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Abstract. By a sigmoid with a depth d we mean a computational circuit with d layers in which rational

operations are admitted at each layer, and to jump to the next layer the substitution of a function

computed at the previous layer into an arbitrary real solution of a linear ordinary differential equation with
the polynomial coefficients is admitted. Sigmoids appear as a computational model for neural networks.

The deviation theorem is proved which states that for a (real) function 0 6≡ f computed by a sigmoid
with a depth (or parallel complexity) d there exist c > 0 and an integer n such that the inequalities

(exp(· · · (exp(c|x|n) · · · )−1 ≤ |f(x)| ≤ exp(· · · (exp(c|x|n) · · · )))) hold everywhere on the real line except

for a finite measure set, where the iteration of the exponential function is taken d times. One can treat
the deviation theorem as an analogue of Liouvillean theorem (on the bound of the difference of algebraic

numbers) for solutions of ordinary differential equations. Also we estimate the numbers of zeroes of f in

the intervals.

Introduction

Sigmoids (they appear as a computational model for neural networks, see [MSS] and

the references there, also the section 1 below) could be treated as the computational

circuits with the gate functions being not necessary rational functions as for the usual

circuits. In the so-called “standard sigmoid” one takes a function (1 + exp(−x))−1 as a

gate function. One of the most interesting questions in this area, how to approximate the

functions computed by sigmoids by means of the “simpler” functions?

We consider this question for the class of sigmoids in which as the gate functions could

occur arbitrary (real) functions being solutions of the linear ordinary differential equations

with the polynomial coefficients (see the section 1). For the question of approximation the

most important complexity parameter of a sigmoid appears to be its parallel complexity

or depth. By the depth we understand the number of layers of the sigmoid, at each

layer the applications of gate functions to the functions computed at the previous layers
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are admitted and also rational operations are admitted. In the case of the threshold

sigmoids (see [MSS] ) the functions at the next layer are taken as u(
∑

wihi) where hi

are the functions computed at the previous layers, wi ∈ R are some weights and u is a

gate function; so linear functions are admitted. Observe also that the “standard” sigmoid

can be simulated by the sigmoids considered in the present paper as (1 + exp(−x))−1 is

a composition of a rational function and exp(−x) being a solution of a linear ordinary

differential equation with const coefficients. Denote by exp(i) = exp(· · · (exp) · · · ) the

iteration of the exponential function i times. This is an example of a function computed

by a sigmoid with the depth i. We prove (see corollary 2 in the section 5) that any function

computed by a sigmoid with a depth at most d cannot be approximated roughly speaking

closer than (exp(d))−1 by a (different) function also computed by a sigmoid with the depth

at most d (this bound is sharp). The results of this kind we call deviation theorems, as we

prove that two (different) functions computed by sigmoids of small parallel complexities

deviate from each other. Also we prove that a function computed by a sigmoid, cannot

grow too fast. One can also treat the deviation theorem as an extension of Liouvillean type

theorems on algebraic numbers to the functions computed by sigmoids (cf. also [CC] ). A

similar lower bound on an approximation of a function computed by a sigmoid by means of

a Blum-Shub-Smale computations [BSS] (which admits rational operations and branching)

is obtained in corollary 3 (see the section 5).

In the main theorem (see the section 5) we prove a stronger statement that the measure

of all the points from a given interval in which the mentioned beforehand either deviation

or the growth bound fails, is small. Whence we get (see the corollary) that the measure

of all such points on a real line is finite. The theorem is proved by the induction on the

depth and in the inductive step in order to get a lower bound on the function f computed

at the next d-th layer of the sigmoid, we estimate by inductive hypothesis the coefficients

a(0), . . . , a(m) (being the functions computed by a sigmoid with the depth d − 1) of a

certain linear ordinary differential equation Lf =
∑

0≤i≤m

a(i) f (i) = 0 to which satisfies f .
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The bound on the coefficients a(0), . . . , a(m) implies an upper bound on |f | (see lemma 4

in the section 3), then we obtain a lower bound on the Wronskian (see [H], [K] ) of the

equation Lf = 0 (see lemmas 5, 6 in the section 4) and finally, we get a lower bound on

|f | (see lemma 7 in the section 5). In the section 2 we obtain some auxiliary bounds on

the gate functions u, in other words on the solutions of the linear ordinary differential

equations with polynomial coefficients, namely an upper bound (see lemma 1), a bound

on the Wronskian (see lemma 3) and also a polynomial upper bound (being sharp) on the

growth of the number of zeroes (in intervals) of u (see lemma 2), the latter was known

as a consequence of Sturm theory for second-order equations (see [H] ). Moreover, we give

an upper bound of the form exp(d−1)(x0(1)) (see the proposition in the section 5) on the

number of zeroes in the interval [0, x] for arbitrary x, of a function computed by a sigmoid

with the depth d (provided that we exclude a certain subset of R with a finite measure such

that its intersection with the interval [0, x] consist of at most exp(d−2)(x0(1)) intervals). In

the section 1 we give necessary definitions and notations.

In the last section 6 we consider “elementary” sigmoids namely the ones with the gates

exp, log and algebraic functions (in particular, containing “standard” sigmoids). As log

has a singularity (at zero) one cannot directly apply the main theorem and the corollary,

but it is still possible to extend the theorem and the corollary imposing a certain restriction

on an elementary sigmoid (see the corollary 4).

1. Differential fields and sigmoids

Denote the ring K0 = R[X ], the field F0 = R(X), differentiation D = d/dX , and by Γ

denote the set of real functions u : R → R (perhaps, with a finite number of singularities)

being the solutions of linear ordinary differential equations of the kind

Lu =



∑

0≤j≤n

ajD
j


u = 0 (1)

where aj ∈ K0. Moreover, we impose a requirement that u could be obtained as the

restriction on R of some branch of a certain complex analytic function.
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The elements of Γ will play the role of gate functions in the sigmoids. The operator

L may have singularities only in the roots ∆ = {δ1, . . . , δθ} of the leading coefficient an

([H] ). Out of the points ∆ ∩ R the function u is analytic [H]. Now we define Ki+1 and

Fi+1 by induction on i. Namely, Ki+1 for i ≥ 0 is a differential ring ([K] ) generated by

the functions of the form u(g), where u ∈ Γ, g ∈ Fi. Let Fi+1 be a quotient field of Ki+1

(so, Fi+1 is a differential field). Thus, any element of Fi+1 is a real function and could be

obtained as the restriction on R of some branch of a certain complex analytic function.

Under a sigmoid we’ll understand a circuit with a certain depth d in which any function

w
(j)
i+1 at (i + 1)-th layer (0 ≤ i < d) is computed as

w
(j)
i+1 = u

(
f

g
(w

(1)
i , w

(2)
i , . . . , X)

)
(2)

for some gate function u ∈ Γ and f, g ∈ R[W
(1)
i , W

(2)
i , . . . , X ] being polynomials in the

functions w
(1)
i , w

(2)
i , . . . computed at the previous layers of the sigmoid, and in the variable

X . One can show by induction on i that each function w
(j)
i+1 is real and belongs to Ki+1,

conversely, any element from Ki+1 can be obtained as a rational function in functions

computed at (i + 1)-th layer of a suitable sigmoid. Usually, u is taken from a certain

subclass of Γ, for example, in the case of the “standard” sigmoid one takes u = exp(−X)

(see [MSS] ).

Henceforth, we fix a sigmoid and by Di ⊃ Ki denote a differential ring generated

over R by w
(1)
i , w

(2)
i , . . . ; so as an algebraic ring Di is generated by all the derivatives

w
(1)
i , Dw

(1)
i , . . . , w

(2)
i , Dw

(2)
i . . . .

Consider a basis (over C) u1, . . . , un of the space of solution of the equation (1), where

each of u1, . . . , un could be considered as a branch of a complex analytic function [H], let

u1 = u be the restriction of u1 on R, denote by u2, . . . , un the restrictions of u2, . . . , un on

R, respectively. Denote by Di ⊃ Di a differential ring generated over C by the functions

of the form uℓ(
f
g
(w

(1)
i , w

(2)
i , . . . , X)), 1 ≤ ℓ ≤ n for all the functions w

(j)
i+1 computed in

the sigmoid at the steps of the kind (2) at (i + 1)-th layer. Again as above every element
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from Di could be considered as the restriction on R of some branch of a certain complex

analytic function.

2. Bounds on the solutions and on the Wronskian of a linear ordinary

differential equations with polynomial coefficients.

First, obtain upper bounds on the absolute values of a complex analytic function u

(and its derivatives Du, D2u, . . . ) satisfying (1).

¿From now on p0, p1, . . . will denote polynomials from K0 each having a form pi =

pi(X
2) where a polynomial pi ∈ K0 monotonically increases on R+ and pi(0) ≥ 1. The

class of all such polynomials denote by P.

For an operator L (see (1)) and x ∈ C denote ‖x‖L = max{ |x|, | x − δ1|
−1, . . . , |x −

δθ|
−1}.

Lemma 1. Let u satisfy (1). One can find a suitable p0 ∈ P such that for any x ∈

C |u(x)|, |Du(x)|, . . . , |Dnu(x)| ≤ exp(p0( ‖x‖L)).

Proof. Rewrite (1) as a system of linear first-order equations: DY = AY where the vector

Y = (u, Du, . . . , Dn−1u) and the matrix

A =




0 1

0 1 ©

©
. . . 0 1

− a0

an
− a1

an
. . . −an−1

an


 (3)

Then Y (x) = Y (x0)+
x∫

x0

A(ξ)Y (ξ)dξ ([H] ), provided that the path along which we integrate

with the endpoints x0, x, does not pass through the singularities δ1, . . . , δθ, hence ‖Y (x)‖ ≤

‖Y (x0)‖ +
x∫

x0

‖A(ξ)‖ ‖Y (ξ)‖ dξ where ‖ ‖ denotes the euclidean norm for vectors and

matrices. Then Gronwall’s inequality [H] implies that ‖Y (x)‖ ≤ ‖Y (x0)‖ exp
x∫

x0

‖A(ξ)‖

dξ ≤ exp(p0(‖x‖L)) for a suitably chosen path.

Corollary 1. For every j ≥ 0 there exists p
(j)
0 ∈ P such that |Dju(x)| ≤ exp(p

(j)
0 (‖x‖L))

for all x ∈ R.
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One can prove the corollary by induction on j taking into account that by applying

Dj to (1) one gets (anDn+j +
∑

0≤ℓ<n+j

a
(j)
ℓ Dℓ)u = 0 for some a

(j)
ℓ ∈ K0.

In the next lemma we bound from above the number N(x) of the roots of the real

function u satisfying (1), in the interval [0, x], provided that ∆∩R = φ, so when u has no

(real) singularities. For second-order equations (n = 2) one can find a polynomial bound

on N(x) in [H], being a consequence of Sturm theory.

Lemma 2. N(x) ≤ p
(0)
1 (x) for a certain p

(0)
1 ∈ P, provided that ∆ ∩ R = φ.

Proof. Let |ai(y)| < p1(x) for each y ∈ [0, x] for an appropriate polynomial p1 ∈ P. We

show that each interval I = (y, y + (2p1(x))−1) ⊂ [0, x] contains at most (n − 1) roots

of u. Suppose the contrary, then (by Rolle’s theorem) each derivative Du, . . .Dn−1u has

at least one root in the interval I. Denote by M (j) = max
z∈I

|Dju(z)|. Then M (j+1) ≥

M (j)2p1(x) by the theorem of the mean of the derivative, 0 ≤ j < n. Let Dnu reach

M (n) at a point x0 ∈ I. Then M (n) = |Dnu(x0)| = |
∑

0≤j≤n−1

aj(x0)D
ju(x0)| ≤ p1(x)

(
1

2p1(x) +
(

1
2p1(x)

)2

+ · · ·+
(

1
2p1(x)

)n
)

M (n) < p1(x) · 2
(2p1(x))M

(n). Obtained contradic-

tion shows that I contains less that n roots of u, therefore N(x) ≤ 2xp1(x)(n− 1), lemma

is proved.

Remark. The bound in lemma 2 is sharp, take, for example, as u = sin(Xn).

Consider Wronskian [H]

W = det




u1 . . . un

Du1 . . . Dun
...

...

Dn−1u1 . . . Dn−1un




As DW = −an−1

an
W , one gets W (x) = W (x0) exp

x∫
x0

−an−1

an
, provided that the path along

which we integrate, does not pass through the singularities δ1, . . . , δθ. This formula entails

the following lemma.
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Lemma 3. There exists a polynomial p2 ∈ P such that (exp(p2(‖x‖L)))−1 ≤ |W (x)| ≤

exp(p2(‖x‖L)) hold for all x ∈ C\∆.

Remark. As below we will be interested in the functions on R, we will apply lemmas 1, 3

to the functions u1, . . . , un.

3. Upper bounds for the differential polynomials in the functions computed

by a sigmoid

Denote by exp(i) = exp(· · · (exp) · · · ) ∈ Ki the iteration of the exponential function i

times.

By induction on i we’ll estimate (from above in the present section and from below in

the section 5) differential polynomials G1, . . . , GK ∈ Di+1 (see section 1). For this purpose

we’ll produce a family of differential polynomials H(0), . . . , H(m) ∈ Di such that a lower

bound on |H(0)| and upper bounds on |H(0)|, . . . , |H(m)| would entail upper bounds on

|G1|, . . . , |Gk| (a similar statement for lower bounds one can find in the section 5). This

will be used in the proof of the inductive step in the main theorem.

Lemma 4. For a family of differential polynomials G1, . . . , Gk ∈ Di+1 one can construct a

family of differential polynomials 0 6≡ H(0), . . . , H(m) ∈ Di such that for every polynomials

p7, p̃ ∈ P there exists a polynomial p ∈ P satisfying the following property: for arbitrary

x ∈ R if the inequalities |H(0)| ≥ (exp(i) p̃)−1, |H(j)| ≤ exp(i) p̃, 0 ≤ j ≤ m hold every-

where on an interval Ii = (x − (exp(i) p7(x))−1, x) then |Gℓ| ≤ exp(i+1) p, 1 ≤ ℓ ≤ k hold

everywhere on Ii.

Proof. For each function w = w
(j)
i+1 computed by the sigmoid (see (2)) consider the

following elements from Di:

H(0)
w = g(w

(i)
1 , . . . , X) ⊓

1≤ℓ≤θ,δℓ∈R

(f(w
(1)
i , . . . , X) − δℓg(w

(1)
i , . . . , X))

where the product is taken over the real δℓ ∈ ∆ ∩ R, H
(1)
w = g(w

(i)
1 , . . . , X), H

(2)
w =

f(w
(1)
i , . . . , X). Observe that if |H

(0)
w | ≥ (exp(i) p̃)−1; |H

(1)
w |, |H

(2)
w | ≤ exp(i) p̃ everywhere
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on Ii then |g(w
(i)
1 , . . . , X)|, |f(w

(1)
i , . . . , X)− δℓg(w

(1)
i , . . . , X)| ≥ (exp(i) p3)

−1 everywhere

on Ii for an appropriate polynomial p3 ∈ P. Hence ‖ f
g
(w

(1)
i , . . . , X)‖L ≤ exp(i) p4 every-

where on Ii for some p4 ∈ P.

Let in the differential polynomials G1, . . . , Gk occur the derivatives Dsuæ((f/g)(w
(1)
i ,

w
(2)
i , . . . , X)) (see (2) and the section 1) up to orders s ≤ s0. We have Dsuæ((f/g)(w

(1)
i ,

w
(2)
i , . . . , X)) = 1

gs+1 (uæ( f
g
(w

(1)
i , . . . ))h

(s)
0 + ∂uæ

∂z
( f

g
(w

(1)
i , . . . ))h

(s)
1 +· · ·+ ∂suæ

∂zs ( f
g
(w

(1)
i , . . . ))

h
(s)
s ) for suitable differential polynomials h

(s)
0 , · · · , h

(s)
s ∈ Di. As H(0) take the product of

H
(0)
w for all the functions w computed by the sigmoid, as H(1), . . . , H(m) take the union

of H
(1)
w , H

(2)
w for all w and in addition h

(s)
0 , . . . , h

(s)
s for all s ≤ s0, and all w. Then by

the assumption of the lemma and by the proved above ‖ f
g
(w

(1)
i , . . . , X)‖L ≤ exp(i) p5

everywhere on Ii for a certain p5 ∈ P, therefore
∣∣∣∂

tuæ

∂zt

(
f
g
(w

(1)
i , . . . )

) ∣∣∣ ≤ exp(i+1)p6, 0 ≤ t ≤

s0 everywhere on Ii for an appropriate p6 ∈ P because of lemma 1 and corollary 1. Hence

|Dsuæ((f/g)(w
(1)
i , . . . , X))| ≤ exp(i+1) p6 everywhere on Ii for a certain p6 ∈ P by virtue

of the construction of H(1), . . . , H(m).

Finally, each of G1, . . . , Gk can be considered as an (algebraic) polynomial in Dsuæ

((f/g)(w
(1)
i , . . . , X)), this completes the proof of the lemma.

Remark. Actually we did not utilize the particular form of an interval Ii, thus the lemma

is valid for any interval, this form of Ii will be used later in the section 5 when we’ll deal

with the lower bounds. The same remark concerns also lemmas 5, 6 below in the section

4.

4. Upper and lower bounds on Wronskians of the functions computed by

sigmoids

Any function w = w
(j)
i+1 computed by the sigmoid (see (2)) satisfies a linear ordinary dif-

ferential equation with the coefficients from Di. One can represent (cf. the proof of lemma

4) w, Dw, . . . , Dnw as linear combinations of u((f/g)(w
(1)
i , . . . )), ∂u

∂z
((f/g)(w

(1)
i , . . . ))

, . . . , ∂n−1u
∂zn−1 ((f/g)(w

(1)
i , . . . )) with the coefficients being differential polynomials in (f/g)

(w
(1)
i , . . . ). Therefore, w satisfies a certain n-order equation 0 = Lw = (

∑
0≤ℓ≤n

bℓD
ℓ)w
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where b0, . . . , bn are differential polynomials in (f/g)(w
(1)
i , . . . ). By the same token u2((f/g)

(w
(1)
i , . . . )), . . . , un((f/g)(w

(1)
i , . . . )) also satisfy the same equation Lw = 0 (see the sec-

tion 1). Let us prove that w = u1((f/g)(w
(1)
i , . . . )), . . . , un((f/g)(w

(1)
i , . . . )) are linearly

independent over C and thereby these functions constitute a basis of the space of solutions

of the equation Lw = 0, provided that (f/g)(w
(1)
i , . . . ) 6≡ const (if the latter is not the case

then w ≡ const and we can omit computational step (2) in the sigmoid). Indeed, consider

the Wronskian

Ww = det




u1(f/g)(w
(1)
i , . . . ) . . . . . . un(f/g)(w

(1)
i , . . . )

D(u1(f/g)(w
(1)
i , . . . )) . . . . . . D(un(f/g)(w

(1)
i , . . . ))

...
...

Dn−1(u1(f/g)(w
(1)
i , . . . )) . . . . . . Dn−1(un(f/g)(w

(1)
i , . . . ))




= W ((f/g)(w
(1)
i , . . . )) · (D((f/g)(w

(1)
i , . . . )))

n(n−1)
2 6≡ 0

where W = det




u1 . . . un

...
...

Dn−1u1 . . . Dn−1un


 is the Wronskian of the equation Lu = 0.

One can express D((f/g)(w
(1)
i , . . . , )) =

h1(w
(1)
i

,...,)

g2(w
(1)
i

,...,)
where h1(w

(1)
i , . . . ) ∈ Di is a cer-

tain differential polynomial. Consider (cf. the proof of lemma 4) the following elements

from Di : H
(0)

w = h1(w
(1)
i , . . . )g(w

(1)
i , . . . ) ⊓

1≤ℓ≤θ
(f(w

(1)
i , . . . ) − δℓg(w

(1)
i , . . . )), H

(1)

w =

g(w
(1)
i , . . . ), H

(2)

w = f(w
(1)
i , . . . ), H

(3)

w = h1(w
(1)
i , . . . ). Suppose that for a certain polyno-

mial p8 ∈ P for arbitrary x ∈ R the following inequalities |H
(0)

w | ≥ (exp(i) p8)
−1, |H

(j)

w | ≤

exp(i) p8, 0 ≤ j ≤ 3 hold everywhere on an interval Ii = (x − (exp(i) p7(x))−1, x).

Then |H
(1)

w |, |H
(3)

w | ≥ (exp(i) p2
8)

−1 hold everywhere on Ii. Therefore, (exp(i) p4
8)

−1 ≤

|D((f/g)(w
(1)
i , . . . ))| ≤ exp(i) p5

8 is true everywhere on Ii. Since ‖(f/g)(w
(1)
i , . . . )‖L ≤

exp(i) p9 is valid everywhere on Ii for an appropriate p9 ∈ P, lemma 3 implies inequalities

(exp(i+1) p)−1 ≤ |W ((f/g)(w
(1)
i , . . . ))| ≤ exp(i+1) p everywhere on Ii a suitable p ∈ P, this

gives similar bounds on |Ww|.

Thus, the following lemma is proved.

Lemma 5. For each function w = w
(j)
i+1 (recall that we assume that w 6≡ const without loss

of generality) computed by a sigmoid (see (2)) one can construct differential polynomials
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H
(j)

w ∈ Di, 0 ≤ j ≤ 3, H
(0)

w 6≡ 0 such that for any polynomials p7, p̃0 ∈ P there exists a

polynomial p0 ∈ P satisfying the following property: for arbitrary x ∈ R if the inequalities

|H
(0)

w | ≥ (exp(i) p̃0)
−1, |H

(j)

w | ≤ exp(i) p̃0, 0 ≤ j ≤ 3 are valid everywhere on an interval

Ii = (x − (exp(i) p7(x))−1, x) (cf. lemma 4 and the remark just after it) then the Wron-

skian Ww = W (w
(j)
i+1 = u1((f/g)(w

(1)
i , . . . )), . . . , un((f/g)(w

(1)
i , . . . ))) satisfies inequalities

(exp(i+1) p0)
−1 ≤ |Ww| ≤ exp(i+1) p0 everywhere on Ii.

Thus, we’ve bounded Wronskian of the functions w = w
(j)
i+1 computed by the sigmoid

(see (2)). Now we proceed to estimating Wronskian of the differential polynomials in the

functions w, i.e. the elements from Di+1, more precisely, by the latter we mean Wronskian

of some linear ordinary differential equation with the coefficients from Di to which satisfies

this differential polynomial under consideration. Arguing by induction on the construction

of the differential polynomial, we estimate Wronskian in three cases: for the derivative (see

4.1 below), for the sum of the functions (see 4.2 below) and for the product (see 4.3 below).

Lemma 5 plays the role of the base of induction.

So, we assume that two function w, v ∈ Di+1 satisfy linear ordinary differential equa-

tions 0 = Q1w = Q2v, where Q1 =
∑

0≤ℓ≤k

α(ℓ)Dℓ, Q2 =
∑

0≤ℓ≤m

β(ℓ)Dℓ and the coeffi-

cients α(ℓ), β(ℓ) ∈ Di. We assume also that by induction some differential polynomials

0 6≡ H
(0)
w , . . . , H

(æw)
w , 0 6≡ H

(0)
v , . . . , H

(æv)
v ∈ Di are produced such that for any polynomi-

als p7, p10 ∈ P there exists p11 ∈ P satisfying the following property: if

|H(0)
w |, |H(0)

v | ≥ (exp(i)(p10))
−1; |H(j)

w |, |H(j)
v | ≤ exp(i)(p10) (4)

for all j ≥ 0 everywhere on an interval Ii = (x − (exp(i) p7(x))−1, x), then

(exp(i+1)(p11))
−1 ≤ |Ww|, |Wv| ≤ exp(i+1)(p11) (5)

everywhere on Ii; here Ww, Wv denote the Wronskians of the operators Q1, Q2, resp.

Recall (see the section 1) that u = u1, . . . , un is a basis of the equation (1) and w
(j)
i+1 =

u((f/g)(w
(1)
i , . . . )) (see (2)). Finally, we assume that the equation Q1w = 0(Q2v = 0 resp.)

10



has a basis (over C) w = w(1), . . . , w(k)(v = v(1), . . . , v(m) resp.) where w(1), . . . , w(k),

v(1), . . . , v(m) ∈ Di+1.

Thus, we’ve formulated an inductive hypothesis of the induction on the construction

of w ∈ Di+1 (the base was proved in lemma 5).

4.1. Estimating Wronskian for the derivative Dw.

Consider 2 cases. In the first one α(0) 6= 0. Then Dw, D2w, . . . , Dk+1w can be ex-

pressed as the linear combinations of w, Dw, . . . , Dk−1w with the coefficients being the

differential polynomials in α(0), . . . , α(k) and thereby, being the elements from Di. There-

fore, we get a required equation for Dw, namely, 0 = Q1Dw = (
∑

0≤ℓ≤k

α(ℓ)Dℓ)Dw. The

functions Dw(1), . . . , Dw(k) constitute a basis of the space of its solutions since

WDw = det




Dw(1) . . . Dw(k)

...

Dkw(1) . . . Dkw(k)



 = (−1)k+1 α(0)

α(k)
Ww 6≡ 0

Set H
(0)
Dw = H

(0)
w · α(0)α(k), H

(1)
Dw = H

(1)
w , . . . , H

(æw)
Dw = H

(æw)
w , H

(æw+1)
Dw = H

(0)
w , H

(æw+2)
Dw =

α(0), H
(æw+3)
Dw = α(k) (see (4)), this gives the desired bounds on the Wronskian WDw (see

(5)).

In the second case α(0) = 0. Then 0 = Q1(Dw) = (
∑

0≤ℓ≤k−1

α(ℓ+1)Dℓ)Dw provides the

required equation for Dw. Since 0 = Q1 1 we can take as a basis of the space of solutions of

the equation 0 = Q1w the functions 1, w, w(2), . . . , w(k−1) for some w(2), . . . , w(k−1) ∈ Di+1.

Then the Wronskian Ww of the equation Q1w = 0

det




1 w w(2) . . . w(k+1)

0 Dw Dw(2) . . . Dw(k+1)

...

0 Dk−1w Dk−1w(2) . . . Dk−1w(k+1)


 equals to

the Wronskian of the basis Dw, Dw(2), . . . , Dw(k−1) of the space of solutions of the equation

0 = Q1 (Dw). This proves the inductive hypothesis for WDw (taking H
(0)
Dw = H

(0)
w , . . . ,H

(æw)
Dw

= H
(æw)
w ).

11



4.2. Estimating Wronskian for the sum w + v.

All the functions w + v where w, v are solutions of the equations 0 = Q1w = Q2v,

satisfy a linear ordinary differential equation (
∑

0≤p≤s

γ(ℓ)Dℓ)(w + v) = Q+(w + v) = 0 of

the minimal order s ≤ m + k because one can express w + v, D(w + v), · · · , Dk+m(w + v)

as the linear combinations of w, Dw, . . . , Dk−1w, v, Dv, . . . , Dm−1v with the coefficients

being the quotients of differential polynomials in α(0), . . . , α(k), β(0), . . . , β(m). Hence γ(ℓ)

can be taken as differential polynomials in α(0), . . . , α(k), β(0), . . . , β(m) and thereby one

can assume γ(ℓ) ∈ Di. As a basis of the space of solutions of the equation Q+z = 0

one can take a subset of w(1), . . . , w(k), v(1), . . . , v(m) and s equals to the maximal number

of linearly independent (over C) functions among w(1), . . . , w(k), v(1), . . . , v(m) (see [S81] ).

Denote by Ww+v the Wronskian of the equation Q+z = 0 (with respect to the chosen

basis). Therefore, relying on lemma 4 one can construct H̃
(0)
w+v, . . . , H̃

(æ̃w+v)
w+v ∈ Di such

that if |H̃
(0)
w+v| ≥ (exp(i)(p12))

−1, |H̃
(j)
w+v| ≤ exp(i)(p13) everywhere on Ii then |Ww+v| ≤

exp(i+1)(p14) everywhere on Ii.

Proceed to a lower bound on |Ww+v|. Rewrite the equations 0 = Q1w = Q2v as

first-order linear systems DY1 = B1Y1, DY2 = B2Y2 where (cf. (3))

B1 =




0 1 ©

0

©
. . . 1

−α(0)

α(k) −α(1)

α(k) . . . −α(k−1)

α(k)


 , B2 =




0 1 ©

0

©
. . . 1

− β(0)

β(m) − β(1)

β(m) . . . −β(m−1)

β(m)




Consider a direct sum of the latter 2 systems: DU = (B1 ⊕B2)U where B1 ⊕B2 =
(
B1 0
0 B2

)
.

Denote by T1 (resp T2) k-dimensional (resp. m-dimensional) space of solutions of the sys-

tem DY1 = B1Y1 (resp DY2 = B2Y2), a certain basis of T1 (resp. T2) consists of the vec-

tors {(w(j), Dw(j), . . . , Dk−1w(j))}1≤j≤k (resp. {(v(j), Dv(j), . . . , Dm−1v(j))}1≤j≤m). The

space of solutions of the system DU = (B1 ⊕ B2)U is the direct sum T1 ⊕ T2. Therefore,

the Wronskian WB1⊕B2
of the system DU = (B1⊕B2)U equals to WB1⊕B2

= WB1
·WB2

=

Ww · Wv.

Rewrite also the equation Q+(w + v) = 0 as a first-order linear differential system:

12



DT = CT where C =




0 1 ©

0

©
. . . 1

−γ(0)

γ(s)
... −γ(s−1)

γ(s)


. Denote by T (s-dimensional) space of

solutions of the system DT = C T . Consider a mapping L : T1 ⊕ T2 → T which maps

(w(j1), Dw(j1), . . . , Dk−1w(j1)) ⊕ (v(j2), Dv(j2), . . . , Dm−1v(j2)) →

(w(j1) + v(j2), D(w(j1) + v(j2)), . . . , Ds−1(w(j1) + v(j2)))

Obviously, L is surjective.

Recall (see [K], also [Si 90] ) that a subspace (over C) U1 ⊂ T1 ⊕ T2 is called invariant

(with repsect to the system DU = (B1 ⊕ B2)U) if U1 is invariant under the action of the

(differential) Galois group. Then the kernel U = kerL ⊂ T1 ⊕ T2 is invariant (see e.g.

[BBH], [G90b] ), hence any nonsingular linear transformation of the space T1 ⊕ T2 being

of the form L =
(
∗
L

)
, where ∗ is (k + m − s) × (k + m) matrix over R, reduces (see e.g.

[BBH] ) the system DU = (B1 ⊕B2)U to the block-triangular form DU =
(

C1 0
C2 C3

)
U where

U = LU,
(

C1 0
C2 C3

)
= (DL) · (L)−1 + L

(
B1 O
O B2

)
(L)−1 and the space of solutions of the system

DU3 = C3U3 equals to U (in [G90b], see also [G90a] one can find the complexity bounds

on reducing a system to the block-triangular form). The space of solutions of the system

DU1 = C1U1 equals to T , hence the Wronskian WC1
of this system equals to Ww+v.

It is known (see [H] ) that the Wronskian WC1
= exp

∫
tr C1, therefore, WC1

WC3
W( C1 0

C2 C3
)

= (det L) · W(B1 0
0 B2

) = (det L) · Ww · Wv. As each coefficient of any vector in the space

U ⊂ T1 ⊕ T2 belongs to Di+1 one can construct by lemma 4 the differential polynomials

H
(0)

U,...,H
(æU )

U ∈ Di such that if |H
(0)

U | ≥ (exp(i)(p15))
−1, |H

(j)

U | ≤ exp(i)(p16), 0 ≤ j ≤ æU

everywhere on an interval Ii = (x − (exp(i)(p7(x)))−1, x) then |WC3
| ≤ exp(i+1)(p17) ev-

erywhere on Ii. As each entry of the matrix L belongs to a quotient field of the ring Di,

one can represent det(L) = H
(0)

/ H
(1)

where H
(0)

, H
(1)

∈ Di.

Finally, taking H
(0)
w+v = H

(0)
w H

(0)
v H̃

(0)
w+v H

(0)

U H
(0)

(see (4)) and as a family H
(1)
w+v, . . . ,

H
(æw+v)
w+v taking the union of H

(j)
w , H

(j)
v , H̃

(j)
w+v, H

(j)

U , H
(0)

, H
(1)

for all j ≥ 0, we obtain

(using (5)) that if |H
(0)
w+v| ≥ (exp(i)(p18))

−1, |H
(j)
w+v| ≤ exp(i)(p19) for all j ≥ 0 everywhere
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on Ii then (exp(i+1)(p20))
−1 ≤ |WC1

| = |Ww+v| ≤ exp(i+1)(p14) everywhere on Ii, which

completes the proof of the inductive hypothesis for the sum w + v ∈ Di+1.

4.3. Estimating Wronskian for the product wv.

All the functions w v where w, v are the solutions of the equations 0 = Q1w = Q2v,

satisfy a linear ordinary differential equation 0 = Q×(w v) = (
∑

0≤j≤t

ρ(j)Dj)(w v) of the

(minimal) order t ≤ mk because one can express w v, D(w v), . . . , Dmk(w v) as the linear

combinations of Dj1w Dj2v for 0 ≤ j1 ≤ k − 1, 0 ≤ j2 ≤ m − 1 with the coefficients

being quotients of differential polynomials in α(0), . . . , α(k), β(0), . . . , β(m). Hence ρ(j) can

be taken as differential polynomials in α(0), . . . , α(k), β(0), . . . , β(m) and thereby one can

assume that ρ(j) ∈ Di. As a basis of the space of solutions of the equation Q×z = 0 one can

take a maximal linearly independent (over C) subset of the elements w(j1)v(j2), 1 ≤ j1 ≤

k, 1 ≤ j2 ≤ m (see [S81] ). Denote by Wwv the Wronskian of the equation Q×z = 0 (with

respect to the chosen basis). Therefore, relying on lemma 4 one can construct differential

polynomials H̃
(0)
wv,...,H̃

(æ̃wv)
wv ∈ Di such that if |H̃

(0)
wv | ≥ (exp(i)(p21))

−1, |H̃
(j)
wv | ≤ exp(i)(p22),

for all j ≥ 0 everywhere on an interval Ii (see above the subsection 4.2) then |Wwv| ≤

exp(i+1)(p23) everywhere on Ii.

Thus, similar to the case of the sume w + v, it remains to prove the lower bound on

|Wwv|. Consider a tensor product of the systems DY1 = B1Y1, DY2 = B2Y2 (see above):

DU = (B1⊗Em +Ek⊗B2)U where Em, Ek denote the unit matrices of the corresponding

sizes. Then the space of solutions of the latter system coincides with the tensor product

T1 ⊗R T2 (cf. e.g. [BBH] ). Hence Wronskian WB1⊗Em+Ek⊗B2
of this system equals to

Wm
B1

W k
B2

= Wm
w W k

v .

Rewrite (cf. (3)) also the equation Q×z = 0 as a first-order differential system:

DR = JR where J =




0 1 ©

0

©
.. . 1

− ρ(0)

ρ(t)
− ρ(t−1)

ρ(t)


. Denote by R (t-dimensional) space of

solutions of the system DR = JR. Consider a mapping Y : T1 ⊗ T2 → R which maps

(. . . , (Dℓ1w(j1))(Dℓ2v(j2)), . . . )0≤ℓ1<k, 0≤ℓ2<m → (. . . , Dℓ(w(j1)v(j2)), . . . )0≤ℓ<t. Obviously,
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Y is surjective.

The kernel K = kerY ⊂ T1 ⊗ T2 is invariant (cf. above and [BBH], [G90b] ), hence

any nonsingular linear transformation of the space T1 ⊗ T2 being of the form Y =

(
∗

Y

)
,

where ∗ is (km − t) × km matrix over R, reduces (cf. above and [BBH] ) the system

DU = (B1 ⊗Em + Ek ⊗B2)U to DU =
(

J1 0
J2 J3

)
U where U = YU,

(
J1 0
J2 J3

)
= (DY)(Y)−1 +

Y(B1 ⊗ Em + Ek ⊗ B2)(Y)−1 and the space of solutions of the system DU3 = J3U3

coincides with K. The space of solutions of the system DU1 = J1U1 equals to R, whence

WJ1
= Wwv. Therefore, (see the subsection 4.2 above and [H] ) WJ1

WJ3
= W( J1 0

J2 J3
) =

(detY) · WB1⊗Em+Ek⊗B2
= (detY) · Wm

w · W k
v .

As each coefficient of any vector in the space K ⊂ T1 ⊗ T2 belongs to Di+1, one

can construct by lemma 4 the differential polynomials H
(0)

K,..., H
(æK)

K ∈ Di such that if

|H
(0)

K | ≥ (exp(i)(p24))
−1, |H

(j)

K | ≤ exp(i)(p25) for all j ≥ 0 everywhere on an interval Ii

(see above), then |WJ3
| ≤ exp(i+1)(p26) everywhere on Ii. As each entry of the matrix Y

belongs to a quotient field of the ring Di, one can represent det(Y) = H̃(0)/H̃(1) where

H̃(0), H̃(1) ∈ Di. Finally, taking H
(0)
wv = H

(0)
w H

(0)
v H̃

(0)
wv H

(0)

K H̃(0) (see (4)) and as a family

H
(1)
wv , . . . , H

(æwv)
wv taking the union of H

(j)
w , H

(j)
v , H̃

(j)
wv , H

(j)

K , H̃(0), H̃(1) for all j ≥ 0, we

obtain (using (5)) that if |H
(0)
wv | ≥ (exp(i)(p27))

−1, |H
(j)
wv | ≤ exp(i)(p28) for all j ≥ 0

everywhere on Ii then

(exp(i+1)(p29))
−1 ≤ |WJ1

| = |Wwv| ≤ exp(i+1)(p23)

everywhere on Ii, which completes the proof of the inductive hypothesis for the product

wv.

Let us summarize what was proved above in the present section in the following lemma.

Lemma 6. For any differential polynomials G0 ∈ Di+1, G1, . . . , Gæ ∈ Di+1 one can

construct differential polynomials 0 6≡ H0, H1, . . . , Hη ∈ Di such that for any polyno-

mials p7, p̃i ∈ P there exists a polynomial p̃i+1 ∈ P satisfying the following property:

for any x ∈ R if |H0| ≥ (exp(i)(p̃i))
−1, |Hℓ| ≤ exp(i)(p̃i), 0 ≤ ℓ ≤ η hold everywhere
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on an interval Ii = (x − (exp(i)(p7(x)))−1, x) (cf. lemma 4 and the remark after it)

then |Gℓ| ≤ exp(i+1)(p̃i+1), 0 ≤ ℓ ≤ æ and |WG0
| ≥ (exp(i+1)(p̃i+1))

−1 everywhere on

Ii where WG0
denotes the Wronskian of a certain linear ordinary differential equation

(
∑

0≤j≤m

β
(j)

Dj)G0 = 0 with the coefficients β
(j)

∈ Di and with the space of solutions

containing G0 and having a basis consisting of the elements from Di+1.

The proof is conducted by induction on the construction of G0 (using lemma 5 for

the base of induction), so obtain a family H
(0)
0 , H

(0)
1 , · · · ∈ Di, then apply lemma 4 to

G0, . . . , Gæ, obtain as a result a family H
(1)
0 , H

(1)
1 , · · · ∈ Di and finally combine H0 =

H
(0)
0 H

(1)
0 and as a family H1, H2, . . . take the union of both families H

(0)
0 H

(0)
1 , . . . and

H
(1)
0 , H

(1)
1 , . . . .

5. Lower bound on a differential polynomial in the functions computed by a

sigmoid

Lemma 7. Let i ≥ 0. For any differential polynomials 0 6≡ G0 ∈ Di+1, G1, . . . , Gæ

∈ Di+1 one can construct differential polynomials 0 6≡ H0, . . . ,Hν ∈ Di such that for any

polynomials p7, p̃i ∈ P there exist polynomials pi+1, p
(0)
i+1, p

(1)
i+1 ∈ P satisfying the following

property: for any x ∈ R if |H0| ≥ (exp(i)(p̃i))
−1, |He| ≤ exp(i)(p̃i), 0 ≤ e ≤ ν hold

everywhere on an interval Ii = (x − (exp(i)(p7(x)))−1, x), then |Gℓ| ≤ exp(i+1)(pi+1), 0 ≤

ℓ ≤ æ are valid everywhere on Ii and there exists a disjoint family of subintervals {I
(α)
i+1}α

of the interval Ii each with the length |I
(α)
i+1| = (exp(i+1)(p

(0)
i+1(x)))−1, moreover the lower

bound |G0| ≥ (exp(i+1)(pi+1))
−1 holds everywhere on I

(α)
i+1 for each α and finally

∑
α

|I
(α)
i+1| ≥

|Ii|(1− (exp(i+1)(p
(1)
i+1(x)))−1). Moreover, the complement Ii\ ∪α I

(α)
i+1 consists of at most

exp(i)(p
(0)
i+1(x)) intervals and G0 has at most exp(i)(p

(0)
i+1(x)) zeros in Ii.

Remark 1. One can interpret the lemma 7 informally that the desired lower bound on

|G0| holds “almost” everywhere on Ii.

Remark 2. Observe that the construction of H0, . . . ,Hν from G0, . . . , Gæ is independent

from the intervals and bounds, the similar remark concerns as well the previous lemmas
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4, 5, 6.

Proof of lemma 7. Apply lemma 6 to G0, . . . , Gæ and produce H0, . . . , Hη. Then con-

sider an equation 0 = LG0 = (
∑

0≤j≤m

β
(j)

Dj)G0 yielded in lemma 6, where β
(0)

, . . . , β
(m)

∈ Di, then DG0 satisfies equation 0 = L(DG0) = (
∑

0≤j≤m

β(j)Dj)DG0 for suitable dif-

ferential polynomials β(0), . . . , β(m) ∈ Di, β(m) = β
(m)

6≡ 0. Consider any basis G0 =

G0,1, . . . , G0,m ∈ Di+1 of the space of solutions of the equation 0 = LG0 and apply lemma

4 to a family {DjG0,ℓ}0≤j≤m−1, 1≤ℓ≤m. As a result we get a family H0, . . . , Hµ ∈ Di, set

H0 = H0H0β
(m) and as a family H1, . . . ,Hν take the union of H0, . . . , Hη, H0, . . . , Hµ, β(0)

, . . . , β(m). Thus by lemmas 4, 6 |β(m)| ≥ (exp(i)(p30))
−1, |WG0

| ≥ (exp(i+1)(p31))
−1,

|Gj | ≤ exp(i+1)(p32), |D
jG0,ℓ| ≤ exp(i+1)(p33), |β(ℓ)| ≤ exp(i)(p34) everywhere on Ii.

When G0 ≡ const, these inequalities give the lemma immediately, so furthermore assume

that G0 6≡ const.

Similar to the proof of lemma 2 we prove that G0 takes each value ε on the interval Ii

at most max{m + 1, 2 exp(i)((p30p34)(x))(m + 1)|Ii|} times. Suppose the contrary. Then

there is a subinterval I ⊂ Ii of the length λ = min{|Ii|,
1
2 (exp(i)(p30p34(x)))−1}, in which

G0 takes value ε at least (m + 1) times. Therefore, each derivative DG0, . . . , D
mG0 has

at least one root in the interval I. Denote M (j) = max
y∈I

|DjG0(y)|. Then M (j+1) ≥

M(j)

λ
, 1 ≤ j ≤ m. Let |Dm+1G0| reach M (m+1) at a point x0 ∈ I. Then M (m+1) =

∣∣∣∣
1

β(m)(x0)

(
∑

0≤j≤m−1

β(j)Dj+1G0(x0)

)∣∣∣∣ ≤ exp(i)(p30(x0))M
(m+1) exp(i)(p34(x0))(λ + λ2 +

· · ·+ λm) < M (m+1). The obtained contradiction proves that G0 takes each value ε in the

interval Ii at most max{m + 1, 2 exp(i)((p30p34)(x))(m + 1)|Ii|} ≤ exp(i)(p35)(x) times for

a certain p35.

Construct a sequence of polynomials r0, . . . , rm−1 ∈ K0 by (inverse) induction: set

rm−1 = p31 + (m − 1)p33 + m2 and rj = 2rj+1 + p33 + 2, 0 ≤ j < m − 1, then r0 ≥ r1 ≥

· · · ≥ rm−1 everywhere on R.

Firstly, assume that at some point x1 ∈ Ii hold inequalities |DjG0(x1)| ≤ (exp(i+1)(rj ·

17



(x)))−1 ≤ (exp(i+1)(rm−1(x)))−1 for all 0 ≤ j ≤ m − 1. Then expanding WG0
with

respect to the column consisting of G0, DG0, . . . , D
m−1G0 (as G0 6≡ 0 we can assume

that G0 is one of the elements of a basis of the space of solutions of LG = 0) we obtain

(exp(i+1)(p31(x)))−1 ≤ |WG0
(x1)| ≤ (exp(i+1)(rm−1(x)))−1m!(exp(i+1)(p33(x)))m−1 that

contradicts to the choice of rm−1.

Consider a subinterval I(0) ⊂ Ii on which |G0| ≤ (exp(i+1)(r0(x)))−1 everywhere. Take

a minimal 1 ≤ j0 ≤ m−1 (it does exist, see above) such that there exists a point x0 ∈ I(0)

for which |Dj0G0(x0)| ≥ (exp(i+1)(rj0(x)))−1. As |Dj0+1G0| ≤ exp(i+1)(p33(x)) every-

where on Ii we get for each x1 ∈ Ii |D
j0(x1)| ≥ |Dj0G0(x0)| − |x1 − x0| exp(i+1)(p33(x)) ≥

(exp(i+1)(rj0(x)))−1 − |x1 − x0| exp(i+1)(p33(x)). Assume that at least one of two points

x2 = x0 ± (exp(i+1)(rj0 + p33)(x))−1 belongs to I(0), then |Dj0−1G0(x0)−Dj0−1G0(x2)| =

|
x2∫
x0

Dj0G0| ≥ 1/2(exp(i+1)(rj0 + p33)(x))−1(exp(i+1)(rj0(x)))−1 ≥ 2(exp(i+1)(rj0−1(x)))−1

that leads to a contradiction with the minimality of j0. Hence, neither of two consid-

ered points x3 belong to I(0), therefore, the length |I(0)| ≤ 2(exp(i+1)(rj0 + p33)(x))−1 ≤

2(exp(i+1)(rm−1 + p33)(x))−1 ≤ (exp(i+1)(p36(x)))−1 for a certain p36.

Partition the interval Ii on the subintervals with the endpoints in which G0 takes

the values ±(exp(i+1)(r0(x)))−1. By the proved above there are at most 2 exp(i)(p35(x))

such subintervals. Also we’ve proved that the length of any subinterval on which |G0| ≤

(exp(i+1)(r0(x)))−1 everywhere, is less than (exp(i+1) p36(x))−1, partitioning all the other

subintervals into disjoint subintervals I
(α)
i+1 completes the proof of lemma 7. Now we can

formulate the main result of the paper.

Theorem. Let a function 0 6≡ f be computed by a sigmoid of the depth d. For any ρ1

there exist ρ0, ρ2, where ρ0, ρ1, ρ2 are univariate nonconstant polynomials, being positive

everywhere on R such that for any x ∈ R the measure of the points y ∈ (x−(ρ1(x))−1, x) =

I at which |f(y)| ≥ exp(d)(ρ0(x)) or |f(y)| ≤ (exp(d) ρ0(x))−1, is less than (ρ1(x))−1

exp(ρ2(x)) =

|I|
exp(ρ2(x))

.
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Corollary. The measure of the points y ∈ R for which |f(y)| ≥ exp(d)(ρ3(y)) or |f(y)| ≤

(exp(d) ρ3(y))−1 is finite, moreover the measure of such points y with |y| ≥ x0 for any x0 > 0

is less than exp(−ρ4(x0)) for suitable nonconstant polynomials ρ3, ρ4 positive everywhere

on R.

Remark. Note that all the polynomials occurring in the theorem and the corollary could

be calculated explicitly in terms of the size of the sigmoid and in the parameters of the

differential equations defining occurring in the sigmoid functions from Γ (see the section

1).

Proof of the theorem. Apply lemma 7 (taking also into account remark 2 just after

it) to f , it will produce a family H
(d−1)
0 , . . . ,H

(d−1)
æd−1 ∈ Dd−1, next apply lemma 7 to

H
(d−1)
0 , . . . ,H

(d−1)
æd−1 and obtain as a result a family H

(d−2)
0 , . . . ,H

(d−2)
æd−2 ∈ Dd−2 and so on,

until we get a family H
(0)
0 , . . . ,H

(0)
æ0 ∈ K0 of polynomials.

Let x0 > 0 be larger than the absolute values of all the roots of the polynomial

H
(0)
0 . Take any polynomial p37 ∈ P. We’ll prove by induction on i ≥ 1 that there

exist polynomials p̃
(i)
4 , p̃

(i)
5 , p̃

(i)
6 ∈ P such that for any |x| > x0 + 1 the subset of the

points y ∈ (x − (p37(x))−1, x) = I at which |H
(i)
0 (y)| ≥ (exp(i) p̃

(i)
4 (x))−1 and |H

(i)
j (y)| ≤

(exp(i) p̃
(i)
4 (x)), 0 ≤ j ≤ æi contains a certain disjoint union of Q(i)(x) ⊂ I of the intervals

I
(i)
α each of the length I

(i)
α | = (exp(i) p̃

(i)
5 (x))−1 and the measure mes (Q(i)(x)) ≥ mes (I) ·

(1 − (exp p̃
(i)
6 (x))−1).

The base of induction for i = 0 (it is convenient to start with i = 0 although the

inductive hypothesis is true for i ≥ 1). In this case for a suitable polynomial p̃
(0)
4 ∈ P the

required inequalities |H
(0)
0 (y)| ≥ (p̃

(0)
4 (x))−1, |H

(0)
j (y)| ≤ p̃

(0)
4 (x) hold everywhere on I, so

Q(0) = I and mesQ(0) = mes(I).

For the inductive step take any of the intervals I
(i)
α and apply to it (and to the family

H
(i+1)
0 , . . . ,H

(i+1)
æi+1 , see above) lemma 7, this will provide polynomials p̃

(i+1)
4 , p̃

(i+1)
5 ∈ P and

the necessary intervals which we denote by I
(i+1)
β (taking the union over all α). By lemma 7
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and the inductive hypothesis one gets for i ≥ 1
∑
β

|I
(i+1)
β | ≥ (1− (exp(i+1)(p

(1)
i+1(x)))−1)

∑
α

|I
(i)
α | ≥ (1 − (exp(i+1)(p

(1)
i+1(x)))−1)(1 − (exp p̃

(i)
6 (x))−1)|I| ≥ (1 − (exp p̃

(i+1)
6 (x))−1)|I| for

a relevant polynomial p̃
(i+1)
6 ∈ P (when i = 0 put p̃

(1)
6 = p̃

(1)
1 ), that completes the proof of

the theorem.

Following the proofs of lemma 7 (see the end of its proof) and the theorem one can

bound the number of zeroes of a function computed by a sigmoid (cf. lemma 2). In the

next proposition we agree that exp(−1) ≡ const.

Proposition. Let a function f be computed by a sigmoid of the depth d ≥ 1.

a) For any polynomial ρ1 there exist polynomials ρ2, ρ5, where ρ2, ρ2, ρ5 are nonconst

positive everywhere on R, such that for arbitrary x ∈ R there exists a subset J ⊂ I =

(x − (ρ1(x))−1, x) being a union of exp(d−2) ρ5(x) intervals, with the measure less than

|I|
exp(ρ2(x)) and the number of zeroes of the function f in the set I\J does not exceed

exp(d−1) ρ5(x);

b) There exists a set J0 ⊂ R with a finite measure such that for arbitrary x ∈ R

the number of zeroes of f in the set [0, x]\J0 is less than exp(d−1) ρ6(x) for a suitable

polynomial ρ6, moreover the intersection [0, x] ∩ J0 is a union of at most exp(d−2) ρ6(x)

intervals.

Let us demonstrate the sharpness of the bound in the corollary to the theorem. Namely,

consider a function f = sin(x) · (exp(i)(x))−1, which can be computed by a sigmoid of the

depth i. Then the set of the points y at which |f(y)| ≤ (exp(i) p39(y))−1 consists of a union

of intervals where n-th interval (n = 0, 1, . . . ) has a length (exp(i) p38(n))−1 and contains

the point πn (for appropriate polynomials p39, p38 ∈ P).

Let us give two applications of the theorem and of the corollary to the questions of

approximation of the functions computed by sigmoids. One can treat corollary 2 below as

an analogue of Liouvillean theorem (on the algebraic numbers) for the functions computed

by sigmoids. Here we consider the growth of the difference of two functions as a measure of
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their deviation, in particular for the solutions of the linear ordinary differential equations

with polynomial coefficients. In the latter case another analogue of Liouvillean theorem

for another measure of deviation, namely for the order of the power-series expansions, was

ascertained in [CC].

Corollary 2. If different functions f, g are computed by sigmoids with the depths at

most d then exp(d)(p40(x)) ≥ |(f − g)(x)| ≥ (exp(d) p40(x))−1 for a suitable nonconst

polynomial p40 positive everywhere on R for all x ∈ R, except for a set with a finite

measure.

Another application concerns Blum-Shub-Smale model [BSS]. If one tries to approx-

imate f by BSS-computation, that means the f is approximated by a piecewise rational

function. Applying the corollary to the theorem to each piece, we get

Corollary 3. If an irrational function f is computed by a sigmoid with a depth d and a

function h is computed by some Blum-Shub-Smale computation then exp(d)(p41(x)) ≥ |(f−

h)(x)| ≥ (exp(d) p41(x))−1 for an appropriate nonconst polynomial p41 positive everywhere

on R for all x ∈ R, except for a set with a finite measure.

Actually, both corollaries 2, 3 could be formulated in the stronger ways using the

theorem rather than the corollary. One could consider corollary 2 as a lower bound on the

parallel complexity (i.e. the depth) of a function, computed by a sigmoid, approximating

a given one. Corollary 3 could be treated as a lower bound on the approximation of a

function computed by a sigmoid by means of a piecewise rational function. Note also that

the bounds in the corollaries 2, 3 are sharp: take f = (exp(d))−1 and g = h = 0.

6. Deviation theorems for elementary sigmoids

Recall (see the section 1) that the considered gate (real) functions u from Γ were defined

everywhere on R (out of a finite number of singular points), and moreover we required that

u was the restriction on R of some branch of an analytic complex function.

One can weaken this requirement and consider a function u such that for a certain finite
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union of (possibly infinite) intervals N ⊂ R the function u is real on N , i.e. u : N → R and

u is the restriction on R of some branch of an analytic complex function. We require that at

every computational step (2) of the sigmoid the values of the function (f/g)(w
(1)
i , . . . , X)

should belong to N everywhere on R (out of singularities), thus w
(j)
i+1 : R → R. One

can easily (almost literally) extend the proof of the theorem (and the corollary) to this

situation.

Under elementary sigmoid we understand a sigmoid in which the role of the gate func-

tions can play exp, log and algebraic functions (in particular, they contain “standard”

sigmoids with the gate function (exp(−x) + 1)−1). Each of these gate functions satisfy a

certain linear ordinary differential equation with polynomial coefficients. The above re-

quirement when, for example, u = log means that (f/g)(w
(1)
i , . . . , X) is positive everywhere

on R. Thus, the corollary implies

Corollary 4. Let a function f be computed by an elementary sigmoid with a depth d

with the gate functions exp, log and algebraic functions with the requirement that at each

computational step of the sigmoid (see (2)) the function u((f/g)(w
(1)
i , . . . , X)) takes only

real values on R. Then there exists a polynomial p42 such that the measure of the points

x for which one of the inequalities (exp(d) p42(x))−1 ≤ |f(x)| ≤ exp(d) p42(x) fails, is finite.

The statements similar to the remark just after the corollary and to corollaries 2, 3 are

true also for the elementary sigmoids.
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