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COMPLEXITY OF QUANTIFIER ELIMINATION

IN THE THEORY OF ALGEBRAICALLY CLOSED FIELDS

A.L.Chigtov, D.¥u.Grigor'ev
Leningrad Scientific Research Computer Centre
of the Academy of Sciences of the USSR,
Mendeleevskaya 1, Leningrad, 199164, USSR

Leningrad Department of V.A.Steklov Mathematical
Institute of the Academy of Sciences of the USSR,
Fontanka 27, Leningrasd, 191011, USSR

Abstract

An algorithm is described producing for each formule of the
first order theory of algebraically closed fields an equivalent free
of quantifiers one. Denote by N a number of polymomials occuring
in the formula, by J; an upper bound on the degrees of polynomieals,
by n & number of variables, by @ & number of quantifier alternati-
ons (in the prefix form). Then the algorithm w%rks within fhe poly-
nomial in the formula's size and in (No‘,)n(m+ ) time. Up to now
& bound (Nd/)”'wm was known ( [5]1 , [71, [15] ).

1. Fast elgorithms for factoring multivariable

polynomials and for solving systems of gl-
gebraic equations

Lately the considerable progress in the polynomisl factoring
problem was achieved. Lenstra A.K., Lenstra H.W., Lovasz L. [12]
have designed an ingenious polynomisl-time algorithm for factoring
oneveariable polynomials over Q . Independently Kaltofen E. [8] ,
[9]1 has constructed a reduction of multivarieble factoring over

to onevariasble factoring, running within the polynomial-time provi-
ded that the number of variables is fixed. The authors [1]1 , [4] ,

have suggested a polynomial-time algorithm for factoring multiva-
riable polynomials over @, and over finite fields. Later another po-
lynomial-time algorithm for the case of finite fields was exhibited

in [13] spreading the method [12] .

Also an essential progress has taken place in amother important
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problem of the commutative computeralgebra, namely in the problem of
solving systems of algebraic equations. Earlier a complexity bound

of the order d¥ wes known for it,e.g. from (5] , L71, [15] -
Lazard D. [11] has designed an algorithm for soclving homogeneous
systems of algebraic equations in the case when the variety of roots
in the projective space of the system is null-dimensional, i.e. fini-
te, working within the time d/o(w) if the coefficients of the input
system are taken from a finite field (certainly, provided that we

are supplied with a polynomial-time algorithm for polynomial facto-
ring). The authors [2] , [3] , [4] involving the polynomial-time
algorithm for Ppolynomial factoring [1] » [47 and the method from

[11] nave tongtructed an algorithm for solving an arbitrary system
of algebraic equations, running within g polynomial in the gize LQ,
of the input data (system) and in " time. Moreover, the algorithm
finds all the irreducible compounds W,c P Fyot tne variety of
roots of the homogeneous system within the Polynomial time in d)nc
and in |, where C=1+moax  dim Wi (the general case is reducible
here to homogeneous one). Finding WA, allows to answer the prin-
ciple questions, €.8. emptiness, dimension of the variety of roots.

Now we turn ourselves 1o the exact formulations of the mentioned

resalts. et a ground f1eld F=H(T,..,Ty) [yl where either
H=Q or H"F@x N Q=MDWL(H) » the elements T“...,Tg

be algebraically independent over H ; the element P 1s separable
andi algebraic over a field H(T;,...,TC) » denote by q=0<'2 (({iﬂ/(rw)‘
Z'eH Ty Ty) TZ7 114 minimal polynomial over H(T“...,\']ic(;“’gzw)with
the leading coefficient e, (=1 | heremitn qé",qweH['ﬂ,...,Tc]
and the degree dl»g(q( )) 18 the least possible. Any polynomial {e

F [X,,...,Xn]can be };miquelf.y repregented in a form {: :Z:' . i
B4 oy i /0) B xa'{..xxv where aq,@m_“,,;n,&el—ff"'rfﬁ‘%:fﬁ.?j-.., "
the degree dtg (8) is the least bossible; the polynomials #; ’{; R
-are determined uniquely up to a factor from H* « Set W‘T 41'»:”", "

z"gg’%’éid(’q'r}-(a’i,io,m,én)gd‘g'r (g)}« By a length of descripgion i(h)
in the caase h/e we mean its hitwige length, and in the cage

hng we mean 2 2(4) . By 8(4) denote the maximum of the lengths
of descriptions of the coefficients from H in the monomials in T“...,

’ It iyt !
{ ©of the polynomials ﬂq,,(,m...,b.,,’ .

; Let d;;gx’.({)m, dz,gT’.({)wz, cugq-a.(q)w“ dzgz(qf)w,,
({)st, £(q; < M4~ As a mize L4( ) of‘the polynomial { we con-
slder ip the theorem I a value 4 M+ 2 M

and anale 1
&((()ﬂl«,: M4. 2 alegously
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THEOREM I. ( [1] , [4] ). One can factor the polynomial { over
F within the polynmomial in L,dy, L,(q)y g time.

Remark that it is possible within the same time to obtain also
the absolute factorization of ¥ i.e. the factors irreducible
over the algebraic closure [ of the fietd F ( [2], [4]).

Proceed to the problem o6f solving systems of algebraic equations.
Let an input system of algebraic equations ¥°= =¥K=O be given
(we can sssume w.l.0.g. that {0,..., k are linearly independent). As
a matter of fact we suggest an algorithm which decomposes an arbit-
rary projective wariety on the irreducible compounds, so one can sup-
pose w.1.0.8. that f5..sf € FLX,,..., X, ] are homogeneous Tre-
latively to Xo’«..,xn, polynomials. Let MT,,---,T@,Z(qxd"" £(¥;)$M2,
“{“}xo,...,xﬁ““i’ "L"g'r“..‘,T&({L)WLz for all 0gi<K an&{in
the theorem 2 a size Lg(f;)= (d'u"’) didf Mg, and I_.Z((‘r)=d/4 M4.
Denote L=L,,(¥.,)+...+Li({.‘). § =

The projeciive variety {L:..;?K: O}C ]P (F) of roots of
the system {o = ...=¥K =( is decomposable on the compounds {¥o=

E ¥K= 0} =y W& s herewith each compound Wd, is defined and,

irreducible over the maximal purely inseparable extension

of F . Moreover W‘,L:y Wd’} where the (absolutely irreducible)
compounds Wd,} are defined and irreducible over F . Denote ¢=
i+ rglamd{m W, . The slgoritim designmed in [2],[3],[4]finds a1l W,
and thereupon Mp(actually, Wd’, WJ.} are defined over gome finite
extensions of the field [ which are also constructed by the algo-
rithm). We (and the algorithm) represent every compound Wd, or W;L
in two following manners: by its general point [16] and on the
other hand by a certain system of algebraic equations such that the
compound under considerstion coincides with a variety of the roots
of this system, in the similar case we say that the system determines
the variety.

Por functions g,,gz,h“... sl a relation 94$9z@(ku“"h’é)
denotes further that §,¢ qu (]1,1,. ..,h,s) for an appropriate polyno-
mial P . -

Let Wc ;pw(F) be a closed projective variety,oodA)m,Pw(W)=m,
defined and irreducible over some field F1 being a finite extensi-
on of [ , denote by Fz the maximal subfield of F1 which is a se-
parable extension of F . Let f“.-., tn—m be algebraically inde-
pendentoverF « A generxral point oftheva.rietyw
can be given by the following fields isomorphism

? Y
Fitiome o )O1% Fo o/ Kjpom K K Ko/ KooK X5, ) < B €0
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for suitable (f (here and further v >0 when @>0 and we get

4 =1 when ot (Fy=0 ), index 0<¢j,sn and an element O

is algebraic separable over a field F,&({:“.. stp-m) 5 denote by
CP(Z) its minimal polynomial such that &;Z(CP) =4 . The elements
X; / X jo 8Fe considered herein as the rational functions on the
vw‘rietyo W » herewith W is not situated in a hyperpla.ne{xj'f()},
under the isomorphism (1) té»)(a';'/)(d‘a . 44 i Lh-m + The algo-
rithms further represgent tpe isomorphism (1) by the images of ratio-
nal functionsg ( X,/Xh )a' in the field Fg,(tv“ .,Jl?n-m,) [01.
Sometimes, when there is no misunderstanding, we identify a rational
function with itg image.

THEOREM 2. ( [2], [3], (41 ). a) an algorithm is suggested
which for every compound 4 Produces its general point and const-
ructs a certain family of homogeneous polynomials (P:M,. <y Q(r:')e
SF[XO,...,xn]such that a system 4('*)=..‘=LP;:)=0 determines the variety
W, . Denote m=codim W, , 6,28, $,=9 . Then g <™ deg (B, )<

m ..
degWo <d" for a1 b the degrees dog, reiTy byt ”(ﬁ),d%“ N £n()(j/)(a-,f’

(the latter two degrees are defined according to the isomo}pﬁism (1)

ana.lon%ously to how Ti,(h was %efined above) are less than

dr”y(& ,d,4)’ apart that e( “),&((lex .0)9 )s(M4*M&+(n+C)b?dz)@(d/m’ d{).

A number of equations N<md 4 ; the degrees d“ﬂ)( X (kP?‘) $d2m
) m . . Lt had £4% 7 .

and the degrees ;ﬁ:---,T(;(q’s )$d39(d4(ﬁ)r4),be31des that the algorithm

. @
represents each §” in & form 0N =, (25,0""’Zs,w-m+2)

for suitable linear forms 25»3' in the variables X,,..,X,with the
coefficients from H  ang tpa polynomialg ('pgt)e F[Zso A n-Mz]
thereto £(Q§")4(M4+Mz+(m£)iogd YPd™, d,) lastly the siz ’

9 ' Oy), Y the size
L,‘(Zs’j)’iﬂ)(n, ddng,) for all 3,§ . The total running time
of the algorithm can be bounded from sbove by P (M“Mz,(d/”'dqd%f“)
Obviously, the latter value is less than g’(Lcd(l}H))ég)(LugL(q,H))
if n=0(d).

b) An algorithm ig suggested which for every absolutely irredu-
cible compound Wip finds the maximal separable subtield F=Flx,
- of the minimel field of definition ﬁ (containing F ) of the vari-

,Qty W&} + The algorithm produces a general point of W.;,} and some
system of equations with the coefficients from the field Fg‘ de~
termining the variety dp + For the parameters of the general point
and the system of équations hold the game bounds as in the item a)
of the theorenm, Denote by (f.*p e FIZ ] the minimgl polynomial for

S*P such that &:z(q‘})= 3  then dlgz((fd' ) € W‘} and
the degrees T ((f )<d ."P(d,”’d, 1 tljs {/

2T ) $Gg (a7 dy), 1ast1y (up) < (Mgt M, +

T“"
"
(n"‘C)%dz)y(d’ dq). The time bound is the same as in the item a).

£
£
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REMARK. If we are supplied with a general point (with the same
bounds on its parameters &s in the theorem 2) of a closed irreducib-

le variety V4- %(W&) m}flere fru(Xa;...:X”)= (xo:“ 1 xm) is a le-
near projection gu: pr - \P and W* is some compound of the va-
riety {40 ‘..=¥K-0}C \P“’(F) , then we can produce a system of

equations determining Vy with the same bounds on the parameters as

for the family ({)(‘*) in the theorem 2 within the same time bound.
In conclusion of the section 1. The authors ‘mgke a conjectpre

that one can find the compounds within time ﬂ‘) OL(C+ “n, (dqd/l)m ,L)

where C'= mam WWn{dAmW +4 wdmmwh}

2. Projecting s constiructive get

Let an input formula 3)(1 -3Xs (&“ SK(% ng))
be given, herein the parameters of the polynomlals F[Z“...,
Zy-59 Xj9o ,Xg] satisfy the same bounds as of fj in the section 1. The .
goal in the present section is to produce an equivalent quantifier-

i e B Ol ol
The input formula is equlVa.Lent to 3)( 3)(4 AX 3x5+4((x #0)%&

3‘4< 41((43 0)8((40 Xsr & trdegg therein X Xgyy  are
new variables and {;= X4 )(4 X5(¥4):f Z4, L5984/ Koy /X,,), -XM 1P
9(24, 7Zn-S’X4/X,a~,Xs/x,)e°f° {71 ). The des:.red projection, 1.e. the const~
ructive set consisting of all the points (?.1,.. ,Zn_s)eA (F)
satigfying the latter formula, we denote by ﬂ . One can assume
further w.l.0.g. that x“ 43 d, l 041 s replacing 43
by the family of polynomla.ls { 1‘ 1}‘)(‘(54‘{

Introduce a variety U= {(24, zn-sa(xo"“-msﬂ))e( ol PSH)(F)
% (4 = 0)} and & natural linear projection & :AMx Psﬂ
-5, then the deslred ﬂ ﬂi(Uﬂ{X # 0} . Por each
point Z=(Zyy.-, By~ s)e/\ (F) copsider the variety(the layer)
Uz=a"=)n UC{Z} X Ps“ [Ps+ . The condition z€ [l is true
iff for an appropriate 0<m< 5+1 the layer Uzhas at least one
compound W with the dimension S+{-m  such thet WZ {X,=0} .

Pix a point Z in the following speculations for some time. It
is not difficult (see e.g. §2 [2]) to indicate a femily of N'=

+{ vectors %() N) € HKH any K+{ from which are
llnearly independent (we suppose here and below that H contains
sufficiently many element, extending it if necessary). Denofe ‘1,‘ =

i, by .
=2 0¢§<K u; )%', herewith 1{«( ) =(u f:'),... (“) The relevant com-

pound W ‘of Uz exists iff there are such indices 1€ 4‘4~'-'<‘m$N

0548K
SR
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§+4
that W is a compound of the variety {M4(Z)=--.=Mm(2)=0}clp ;
herein the coordinates of the point 2 are substituted insteamd of

Ziyoo 2y g, ieechy B)eF[X,,.. . Ksgql (cf. b4a [2]).

tne cen constaduct (see §2 [2] ) a family Hi= ms,s-m,d""

consisting of ($-M+1) ~tuples of linear forms in variables X,,...,
XSH with the coefficients from H such that for every variety

W,c PS satistying the inmequalities diw W, <s-m, dl,g W, < d™

there is (5-m+{)-tuple (Y4""’Y6-m+4)€ N for which W1 n { Y1 =,

s+{)d"™ +4
= Yo =0F = B Thereto cand (M) ( ¢ Y . Let us take
a variety WN { X, =0 as 4 + Supplement linear forms Y‘,:Xo, Y“
yooey Toupped UP to a basis Yo, cea ’YSH with the coefficients from
of the space of linear forms in X,,,. . ’XS-H (in a.rbitx;vary mannexr ).

Replacing variables denote R,-v(z,Yo,. - ’YSH) =h1', () and h’i (&)=

= i,(zrva’O""’O’Ys-mmv")YSH)' Thug, the condition under considera-
tion about the existenc‘e of W is equivalent to that there are in-
dices 'Kl;,t(. " <{,ms N ana line’%r forms Y1r“st-m+4

for which the veriety {f; @=...=hi, 2)=0}cP™ " as one of its
compounds has a certain {:oi.nt . :*-('ga :‘gs_m_%: N §5+4 ) such
that the point {1=(z,(5,:0:...: S 2Ze NeUz 0V, 2 0}

(in force of the theorem about the dimension of intersection [14] ).

Introduce & system of homogeneous algebraic equations

~ d-1 )
hq‘,a. (E)-YYS-M+3+4=05 ‘{$3$M (2)
in the variables Yy, Y pueg,..., Youu with the coefficients from

F[Y] cFYy=K where Y ig algebraically independent over P .
One can prove (see also lemma 11 §5 [31 ) that the set of roots
in Pm'(l()of the system(2) is finite. The variety of roots is decom-

. posable on the irreducible and defined over K nulldimensional com—

Yl /(

YS'M*).’
ij ()~ YY5~m+j+4}1sjsm)‘The system (2) can be considered

apart thai as the system in “the variables Y’YmYs—m,ﬂL’ .-~,Y¢9+4

o with the coefficients from F which determines a variety Ug) C

~ AY(F). 1t 1 not aitricuit to show (cf.lemma 12 §5 [3] ) that
thexre is a bijective correspondence between the points VPK and on
Vthre other side such compounds VU’F of the variety U(:) that F
--18 not contained in a.n{ union of finite number of hyperplanes of the
ktnd {Y-¢,=0t e A" ror ¢,e F, notice that dim Vp =2,

. . -Now we exhibit an important auxiliary device from £11] (see

also §3 [2] ). Let 90""’9&-46F[X07""xn] be homogeneous polyno-

m‘.als of degrees 5;; .2 k-4 Tespectively. Introduce new variables

_ pounds Vio‘& corresponding to the minimal prime ideals P&C K[V,,
{
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’l/l/o,...,%w algebraically independent over F( XO,_,_,Xm) . Set
%fxouo*’"-“xnuweF(u«mm»un)[Xos~~-rxw] andD:gz G-n,

s
nerein ;=1 it Kéj <W . Consider linear over F('l,{,o,...,u,w)

mepping OL:H ®...0H -  where H; (correspondingly %) is
the space of homogeneous polynomials in Xo,...,xw over the field
F(Wgy---yUy) of degree [ -0; (correspondingly D ) for 0¢i<K,

namely 0{’(&"""’6"):‘)5«6‘3‘;' Any element 5=(60,...,5K)€
ﬁo@...@ﬁK can be written inn‘ihﬁ .fao_rm =(g0,1"“7g0,5‘,’(74,4é“"64,54’
210k, 90- 000 5,) THETE 55:( wo and 05 0-.. 9 Diysy  8F€

the coefficients of the polynomial ZL provided that a certain nu-
meration of all the monomials of the degree :D-év{, is fixed. Ana-
logously one cen write the elements of the space fﬂ) « In the

chosen system of coordinates the mapping 01, has a matrice A of

. ntD . (A At
the size ( # )x (.()§£:1ZSKSL . One can represent A (A,A )

where A’ (cell it the number part of A ) contains ZOS{,QK*‘I 5
columns and A“ (call it the formel part) contains §g columns, be-
sides that the entries of A' belong to E the entries of A” are li-
near forms over [ in variables 'H/v, ...,'u/n (c£. [6] ). There
is proved_in [10] that the system ‘iv‘"':ﬁm =0 hes no roots
in P*(F) izf the ideal (§gs---sGy4)2 (Xon ..,Xn)D . Besides
that, the following proposition is ascertained in [11] .

PROPOSITION. ( [11] ). 1)_The system g,=...=(3,<_4=0 D
finite number of roots in PE(F) iff the rank ‘bgA= (“’;, )&“1/;,

2) 811 M x% minors of A generate a principal ideal whose
generator R€F[%o,--.,'um] is their g.c.d.;

i
3) the homogeneous form RT<U<D Li where Li =0§ ‘g; ),u’J
- sy { i SRy
is a linear form over [ , moreover (E(O):... 2"5(”) isaa root of

the system and the number of occuring of the forms”’proportional to
L‘i for each 4 in the product equals to the multiplicity of the
corresponding root. Apart thal ngR=D,=‘t- (A').

The algorithm designes the matrix with the entries from
the ring F[Y, Z{,...,Z”_s ,uq,us-mm,...,uﬁ{]corresponding to the modi-
fied system (2) in which ZU‘"’ZW-S are considered as variables (in-
stead of Z,,...9&,_¢ ) according to the just exhibited device.
Denote by Az the matrix obtained from A by means of substituting
the coordinates of the point Z  instead of Zjy...,Zy.g - Let the
polynomial RZG. F [Y,u,,,’u,s-mﬂ,...,usﬂ] correspond to the matrix

AZ as in the proposition. One can suppose w.l.0.g. that Y*Rz
{(dividing Rz on the greatest possible power of the variable Y ).
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Regard g certain representation of the union UFFVPF2{5°=" )
=y 20} for suitable polynomials S{ GFL—Y,YO,Y ~H4g 9 “aYsM]
homogeneous relatively to Y,,,Vs_m“ 12y 1344 ~ Comsidering a system
S:;(O,YoaYs-mﬂ,...,Ysﬂ)=-0; 0s{<K~1 and basing on the propos:.t:.zi
on (see also lemma 16 §5 [3] ), one proves that RZ(U,ZZ,,,ZL&,,HQ‘...;ZLS”)%TL‘:

and moreover the linear forms L¢=Z~ 9 Y, v correspond bijec—

tively to the points (’gg":’gg‘_)mﬂ: gj(g Ye W, < p™ where the
’ K3

cone GM(V\/Z)=(UPFVrF) n {Y= 0} » Thereupen it is not dif-

ficult to check that L € Wi (cf. lemms 13 §5 3] ). Sumari-
zing and u$ilizing the notations introduced above, we have agcer-
tained the following.

LEMMA 1. The formula 3X4...3X5(3<1$#K (43-=O)& (4#0)) is va-
1id in a point Z€ F iff for appropriate 0 <M <$+{  there
exist such indicesg '161'.4 <... (t'mé N s & get of linear forms
(Yoo oos%omes) € T end & point Q=(2,(5,:0:...00:8, . 008, )
€ Uz n {Xo #0} (in the coordinates Y,,Y“ ceey Y5+1 ) that the 1li-
near £orm (8, o +8g yyg Wy ag ..+ 85, Usys ) [Re (Oloo Us g e Usy).
Now nske more precise the definition of g version of Gaussia.n
algorithm ( v.G.a) for reducing the matrices to the generalized
trapezium form (cf. [7] ).V.G.n. is determined by a succession of

Pairs of indices (pivots (ia,jo),({4,j4), - ’U',P’jf) . Here-

wit } ( { i i . M. .
(ogz i # 1y and . ¢ js 1if ?(,#_p o F('Sr any(g.gg.tial matrix

A VelGea. y%(flds (:ilg.e chain of matrices A ,A TR . Introduce

a notation A”= (qu « Apart that afﬁ-i #0  end azif"fﬂ)za,s;‘*.) +
) : A .

a@agﬁ/ag}‘ for all ¥ distinguished from fore-yiy » lastly gt -

<, @

i) where (¢ P, +’J{.‘§xe matrix ACP* is in‘the gnnera.lize;p%:ra-
; ?eziunf form, x‘wn.ely, @i’ =0 when either | difff)rs frgn
Yoreatp or d=iy, J=i and d>p , besides tnat ag S =w§a. 0.
. Denote by Ai'? the determinant of (4+1 Yx(dt4) " matrix Formea
. by the rows with the indices iy,..., i4-4+ 4  and the columns with
“the indices ja""’j&-q’J provided that {#{,,.. b Figy
and 4#4,..., 4% J4~4 + Then a,(:.) = AS?E) /A%‘L-‘)‘
demma 7 [7] ), g j rtdact
v n_gow we turn ourgelves to considering an arbitrery point z¢
’ A o Fix for some time 0smgsy indices 1$L4<~-~<1;m,$ N'
- and & set of linear formg (-Y17“"Y5“m+{)e Wl (see Lemnms 1). By
Y denote the numver of rows of the matrix « Produce a certain
succession of v.G.a.s [, Tesee  overa tield F(Y, Z“..‘,Zn_s,’b{,ﬂ,
We-megs-.-, Wsee)  and @ succession or polynomials P, P, .. e
1241y Zpos ,%,,us_mﬂ,...,uk fhereto v.G.a. F; can be applied

(see e.g.

>
H
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correctly to the matrix P\z for all points z=(z4,_“,zn_5) of
(possibly empty) quasiprojective variety ( [1471) W;c A""S which
ig defined by the following conditiong: inequality 0 3 Pi,(\()zn' .oy
Zp-s *ua)us-mz ?---’u’sH)GF[Y7u’n’u9—nw2”"’u’sﬂ] and equalities
0=P (Y’z““"zn-s’uo’%5~m+z,-~~’%eﬂ) for {gjgi-1 are fulfilled.
Apaft that the variety {&,,...,Z w_s):pi (Y zh'“?Zn-s’uﬂ’u’s-mi-z"“'uSH):O
for all /L} = ¢, henceforth U;VW1-’ = A""s . Exposed below
construction is close to the proof of the lemma 9 [7] .
Later on we apply the v.G.a.s {’r;,"" to the initial matrix A N

As n one can take an arbitrary v.G.a. Set a polymomial P1= TT“&&P

A(?’) - (for v.G.a. regarded at the current step the same no="
tatiskk as avove are utilized). Assume that [fy-ees 155 Ppyere, P
are already produced. Then as ﬁ +4 We take v.G.a,in which for eve%
0$&$_P;H the column index j&‘ of :bhe pivot in the matrix
is the least possible, moreover Jd, >3&_4 and the polynomials

8,...,8;, n 0gpscs A({) are linearly independent over F . Fi-
nally, put 5“4: TT P ” A(:). -« The algorithm stops producing
VeGeaos f},l",.,. ..G‘Wéﬂ it is d:7.111“1?';ossible to produce FLH satis-
fying formulated above requirements (if Py <7~1 then V%fﬁ).

One can ascertain that if W@ # ¢ then for each zeWi‘
the polynomisal Rz (see proposition) is obtained as the value in
the point Z of the polynomial det A; (up to a factor Y& for
e suitable § ), where Y X% submatrix A; of the matrix A is
generated by the columnsg with the indices ja gty 3'1-1 correspon~
ding to v.G.a. |; . This follows from the fact that in the matrix
(A(giz an entry ﬂ:}? =0 when PBFigy ..y by and 3.<jd,
in force of the choice of , A Therefore, if for an appropriate &
a cell ({4, j4-1) belongs to the number part AN ooz A and & cell
U‘“jo\:) belongs to the formel part A of A then *bg((A )z)=a
that implies the mentioned representation of Z .

write det A= 2, A(f) Ve, herewi:)h A(?(21,.~.,Zu.5)6F[Z4,...,Zn 53
Wos Wommpeg 1o, ] Introduce varieties Wy ={(@y. 2y s)eW;: A“?(z,,
...,Zn,-s):‘-FAf“(Z4:~~~:Zn~s)=0;A(?(£ ,.“,Z,H)#o} for £%0 . The variety
Wi,(&) is quasgiprojective as the intersection of two quasiprojective
verieties, namely, if E(a)a{&}((}g)=o)&\/ (C‘”;O)}; 3':-.(,2,
then Ty =y = {&}u)’}(k\ (G’% =0) & G‘_ﬁz)‘og& me’ x().) (C?&) C?&) 1‘0)}.
Moreover WV N W.(s") =@ for & P& ana U WE=W;.

1 i 1 % ~e e
Thereupon represent A"? =2 o< j<D, e(i'” 'U,,:,D X where

(&,4)
e; s (ZpoornrZ o )& F L s L W ag 3-- -3 Wsny] - Comsider quasiprojec-
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tive varieties Wi ={(z .z )eW®:e%® (2, 2,090, 0< <
8:' (Zy- Zw—s fo},then w(ﬁ’ﬂq)nw(egzz) g when 31;&32 snd UO< 4D,,W W)=

W:El Obgerve that the proposition and the ascertalned earlier en-—
tail that (A(i )x =A% 2@y ,z,,.,,uo,us_mﬂ, ceMey) =TTy L is a pro-

(513)
duct of linear forms for Z& W,,_ o This implies that for zeW

the polynomial (€ f’ )z equals to the product of powers L,c°e of
all linear forms La in which the coefficient at U, vam.shes.
4
Henceforth (e(t” )z | (AD )z in the ring F LU Us-mag,- “’(ly's’f (£,4)
Cur nearest purpose is to calculate the quotient (A € )z /(e d )z

for E!E.W & . It I (I,-,M,., $M)1:5 a multijndex then denote

uI usi"'::z U si‘:‘a apart that by I<.T denote the lexi-
cographicel order on multiindices. Write e(e’” =Z‘IK u‘.[ and let
0#2&& F [Zn Zn 5] for a certain T (f:.xed in further spe Flatlons)

t
Introduce a quasiprojective variety { (2490 oZ n-s) € W

{7(Bo-+Zp5)=0  when J>J ana Xl(z“ .,zn.,,)fo} . Evidently

(&)
W:EI’” n\/\/i'(?“ =¢ if Iﬁ:f and U Wf?f) W/L £ + For any
1he 194

point (&, 2y ) € W( o) the quotient (A‘i) )z /(ew’”)z can be
obteined by means of the described below process of dlv:.dmg poly-
nomial on polynomial and after that substituting the coordinates
Zfy...yBy-5 instead of variableg ZyyosZyos.

Let 0 $v€ F(zl ’Zu-g)['u, - WU Denote by
fex(Y)==0 the monomial ¢ of ¥ in vis.;l:a%les us-mt;,] » Wseq for which

in V-~ {fex (V) occur only the monomisls less than fex () y set
jre- W(us Wg,'u -MeS s ;u':n-i) and S’(W)-_deg(‘l’) + Delete from
‘ &“4’ all the monomials Ty %7 (except pluI ) with 6“(14,7)> 6"(“ )

e and denote obtained polynomial by @’(8 & Then (6“””) “(N(F‘"’))z
X e

when te WLI since (6‘6"" g2 is the product of linear forms. For

any index j<u®s J, the algorithm designs a succession of non—

. zero polynomials Y,— ¢ (6% Yo,V Represent uniquely Y= 111“)+\Vw
: ‘? ) e ) T’w
' +Wt » herewith ﬁ’ v, are homogeneous, &(Y )<6'(W,;)*~6‘(\Vt )=

Ly "1‘ 7:‘7 t
. W &C w(ﬁ w(”/uIe F( Zf) 5) [u;,.mfZJ u’5+‘l§ ] 1351713!

. each monomial from Wt’" is not divided by % . Then ¥y, =
: mh(% wcb)) v(l)z(evi)/u/ for every 0<t<J.7-1) (obv:_ously’ 6"("-’.‘71_1)'<
- <8{(¥) ), Regard a polynomial w(&,j,:e)?t ‘P“ "' ite
4 <Tsp
23 By (&, ,%) Dﬂf
P[22, Uy smasres Wy ] and set w(e" W 2L E \ by

;acsa LI
One can check that (e&™) /(rl’e}w’) =(w<e,a,ae>) for zeW &

e : ¢
, there;tore(A“") /(0(6"’)) -—(3‘» l{li"i’ e equals to the product ofoL

for all linear forms L, in which the coefficient

and
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at the variable W, does not vanish.
Thereupon remind that Con Wz =UPFVK’ . N { Y = 0} and int-

roauce W'= UzeWA;(ffD ({Z}X(W;_Iz N {Y,#20}) (as sbove we (fi-l§ heads
1 -). Otz:irvemtilat W’={(§1,~~~,Zw—s’(%o:‘ﬁs-mu‘--~’%5“»ewia’g *
Am(_F)CW«;,f‘ xP (F)‘0=(‘I’E;g,':” (- Zs-mtnsds s Hafa s %O%S"M‘f’«""’%“uﬁﬂ\)ﬂe
eF U,{, SWtg 3y ’H,SH]}. Representing the polynomial
W-(z’j)(‘zs-muu S+ u&Ya'You's—wvw'"'You’s” )zzlEI W leads to

a.n&’efquality W'= i&J(EI=0)}ﬂ(W€&’é) xAm), Because of that
the subset W‘ is closed in the‘ quasiprojective variety Wé?i’ X y.w_
Consider the natural linear projection ﬂi,,:p\n-i(“}mﬂ {Yo #’0})-* A“' ’
defined by the formula Jiy (Zip-rLnegs Yo Voompaa o You ) = (Zis. s Z )
Let a morphism aa:W—» W{i’ﬂ) be the restrictiom of &, on W'.
Our nearest gosl is to shéw that %, is finite ( [14] ). Obviously,
the inverse image 91]4 My ¢ w' of any open affine subset Yc 4',“'1')
is isomorphic to (V' /\m) nW' , henceforth 37,;‘ (V) is open in
W' and besides that &, (V) dis affine simce &} (V)  is closed
in the open affine set Vx [\m’ ( [14] ). Now we check thal evexry
coordinate function Yz / Yo on the variety 5»;4 (V) satisfies
a suitable relation of integral dependence over the ring F[V]

where S§-m 1.4 % $S+i . Let z,r;f;n:x(;f*”(u,,umﬂ,...,usﬂ) . Then

W;f{“(Yx/YO,O,...,O,‘4,O,..,,0)=0 on W', herein -1 is substituted
instead of the variable %x . Taking into account that (XI)Z #0
when 2 eW.(E’” this yields an equation of infegral dependence.
So, we infer that the morphism iy is finite.

Utilizing the notations from the lemma 1 one concludes that a
set Vt(éi“ congisting of all such points Z= Eis-aEps) € Wi(‘e;"
that there exists a point L=(Z(F,:0: .0 0 g b Bs NE Uz N Xo#0}
is closed in W{E? as V{(i’ coincides with the image under
projection Ji of the closﬁed’ in _the domain of definition of f§i,
(i.e. in W') set ﬁ;‘(wgiﬂ)ﬂ{&a.,:?i =0} where {;t(YmYs-mﬂ,:
v ~1Y5-|»1 )= ?R (Yo 3 0, ,O,Ys-m,ﬂu “'QYS‘H) and Q(YMYM-"’YSH )=¥(Z11“*9Zn-5$xm*1x5ﬂ)
for Q{4 ®¢K and since the image of the closed set under a fi-
nite morphism is again closed ( [14] ). V(é’j)

Now we describe a procedure for comstructing the required W °
Let the quasiprojective variety Wifr’” = {&p (Gp:())&(vx(cxto))},
herewith the polynomials G},Cxe FLZyyly) were sctually produced
earlier. Denofe the gllosure of the projection 9'»,,{3(? (G}=0)&
&B—(E =0) 8‘2‘0<9£<K (¥u=0)} =v;(;"” . On_the other hand in
téred of the aforesaid the equalities hold \L;‘,EI‘J’=\[‘;“I'3’\{&X(CK=0)}
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x'v;(;’ﬁ Viky (CY = 0)} . Thus, it remains only to design the af- ?
tine variety V;ff’“ . _ - :
Involving the theorem 2 (see section 1) the algorithm finds the
general points of the compounds J of the Val‘iety{&p(GfO)&& (E]"O)
g g‘o‘m“(’ffo , It is sufficient for each / to cor‘lstruc? the <_>1°-
sure of its projection i, (7 )_w + Notice that there is %?”mbeddlng
of the fields of functions F% (g, (f))=F% Zy-rLns)e T (Z,0y L s,
Y{/Yo)-“)YSﬂ/YU): Fq /) + Therefore, the algorithm can produce the
general point of si,”(}i) yielding firstly a trascendental basis and
after that a primitive element (cf.(1), section 1)-. Searching a
transcendental basis and also a primitive element is based on the
procedure for calculating a polynomial relation over Ew(if it exists)
between the elements aq,...,a,yﬂ € F(Jc“...,{:w_m‘)[ejc Fav (/)
provided that aq,...,a,} are algebraically independent over F , the
procedure in its turn is reducible to 8olving a linear system whose
indeterminates are the coefficients of the relation (ef. §1[2],
§§ ab, 6 [3] ). Thereupon with the help of the remark just after

the theorem 2 the algorithm computes a representation Gy ()= {&
(85 20)} waere the polynomials BgEF[Z“...,Zn-S] . §

We summarize the results of the present section in the follow-
) fi.ng lemma, in which bounds are obtained making use of the theorem 2.
L LEMMA 2, An algorithm is suggested which outputs the construc-

“tive set [[=(Un{X, ;!o}):{(z"...,zn_s)e:A”'S(F) :ka..":lxs(&m“({u(z“...,z

X Xs)= 0% g(Zﬁ"-'zn—srxu-u;xs)fo)}’ i.e. the projection in the form

: 7:{ - ' ' ” w
S {Osvm&S-H Y&{,(,.d,ms.ﬂ‘ (¥4""$Ys-mﬂ)€m VL,E,J',I \'[):X (4&55&N (BJ'O)&(CX#O)}'{\‘/}L(&g’(Bg'O)
SS(C'W?OD}‘ Thereat dl,gz 7 (5?))“14(»«2)(15*3)" o o (5;}‘)) .
e f3y L mg s £
. J'Lf(dl(“o’: dq), lengths of descriptions 8(5%‘)) < (‘%4”‘:”2,*(“{)609 dzz)x
: g(¢{5*4)?&‘). Apart that dbﬂzpm’zvo(cl}‘))S(M)(Zs'fs), d’(’ﬂT (CU")) <

RN ~ TR c
AaPUSd) ana LWy (M, Myt (ntlylogd ) P (450 4y,

_3931513‘5 that, §'<(s+ (MI)“(“”)(MQ),/L :sd’ll(Sfl)(n-rsﬂ)' The running time
2/‘{?;:_the algorithm can be estimated by ?(MﬁMx,d/SM“b, (d,1+d,z)"'*£ 4).

b

-s?

3. Subexponential-time deciding the firgt order

theory of algebraicallx closed fields

= Let a Boolean formula { with N atoms of the kind 4 =0
.. wrhere hiF[X“...,X,Jsatisfies the same bounds as in tpe set‘.tion 1,
- begiven, Li(Q) denotes the sige o 0 . Pirstly ve exninis 8
‘procedure reducing Q 1o g disjunctive normal forp,
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Following [7]1 name (4191 4p) -cell for %,...,%QF[X“,“,X’J
any nonempty quasiprojective variety of the kind {2~e}4(gd'=0)&
&jeh(gj ttc A" (F) , herewith %, U }2,"'{’1’---’_?;3 4N %=
By means of the Bezout inequality [14] it is ascertained in [T7]
that a number of all (g“...,gf) ~cells is less or equal to (H-d},g Gqt -
Hi%%_p)"’ . We shall describe the method for decomposing the space

A"’ on (§4s---14p) -cells by recursion on P . Assume that we are
supplied with all (91,...,%4) -cells (PH) - Every (g“...,gy) ~cell
is of the form either K N {9P=O} or K(\{gp #O} for a pertinent
(91,...,3P,4)-ce11 K . Henceforth it is sufficient to pick ocut (invol-
ving the theorem 2 from the section 1) all nonempty sets among qua-
siprojective varieties of the forms Kﬂ{gp= 0} eaa Kn {gffO}

Applying the just described method the algorithm yields all
(”ih“( N) -cells. Again repeatedly meking use of the theorem 2 by
inductic;n on the number of logical sigms in Q the algorithm for
each (‘Hihsi ¢N) -cell checks, whei;{her this cell is contained in
the constructive set HQ={Q} C A determined by the formu-
1l Q , ana thereby represents HQ as a union of ({ﬁ}“i‘N) -cells

K(j& ) that means reducing Q to a disjunctive normal fo:::m }‘(& o9

({g‘lﬂ)&({ig‘)qﬁ 0)- Moreover 1< p é(HNd)w, 1<8 <N, sny polynomial
P , for a relevant { and ¥0"\ ﬂTje} ﬂ- for an appropriate
7C {1,...,N} . The working timeoof the exhibited procedure can be
estimated according to the theorem 2 by £(L,(Q), ”,(d”d,,oh)”fa,).
Finally we pass to the general case. Let an input formula of
the first order theory

324,4“'324,54 VZ,_” <..Vzg’5z... aza,p-.aza,)sa Q (3)

be given where the formula Q is of the kind as at fthe beginning
of the section, ﬁeF[Z“._.,Zs“ZM yeeesy Za,,s,,]’ herein Z,,...,Zg
occur free, W=S5q+54+...+ Sg,, bY LR, denote the size of (3). Apply-
ing to (3) aliternatively the just exhibited procedure for reducing
to a disjunctive normal form and the lemma 2 (section 2) the algo-~
rithm srrives after performing 9¢ steps at .en equivalent to (3)
formula

x)

32,326,130 4,32 —&,Sa-x‘l (\45{4“(@(&4$1’$K‘3‘)—1 (ﬁj

(=) ® .. {& _
Denote d/ =WW/X4,3 WZ{,...,Z&Z{;,...,Za-z,sn_w_ ({'S"' ), dﬂ, = MBeX 4"1

&), . L) - N(® R} DN, -
dLﬂTﬂ'"ﬂ’Ld({' )yaf( )= ¢ )Kw‘)d,m; M;_ =mwx{-£(¥f;.’ Vs 6=5, sus - The&’in for-
ce of the theorem 2 and the lemma 2 the iriequalities heold: d $

(®)

=0):;((¥i0 #0))).
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( (g~(b8(6'+2)fm.zN(R) < ( q (x-{) ) AR (F58) (1 +6% +'5), K(ﬁ) <% 4)2.(,_,, 0;(&-4) )8 T+ (ne)

0}‘“) < (q(z-o )umm) <(N d,)(“ L2290 j<aC%i 10)/2)%

« Therefore
x-{)
. Apart that 4,0 <d ¥V
y %) <
xPg* i) <dy # (‘Z@ ), M(g, S(MMasllog dy) @ (0}(%), di) - Zestly
the ruming time of thexalgorithm (ag)i;aeer( %(A steps) is 1cess than
ksn Z i (5t Wi ® o wt
B (Mt My, (N2 Brerigjua » B dg) " ,q).
Performing a steps completes the proof of the following
THEOREM 3. An algorithm is proposed which for a formula (3)
outputs an equivalent to it a quantifier-free one V““N‘(x‘“dé'ﬂ
(gir())&%ﬁfggmw/x;eﬁe 9425 eF [Z“_-.,Z%] , herewith dzﬁzh"ﬂzsfgij)
<(Nd™y %MT{,...,T&(%;)“a@(@’“)f besides that

bgipsMrMyrllogdy) 8 (D,4%) " the integers N, % <D - Finally,
the algorithn works within the time P (Ly,Ly(qy, (N{Y(48ut8a)) ()

y )" ).
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