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Abstract

If solutions of a non-linear differential equation are contained in solutions of an-
other equation we say that the former equation is a generalized divisor of the latter
one. We design an algorithm which finds first-order quasi-linear generalized divisors
of a second-order quasi-linear ordinary differential equation. If solutions of an equa-
tion contain solutions of a pair of equations we say that the equation is a common
multiple of the pair. We prove that a quasi-linear common multiple of a pair of
quasi-linear equations always exists and design an algorithm which yields a quasi-
linear common multiple.

Introduction

The problem of factoring linear ordinary differential operators L = T ◦ Q was studied in
[10]. Algorithms for this problem were designed in [3], [11] (in [3] a complexity bound
better than for the algorithm from [10] was established). In [5] an algorithm is exhibited
for factoring a partial linear differential operator in two variables with a separable symbol.
In [4] an algorithm is constructed for finding all the first-order factors of a partial linear
differential operator in two variables. A generalization of factoring for D-modules (in other
words, for systems of linear partial differential operators) was considered in [6]. A particular
case of factoring for D-modules is the Laplace problem [2], [14] (a short exposition of the
Laplace problem one can find in [7]).

The meaning of factoring for search of solutions is that any solution of operator Q is a
solution of operator L, thus factoring allows one to diminish the order of operators.

Much less is known for factoring non-linear (even ordinary) differential equations. In
Section 1 we design an algorithm for finding (first-order) generalized divisors of a second-
order quasi-linear differential equation.
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We note that our definition of generalized divisors is in the frames of differential ideals
[9], rather than the definition of factorization from [13], [1] being in terms of a composition
of nonlinear ordinary differential polynomials. In [1] a decomposition algorithm is designed.

One can also introduce a different (from [13], [1]) concept of composition (which
yields generalized divisors) as follows. For a differential field K consider an operator

A =
∑

0≤i≤n ai · di

dxi acting on the algebra K{y} of differential polynomials in y [9] where
the coefficients ai ∈ K{y}, the result of the action we denote by A∗z ∈ K{y} for z ∈ K{y}.
Clearly, z is a generalized divisor of A∗z. In Section 1 we show, conversely, that if a quasi-
linear z ∈ K{y} is a generalized divisor of v ∈ K{y} then v = A ∗ z for an appropriate
operator A.

Easy examples demonstrate that the two considered compositions differ from each other.
In the sense of [13], [1] we have 1 = 1 ◦ z for an arbitrary z ∈ K{y}, while 1 cannot be
represented as A ∗ y. On the other hand, y · y′ = y ∗ y′, while one cannot represent y · y′
as g ◦ y′ for any g ∈ K{y}.

In Section 2 we define a common multiple of a pair of equations as an equation to which
satisfy solutions of both equations. We prove the existence of a quasi-linear common mul-
tiple for any pair of quasi-linear differential equations, design an algorithm for computing a
quasi-linear common multiple and bound its complexity in terms of Grzegorczyk’s hierarchy
of primitive-recursive functions.

It would be interesting to extend the algorithm from Section 1 to equations of arbitrary
orders and from quasi-linear to arbitrary non-linear ordinary equations (then, perhaps, to
partial differential equations).

1 A bound of the degree and an algorithm for gener-

alized divisors

We study second-order non-linear ordinary differential equations of the form

y′′ = f(y′, y, x) (1)

for a polynomial f ∈ Q[z, y, x]. We assume the coefficients of polynomials to be algebraic
since we are interested in algorithms, although for the purposes of bounds (see below) one
can consider coefficients from an arbitrary field with characteristics zero.

Definition 1.1 We say that a first-order equation

y′ = p(y, x) (2)

is a generalized divisor of (1), where p ∈ Q[y, x], if any y satisfying (2), is a solution of
(1).

It suffices to verify the condition in the definition just for generic y [9], i. e.
y satisfying only the differential polynomials from the differential ideal generated by
y′ − p(y, x). In particular, y is algebraically independent of x over Q.
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Lemma 1.2 If (2) is a generalized divisor of (1) then the differential polynomial
y′′ − f(y′, y, x) has a form A ∗ (y′ − p(y, x)) for an operator A = d

dx
+ a0 with a suit-

able differential polynomial a0 ∈ Q[y′, y, x].
The converse statement is evident.

Proof. Dividing with remainder (with respect to y′) the differential polynomial

u := y′′ − f(y′, y, x)− (y′ − p(y, x))′ ∈ Q[y′, y, x]

by y′ − p(y, x), we get a differential polynomial a0 ∈ Q[y′, y, x] such that u = a0 · (y′ −
p(y, x)) + v for suitable v ∈ Q[y, x]. Any solution y of (2) is a solution of v, hence v ≡ 0
since y is algebraically independent with x.

Remark 1.3 i) The proof of Lemma 1.2 provides an algorithm to test whether (2) is a
generalized divisor of (1).

ii) Lemma 1.2 holds for an arbitrary quasi-linear differential polynomial of the form
y(n) − pn(y(n−1), . . . , y, x) in place of (2) and for an arbitrary differential polynomial (not
necessary quasi-linear) in place of (1).

From (2) we have

y′′ =
∂p

∂y
· p +

∂p

∂x
.

Substituting this into (1) and rewriting

f(y′, y, x) =
∑

0≤i≤l

fi · (y′)i (3)

where fi ∈ Q[y, x], we get

∂p

∂y
· p +

∂p

∂x
=

∑
0≤i≤l

fi · pi. (4)

Observe that (4) is equivalent to that (2) is a generalized divisor of (1).
Then (4) implies that

p|(f0 −
∂p

∂x
). (5)

Hence either degx p ≤ degx f0 or f0 = ∂p
∂x

. Indeed, expand p =
∑

0≤j≤k aj · xj for certain

polynomials aj ∈ Q[y], ak 6= 0. If k = degx p > degx f0 then deg(f0 − ∂p
∂x

) < k, therefore

f0 = ∂p
∂x

due to (5).

In a similar way, we claim that either degy p ≤ degy f0 or f0 = ∂p
∂x

. Indeed, expand

p =
∑

0≤i≤m bi · yi for certain polynomials bi ∈ Q[x], bm 6= 0. If m = degy p > degy f0 then

the coefficient of f0 − ∂p
∂x

at monomial ym equals −∂bm

∂x
. If ∂bm

∂x
6= 0, and thereby ym is the
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leading monomial of f0 − ∂p
∂x

with respect to the expansion in y, we get a contradiction

with (5). Therefore, ∂bm

∂x
= 0 and f0 = ∂p

∂x
due to (5), which proves the claim.

So, it remains to consider the case f0 = ∂p
∂x

. Then (4) entails that

∂p

∂y
=

∑
0≤i≤l−1

fi+1 · pi,

hence p|(f1 − ∂p
∂y

). Arguing as above, we deduce that either degx p ≤ degx f1, degy p ≤
degy f1 or f1 = ∂p

∂y
.

We note that in the latter case f1 = ∂p
∂y

, f0 = ∂p
∂x

(whence
∑

2≤i≤l fi · pi−2 = 0 because

of (4)), and p is determined uniquely up to an additive constant. Moreover, in this case
degx p ≤ 1 + degx f0, degy p ≤ 1 + degy f1.

Summarizing, we conclude with the following theorem.

Theorem 1.4 i) If (2) is a generalized divisor of (1) then either degx p ≤ degx f, degy p ≤
degy f or f1 = ∂p

∂y
, f0 = ∂p

∂x
, see (3) (which determines p up to an additive constant), and

in the latter case degx p ≤ 1 + degx f0, degy p ≤ 1 + degy f1.
ii) An algorithm which either constructs a generalized divisor (2) of (1) or finds out that

it does not exist, looks for polynomial p with indeterminate coefficients from Q satisfying
the degree bounds

degx p ≤ max{degx f, 1 + degx f0}, degy p ≤ max{degy f, 1 + degy f1}
from item i), solving (4) as a system of polynomial equations in the indeterminate coeffi-
cients of p.

Example 1 Consider the equation

E ≡ y′′ + (x + 3y)y′ + y3 + xy2 = 0. (6)

According to the above theorem degx E = 1 and degy E = 3, i.e. degx p ≤ 1 and degy p ≤ 3.

The second alternative ∂p
∂x

= f0 = −xy2 − y3, ∂p
∂y

= f0 = −x − 3y does not apply because
this system for p is inconsistent. Proceeding as described above, two divisors are obtained
and the representations

E ≡ (y′ + y2)′ + (y + x)(y′ + y2) and E = (y′ + y2 + xy − 1)′ + y(y′ + y2 + xy − 1)

follow. They yield the two one-parameter solutions

y =
1

x + C
and y =

1

x
+

1

x2

exp (− 1
2
x2)∫

exp (− 1
2
x2)dx

x2 + C

respectively.

An extension of the definition of a generalized divisor is the definition of a first integral.
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Definition 1.5 We say that y′ − p(y, x) is a first integral of (1) if for any constant c any
solution y of equation y′ − p(y, x) = c is also a solution of (1).

Denote by A(c) a formula obtained from (4) by means of replacing p with p+c. Arguing
as above, we get that y−p(y, x) is a first integral of (1) iff A(c) holds for any constant c. We
obtain the same bound on deg p as in Theorem i). The algorithm for finding first integrals
applies a quantifier elimination procedure to the following formula of the first-order theory
of algebraically closed fields:

∃P∀cA(c)

where P denotes the vector of indeterminate coefficients of polynomial p. Thus, the algo-
rithm finds the constructible set of all vectors P for which ∀cA(c) holds. These vectors P
provide all first integrals of (1).

2 Computing common multiples of quasi-linear dif-

ferential equations

Definition 2.1 We say that a differential equation f = 0 is a common multiple of equa-
tions f1 = 0 and f2 = 0 if solutions of f = 0 contain solutions of both f1 = 0 and f2 = 0.

The goal of this Section is to design an algorithm which for a given pair of quasi-
linear ordinary differential equations yields a quasi-linear common multiple. To simplify
notations we assume that the equations are of first order: y′ = p(y, x) and y′ = q(y, x)
where polynomials p, q ∈ Q[y, x], although one can extend the algorithm to equations of
arbitrary orders almost literally.

Treating y as a generic solution [9] of either of two given equations, one can assume
that y is algebraically independent of x over Q.

First, the algorithm looks for a common multiple being a quasi-linear second-order
equation y′′ = s(y′, y, x) for a suitable polynomial s(z, y, x) ∈ Q[z, y, x]. Hence

s(p, y, x) = p′ =
∂p

∂y
· p +

∂p

∂x
, s(q, y, x) = q′ =

∂q

∂y
· q +

∂q

∂x
.

Therefore

s(z, y, x) = r · (z − p) +
∂p

∂y
· p +

∂p

∂x
= t · (z − q) +

∂q

∂y
· q +

∂q

∂x

for appropriate polynomials r, t ∈ Q[z, y, x], whence

(t− r) · (z − q) + r · (p− q) = (
∂p

∂y
· p +

∂p

∂x
)− (

∂q

∂y
· q +

∂q

∂x
). (7)

There exist r, t ∈ Q[z, y, x] which fulfil (7) iff

(p− q) | (∂p

∂y
· p +

∂p

∂x
)− (

∂q

∂y
· q +

∂q

∂x
).
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If the latter relation holds, i. e. r · (p − q) = (p − q)′ for a suitable r ∈ Q[y, x], one can
put t := r to get (7) and take s(z, y, x) := r · (z − p) + p′ = r · (z − q) + q′ to obtain a
quasi-linear common multiple y′′ = s(y′, y, x). Conversely, when (7) holds, we substitute
in it z = q. Thus, there exists a quasi-linear common multiple of the second order of a pair
of equations y′ = p(y, x), y′ = q(y, x) iff (p− q)′ ∈ 〈p− q〉, where 〈p− q〉 denotes the ideal
generated by p− q.

More generally, following the same argument one can prove that

Lemma 2.2 There exists a quasi-linear common multiple of the order n + 1 of a pair of
first-order equations y′ = p(y, x), y′ = q(y, x) iff n-th derivative

(p− q)(n) ∈ 〈p− q, (p− q)(1), . . . , (p− q)(n−1)〉.

More explicitly, if the latter relation holds, i. e. (p − q)(n) =
∑

0≤i<n ri · (p − q)(i) for
some polynomials ri ∈ Q[y, x], 0 ≤ i < n then for polynomial

sn(zn, . . . , z1, y, x) :=
∑

0≤i<n

ri · (zi+1 − p(i)) + p(n) =
∑

0≤i<n

ri · (zi+1 − q(i)) + q(n)

equation y(n+1) = sn(y(n), . . . , y′, y, x) is a required quasi-linear common multiple.

For the proof we observe that y(n+1) = sn(y(n), . . . , y′, y, x) for a polynomial sn ∈
Q[zn, . . . , z1, y, x] is a common multiple iff

sn(p(n−1), . . . , p, y, x) = p(n), sn(q(n−1), . . . , q, y, x) = q(n).

Therefore,
sn(zn, . . . , z1, y, x)− p(n) ∈ 〈zn − p(n−1), . . . , z1 − p〉,

sn(zn, . . . , z1, y, x)− q(n) ∈ 〈zn − q(n−1), . . . , z1 − q〉.

Subtracting two latter equalities we complete the proof of the lemma.

One can directly extend the lemma to a quasi-linear common multiple of a pair of
quasi-linear equations of an arbitrary order.

Employing Hilbert’s Idealbasissatz we obtain

Corollary 2.3 Any pair of ordinary quasi-linear differential equations has a quasi-linear
common multiple.

Moreover, from the explicit bound on the Idealbasissatz [12] we obtain

Corollary 2.4 Any pair of ordinary quasi-linear differential equations

y(k) = pk(y(k−1), . . . , y, x), y(k) = qk(y(k−1), . . . , y, x)
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of order k with polynomials of degrees deg(pk), deg(qk) ≤ d has a quasi-linear common
multiple of order g(d), where g is a primitive-recursive function from the class Ek+2 of
Grzegorczyk’s hierarchy [8], [15].

This provides also a complexity bound of the similar order of magnitude of the algorithm
which looks for a quasi-linear common multiple by trying consecutively increasing orders
of a candidate and solving the membership problem to an ideal (see Lemma 2.2), say, with
the help of Gröbner basis.

In particular, in case of first-order equations (k = 1) the function g(d) grows exponen-
tially.

Example 2 Let E1 ≡ y′+y2 = 0 and E2 ≡ y′+y = 0. By Lemma 2.2 a multiple of order 2
does not exist; however, there is the following multiple of order 3 involving a parameter C:

E3 ≡ y′′′ + (C − 4)yy′′ + (C + 1)y′′ + (2C − 2)y′2 + (2C + 2)yy′ + Cy′ + Cy2.

For C = 0 it simplifies to

E0 ≡ y′′′ + 4yy′′ + y′′ − 2y′2 + 2yy′ = 0.

Applying again Theorem 1.4 the factors y′ + y2, y′ + y and y′ are obtained.

The next example is interesting because it allows to determine the general solution of
all equations involved.

Example 3 Let E1 ≡ y′ + y2 = 0 and E2 ≡ y′ = 0 with solutions y = 1
x+C

and y = C
respectively. The multiple of E1 and E2 yields y′′+ 2yy′ = 0 with first integral y′+ y2 = C.
Its general solution is y = C1 tan (C2 − C1x). It is not obvious how the latter solution is
related to the two solutions involving a single parameter.

Remark 2.5 The general solution of the second-order equation in the preceding example
may also be written as y = C1 tanh (C2+C1x); the two representations are transformed into
each other by multiplying the constants with the complex unit i and representing them in
terms of exponentials. From the latter representation the constant solution may be obtained
by taking the limit C2 → ∞. The first integral y′ + y2 = C generalizes the divisor E1; its
existence simplifies the solution procedure because it provides already one of the constants
involved in the general solution of the second-order equation.
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