is, the
underlying (G, is an r-regular graph; each vertex of G,
has a charge of 1, and the edges of G/, are labeled with
values from [0, p—1]. Thus, the total number of directed
edges of G, is rn. From G we will define a universe U of
size m, and a corresponding p-partition of this universe,
where m = n + nrp. In U, there will be one element
corresponding to each vertex of G7,, and there will also
be p elements corresponding to each directed edge of
G!,. We will denote the element of U corresponding to
vertex ¢ in G by (), and the vector of p elements of U
corresponding to the edge (4,7} in G!, will be denoted
by (i) = (i 1), (03,2), -1 (5,1, P).

Definition. The elements in U associated with node
i will be (i), plus all elements (i, k,*). (That is, the
rp elements corresponding to outgoing edges from i plus
the element corresponding to node i.) The elements in
U associated with the pair of nodes t,j will be the rp
elements corresponding to the directed edge (i,j) plus
the rp elements corresponding to the directed edge (j,1).

The partition of U is defined as follows. We
will consider node ¢ in GY, and the r labeled
edges, (4,71),(¢,42), ..., (%, Jr), leading out of ¢, where
Jj1 < Jj2 < -+ < jp. Suppose that the values of these
edges are: ay, as,...,a,. Then for each £, 1 < £ <r, we
take the first a; elements in U from (%, jg, *), and group

them with the first (p —ay) elements in U from (jg, ¢, *).
(This gives us r p-partitions so far.) Note that the num-
ber of remaining, ungrouped elements associated with
node i is (p—a1)+(p—a2)+- - -+(p—ar)+1, which is con-
gruent to 0 mod p as long as (a1 + -+ a,) mod p = 1.

We then group these remaining, ungrouped elements
assoclated with ¢, p at a time, in accordance with the
following ordering. Ungrouped elements from (4, ji, *)
are first, followed by ungrouped elements from (7, ja, *),
and so on until we get to the ungrouped elements from
(4, Jr, *), and lastly the element (7).

It should be intuitively clear that if the values y; ;
satisfy TS, (p), that is, if they are set so that the mod p
sum coming out of each vertex in G is congruent
to 1 mod p, and ¥; ;¥;; = 1 and yfyj = 1, then the
corresponding partition of U is a proper p partition.
We want to prove this now formally, with small-degree
PC refutations. There are two steps to this reduction.
First, for each variable z, underlying MOD;”, we want
to define a degree at most rp polynomial, call it r.(7),
in the y;; variables that corresponds to the above
reduction. Secondly, we want to show that there 1s a
small degree PC derivation of MOD;” (Fe) from TS, (p).

Step 1: Defining r.. We will first describe the
defining polynomial r, for z.. Recall that e is a
particular p-set from U. In the above reduction,
the valid p-partitions are of two types: (i) where the
elements of e are a subset of the elements associated
with a pair of nodes ¢, j in G; (ii) where the elements
of e are a subset of the elements associated with a node
t. Thus, if the underlying p elements from e are not
one of these two types, then z. is just set to 0.

Now consider case (i); that is, the elements of
e are a subset of the elements associated with the
pair of nodes i, j. Suppose that e is the set
{16,5,1,,5,2),...,(4,j,a1), (4,4, 1), ..., (4,4, p — a1)}.
That 1s, e consists of an initial segment of size a; of the
p elements associated with directed edge (4, j) and an
initial segment of size p—a; of the p elements associated
with (j,¢). (If e is not of this form, then again z. is just
0.) Then z. should be 1 if y; ; = w®, y;; = WP~ and
should be 0 otherwise. This is defined by the following
polynomial:

IT @ =w®) ™ (=) x [ (@™ =)™ (y;i—w")

a#ay b#Ep—ay
(1)

More generally, suppose that we want to define a 0-1
valued variable x so that x = 1 if y; = wP* and y; = wP?
and ... and y; = wP* and otherwise z = 0. Then this
1s accomplished by the following degree kp polynomial:

ITIT @ =)t —wh) (2)

i pEpi



Case (7i) is handled similarly but is somewhat more
complicated. Now the elements of e are a subset
of elements associated with ¢, and moreover we can
assume without loss of generality that they must be end-
segments of (¢, i1, *), (4, jiz, %), .. ., (¢, ju, *) plus possi-
bly either (i) or a consecutive segment of (%, i1, *).
(Otherwise, . is just set to zero.) Then . should be
1 if and only if there exists values ay,...,a, assigned
to the outgoing edges (¢,71),...,(%,jr) such that the
partition described in the reduction above groups the
elements of e together. This is a big OR (translated
as a sum) (of size at most p") over the good values of
ai,...,a, that group e together. Thus, 1t is expressible

by a polynomial in the variables y; ;. , % ., ..., ¥, of
degree at most pr.
Step 2: Deriving MOD,'(r.) from T5,(p). We will

now describe how to give small degree PC derivations
of the equations MOD;'(r.) from T'S,(p). Recall that
the equations in MOD,’(r.) are as follows.

1. 72 —r, = 0 for all p-sets e

2. rerp =0foralle, fsuch that eN f#0, e # f

3.2 cugere =1 =0, forallu € [m].

We want to show that for every equation £ that
we need to derive as described above, that F is a
tautological consequence of a small, constant number
of equations from TS, (p). Then, since each equation
of TS, (p) involves only a constant number of variables,
by completeness of PC it will follow that there is a
small-degree derivation of each equation E.
Definition. Let f; = 0,..., fr = 0,9 = 0 be polyno-
mial equations over a field F' with underlying variables
X1,...,%n. Then g is a tautological consequence of
fi,-- s fr of for every assignment « to the underlying
variables, if all of the equations f1, ..., fy are satisfied
by «, then g = 0 is also satisfied by .

By generalizing slightly the completeness result
in [3], (Theorem 5.2 part 2), it can be shown that
if ¢ is a tautological consequence of fi,... ) fg, all
with underlying variables z1,...,z,, and if f1,... f&
includes the equations z¥ = 1 for all variables z, then
there 1s a degree pn derivation of ¢ from fy,..., f.

In light of the above, it is just a matter of verifying
that each of the above equations E 1s a tautological
consequence of a small number of equations from
TSy (p) involving a small number of variables. 1In
particular, equations of type (1) require degree pr and
equations of type (2) and (3) each require degree at
most 2pr.

This completes the proof of Lemma 2. O.

4  Intuition and an upper bound

In order to first give some intuition behind the lower
bound for the Tseitin tautologies, it is helpful to think

about the natural PC refutation for these equations.
To be concrete, we consider the mod 2 case; the others
are similar.

Initially, the equations say that the number of edges
out of a single vertex v 1s odd. These equations have
degree r. Then in degree at most 27, one can combine
two of these equations to say that the number of edges
out of a set of vertices of size 2 is even. Continuing
in this way, if S C V, then one can derive an equation
saying that the number of edges out of S, F(S), has
the same parity as the size of S. This equation is most
naturally expressed as m — 1 = 0 if |S]| is even, and
m+ 1 =0 if |S] is odd, where m is the product of
the variables corresponding to edges F(S), that cross
between S and its complement. Thus, the degree of
this polynomial is equal to the size of F(S). Proceeding
this way, we eventually obtain two equations, one saying
that the number of edges out of a set S; i1s odd, and
the other one saying that the number of edges out of
a set Sy is even, where S; and S are disjoint, and
S1USy = V. This will lead to a derivation of 1,
since we have now derived m + 1 and m — 1 for some
monomial m. If G, is highly expanding, the degree
of this refutation will be large since at some point we
must pass through a relatively large set, and thus the
polynomial expressing that the number of edges out of
this set must have the same parity as the size of the
set, will be large due to expansion.

We want to show that the above almost completely
characterizes what can be done with the initial equa-
tions. Suppose we have derived m — 1 = 0, where m
is the set of edges F(S), such that |E(S)| = d, and
|S] is even. (Or similarly, we have derived m+1 =10
when m is the set of edges of E(S) but now |S] is odd.)
However, now it is possible to rewrite this equation in
a slightly different form so that it has smaller degree.
In particular, we can divide up the edges of m into two
halves, m; and my and rewrite the equation m —1 =0
instead as mq — mo = 0. This 1s derived from m — 1
in degree d by multiplying m — 1 by edges of ms, one
at a time, thus transferring the edges of ms over to
the second term, one at a time. This new equation,
my —mo = 0 has degree d’ = [d/2], and in general
is not derivable by a degree d’ PC refutation. The
(degree d) equations that interest us are this larger
set of equations, which express the fact that the edges
coming out of a set S are even (or odd) by a pair of
monomials.

There are two key steps to making this intuition
a proof. First, we must show that, although the PC
proof can contain arbitrary polynomials, the important
lines are equalities as above, or binomials if viewed as
a difference. This is made formal in a very general
way in section 5. Secondly, that the set of degree d
equations described above, although not all provable



with degree d proofs, is more natural and thus easier to
understand, and they span all of the degree d derivable
PC polynomials. In contrast, an explicit construction of
the exact set of degree d derivable PC polynomials (as
done by Razborov [9] for pigeonhole principle) seems
much more difficult.

5 Binomial systems and bounds for PC

In the previous section, we reduced the problem of
proving lower bounds for the mod counting principles
to that of proving lower bounds for the Tseitin graph
tautologies. The reason this is progress is that the
Tseitin graph tautologies are expressed as a system of
polynomials of a very simple form: each polynomial
is a binomial, the difference of two terms (i.e., the
weighted sum of two monomials with coefficients over
the field.) (This fact was earlier used by Grigoriev [5]
in giving lower bounds for Nullstellensatz.) A binomial
a;mi — asms can be viewed as the equation between
two terms, a;m; = agmsy. Intuitively, an algebraic
proof for a binomial system should be expressible as
a sequence of such equations. In the final paper, we
shall formalize this intuition by giving a formal defi-
nition of the Laurent proof system on such equations,
and showing equivalence to PC for binomial systems.
However, we will only present the consequences of this
characterization that we need for the lower bound in
this version.

We use a general characterization of things provable
in PC, and then show that this characterization can be
refined for binomial systems. This characterization is
from [4].

Definition. A degree d pseudo-ideal I is a vector space
of degree at most d polynomials so that of p € I and p
has degree < d — 1, then xp € I for every vartable x.

Theorem 3 [}] Let P be a system of polynomials, and
let I4(P) be the set of all polynomials q that have a degree
d PC proof from P. Then I;(P) is a d-pseudo-ideal,
and for any d-pseudo-ideal I containing P, I4(P) C I.

So pseudo-ideals capture provability in polynomial
calculus. If equational reasoning is complete for poly-
nomial calculus for binomial systems, it should follow
that the pseudo-ideals for such systems are determined
by which terms are “provably equal” from the system.
In other words, pseudo-ideals should be determined by
an equivalence relation on degree d terms with certain
closure properties. This is formalized below.

Definition. Let R be a ring and R* a multiplicative
subgroup of R, and let x1,. .., &, be variables. (i.e., R*
consists only of invertible elements and 1s closed under
products and inverses). An R*-term is a term whose
coefficient s from R*. An R*-binomual is the difference
of two R*-terms. A d-Laurent relation over R*-terms

15 an equivalence relation =3 on R*-terms of degree

at most d with the following properties: Let t1,19, be

R*-terms of degree at most d and let r € R*.

(a) t1 =qta iff rt1 =q rt2; and

(b) Ift, and ty are degree at most d — 1, and t, =4 12
then x;t1 =4 xits for any variable ;.

If =4 1s a d-Laurent relation, we define a corresponding

set of binomials Bz, = {t1 — t2]t1 =4 t2} and a sel

of polynomials S=, = SPANR(Bz=,), the set of linear

combinations of binomials in B=,.

R will usually be a field, but in section 8 we will need
the more general version. Intuitively, =4 represents the
set of pairs of terms that can be proved equal using
equational-type reasoning, where we are allowed to
multiply both sides of a known equation by a constant
or variable, as long as we don’t exceed degree d.

We now show that lower bounds on polynomial
calculus proofs can be established by exhibiting a non-
trivial d-Laurent relation.

Theorem 4 Let Q) be a set of R* binomials. If =4
s a d-Laurent relation with Q@ C B=, and 1 #Z4 a for
any a € R*,a # 1, then Q) has no degree d polynomial
calculus refutation over R.

The proof of this theorem follows from a sequence of
lemmas that take up the rest of this section. Lemma 5
is the main technical lemma, and the other lemmas
describe how to use it to prove the theorem.

Lemma 5 Assume =4 is d-Laurent. Suppose f € S=,.
Then f can be rewritten as a linear combination f =
Zle a;j(t; — 1) of binomials from Bz, such that no
monomial completely cancels out, t.e., every monomial
tj,té» i the linear combination appears in f with non-
zero coefficient.

Proof. Let f = Z]' aj(tj —t;), where each pair of
monomials in the above sum is a polynomial from B=,.
We prove the lemma by induction on the number of
distinct monomials in the above sum. At each step,
if cancellation of a monomial occurs, we will rewrite
f by an equivalent sum of elements of Ry such that
the number of monomials in the new sum is strictly
smaller.

Assume m appears in the sum, without loss of
generality in exactly the first 77 differences, but has zero
coefficient in f. Because each element a; € R*, and so
has an inverse, by factoring out the coefficient of m in
each term, we can rewrite any elements that m appears
in: ep(apm—al,ms) = ckak(m—a;calzlm;c) =dp(m—1ty)
for some R* term ;. Also, by the closure properties of
=, for multiplication by constants from R*, m =4 #;.
Now, since m has coefficient 0 in f, >, d = 0.

We claim that the sum of binomials containing m,
Zglzl dr(m —1y), can be rewritten as Z?:z dip(t1—tp).

This is because Z?:z dp(ty — ty) = (Z?:z dp)(t1) —



Z?:,z dity = —di(t1) — Shes dyty = —Yhey diti =
(Cher di)m = Yoy dity = Yoy di(m — 1),

Since =4 is transitive, t; = t; for all k. So this
substitution rewrites f as a weighted sum of members
of B=,. The new sum is without m and without any
monomial not in the previous sum, so contains one

fewer monomial. O

Lemma 6 [f=; is d-Laurent, and there isac € R c#
0 with ¢ € S=,, then there is an a € R*,a # 1 with
1 =4 Q.

Proof. If ¢ € S=z,, by Lemma 5, ¢ can be written as
a sum of equivalent terms which only have monomials
that appear in ¢, i.e, are constants. Thus, at least two
distinct constants @ =4 ', and then 1 =4 ¢’a=!. O

Lemma 7 If =4 is d-Laurent, then S=, 1s a degree d
pseudo-ideal.

Proof. By definition, Sz, is a vector space of poly-
nomials of degree at most d, so we just need to show
closure under multiplication by a variable, provided
the total degree is at most d. Assume f € Sz,
has degree at most d — 1. By Lemma 5, we can
write f = Zz’Tﬂ ¢ (t; — t}), where t; =4 t; and each
t;,1; comes from a monomial with non-zero coefficient
in f. 1In particular, each t;,t, has degree at most
d — 1. Therefore, zt; = at] by the second closure
property in the definition of d-Laurent relation. So
zf = Zz’Tﬂ ci(wty —at)) € S=,. O

Proof (of Theorem 4). Let =; be a d-Laurent
relation with @ C Bz,, and that 1 #; a for any
1 # a € R*. Assume ) has a polynomial calculus
refutation of degree d over R, i.e., proves some ¢ # 0,
¢ € R. Then ¢ € Sz, since the latter is a pseudo-ideal
containing (). But then 1 =4 a for some a # 1,a € R*.
This contradiction proves the theorem. O.

6 PC lower bound for mod 2

We first prove linear lower bounds for the Tseitin
principle TS,(2) for polynomial calculus over fields of
characteristic ¢ > 2, provided the underlying graph is
an expander graph.

Definition. Let G = (V, E) be an undirected graph.
G has expansion € if for any subset S of vertices with
IS] < |V1/2, IN(S)| > (1 4 €)|S], where N(S) is the set
of nodes adjacent to nodes in S.

Theorem 8 Let F' be a field and let G, have expansion
€. For all d < en/8, there is no degree d PC refulation
of TSp(2) over F.

Note that there i1s no restriction on the charac-
teristic ¢ of the field F'. When ¢ i1s an odd prime or
zero, then the T'S, (2) polynomials are unsatisfiable and
therefore have a PC refutation over F'| of degree which
is necessarily linear by the theorem. When ¢ = 2, then

the TS, (2) polynomials are easily seen to be satisfiable
(trivially, since 1 = —1), and there is no PC-refutation
of T'S,(2) at all.

It is an easy corollary of Theorem 8 and Lemmas
1 and 2 that over a field of characteristic ¢ # 2, PC-
refutations of the MOD3 polynomials require size linear
in n: this is established as Corollary 18 below for general
p in place of 2.

Preparatory to proving Theorem 8, we establish

some definitions and lemmas. In what follows, we will
reduce all polynomials by yizyj = 1 for all variables, thus
obtaining only multilinear polynomials.
Definition. For ¢ monomial m = [], y{’, define the
multilinearization m of m to be [], y{’ mod 2
multilinear monomial m we define F,, to be the set of
edges e such that y. is a factor of m.

Definition. For two sets A, B, A +2 B denotes the
disjoint union of A and B.

Definition. Let S CV, where V is the set of vertices
in Gpn. Then E(S) is defined to be the set of edges with

ezactly one endpownt in S and one endpownt outside of

S.

Proposition 9 Let G, be an expander graph with
expansion €. If S CV, |S| < n/2, then |E(S)| > €|S].
Proof Since |S| < n/2, [N(S)| > (1 4 ¢)|S| by the
definition of expansion. Then |[N(S) — S| > €|S|, and
each node in N(S) — S is the endpoint of at least one
edge in F(S5).

We shall prove Theorem 8 as a corollary to Theo-
rem 4: for this, we let R = F and R* = {—1,1}. The
R*-terms are thus just the terms m and —m where m is
a monomial.

Definition. We define an equivalence relation =4 on
the R*-terms of degree at most d multilinear monomial,
as follows. Let by by € {0,1}, (=1)rmy =4 (—1)"2my
if there exists a set S CV such that

2. 15| < n/2; and

3. |S| Ebz—bl (HlOd 2)

We will show that there is no degree d < en/8 PC
refutation of 7S5,(2) by showing that that =4 is a
d-Laurent relation.

For a

Lemma 10 If d < en/8, then the relation =4 is an
equivalence relation.

Proof. It is easy to see from the definitions that
(=1)'m =4 (=1)’m and that (=1)"*m; =4 (=1)"2m,
iff (=1)%2mq =4 (—1)"*m;. We need to show that if
(=1)ormy =4 (=1)2my and (=1)"2my =4 (—1)"*ms,
then (—1)"1m; =4 (—1)**ms. Let S; be the set of ver-
tices such that F(S1) = Emgmg, |S1| = b2 — b1 (mod 2),
|S1] < n/2, and similarly let Sa be the set of vertices
such that E(Sz) = Em, |52| = b3 — bz (HlOd 2),



|S2] < n/2. We want to show that S" = 5) +2 .52 is a
set of vertices such that F(S") = Emmms, |5 = b3 — b1,
and |S’| < n/2. Intuitively, this is saying that if Sy
has parity b — b which equals the parity of |E(S1)|,
and S» has parity b3 — by, which equals the parity of
|E(S2)|, then Sy 42 S2 has parity b3 — b1, which equals
the parity of |E(S1+252)|. And furthermore, |S7 +2.52]
is not too large.

Clearly, |S’| mod 2 = |S1| mod 2+ |S2| mod 2 = by —
bl + b3 — bz = b3 — bl. Also we have: E(Sl +9 52) =
E(Sl) +2 E(Sz) = Em1m2m2m3 = Emlma'

It is left to show that |S’| < n/2. Since |m1|, |m2| <
d, it follows that | E(S1)| < |myms| < 2d. Since G, is an
expander graph, Proposition 9 implies that |E(Sy)| >
€|S1], and thus it follows that |Si| < 2d/e < n/4.
Similarly, |S2] < n/4. Thus, |S'| < |S1] + [S2] < n/2.
In fact, since |E(S")] < |mimg| < 2d, Proposition 9
further implies that |S| < n/4. O
Lemma 11 Ford < en/8, =4 is a d-Laurent relation.

Proof. Let d < en/8. We just established that =4 is
an equivalence relation. Condition (a) of the definition
of d-Laurent is trivially satisfied from the definition
of =4. Also, the fact that (—1)"1m; =4 (=1)"2m; is
defined in terms of the linearization of mj;ms means
that condition (b) of the definition of d-Laurent is also
satisfied. O.

Lemma 12 Every polynomial of TSy (2) is a binomial
from B=,.

Proof. There are two kinds of polynomials in T'S,(2).
For the equations y2 — 1, we must show that y2 =4 1.
This is easily done by taking S = @ and noting that
since y21 = 1, the three conditions of the definition
of =4 are trivially satisfied. For the equations of the
form 1+ yyg; 511955,52) -+ Wi jry = 0, we must show that
L =4 (—Dygij1yyg,j2) - - Yi,jry- This is easily seen to
hold with S = {¢}. O

Proof of Theorem 8. This is a consequence of
Theorem 4. First, Lemma 11 shows =; is d-Laurent.
Second, Lemma 12 shows T'S,(2) C B=,. It remains to
show that 1 Z4 (—1). To prove this suppose 1 =4 (—1)
holds with some set S satisfying the conditions of the
definition =4. Now we must have E(S) = 0. But
on the other hand, |S| < n/2, so Lemma 9 implies
E(S) is non-empty — a contradiction. Therefore, the
hypotheses of Theorem 4 hold, and there is no PC
refutation of T'S,(2) over F' of degree d. O

7 PC lower bound for the general case

This section proves the following theorem giving linear
lower bounds on the degree of PC refutations of T'S,(p)
over a field F' of characteristic g.

Theorem 13 Let F' be a field of characteristic ¢, and
let G, be an r-regular graph with expansion €. Then,

for all d < en/8, there is no degree d PC refutation of
TSn(p) over F.

As a corollary to this theorem and Lemmas 1 and 2,
we shall prove (as Corollary 18) that when ¢ { p, any PC
refutation of the MODZ polynomials over F' requires
linear degree.

In order to express the T'S,(p) polynomials, F' must
contain a p-th primitive root of unity, w. We let
R = F and R* be the powers of the root of unity, i.e.,
R* ={l,w,w? ... ,wP~t}. For the rest of this section,
it is sufficient to assume only that R is a ring (rather
than a field). See section 8 for more explanation of
what it means for a ring to have a p-th root of unity.

Definition. Let A and B be two multisets sets. Then
A+, B denotes the multiset, where of x occurs in A
with multiplicity a mod p, and in B with multiplicity
bmod p, then x occurs in A+, B with multiplicity
(a + b) mod p. Note that when A and B are ordinary
sets and p = 2, then A+5 B is stmply the disjoint union
of A and B.

Definition. Let S = {s1,...,s,}, where each s; €
[0,p—1]. We will think of S as a multisel over ihe
vertices V in (G, where vertex © occurs wn the set with
multiplicity s;. FE(S) will denote a multiset of edges
from G, as follows. Edge (i,j) occurs with multiplicity
0 if s; — s; s negatwve, and occurs with multiplicity
s; — s; otherunse.

The size of S, |S|, will be k if and only if the number
of nonzero elements in S is k. In other words, the size
of a multiset is the number of elements that appear at
least once in the multiset. The size of F(S) is defined
similarly.

Proposition 14 Let G, be an expander graph with
expansion €. If |S| < n/2, then |E(S)| > €|5].

Proof. Even though S and F(S) are multisets and
the definition of ‘size’ is correspondingly modified,
the proof of Proposition 9 still applies word-for-word.
(In fact, when members of S have different non-zero

multiplicities, it only makes the size of E(S) increase.)
O

Definition. We define the binary relation =4 on the
R*-terms w®m where m is a degree at most d monomial
and 0 < b < p. whimy =g w2my if there exists a
multiset S of vertices such that (i) The multiset of edges
in mimy* (after applying yfyj =1, and y; ;y;, = 1)
equals E(S); (i) |S] < n/2; and (iir) Y, s; = by —
by (mod p).

The next three lemmas are proved exactly analo-
gously to Lemmas 10-12.

Lemma 15 For d < en/8, the relalion =4 is an
equivalence relation.

Lemma 16 Ford < en/8, =4 is a d-Laurent relation.



Lemma 17 Every polynomial of TSy (2) is a binomial
from B=,.

Proof of Theorem 13. Exactly as argued in the proof
of Theorem 8, we have that 1 #;4 @ for any a € R*
distinct from 1, i.e., 1 #4 w’ for all 0 < i < p— 1. Thus
Theorem 13 follows from Theorem 4 using Lemmas

16 and 17. O

Corollary 18 Let q > 2 be a prime such thal ¢ 1 p and
let F' be a field of characteristic q. Any PC-refutation of
the MODZ polynomaals requires degree > én, for some
constant & > 0.

Proof. Choose constants ¢ and r so that there
are r-regular graphs G, of expansion e for all n.
Let di = dy = 2pr. Suppose MOD;” has a de-
gree ds PC refutation, where m = n + nrp. By
Lemmas 1 and 2 T5,(p) has a degree dsdy PC
refutation, so by Theorem 13, dsdy > en/(8pr). Thus,
ds > em/(16p?r*(1+rp)). Since ¢, r, p, d are constants,
this proves the Corollary. O

8 Polynomial calculus over rings

We now consider the polynomial calculus over rings
instead of over fields. For this, we consider a fixed
ring R and the polynomials have coefficients from R.
(By ‘ring’ we always mean ‘commutative ring’.) Since
the definition of the polynomial calculus did not use any
field-specific properties, e.g., since the definition did
not depend on the existence of inverses, it is completely
natural to consider the polynomial calculus over rings.
As before, we define a PC derivation to be a sequence
of polynomials (F;); with the same rules of addition
and multiplication. However, we modify the definition
of a PC refutation of @) to be a PC derivation that ends
with a constant polynomial m where m € R is non-zero
(and its derivation thus corresponds to a derivation of
the contradiction m = 0).

It is known that the polynomial calculus over rings
is complete with respect to Boolean reasoning, i.e.,
if the initial polynomials include z? — 2 = 0 for each
variable # then any unsatisfiable set of polynomials has
a PC refutation. However, the polynomial calculus
over rings is not complete for general derivations, see
the examples in [2]. In this respect the polynomial
calculus over a field is stronger than the polynomial
calculus over a ring. On the other hand, if the ring R
18 Ziyy Where m = py - py for distinct primes pq,po,
then it is well-known that there are constant-degree
polynomial calculus proofs of MODy and MODj,. But
Theorem 13 implies that there is no single field for which
the polynomial calculus has constant degree proofs of
both these principles.

The situation is a little analogous to an important
open problem in circuit complexity. Namely, Smolen-
sky [10] showed that polynomial size constant-depth

circuits with mod-¢q gates cannot compute the mod-p
function for distinct primes p,q. However, it is open
whether this is true for composite values of ¢ where
rtq

We prove below that if p and ¢ are relatively prime,
then over the ring 7,, any PC refutation of MODZ
requires degree > én for some constant 6. The general
outline of the proof is similar to the approach used for
the proof of Theorem 13.

In the next section, we do some preliminary work
introducing rings with roots of unity. Following that,
we discuss the reduction of the Tseitin principle to the
mod p counting principle and then discuss the lower
bound for Tseitin principle.

8.1 Rings with roots of unity

We are mostly interested in lower bounds on the degree
of polynomial calculus refutations over rings R = Zg;
however, our method of proof depends strongly on
the use of p-th roots of unity, and on the existence
of inverses of certain terms involving the p-th root of
unity. In this section, we prove that there exist rings
containing 7, with the desired p-th roots of unity.

Theorem 19 Let p,q > 1 be relatively prime. Then
there 1s a finite ring R D Z, which contains a p-th root
of unity w such that
(a) p is the least positive integer i such that w' =1,
(b) For all0 < j < k < p, (w* — w') has an inverse
mn R
Proof. First we shall give a simple proof for the case
where ¢ is a product of distinct primes ¢ = ry -r9 - - 7pp.
For this, let GF,. be the field of order r and let F; =
GF,[¥/1] be the extension of GF, obtained by adjoining
a p-th root of unity. We use w; to denote a p-th root of
unity in F;. Define R to be the ring with domain [, F;
and component-wise addition and multiplication. An
element of R is an m-tuple {(ay,...,an) with a; € Fj.
By the Chinese remainder theorem, a copy of 7, is
embedded in R by n — (n mod r1,...,n mod ry,). The
element (a1, ..., am) has an inverse in R iff each a; # 0.
Letting w = {(w1,...,wm), it is easy to see that w is
a p-th root of unity in R and satisfies property (a).
Likewise, w? — w! € F; is non-zero for all ¢ and thus
(wF —wi)~L exists in R.

Now consider the general case, where ¢ is not a
product of distinct primes. (We don’t use any special
properties of Z, beyond the fact that p~! exists in 7,
which follows from the fact that p and ¢ are relatively
prime.) Consider a primitive p-th root of unity, v,
over the field of rationals. As a root of unity, v is
a root of the polynomial 2?~! 4+ 2P=2 4+ ... + 2% +
x4 1. Likewise, for any ¢ < p dividing p, v*/¢ is a
primitive ¢-th root of unity, so v is a root of z({=1p/¢ 4
e/t o4 erlt 41 Tt follows that there is a



non-constant polynomial @(z) which is the greatest
common divisor of each of these polynomials which has
v as a root. Furthermore, by Gauss’s lemma, we may
choose the polynomial Q(x) with leading coefficient 1
and integer coefficients. We define R to be the extension
ring Z,[w]/(Q(w)). Formally, this means we define
an equivalence relation on the set Z,[w] of univariate
polynomials over 7, by

f~g < 3heZjw], flw)—glw) = h(w)  Qw).

Clearly this is an equivalence relation, and ad-
dition and multiplication respect ~. The ring
R = Z;w]/(Q(w)) =4 Z;w]/~ has domain the
set of ~-equivalence classes (but we generally abuse
notation by writing f € R instead of [f] € R,
etc.) Clearly R is a ring. In R, each polynomial
pl=Lp/t 4 J:(Z_z)p/ﬁ + -+ 2P/t 41 is equal to zero,
since it is a multiple of Q). Therefore w? =1 in R (i.e.,
wl ~ 1) since

(w—1)~(wp_1—|—wp_2—|—~~~—|—w—|—1) = Pl —1.

Also note that no constant of 7, becomes equal to
zero in R: this is immediate from the fact that @) is a
non-constant, monic polynomial over 7.

It remains to prove that if & # ¢, 0 < k, ¢ < p, then
(w* — w%) has a (multiplicative) inverse in R. Since
(W —wh) = wi(w*=f — 1) and w’ has inverse in R, it
will suffice to prove that (w* — 1) has an inverse in R
forall 1 <k <p.

Define ig = 0 and ¢yp41 = %, + £ mod p. Let £ be
the least value such that ¢, = 0; of course £ divides p.
Therefore the values iy, ...,7,_1 are distinct and enu-
merate all the values in {0,p/¢,2p/t, ... (€ — 1)p/L}.
For 0 < j < ¢, let v(j) be the value such that i,(;) = j,
0 < w(j) < L. Define

-1 ) -1 )
flw) = Y v’ = Y n-wi
j=0 n=0

Claim: (w* —1)f(w) = £ holds in R.

Since £ has an inverse in 7Z,, the claim immediately
implies that (w* — 1) has in inverse in R, namely,

= f(w).

In R we have
-1 -1
(W' —=1)- flw) = an“""k - an“‘
n=0 n=0
‘ -1

= Z(n — 1)wi" — nw'”

1

[

n=1 n

-1
= (-1 LWt Zwi"
n=1

-1
(C=1)-1+1=) wn
n=0

-1 -1
£ — E win = - E Wl
n=0 n=0

= (-0 =1

That completes the proof of the claim and of Theo-
rem 19 O

For the next two sections, we shall consider p and ¢
to be fixed and let R be as in Theorem 19.

8.2 Low degree reductions

Lemma 1 clearly still applies to the polynomial calculus
over rings, but Lemma 2 needs to be reproved for rings.
Let ¢, p, R be as in the previous theorem.

Lemma 20 Ower the ring R, TS,(p) is (dyi,d2) re-
ducible to MOD;”, where m = n+ nrp, di = 2pr and
dy = 2pr.
Proof. The reduction is exactly the same as the
reduction used for the proof of Lemma 2. Examination
of the definition of r, in Step 1 of that proof reveals
that the only place where inverses were used was in
the polynomials (1) and (2) and these were inverses of
elements of the form w® — w® which do exist in R. So
it remains to re-do Step 2 of the proof of Lemma 2.

Recall that we must find small degree PC derivations
of MOD;}(r.) equations:

1. 72 —r, = 0 for all p-sets e

2. rerp =0foralle, fsuch that enN f#0, e # f

3.2 eueeTe — 1 =0, for all u € [m].
As discussed before, each single equation is a tauto-
logical consequence of a constant number of equations
of TSy(p). We now need to extend the completeness
theorem of [3], Theorem 5.2, to apply to the polynomial
calculus over R.

Lemma 21 Let zq1,...,z; be variables, and f(Z) be a
polynomial. Suppose that in the ring R, f(z1,...,25) =
0 for all values of z1,...,2;, € {l,w,w?, ... wP~L}
Then there is PC derivation of f(Z) from the polynomials
28— 1, of degree < pk - deg(f).

Proof. We give the proof for the case k = 1 and leave
it the reader to formulate the proof by induction for the
case k > 1. (All the essential difficulties arise already
in the case k = 1.) Let P, be the polynomial

(z1—w") (21 —wh) - (21— ) (2 —w ) (2 WP ).

Note that P, - (21 — w®) is the polynomial zf — 1 (this
is 1immediate from the fact that they are the same
polynomial in each field F,).



Claim: TLet ¢ = f(w?) € R. The polynomial P, -
(f(z1) — ¢) is PC derivable from 2z — 1 in degree (p —
1) - deg(f).

The claim is proved by induction on the size of
the polynomial f. The base case where f is a
constant is trivial. The second base case where f(z1)
is just z1 1s immediate from the observation above that
P, (21 —w®) = 2/ — 1. The induction steps of addition
and multiplication are handled by the following two
constructions:

Po-(f=c) Pu-(g—d)
Po-((f +9) = (c+d))

wnd Po(foc)  Pulg—d)
Py (fg —cg) Py - (cg — cd)
Pa'(fg_Cd)

and this proves the claim.
Now let P! be the polynomial []ise (21 — w®). We
iZa

only use this polynomial when a > £.

Claim: Let £ > 0 and let ¢ = f(w®) € R. The
polynomial P! f(z) is PC derivable from zf — 1 in
degree (p — 1) deg(f).

The second claim is proved by induction on £. The
base case, where £ = 0 is already established by the first
claim, since P? = P,. For the induction step, let a >
¢+ 1. The induction hypothesis tells us that Pf{f(z;)
and Pf. f(z1) are both PC derivable. Subtracting these
gives

(W =) PE - f(21).

Since (w! — w?) is invertible in R, we may multiply by
(Wb —w) ™t to derive PI*L. f(z), and the claim is
proved.

The base case £ = 1 of Lemma 20 is immediate from
the second claim, with ¢ = p. The argument for the
induction step is similar and 1s left to the reader. O

8.3 PC lower bound for rings

We now prove the main theorems giving lower bounds
the degrees of of PC derivations over Z,. Fix p,q,R as
above.

Theorem 22 Let G, be an r-regular graph with expan-
sion €. Then, for all d < en/4, there is no degree d PC
refutation of TS, (p) over R.

This plus Lemmas 1 and 20 immediately imply:

Corollary 23 Letp,q > 2 be relatively prime. Any PC-
refutation over Z, of the MODZ polynomaals requires
degree > én, for some constant § > 0.

The constant é depends on p and ¢. To prove
Theorem 22, we need merely note that the proof of The-
orem 13 still applies: We take R* = {1,w,w? ... wP~1}
and then, as already noted near the beginning of sec-
tion 7, the proof of Theorem 13 establishes Theorem 22.
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