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ABSTRACT

We investigate the connection between the spectrum of

-
a graph, i.e. the eigenvalues of the adjacency matrix, and the

complexity of testing isomorphism. In particular we describe

\wo polynomial time algorithms which tesl isomorphism of

undirected graphs whose ecigeavaiues have bounded muitipli-

cilty. I X and Y are graphs of eigervalue multiplicity m, then

the 1somorphism of X and Y can be tesied by an QO{n*T*c)

delerminisiic and by an O(n®™*%) Las Vegas algorithm, where

n is the number of vertices of X and Y.

1. Iniroduction

it is not known whether graph isomorphism can
be decided in determ:nistic polynomial Ltime. The
fatlure to find an efficient decision procedure afler
extensive efforl suggests that researchers should
look beyond classical graph theory and investigate

the relevance of techniques from other areas in

! Thiz work has been partially supported by the Na-

tionai Science Foundation under Grant MCS 80-

21066.
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mathemalics. Recenl developments in the graph
isomorphism problem have succeeded by introduc-
ing strong theoretical Lools from Lopology and group
theory. First, 1somorphism of graphs of bounded
genus was shown to be poiynomial Lime teslable
[H&T v3, H&W 74, FMR 79, Mil 80, F&M 80, Lic 80)].
These methods capilalizea on the properties of the

topological embeddings of graphs.

Recently group theorctic techniques have been
brought to bear on the problem. Laszié Babai intro-
duced the “lower of groups method"” to give a poly-
nomial time coin lossing algorithm Lo decide iso-
morphism of graphs with bounded color multiplicity
[Bab 79]. This technique was applied by Hoffmann
lo cone graphs of bounded degree [ilol 80a] and
later by Furst,
graphs [FHL 80a].

Hopcroft and Luks to trivalent
Furthermore, the latler paper
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demonstrated a deterministic pelynomial Lime algo-
rithm for the “lower of groups method” similar Lo
existing algorithms from

theory [Sim 70].

computational group
An important breaklhrough was
achieved by E£. M. Luks in establishing a polynomial
Lime 1somorphism test for graphs of bounded
valence [Luk BO, Hofl 82)].

lions was a recursive algorithm for computing sel-

Among Luks' contribu-
wise stabilizers in certain permutalion groups
based upon the exislence of systems of imprimi-
tivity.

in this paper we introduce a new class of graphs
for which isomorphism may be tested in polynomial
time: graphs with bounded eigenvalue mulliplicily.
Consider an undirected graph X wilth n verlices
represented by ils adjacency matlrix A. Viewing A as
a linear transformation in R", the eigenvalues of A
are the rocts of the characteristic polynomial,
det{Al-A} We say thal Lthe graph X is of eigenvalue
mulliplicity m if no root of the characteristic poly-
nomial has multiplicily exceeding m. The analysis
of graphs through tnor eigenvalues constitutes the
mathematica! theory ol graph specira [Big 74,
CDS 80]
of graphs with distinct eigenvalues has been shown
be achievable . O(n%)
fL&M B2b].

The specia! case of deciding isomorphism

lc time by Leighton

Two algorithms are presented here which were
discovered independently. The firsy, algerithm, due
o Babai and Grigoryev. employing the “Lcwer of
groups melhod” -dec.des isomorphism ol graphs
with eigenvalue multiplicity m n O{n*™*°) deter-
m:raistic Lime with an O(n®"*%) Las Vegas version (¢l
Section 4). (c is an absolute coxstant everywhere
but il may denole different constants at different
places.) This resull was announced in [Bab 79,
Bab B0, and Bab B1} and is given in Section 4. The
second algorithm, due lo mé’.}ﬁ{. fuff§ in O(n*™*%)
delerministic time This algoritiom applies Luks’
method of "recursion Lhrough systems of imprimi-

tivily” and is given in Section &.
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In order to determine whelher two connecled
graphs X; and X; are isomorphic, it suffices to find a
sel of permutations generaling the autemerphism
group of their disjoint union, Aut(X,uX,). See for
instance [Mat 78, Hof 80b]. Note thal If X, and X,
are each of eigenvalue multiplicity m, Lthen their
disjoint union is a graph of eigenvalue multiplicily
at most 2m. Both of Lhe algorithms presented
determine the automorphism group of Lhe graph by
first using the ecigenspace structure Lo formulate
the problem in group theoretic lerms and then solv-

ing the group theorelic problem.
2. Notation and Background

Linear Algebra

Consider an undirected graph X on n vertices
represented by ils adjacency matrix A. Since A is
an nxn, symmetric real valued matrix it has n real
eigenvalues. Lel Ay );,.. . A { be the set of distinct
cigenvalues. Associated with the eigenvalue A, is the
eigenspace 5, containing the eigenvectors associ-
ated with A; S5, = Ix € R™ | Ax = A x{. By virtue of

the symmelry of A:

1. If A, is an eigenvalue with mulliplicity m;

then S, has dimension m;.
2. The direct sum 5,®5,®...05, = R™.

3. Ifi=#jthen 5 and §; are mutually orthogo-

nal.

Let V = {e;.e,....,e5] be the standard basis of R,
i.e. the unit vectors. These veclors are identified
with the vertices of X as enumeraled in the adja-
cency matr.x A. The aulemorphism group of X is
defined to be ithe se! of permutalions on V which
of X

induce orthogonal linear transformations on R"™ by

preserve adjacency. The automorphisms
permuting the unil vectors. Sc the automorphism
group of X may equivalently be defined as the sel of
permulalion matlrices m which commnute with the

adjacency matrix of X:

me Aut(X) iff nA = An



o e,

For a subspice 5 ¢ K7 lew prs denole the orthogonal

proection frein IR 1o §

Group Theory

A permulalion group G on a demain V is a sub-
group of Lthe symmetric group Sym{V) The order of
a finile group G, writler G, is the number of clo-
menls in G. I H is a subgroup of G, writlen H s G,
we may partition G into eqguivalence classes of un:-
y.ne G,
v=a1ff ¥ 'neil Thesc equivalence classes arc
the teft cosets of H in G. The wndez of H in G, writ-

form sizc by defining, for

ten GHI, 1z the number of equivulcnce classes
under this partition. The partilion is traditionally

written:
G= ﬂ]H+ﬂzH+..~+ﬂPH
where + denotes the union of disjoint scts.

A permutatlion group G (setwise) stabilizes a
sel 2 TV {equivalently, A is G-stable) if for all x € A,
n€ G we have nx € A. The set {nx | mn € G{ is Lhe

~

artit of x in G. The orbits of a permulation group
partitien the permutation domain. For a G-stable
sut:el 4 we suy G acls transilively on A if A is an
orbit. Consider an invariant equivalence relation on
a C-stable subset 4, that 1s, x = y unplies nx = m
for all m€ G Wc call the equivalence classes of such
a relation a system of imprmibwily on A Any per-
mulation we G induces w permutation of the
equivalence classes of the relation. Every group
contains {wo irivial systems of imprimilivily on A
corresponding te Lhe identity relation and AxA
Groups which have no nontrivial system of tmprumi-
tivilty on A are said to act primilively on A

The pointwise stabilizer in G of a sel B¢V is

the group Gg= fn € G | ax = x for each x € B}. The

set B is a base for G if -Gy is<be trivial group con-
taining only the identlily permutation. In this case,
any member of G is determined by its action on B.
For instance, a basis of a subspace 5 15 a base for
the group of hnear transformations on S, GL(S). ii
G actsonV, !Vi = n, and B 15 a base lor G then |G <
n{n-1)...(n-{Bi+1) < n!?.
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We use the symbol " throughout Lo mean “res-

iricted to ™

In general a permutation Eroup on n poinls may

have as many as n' elecmenls Howcever any perimu-

lation group G may be represcnled by a sel of at -

most n? generaling permulaelions whose closure

undgr multiplication is equul to G (FIIL 80b].

Throughoul this paper those permutation groups
whose order is bounded a priori by n™ will be
represented by a full list of their elements. All
other groups will be represented by a sel of gen-

eraling elements.

3. Eigenspaces and Automorphisms

The relationship between the automorphisms of
a graph and the eigenspaces of the adjacency
malrix of the graph is summarized in the following

well known result Irom the theory of graph spectra.

Lemma 3.1

adjacency matrix A.

Let X be an undirected graph with
A permutation matrix
m € Aul(X) if and only if the eigenspaces of A are
(selwise) invariant under n.
Proocl

Suppose thal 7 € Aut{X). Let x be an arbitrary
element of §;. Then,

Anx = mAX = TAX = MTX
Hence nx € S; Conversely, suppose that S; is n
invariant. Again for x € 5,
ATIX = ARX = IAX = mAX
Since the eigenspaces of a symmetric matrix span
R? An = nA
c

Lemma 3.1 characterizes Aut{X) in terms of its

action on the eigenspaces of £, but provides litile

x«-o

.,

e

intuition into the structure of a graph which has ~

We relate the
infermation offered by Lemma 3.1 Lo the action of
Aul(X) on the vertex sel of the graph by demon-

bounded eigenvalue multiplicity.
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sirating the existence of systems of unprumtivity
Yor o subspoce 3 C N let vy denote the

cquivalence relation on V defined

x ¥gy iff prsx = prs¥

Lemma 3.2
mations permuting V. Suppose that AcV s G-

Let G be group of orthogenal transfor-

stable, and S ¢ R™ is a G-invariant subspace such

that prsd spans 5. Then:

1. The equivalence classes &/ ¥g form & sys-

tem of imprimitivity in G on 4.

2 The induced aclion of G on &/ ¥g is iso-

morphic to Lhe induced aclion of G on prgl.

3. Let G be the induced action of G on A/ ¥
Then there cxists G £ Sym(A/ ¥g) such Lhat
C<C and IG = 'A/ ¥<'™ where m is the
dimension of . The clements of G may be

bistec in O(n™") Lime

Prool

It is well known that if # is an orthogonal linear
transformaticn under which a subspace S 1s invari-

an: “hen prg and 7 commute

1. For xved mneG x¥ey T prex = prgy iff

TprgX = wprgy Il prenx = preny . ax¥gny.
class

for xE A,

[\ € ﬁ/‘i’s

idently  the
with the

equivalence
veclor prgx € prg
Because [x) is a block of a system ol imprimi-

tivity in G, for 7 € G.
nix] = [mx ~ premx = Tprex

is an obvious consequence tne clements of G

induce permutations on the sel prsd.

3. The induced actions of G on A/ ¥5 have been

shown to be isomorphic Ea;;hc acigpns of G on
prsd, and the induced actions of G on prg are
iinear transiormations. If 5 has dimension m
then 5 has a basis B of size m in prgA. To each
mapping B-+prsA there corresponds exactly one

linear transformalion of S Some of these

Lransformations permute the set prsd. Let ¢
denole the group of permulations of prgd
oblained in this way. Cerlainly G contains G as
a subgroup. Decause B is a base for G,
1G! < {prga 13 < o™, the ele-

ments of G can be listed in 0(n™*<) time by

Furthermore,

enumcraling the n™ mappings Bwprsd and
selecling Lhe rcsulling linear \ransformations
which permule prgd.

a

Corollary For each cigenspace of the adjacency
matrix of a graph X, Lhere exists a syslem of
imprimitivity in Aut(X). i lhe eigenspace has
dimension m then there are al mest n™ distinct
aclions induced on the blocks of this imprimitivity

system.

In the nexl scetion an even stronger characteri-
zation of Aul(X) wili be presenied.

4. Towcer of Groups Approach

In this section we consider the problem of
determining a set of gencralors ol the automeor-
phism group of a graph X with at meost m-tuple
eigenvalues. The resuits of this section unless oth-

erwise noted are due Lo the firsl two authors

Theorem 4.1  For graphs X with nol morc than m-
tuple eigenvalues, generators of the automorphism
group Aul(X) can be found by an 0(n®™*¢) deter-

ministic and by an 0{n™**} Las Vegas algorithm.

(The term Las Vegas algorithm has been intro-
duced in [Bab 79l
uses flips of a coin; and 1ts outpul may be "NO

It means an algorithm which

ANSWER", but whenever an answer is reached it is
correcl, and for any parlicular inpul, Lhe probabil-
ity of receiving NO ANSWER 15 < 1/2)
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The alzoritnm consisls roughly speaking, of a
“line=r algebra parl” and of a "group theory part”
The “lincar algebra parl” requires high precision
arithmetic; eigenvalues and coordinales of cigen-
vectors have tc be calculaled Lo n® digils accuracy
in order {o make it possible to decide whether two
occurring numbers are equal. We do nol go into

detlails here. See [L&M 82a) for more information.

The output of the “linear algebra par!” is a
reduction to the problem of determining the auto-
morphism group of a "graph with resirnicted color-
groups™: the verlex set V of the graph X i1s split as V
= Cy+ ... +0C,. explicilly listed groups H; s Sym(C;) act
on each C;, and we wish to oblain a sel of gencrators
for Aut(X) n (H,x..xH,). A particular case of this,
solved in the same way {Bab 79), is Lthe automor-
phism problem of "vertex-colored graphs wilh
bounded color-multiplicities.” (These problems are
particular cascs of the "inlerseclion ol group
evlinders” probiem, also solved in [Bab 79].) The
“graph with restricted color-groups” is then
reduced to Lhc "tower of groups” which in turn
admils a delerministic and a faster Las Vegas solu-

Lion.

Balanced sequence of syslems of imprimilivily

Our first procedure concerns permutation

groups subject to cerlsin imprimilivity conditions.

The identily relation will be denoted by id: x id
y iff x=y. We say thal an equivalence relation is bel-
anced il all cquivalence classes have equal cardinal-
ily A sequence of eguirolence relalions ¥,,..¥,
(en the same base sel) will be called balanced if
each »f Lthe equivalence relations ¥,a...A¥, (j=1,....1)
is balanced. (Note thal we do nol require here ¥,
(e.g.} to be balanced.}

-‘

Lel ¥,...%, be a balanced sequence of

r
equivalence relations on the sel 4 such that ‘Al\Pi =
l:

id. Suppose Lhat {or each ), a permulation group
G, = Sym(4&/ ¥,; 1s explicitly isted. along with a basc
B, C (A/¥) for G, (4j=1,...r). Note that IG,| s d"™
where d = |A]
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Lemma 4.2  Let Hs Sym(4) consist of those per-
mutations under which each ¥, is invariant, and the
action of each permulation on 4/ ¥, belongs Lo G,
Then

(a) |H| = d™ whered=|A] and m = [max {B;l-
=l
{b} H can be listed in d™*° Lime.

Proof

Let ¥; = ¥ya..a¥; (j=1....1) and ¥ = AxA. Since
the sequence ¥,...¥, is balanced, each ¢j_,-class
splits inlo an equal number, say d;. of @j-classes.
¥, = id, hence d;-...-d, = d.

Let H, denole the group of those permutations
under which ¥;,...,¥, are invariant and whose action
on &/ ¥, belongs to G, for i=1....,j. Let ﬁ, denole the
aclion of Hj on A/\E. Clearly, H = H, = f-l',

We shall list the elements of ﬁ, by induction on j
and claim iﬁ,l < (d,...d)™ ﬁo 15 Lhe trivial group
acting on the singleton A/ ¥,. Let now o € ﬁ,_,. We
have to find the set of those ¢ ﬁ,— whose actlion on
4/ ¥, coincides with 0. (Nole that Lhis set may be
empty.}

Let us select one Tf,-class from each V¥j-class
corresponding lo the members of B;. Lel By denote
the sel of these q’,-classes. Now, o delermines the
q',_l-class of the m-image of each member of Ej.
Hence for each ol them there are d, possible n-
images in 4/ \T»',. Once we have made our choice of

n[B,' oul of Lhese d,m’l possibic maps B/'+4&/ ‘T’l. Lthe
permulation n is uniquely determined (if such a n

exisls al all}. Namely, for each \P,-class X, the @,_,-

class of nx is determined by o and the ¥;-class of mx

is determined by n !B, sincc B, is a base of G,

Hence for each o, the list of the corresponding

n's can be compiled in d™*¢ {time, and this list is not

18,1

longer than d, ¥ =d™ In particular, it [ollows by

B

induction that IH,} = |H,y[-¢)®' s (dy-....d)™. The
final conclusion is that H = H, can be found in
d™**' time and {H| = (d,-....d,}™ = d™

a

gy
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earlier observalion,

Reduction to "Graphs with restricted colorgroups”
((cls '-C').

{W,. W,.)) consisis of a partition of the vertex set V

A parlibvn-deccrnposilwn  paiwr
= C;+ +C, and a decomposition of R" to Lhe
orthogonal sum of subspaces W, ®..@W,.. Such a pair
is tnvarwnt 1f each set C, and each subspace W, is
invariant under Aut{X}

As in Section 3 we define x¥,y iff PryX = pryy.
The above pertition-decomposition pair is siable if

the following conditions hold for each i=l,....s and

i=t.r
{i) allvectorsin pr|.,~}Cl have equal lengths;

(1) the sequence ol relations

¥, 'C. ¥,IC,.. . ¥, IC; is balanced;

equivalence

(1li} either preC, = {0t or prw’C1 spans W,

We introduce three operation: of refinement,

correspondirg to violations of either condition.

{ot) We split C :alo smaller classes accord-

ing Lo the lenglhs of the projections

PreXx. X€ (S

{on} We split C; so that two members of C;
remain equ:valent iff Ltheir equivalence
classes unde; ':l—fj had equal size. where
\T’J = ¥aaY,

vou}  Let W) be the span of praC, and let W

be the orthogenal complement o W' in

W, We replace W, by —W,@Wj" in our

decomposition of R™

Lemma 4.3
{(Cq. .Car(W,,

pariition-decomposition pair oblained after execut-

il the parulion-decomposition pair

W) 1s mvariant then the refined

ing any of the above operations remains invariant.
The proof 1s a straightforward application of the

that, if m is an orthogonal

lransformation and W .s a m-invariani subspace then

n and pry commute.
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The following is clear, Lo0.

Proposilion 4.4 By less than 2n-fold application of
the above operalions we arrive from any initial

partition-decomposition pair at a stable one.

As an inilial decomposition we choose the
decomposition to eigensubspaces ol the adjacency
matrix ol X. Hence we have dim(w,) < m. As an ini-
tial partition, Lhe trivial partilion {everything in one
class) will suflice. We note, however, thal we can

starl from any partlition into invariant subsets.

The result of the "linear algebra part” of our

algorithm can be summarized in the following:

Theorem 4.5
mulliplicily £ m. Then one can partition Lthe veriex
set of X as C,+...+C, in n® Lime such thal

Let X be a graph wilh eigenvalue

(a} each C;is invariant under Aul(X);
(b} a permutation group H; = Sym{C,) of order
[H{ s n™ can be listed in n™*¢ lime such
that (Aut X)IC; < H; (i=t,....s).
Prool
Let ((Cy.....Co).(W,.....W,)) be a stable partition-
decomposilion pair; dun(% ) = m.
Now, for a fixed value of 1, let 4 = C,. Consider
the equivalence relation ¥; restricted to 4. ¥,.... ¥,
is a balanced

sequenice of Aul(X)-invariant

equivalence relalions on 4, and ¥ja..A¥, = id.

If Prud spans W, then leL G; be the group G
oblained in Lemma 3 2. G, contains the induced
aclions of Aut{X) on on 4/ ¥; as a subgroup, and
IG,| < n™ _O(n""“) Limes suflices to o list G;.

i pr'ld = 0] Lthen ¥; = 4x4, and G, will be the
trivial group acting on the singleton A/

By applying Lemma 4.2 now, where the group H
obtained is denoted by H,, we have (Aut X)IC, < M,
and the prool is complete.

a

“n it

w
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Corollary 4.6 It C s an orbit of Aut(X}, then

H{Aul X)IC| = n™

Reduction to "Tower of groups”

Let new X be a graph with colored vertices, the
colo: classes forming a partition C,+...+C,= V of
the vertex sel Assume tha‘i groups H, = Sym(C,;)
are explicitly listed for i=1,...,s. Their direct pro-
duct H;x..xH, acts on V. The question aboul
“graphs with restricted color-groups” is to deler-

mine a set of generators for G=Aut(X) n (Hyx..xH,).

This is a parlicular case of the "inlersection of
group-cylinders” problem, formulaled and solved in
[Bab 79]. For completeness and for the sake of a
more accurate complexily bound, we recall the
methed.

Let N = max{ |H; @ i=1,...s{. Let [C,.C;} denote
the b.partite subgraph of X induced between C and
C,. Let H,, denote Lhe restriclion to C, of Lhe group
Aut[C.C,j r (HxH,), (1=))

Lemma 4.7 H, can be listed in Nn® time.

(Nole that listing H, in N%n® ume would be
stre cniforward.)

Proo!

Lel @ denote the equivalence -relation on G
defined by xOy iff x and y are adjacent {0 the same
vertices in C. Clearly © is invariant under
Aut{C CIIC, Let Hy consist of those clements of H,

under which G s invariant. H) can be listed simply

by checking each member of H; iet ﬁ, be the
induced aclions of H/ on €,/ 9. Given ﬁ, {arranged as
a dictionary wilh an efficient FIND operation). one
can decide in n® time for eny weH, wisther or not
n € H;, Namely, # induces at mos{ one permutation

of C,/ ©. and we have Lo check whetker Lhis permu-

) ~
- tation belongs Lo H, or not.

.|

]
et now K = nH,. where H.=H, n {Aut(XIC;)).
=1

By Lemma 4 7, K, can be hsted in Nn® time.

Leihma 4.8 {KxK, : Aut[C,.CJ] N (KixK,)| =N, (for
i#j)

(Again, an N? upper bound would be straightfor-
ward.)
Proof

ItA B, C Daregroups, A<BEx D, C=D, then
lAANnC| = |BBBnC]

Applying this inequality to A = K;xK, B = KixH,, C =
Aut[C,C,). we find that the left hand side in the

Lemma does not exceed
iKixHj : AUL[C,.C,] (2] (KIXH])E.

As K= H, we have lAut[C.,C;] n (KxH)) | = IK;1.
Consequently the index of this group in K;xH; does

not exceed |H;| < N.

]
Let pry @ K;x...xK, = K;xK; denote the projection

map and L; = pr,,“(Aut{C,,C,] n (KxK}). (This is a
group cylinder in ithe sense of [Bab 79].) Clearly,

We are going Lo trap G in a lower of recogniz-

able groups. exactly as in [Bab 78]. Let g = E] and

let
G%= K;x..xK,
Gl= Ly
G®= Liznlp

Gi= AL, =G
1”)

Then we go on waking pointwise stabilizers:

G¥*l= g,

G3*%= Gy,

Ga*? = Gz 5= {14
We have

IG*=1-Gk| = N for k=1...q
IG*=h:G*| = n for k=q+l.....q+n

~—
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Solution of the "Tower of groups —Deterministic
and Las Vegas

The "tower of groups” problem 1s Lhe following:

Let G°= G'= ... 2 5* = {1{ be a tower of groups
The elements of Gy are encoded by words in an
alphabet, and group vperalions arc performed by
an oracle. Each group G' is recognizable. ie. lor
any 7 € G® Lhe question 1 € G' is decided by an ora-

cle.

In addition, a set of generators of G° is pro-
vided. The problem 1s to find generators {or each
G' The problem. in this form, was formulaied in
[Bab 79].

An algorithm essentially due to Sims and
analyzed by Furst-Hopcroft-Luks [FHL 80b) solves
this problem by O(T?) operalions where

T= i(lci":c’; -1)
1=

The operations occurring are division and the fol-

lowing:

{*) Given an element 7 € G~} and a set of elements
{¢1...%;1 of G}, decide whether n belongs to
any of the cosets ¢,G', (j=1... .p)

In the case of the tower obtained at Lhe end of
Lthe previous section, we would nced about p group
operations to decide (*) where p can be as large as
N We have, however a morc economical way of
doing (*) in the case ol the "graphs with restricled
color-groups™.

Let G" = GP~''n L, Clearly. for any o.m < GM!
we have oG" = aGh if and only is o[C.C,I = nlC,.C,L.
This way we have a natural representation of the
cosels (G"=!: G") as images under members of G*~?
of the edge sel [Ci.C,; which can be stored in a dic-
tionary with an efficient FIND operalion, hence (*)

costs only nf each time e

The total running ume of the "Lower of groups”
algorithm for the "graphs with restricted color-

groups” problem will then be

O(T%n?) = Q(Nn+2)

7

In the problem of deiermining the automor-
phism group of a graph with noi more than m-lold
cigenvalues, we have N<n™ The running time of
the entire algorithm is asymplotically dominated by
lhe “tower of groups” piece, giving a total ol
O(n%m*c) time.

The Las Vegas algorithm of [Bab 79] for the
‘lower ol groups" requires only O{T) operations (*).
This results in an O(Nn®) Las Vegas algorithm for the
"graphs wilh restricted color-groups" problem and
an O(n™*°) Las Vegas algorithm for the aulomor-
phism group of a graph with not more than m-fold
eigenvalues. (The "linear algebra” pari of the algo-
rithm contributes anolher O(n™*¢),

5. Systems of Imprimilivity Approach

In this section we provide another algorithm for
finding a generating set for the automorphism
group of an undirected graph with eigenvalue multi-
plicity m in O(n®™*<} lime, for ¢ an absolute con-
stant. This algorithm operates essentially by con-
sidering the possible actions induced by Aul(X) on
each eigenspace. IL then combines this informaticn
for each eigenspace Lo determine the actions of
Aut(X) induced on the direct sum of Lhe eigen-
spaces. Unless otherwise noted, Lhe results of this

section are due to the third author.

As in the previous section we assume thal we
are given Lhe orithogonal projection transformation
{or each eigenspace. To avoid excessive subscript-
ing, let pr, denote the projection transformation for
ihe i'" eigenspace S;. Consider the sel of unit vector
permutations under which S, is invariant. Define G;
to be Lthe group consisting of the induced actions of
these transformations on S;. As seen in Seclion 3,
the elements of G, permute the set of projected unit
vectors pr;V. Since prV spans 5; we can faithfully
represent each element of G, as a permulation of
pr.V. By Lemma 32, !G's n™ where m,; is Lhe

dimension of S, and the elements of G, may be

listed in O(n™*°) time.
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Now we exlend oar aolation w tet S, denote the
direct sum 3,858 %5, Similarly lel pr, denole
the orthogonal projection trensformation for S,;
pr = pri+ ..+ pr,

trausiormastions permuting the umit veelors under
p 4

Consider the set of Lnear

which §,.5......5; are invariant. Dcfine G; Lo be the
group consisting of the induced actions of these
transformations on 5, Altfough 1G;1 is polynomi-
ally bounded. in general |G,| may grow as the pro-
duct |G| |Gzl-...-1G;i. Hence G, will be represented
by a set of al most n? generoting permulalions
[FHL 80b). By Lemma 3.1, G, = Aul{(X), where r is

the number of dislincl eigenvalues

Compalible Transformations

Since § =S5,_,®S, any transformalion y € G,
induces a transformation ¢ € (_3._, acling on §,_, and
n e G, acting on 5,. Two transformations, ke ¢ and
m, which are induced by the same clement of G, are
said 1o be compalible. In [act given a compatible
pair of elements v and n, the Lransformation ¥ © C,
mducing ¢ and #, called their extension, is uniquely

determined
ext(g.m) = y = ppr._, + npr,

Our approach to finding G; 15 Lo select a permula-
tion m € G, generate the subset of permutations of
6_-1 which are compatible with n, and then exlend
the resull Lo a subset of (_;i. For-H CEII-,, n G,
define.

comp,(H) = {p € H | ext{¢.m) € G
For HC G _, whose elements are compatible with w,

let ext(H.n) denote the exlension of Lhe elements of
H with n. Obwviously,

G. = U ext{comp,(G,.;).n)
we G

Conceptually, Aut(X) 1s compufed as {Olfows

Compute Gy, Ga,...,Gp:
GRS GRS
fori:=2lor do begin

G, := I

for cach m e G, do

G, := G; U ext(comp,(C,_,),m);

end
Aut(X) .= G,

We will relurn later to explain the efficient
implementation of the underlying operations on the
permulation groups. Presently we turn our alten-
lzqn Lo computing comp,(G,_;) in polynomial Lime.

We investigate the relalionship belween a
transformation in G; (alternately in G,) and the set
of unil vector permutalions which induce this
transformation. Consider an eigenspace S,. Let
I.T2.....T4 be the equivalence classes of the relation

defined in Seclion 3 on V:
xby il prx = pry

Define the group K; = Sym(I',)xSym(l;)x...xSym(4).
Similarly we define K, in lerms of S, pr, and
¥. = ¥yja..a¥, (The groups K, and K; are introduced
only for the purposes of proof and are not used by
Lhe algorithm )

Lemma 5.1 Consider g ¢ G, (alternately G,) which
15 1induced by the unit vector permutation ¢'. The
sel of unit vector permmutalions which induce g onS;
(8} is #K, (¢'K)

The proof is a siraightforward applicalion of

basic linear algebra and group theory.

Given ¢ € Gy, and m€G; the question of

whether ¢ and n are compalible reduces lo deter-

rminung thal:

?'R:-l n 'k, # i1 dteg
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where ' and r' arc unit vector permutations induc-
ing v and m respect.vely.

The compalibisty crilerion may be visualized
by constructing a matrix P whose rows are indexed
by Lhe elements of pf,_,V and whose columns are
indexed by the elements of prV. The entry P, , is
the set of elements of V .which project both onto x

and y.
P,y=1lz€V pr_,z=xand priz=y{

By Lemma 5.1, to induce y € G,_, we musl map each
of the elements of V which project onto x to some
element projecting onto ¢x. Thal is, we must map
each element of row x lo an element in row ¢x.
i.ikewise to induce 7 € G, we musl map each of the
elements in column y to an clement in column ny
(This is exactly whal Lthe permutalions of p‘R;_, and
m'K; do respectively ) The row and column permula-
vions ¥ and 7 naturaily \nduce a permutation on the
entries of P mapping Py, to Py, o A permutation of
V can be found which induces bolth ¢ and = 1if and
only if the cardirality of the entries 1s preserved
under this induceg row and column permutation.

Thus we have shown

Theorem 5.2
compatible if and only if ¥Wxe¢ pr,_;V, ¥y € prV,

Foreg € E:_l and 7 € G, ¢ and n are

Pry' = Porml.

We have reduced the algebraic notion of compa-
tibihity for linqar transformations ¢ and n Lo a
predicale over permutalions ¢ and n acling on
pr._)V and prV respectively Note that the only
computational objects whose construction requires
lhe‘hlgh precision representation are G, pr, and pr,
for i=1, . r Hencefsrith we identify the setls of vee-
tors ¥V, pri¥ and FFV with initial segments of the set
1.2, ..n{ The groups G, a'nd:é‘ v;‘l?bc represented
as permutaticn groups over these sels. As men-
tioned earlier, this representation is faithful. The
exlension of compatiole permutalions ¢ and o can
be defined as the ¥ € Sym(pr.V) such that for all

2 € Pr,V, Pr._,¥z = ¢pT,.;z and pr.¥z = npryz

319

Simple Reeursive Definition of comp,

Now we modily the definilion of comp, to res-
trict atlention to a subset of the permutation
domain. LetH=G,;, ¢ ¢ G- M€ G, and A ¢ pF,,V
which is setwise stable in H. Define:

comp,{¥H.A) = :

fe € ¥H | Yx €8 Vye€prV, |Peyl = |Pyy ol s

Our goal is to compute comp,(€,_;.p7,_,V).

f

Standard resulls from computational group
theory provide an efficient representation of per-
mutation groups by mcans of a sct of gencrating
permulations. A coset of a permutation group, say
¥H, can be represented by ¥ and a generating set
for H.
resulls of the algorithm have such a succincl
The following,
[Luk 80], establishes this for us:

It is ecrucial that all of the intermediate

represeniation. adapted from

Let H=G;., and A ¢ prj,V set-
wise stable in H. Then comp,{yH.4) is either empty

Proposition 5.3

ar is a coset of the group compi{H,4!. where | is Lthe

identity transfocrmalion.

Proof
The

comp;{H.4) is a group. Suppose that comp,(vH.A) is

stability of 4 in H guarantees that

not emply and ¢ is an element. Then ¢ € ¥H and v
x€4 yeprV. |[Pyy! = |Pyynyl. Lel o be any ele-
ment of H. Note thal for x € pr;,V, x € 4 iff ox € A.
Hence ¥Wx €4 ye prV, {Py,l =|Pynml. From
this it follows that:

Vx €4, Y€ privl ipx.yf = :P,crx,rr,!
it
¥x €8, y€prV, [Pyl = 1Pgy,l
Rephrasing this gives: a

9o € comp,{yH.A) iff o € comp(H.4)

Therefore comp,(¥H.A) is a coset of compi(H.4).
]

We apply Luks' recursive methods to compute

comp, One easily verifies the following rules which
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guide the computlaiiern, recalling ithat & s sciwise

slable in H

comp,(¥H.A)

1. If A =[x then:

comp,(¥H,8)= :;H it:e}:-?i’:;v. Rl
2. I A =T,+T;+. .+, and each T, is setwise stable

in H then:

comp,{¥H.4) = comp,{.. {comp,(y¥H.[;)....). ).
3. I H= g HepH'+.. +pH then.

q
comp,(¥yH.8} =  comp.(y¢,H' 4).

)=t
The correctness of these rules is independent of the
structure of the group H. The efliciency of these
rules however depends crucially on the existence of
a rich imprimitivity structure in 6;_,.

Let 5, be an eigenspace, where 1=jsi—1. Define
the equivalence relation ¥ on pr._,V just as before.
The fundamental resull giving a pelynomial time
algorithm relates the size of H to the size of the set-

wise stabilizer of Lthe equivalence classes of ¥,

Theorem 5.4 Lew H=<G,_, and 4 ¢ pr,_,V be an

orbil of H. For any eigenspace 5 (1=jsi-1) the
equivalence classes &/ ¥, form a system of imprimi-
tivity in H. Let H' be the subgroup of H seiwise sta-
Then |H:H'| = ja7¥,|™

where m, is the dimension of 5,

bilizing these classes.

Proof

The prool follows immediately from Lemma 3.2
with the observation that Lthe cosets of H' in H are in
1-1 correspondence with the induced actions of H
on &/ ¥;.

i 8]

We compule comp, by investigating the action
of H on the subset A. If this aclion is intransilive we
recursively cali comp, on each of the orbits in &

(ruie 2). If the action 1s Lransitive we find an eigen-
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spuce 55 (Isjsi=-1) whien partitions A nontrivially,
find the subgroup H'= H stabilizing this partilion
and call comp, with each of the cosets of H' in H on

cach of the purtitiens (rule 3).

Note thal for any pair ol distincl veclors in
pr,_,V. therc s some eigenspace §, (I=j=i=1) in
which their projections are unequal. Thus if [4] > 1
we can always find a eigenspace which partitions A

nontrivially.

Reorganizing the Recursion

The problem with computing "comp” directly
from Lhese simple recursive rules is that relatively
expensive operations, such as computing generalors
for the subgroup H’, are periormed over and over
for each cosel ¥H and each n, when in fact these
operations only depend on H and A. We reorgnnize
Lthe recursion by collecting at one time the entire
set of pairs ¥ and n which will appear in a call to
comp,i¥H,A) for a single H and A.

Given H< G;_; and A ¢ pr,;V which is H-stable
suppose that U ¢ E‘.i_,xci is a sel of pairs (¢.7) lor
which we want to compute comp,(¥H.A). As seen in
Proposition 5.3, if nonemply Lhen coinp,{yH.4) =
13comp;(H.A). We distinguish our new procedure
with an upper case name. Define:

COMP(H,U.A) = (K,W) where:

1. Kis a generating set for comp((H.4),

2. WcG_;xG, contains one pair (y.m)
corresponding to each {y.n)}e U for
which comp,(¥H.4) = @compl(H.A).

Those pairs (y.n) € U for which comp,(y¥H.A) is
emply do noi appear al all in W. Conceptually we
have just run comp,{y¥H,A) in parallel for each of
the (¥ , n) in U and have recorded the resulls in K
and W.

To compute G, we wish to find those elements of
G,-, which are compatible with each element of G,
The initial call is COMP(G,_,. (§1}xG;}., pF,-,V) where |
denotes the identity permutation in G,_;. The reor-

ganized algorithm follows:
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COMP(H.U.45)
(where. H = G,_; & € pF,_;V is H-stable. U ¢ G,_;xG))
begin
il {47 = 1 then begin
Commeni: & = {x{:
W={i(pymeU VyeprV |Pyyl = {Pyrnl|
return(H,w);
end
else if H is inlransitive on A then begin
Find [y,....T'y the orbits of H;
return (COMP(. .COMP{H,U,T})),...T)):
cnd
clse begin
Consicer Lhe next 1'1 {1<j=si—1) where 'l’j
partitions & nontrivially inte T',,...T'4:
Find H = H stabilizing each of the classes
r,....Trq
Commentl H = ¢1H +paH + 4 H'

for each (y.7} ¢ U do

(q=d™);

Replace (y.7) by Lhe g-tuple
[{(ve1.m).. f¥ggm]in L

(K.U") = COMP{ .COMP{H".U.T})....T4):

Comment Cl..» cosels Logether;

iU 2 {{ then begin
Let {{(yy.m). . .(¢,m)cC L
remainder ol any q-tuple created above;
Add {97 V. ¥yl to K.

end,

be the nonempty

for each nonemply remainder of a previous q-
tuple [(¥;.m)....(¥,.7m)) C L do begin
Comment: Select an element of the tuple as
the new representative,
Replace the s-tuple by (¥..n);
end,
Converl K to a proper generating set;
retura(K,U'),
end

end

This reorganization was developed by Hoflmann
Lo improve Lhe ume complexity of trivalent graph

isomorphism [Hof B1]. For the most part, the

correclness of this version is evident from the ear-
lier version of "comp”. The nolable cxceplion is the
process of "gluing cosels together.” The correctness
of this operation follows [rom the next resull,
adapted from the discussion in [Hof 81] or [Hof 82,
Pp- 149-157].

Lemma 5.7 (Luks,
H=¢,H + ...+ pH' and for some s, 1855 q;

Hoffmann) Suppose

¥j € compy(¥gH) forj=1t,.. 58

compy(¥eH) = { forj=s+l,..q

then
compi(H) = <¥y'¥,....¥7 ¥,.comp(H")>

where <K> denotes the group generated by the cle-
ments of K.

Analysis

Consider Lhe structure of the recursive calls
generated by COMP. A cali to COMP{(...,4) results in
recursive calls to COMP(...T,)....COMP( .Iy) for
I+ ... +Ty= A The execulion sequence of recur-
sive calls 15 just a depth first traversal of a tree
whose verlices correspond Lo subsets of pr,_,V and
whose leaves correspond to singleton subsets. Note
thal each division of & inte I's is nontrivial, Lthat is,
each interior vertex of this tree has at lcast two
descendenis. Thus the total number of vertices in
the tree. and therefore the lotal number of recur-

sive calls, is less than 2 {pr,_,V| = 2n.

The complexity of each recursive call depends
in part on the number of elements in U, which we

now estimate:

Lemma §.7 Suppose the call COMP(H,U,I) has
ensued from the initial call COMP(G,_,, (l1ixG,)}.
pri_,V). Then {U} < n™(ipr,{VI/ IT{)™.
Prool

(By induclion on the depth of recursion.)}
Since |G,} = n™ Lhis is true for depth 0.

“.d
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Belore proving the induction siep nolice that
the size of the coset lis. relurned s never larger
than Lhe size of the cosel hst cr entry So it
sufflices Lo that
COMP( ..(COMP{E U.T)).

the size criterion for each Iy, k=1,.. .d.

show in the series of calls

3.T3) the iniual U satisfies

Suppose that Lhe call to COMP(H,UTI) arose
from COMP(G.W.4) where |W| = n™{ pr,.,VI/A})™
Cleariy ' c & If the call to COMP{H.U.T") arose [rom
the inlransitive case then

Ul = W
s nTpro, V. /A"
= n®([pr,.,Vi/|Tp)"

( ! the call arose from the transitive case then [ is

W Al .

i

one of d equal sized blecks forming a system of
imprimitivilty in A, se Al =4d-'T Ul = |Wlq
where q = /(GH By Theorem 5.4 IGE <d™ There-
fore
Ul=s w'gm
< n®(pr..,V./ [aAY®( . & /T )™
s n™(IpT,_,V / IT|)™

|

Since pr._,V % n, in cach recursive call [U} < n®™.
At the base of the recursion the construction of W
requires O(IL -n) steps The cosl of expanding U

into p-tuples and later contracting the returned sel

C‘." is likewise bounded by Lhe size of the expanded

set limes n. We deler charging the complexiiy of
Lthis operation to the subsequeni call to “"COMP" with
the expanded set. By doing Lhis the cost of process-
ing U .c always bounded by O({Ui-n} = O{n®™*!). for

each recursive call

The other sources of effort during each recur-
sive call are Lhe group operations. Recall that H 1s
represenied by a list of at me’sl. n? generating ele-
ments The orbits of H can be €alculathd in O(n®)
time by existing techniques [Hof 82 p. 46]. The par-

. tition of 4 into blocks of imprimitivity requires O(n)

time. The set K. constructed in the transilive case,
may conlain as many as n®+n™ elements alter glu-

ing the cosetls together, but by the slandard “sift
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and close” method [FHL B0b], O(nmax(m+2.8)) ime

suffices to reduce K to a proper genecrating set.

Finally we musl analyze the construction of a
generating set for H' from H in the transitive case.
H :s constructed by the "tower ol groups” methed
[FHL B0b]. The time to construct a generating set is
O((T+n?)n(C+n)) where T = |H:H'| < n™ and C is the
time to decide for ¢ € H whether the group tower
has already encountered seme Yy € H such that
¢H' = yH"

To bound C we provide an efficient method of
recording the cosets of H' in H. These cosets are in
t-1 correspondence with the permutations of A/ ¥
induced by H. By Lemme 3.2 each permutalion s
determined by the image of a base B =
{by....bn} ¢ 8/ ¥;. We construct an m-dimensional
matrix M indexed over &/ ¥, and identify Lhe coset
»H with the entry M{g¢b,....¢bg). The entries of M
can be initialized in O(n™) time and the entry of M

corresponding to ¢H can be located in O(m) Lime.

With the aid of the matrix M, C=0(m) so the

generators for H' can be constructed in
O((n™+n%)?n(m+n)) = O(n™=x@™+20)) time. Combin-
ing ail
COMP(G;_,. ({1ixG,). pr,_,V) can be compuled in

Q(nmax@m+37N e

Lthe results of the preceding discussion

is the extension of
COMP(G,~;. ({§xG). Pr.,V) = (KW) to G. By

definition K is a generating set for compy(G,_,). So

One remaiming detall

G; 1s generated from the set:
ext(K.I) u lext(g.n) | {p.n) € W]

This set may ccnlain n+n™ elements and $o an
additional O(n™e={™*26)y time 15 required to produce
a proper generaling set for G, by the "sift and close”

procedure.

After iterating over the O(n)} eigenspaces the
cost of compuling Aut(X) is clearly O(pmex(2m+4.8)y
plus the initial expense of compuling the eigenvec-
tors, the projection functions and the groups G;.
Since the linear algebra parl contributes Q(n™*<)

the tolal complexity is O({n®™**),

L
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Onc Unboundcd Multiplicity

ine following interesting observation on this
algorithm was peinted out teo the authors by Chris-
topr Hoffmann. Suppouse an undirected graph has
r-1 distinct eigenvalues each of bounded multipli-
city and one eigenvalue whose multiplicity is
unbounded. The automorphism group of this graph
can be compuled in polynomial time as follows. The
group 6,_, can be computed as before in polynomial
time, and by Lemma 5 . the group H ol unilt vector
permutations induecing G,., can easily be lound.
The group H consists of orthogonal transformations
under which S,_, is invariant, hence S,, the cigen-

space of unbounded d.mnension whose orthogonal

. complement is S,_,, is also H-invariant. By Lemma

3.1, H = Auy{X). As a consequence of this observa-

tion the isomorphism of graphs in which all but one
of the eigenvalue muluplicitics are bounded by a

constant can be lesied in polynomial time.

8. Conclusions

Two polynomial time algorithms have been
presented which find the automorphism group of a
graph with bounded eigenvalue multiplicity. The
lwo algorithms presented provide an inleresting
conl.qiuily between Lhe "tower of groups” Lype algo-
rithms for graph isomorphism {Bab 78, FHL 80a,
Hof{ 80a} and the “recursion through systems of
[Luk 80, Bab B1]. We

remark that the Lower of groups method was origi-

impriumitivity”  algorithms

nally designed preciscly in order to complete the

(:_ Jroof of the result of this paper- On4he other hand

the second algorithm is interesting because it
employs essentially the same group Lheoretic
methods as Luks' algorithm for the tsomorphism of
graphs wilh bounded valznce This raises hopes for
a common generalization of the problems of isomor-
phism for graphs of bounded valence and bounded

eigenvalue mulliplicily. ! is a problem of consider-

able interest to find a more qene_ral pirameter of

graphs so thal bounvedness of this parameter
would permit polynomial time isomorphism Lesting

on Lthe one hand, and il would generalize the bound-

edness of such parametlsrs as valericy, genus, and

multiplicity of eigenvalues on the other hand.
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