Hoxn. Axan. Hayk CCCP -

Soviet M
Tom 275 (1984), Mo 6 b D

Vol. 29 (1984), yotb

0.9

FAST DECOMPOSITION OF POLYNOMIALS
INTO IRREDUCIBLE ONES

AND THE SOLUTION OF SYSTEMS OF ALGEBRAIC EQUATIONg
UDC 518.5+513.46

D. YU. GRIGOR'EV AND A. L. CHISTOV

In this note results are presented which show that polynomials in several variables ca
be decomposed in polynomial time into irreducible factors over a field finitely generateq
over a primitive field, and, moreover, that an algebraic variety can be decomposed iy
subexponential (in fact approximately

polynomial} time into irreducible componentg,
All previously known algorithms have had exponential bounds on the operating time for
solving these problems.

1. Let f € F[X;,..., X»] be a polynomial with coefficients in the field

F= H(Th:ﬂ)[n]?

where either H = Q of H = Fy«, ¢ = char(

F), the elements T,...,T; are algebraically
independent over H, and the element 7 is se

parable and algebraic over H(Ty, ... , T1); we

denote by
e= X Wz e HT,... T2
o0gi<deg, ()
its minimal polynomial over H (T1,...,T1) with leading coefficient lez(p) = 1, where

5051),‘,0,('2)

tion as

€ H(Ty,...,T;) are relatively prime. The element f has a unique representa-

= X

DS:‘(degz(ua)
DLiy,in<d

Bty ,eyin, § v i
1 ’_"ﬂ‘Xil"'X;"a

0t e eyin

where a;;, . , biiy,..i. € H{(Ty,... ,T}) are relatively prime. In addition, let
deglip) = max{degz(p), deg(;"), deg({™)} < di; degy, (f) <
degr.(f} = max

Hi1ensin

{degr,(ai,,...in ), degr, (bis,,..in )} < do

for arbitrary 5. By the length I(h) of a record k when h € H we understand its bit length
(see [1]), and when & € F,~ the length is s log(q). Suppose that the record length of every
coefficient in H of the polynomials Giyiy,.dn and by g, (fpgl) and <p§2), respectively) is
not greater than M (than M,). The we take the record length to be I(f) = 2d}yd,d7,, ie.,
[ is represented as a vector of 2dyd,d” components in H, and similarly I(p) = 2d+1)M,.

2. The problem of decomposition of f into finite irreducible polynomials has a long

history (cf. [1) and [4]). All previously known algorithms for the decomposition of f
have had an exponential upper bound on the complexity, as, for example, the classical
algorithm of Kronecker [2] (see [5] also), even for the case F' = H. When F is a finite
field, n = 1, a decomposition algorithm, polynomial in I(f) and g, was finally obtained
after 50 years (see, e.g., (1]). Following were the essential steps: the !{ f)-polynomial
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Soviet Math. Dokl. algorithm for the case F = Q. 7 = 1 was proposed in [4]. In {6] an algorithm for the
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in [7] obtained an algorithm Polynomial in () and g for global fields F.

THEOREM 1. A polynomial f can be decomposed into factors irreducible oper Fin
MIALS time that is polynomial in Uf), (o) and q.

In the proof of the theorem an essentia) use is made of an efficient version, proposed b
AIC EQUATIONS the authors (7], of Hilbert’s theorem on irreducibility for fields of nontrivial c:ha.ra.cf;erisi:icb.r
For every polynomial f the absolute decomposition f — I1, 75 is its decomposition
mto factors that are not reducible over the algebraic closure F of the field F. If f is not
reducible over F, then all the Ji are conjugate over F with € = ¢¥ for all 7 and some

s in several variables can v20when ¢>0 ande, = 1 when char(F) = (, ‘{Ye denote by F} the decomposition of
a field finitely generated ¥ induced by the coefficients of the polynomial 7",
acalt b_e e COROLLARY 1. For every polynomial f irreducible over F' we can find a time for its
irreducible comp fmenfts. absolute decomposition that 55 polynomial in i( f), {{p)andg, ie., polynomial ) € F|Z],
' the operating time for irreducible over F, such that Fi ~ F[Z)/(4), and q polynomial f¥" ¢ Xy, ..., Xy for
all 1.
n the field 3. We proceed now to a brief description of the algorithm for solving systems of
algebraic equations fo=fi=-.= fx—1 = 0. Since we are actually proposing an
Igebraically algorithm for decomposing manifolds in projective space into irreducible components, we
oo+ T} are alg ) can assume that fy, f;. ... Je-1 € F{Xy, X,,.. -y Xp] are homogeneous polynomials with
e e degrees & > §; > ... > b1, respectively, and we et V' C P*(F) denote the manifold
12 of the roots of the system fo = f; = ... = See1=0. We shall, moreover, assume that
&

& < d and that, for the polynomials f,, FIT satisfying the same bounds as the
polynomial f in 81,

dent leg(yp) = 1, :el::;e degTh,,,,T‘ (f) =h_rlnax1_ {deg(a,-,i,,...,i,.),deg(bi,il,....in)} <dy.
has a unique repre - Elyeeryin

The problem of solving systems of algebraic equations also has a long history. Algo-
rithms based on the theory of elimination [2] have a processing time bound even greater
than exponential. The complexity bound for this problem has been improved in a se-
quence of articles, and the best estimate known to date (5] is polynomial in k, M and

" in the case F = H,

In [8] an algorithm was constructed for finding the roots of a system when dimV = @

In addition, let

degx (f) <d ; (we emphasize that it is essential here that V be in projective space). The construction

in (8] is based on an effective version of the Hilbert theorem on zeros for homogeneous

i)} <do E polynomials, This algorithm requires a number of arithmetic operations over the elements

derstand its bit length | of F that is polynomial in kd*, The result is an algorithm polynomial in the input length

unders d length of every ~and 4" opjy ip the case of a finite field F where, as before, dimV = @ (we note that

hedrec(o;) r:spectivel.‘{) TR the number of output elements of the algorithm, i.e., the number of roots of the system,
ma gy 7,

. 8 card . . . . A—
be I{ ) = 2dbdydiy i I8 V) < (d— 1)*, and in the general case equality occurs according to Bézout’s

: — 2d"1) M. t corem). To construct an algorithm for the arbitrary field in §1, it was necessary to
nilarly () = 2 : 10dify the method of [8]. The modification for arbitrary fields F requires for the case
. polynomials has a long L “Onsidered below that V' be of arbitrary dimension, even when the coeficients of the

the decomposition fo ' lnP‘lt.SySlEeHJ of equations belong to H. Let D = bo + 8 + . + Ony1, r = (D: ™).
>r example, the classiC 2 € Will assume that the field H contains a sufficient number of elements, enlarging it if
: H. When F is a finie i Rl

1 ¢, was finally Obtzlnr;i&l i ThEOREM 9. We can construct an algorithm that tells us whether dimV = 0 gng
ps: the I(f)-polyn 4 ;hether t will find ol the roots (with multiplicities) of the input system. In Jact, all
:condary 14A10. o : A € ro0ts gre partitioned into conjugate classes over F for each of which the algorithm

American Mathematical S0€el - Bstrucs g polynomial & c F|Z), separable and trreducible over F, such that lez(®) = 1.
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Moreover,_the algorithm determines a jo, 0 < jo < n, such that for each root (& 50,
&n) € P™(F) of this class, £;, # 0, and £, = 0 for 0 < j < 3. In addition, the algorithn;
finds those ~jo,...,yn € H (if card(H) > (rd\)?) and the ¢, 1 < ¢¥ < r (in cage
cha.r(F ) = 0 we stipulate that ¢* = 1) for which the element @ = ZjonSn Vil&i /i)
satisfies B(8) = 0. Here

F[(Ejoi'l/‘gjo)qv: Soop (énlgjo)qu] = F[G] = F[Z]/(‘I’)’

and the algorithm constructs an ezpression for (€;/€3,)9 € F8] for o < 7 < n. The
number of conjugate roots in the class is equal to deg,(®) < card(V').
The degrees

11'2?%(1 degr. (®), Psl?g!{degﬂ ((‘Ej/gio)qy )}

(they are determined as in §1) are bounded above by a certain polynomial in r,d, and d,.
The lengths of the records I{®) and I({£;/&,,)7) (they are also determined as in 81) are
bounded above by a certain polynomial in r',dY,dy, M and M, which is linear in M and
M. Finally, the operating time of the algorithm is polynomial in rl,dy,db, M, M\, k and
q.

4. We now proceed to a discussion of the case in which V is of arbitrary dimension.
Since V' is defined over the field F9~~ (the maximal purely nonseparable purely nonsep-
arable decomposition of F' {3}), we can expand V in the form V = |, W,, where the W,
are defined and irreducible over F9°~ . Furthermore, W, = Uz Wegp, where the compo-
nents W, are defined and irreducible over F. The proposed algorithm finds all the W,
and then the Wag (in fact, the W, and W,g are defined over certain finite extensions of
F' (3] which the algorithm also finds).

Let W C P™(F) be a manifold, codimp-W = m, defined and irreducible over some
field 71 which is a finite extension of F, and let F, be the maximal subfield of F, I, &
separable extension of F'. Let ¢y, ...,¢,_., be algebraically independent over F. We can
define a generic point of W by the following field isomorphism:

(1} Fa(ti,tz,. .., thm)[f)

- . Xj’ _XJ‘ -XD qv Xu Qu
_F2 ( E )clejos ) Z An-m’JT_ﬁ),(on) ,,(YJ—) CFl(W)

g<j<n 0<y<n

for some ¢”, where ¢ is an algebraic and separable element over F, (t1,-..,tn=m) and
®(z) is its minimal polynomial, detz(®) < degh¥, lez(®) = 1; the elements X;/Xj,
are considered here as rational functions on W, where W does not lie in the hyperplane
defined by the equation X;, = 0; and A,; € H.

Let ¢ = ¢(V) = min{max, dim W, max, codimW,} and let L denote the length of
the input data record (see below).

THEOREM 3. 1) One can construct en algorithm which defines for each component

W, its generic point and constructs a family of homogeneous manifolds qb{“), Ce ¢f$) €
F(Xo,...,X,] such that the set of roots of the system v,bf“) =.-.= gb‘(.?) =0 s identical

with We. Let m = codimW,, 8, = 0 and d, = ®.
Then ¢* < d*™ and degyz(®,) < degW, < d™; for all i and j the degrees
degr,®a, deg, (Po), degr((X;/X;)7 ), deg, ((X;/X5)%)

(the last two are defined in accordance with the isomorphism of ( 1)) are bounded above
by a certain polynomial in d™didz; and the lengths of the records I(X;), (®,) and
W{(X;/Xj,)%"} are bounded above by a polynomial in My, M and (d™d dy)" ™+ +1L
The number of equations is N < m?d*™ and the degrees degy, (1/)5") ) and degr, (t,b}“)) are
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bounded above by a polynomial in d™dydz; the algorithm displays each 11;}“) in the form
gbj(.“) = wj“’(z,,.;,, -y Zjn_my2), where the Zj,: are linear forms in X0, Xa,..., X, with
coefficients in the field H; the record length 1{1,[;}“)) does not exceed a certain polynomial
wm M, M and (d™didp)n—mHFL ong U(Z;,;) does not exceed a certain polynomial in
n and log(dd;d2). The overall operating time of the algorithm is bounded above by a
polynomial in

MMldn(c+I+l)(dld2)n+lk(q + 1)

The last value obviously does not exceed

O(LH1 (g +1)) < O(LVE (g + 1))

when n,dy, dy = 0(d?), O = const.

2) One can construct an algorithm which finds for each component Waga the marimal
separable subfield Fy = Flu| of the minimal field of definition of F, (containing F) of the
manifold Wog. The algorithm constructs a generic point of Wag as well as a system of
equations with coefficients in Fy defining Wog. For the parameters of the generic point
and of the system of equations the same bounds are satisfied as in 1). Let p,g € F(Z] be
the minemal variety for u and lez(wag) = 1; then degz{pap) < degW,g; the degr, (vag)
are bounded above by a polynomial in d™d, dy; and the record lengths l(pag) are bounded

above by a polynomial in MM, (d™d1dz)+!. The processing-time bound is the same as
in §1).

Theorem 3 generalizes Theorem 1 (codim V' = 1) and Theorem 2 (dimV = 0) to the
case of arbitrary dimension of V, and its proof is essentially based on them. We also
mention that the upper bound to the output length of the algorithm of Theorem 3 is
of the same order as the processing-time bound cited in the theorem, and therefore the
greatest reduction in the processing time can be expected only when the representation
of the manifold component is different from what we have presented here.
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