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COMPLEXITY OF SOLUTION OF LINEAR SYSTEMS IN RINGS
OF DIFFERENTIAL OPERATORS

D. Yu. Grigor’ev : UDC 518.5+512.46

Suppose given ak; X ky system of linear equations over the Weyl algebra #,= F[X,,...,X,,0,,..0,] or over the
algebra of differential operators Xy = FiXy..,Xn)[Dsss Al » Where the degree of each coefficient of the system
is less than d. It is proved that if the system is solvable over fn or %, , respectively, then it has a solution
of degree at most ¢ k d)?°% .

Introduction

Let tby =tty (F)=F [Xy,....;X4,Diy..,.Dy]  be the Weyl algebra over the field F ([6]); as is known, it is defined
by the relations

XiXy =Xy ki DiDy =DyDyyhiDi=DiXiy KDY, VA 0
One can also interpret the Weyl algebra as the algebra obtained from the polynomial algebra. FLXyy. Y Xy ] by adjoining the
differentiation operators -Dy ..., D, with respect to the variables Xy,..., Xy, , respectively. We denote by $, =%, (F)=
F(Aeyry %) [Dyyeery D] Dty (F)  the algebra of differential operators obtained from the field ' (X,,...,Xy, ) of rational
functions by adjoining the operators Dy,..., Dy, (cf. [6]).

Anelement 0L e ¢, canbe represented uniquely in the form - I:v' Df‘”'_ . :D}‘ Xﬁ“. N xf* ,where' 0Ly ye= F »
the multi-indices T =(Eu;--y41); I=(jn,-fs) ; any element- b & 0 -can be represented uniquely in the form’ 6 =a,c", where
1 ety ,.04cel[X,,. X, andthe degree dﬁ(}(c) is the least possible. We define the degreelde%(l)t“. ..Dj’l X Rf) -
iwt.. #itfyt. 4}y according to the Bernshtein filtration (cf. [6]) and the degree deg (a)= oy Ode%(D;‘?..D:‘Xf:’f..X{‘);
finally, deq.() = (deg (), deg (C). S

The goal of the present paper is to estimate the complexity of the solution of the system of linear equations

V= L<K
Zpe Mt Ve =, L <k<m )

over the ring ot 4 (i.e., the coefficients 4 Kb Wy & it y,,and also the unknowns Vi € dt, ) or, respectively, over the ring
¥4 Below in the formulation of the theorem and corollary R denotes either the ring gty or the ring Hou.

THEOREM. Let the system (2) be solvable in the ring ®, and ie?f(u,()g)) de% (w)<d,l<k <mi<l<s. Then one
can find a solution Vj,..., Vs of (2) for which de?((\ft)g(md)zo(”,)i <l<s.

COROLLARY. Let the field F be defined effectively, for example, as a finitely generated extension of the field Q
(cf. 2, 3, 5, 7]), and the bitwise size of any coefficient of the polynomials #«l > W be at most M. Then one can verify
the solvability of (2) over the ring R, and constructa solution (if the system is solvable) in polynomial time in M, (md)z ot , §
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One derives the corollary from the theorem by representing (2) as a system of linear equations over the field F in the
case ® =ifcw or over the field F (Xl yoo- ,X,,t)‘ in the case B =% w» Tespectively, whose unknowns are the coefficients of
the elements Vj, ...,V for monomials in Dy,...Dy,X,,,. X, or for monomials in D, Dy, respectively.

We note that in the case of a system (2) over the ring of polynomials F [Xi, ,Xu] the estimate of the theorem is

well-known [11]; however it is impossible to extend its proof from [11] directly to our case since the rings ¢t - and ¥, o Are
noncommutative. However the general approach of [11] is used below in proving the theorem.

We mention that in [3] an algorithm of polynomial complexity is constructed for finding the g.c.d. of a family of
ordinary linear operators; this in particular implies the theorem for the case R =% In [10] it is proved that in the
polynomial ring F' [ X, ... , X ] even for the special case of a system (2) of one equation 1 b 2, W tV(, 1w (i.e., the problem
of recognizing whether the polynomial W belongs to the ideal with generators 4y ..., #ts) the estimate given in the theorem is
sharp in order. Thus, the estimate of the theorem is also sharp in order. Indeed let 4y, wef [D 1y :Dw] o (ﬂ;% and
2'_'_‘. W Vi =; then when = oy we represent Vz = 2': Vu) Dt" .Dfx{f;?..xﬁ* (cf. above), and then 15 y
(;: W D‘“ D"*)-df , here the sum 7_:. Vm D is taken over all pairs I, in the representatien of Vi ,
for whlch J=0 ;nowwhen ® =%, we represent VL = F. “’ Div. DR XEr. . k¢ where ¢ =C, X;{w. . Xf1°>+

TE F[XL, 2 Xu) and 0 # Co=sFis the coefficient of the polynomlalcat some monomial- x?f X }}0) , then GB‘ ia . i
(): VI ',1(0) D,".. ) W, where the sum 2= V}_ ?,(o)IDW' ])i is taken over all pairs T | 3(°3 in the representation
of VL , for which 3(0)__( 41’(:)7-' AL ) Thus, we have shown that if the equation ; “'L V= = 1 for w,» werF
[Dy,..., Dy lissolvablein &, then1thasasolut1on Vi), Ve& P [Dy,...,D,) , where deg (V) < de% (Vp), 1<tb<s,
which by [10] proves the required sharpness of the estimate in order in the theorem.

We also mention that the nearly sharp estimate deg 125..;:‘5 wy, Vi =1 established in [9] for the special case of
recognition of an ideal being the unit ideal in a polynomial ring, i.e., the problem of solvability of the system d.e% (VL ) < o, 0t
The author does not know whether an analogous result holds for the rings &t and Jw. A number of algorithmic problems

in ideal theory in rings of differential operators are also posed in [§].

Sec. 1. Estimation of the Elements of a Quasi-Inverse Matrix
Over the Weyl Algebra

Let the matrix A = (QJL,&)“L <AL i<jam have elements in the Weyl algebra, 4, ; ety , where du} (Bif)< d.

LEMMA 1. There exists a vector 0 £6 = (B;,...,8,,)& (d4)" - suchthat Ab = 0, where deg (b) < 4w (m-1)d =N.

Proof. We consider the linear space B < (fty)™ over F consisting of all vectors ¢ = (Cy,--yCm,)». such that
de%(C)<.N . Then dim (B)=(N+24)y . For any vector ¢ B  one has deq, (Ad)fg N+d ,ie., Acel , where
the space §' consists of all vectors € = (&4, ,,.,em_i)e({ﬂ;”)'“, , for which de% (e) < N+d, so M('g) - (N+'g,;8w>.

(m-1).
We prove that (NE%W>M>(N+2’;2”)(M—1), from which the lemma will follow. Indeed (N*%;a“) / (N Zi‘”) -

N+d+gu Nedrou-i  Neded Nedt & . . Nrded 24 . fow
o T <.( ) It suffices to verify that( N+‘; ) <d+ Tni:i ; it is easy to see that ("“Wl:f >
1 4,4 (,.i__ i\ L d '
1+2.u(m-1) + 5 2n \on i)(%"i) >i+m>l+m . The lemma is pfOVCd.

We call the #, x # matrix C = (C;, }) aright (respectively left) quasi-inverse to the matrix B = (6 L,}) if the matrix
BC (resp. CB) is diagonal with nonzero elements on the diagonal.
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LEMMA 2. If the w, % w matrix B over the ring &4 has a right quasi-inverse over ¢k, then B also has a left quasi-
inverse G over ¢ty , while de% (G)<4u(m-1) d

Proof. We note first that there does not exist a vector () # be (.ftu)m ., for which bB = 0, since it has no divisors
of zero ([6]). We denote by B® the matrix obtained from B by removing the i-th column. By Lemma 1 one can find a vector
0 # §3= (dby)™, such that g; B®~0 and deg (4 ) < N. Then the matrix G whose rows are §y,..., q4 is a left quasi-
inverse to B. The lemma is proved. '

For the algebra dt,, one constructs the skew field of quotients Dy, (cf. [6]), where any element of oDy, can be
represented in the form a, BI* and also in the form 6: 0.,, for suitable oy , b 1y 0, Baedt,%(cf. Lemma 1 for m = 2). Dy,
is also the skew field of quotients for the ring 4. A matrix over o, (analogously over ¥y ) has right and left quasi-inverses
(cf. Lemma 2) if and only if it is nondegenerate as a matrix over Dy, which is equivalent with its Dieudonne determinant
being nonzero (cf. [1]). We define the rank r = rg(A) of the matrix A over )y as the maximal size r of a nondegenerate
submatrix. Below in the formulation of the lemma the #; x #, matrix A of rank r over 5{)“ is such that its v x1 submatrix
A, in the upper left corper is nondegenerate and the elements of A, belong to o,

' LEMMA 3. Let Ci be a left quasi-inverse over fty, to A 4 - Then one can find an (M, - '(,) x v matrix C o over

Dy such that |
(‘JL 0 A - a”-("j . qu, X
C.E 0 0/’

E denoting the identity matrix here and below.

Proof. The matrix C, is defined by the condition that in the lower left corner of the product of matrices considered
one has the zero matrix (it is obtained by suitable elementary row transformations, by addition of some combinations of the
first r rows to the last (ml—m) rows). Then in the product obtained the lower right submatrix is also equal to zero in view
of the definition of rank, which proves the lemma.

Now we return to the system (2) over the ring T When R, =gt,, , we apply Lemma 3 to the # x5 matrix n(u,K’@)-
and get matrices ,Ca : making a suitable renumbering of the rows and columns we assume that in the upper left corner
of ( Wy, ¢) there is a nondegenerate submatrix of maximal size r. If the vector (Ca E)(WL,., Wi )7 is nonzern, the system
(2) has no solutions. Now if (Ca E) ('uT Lyrees Wiy )T= 0 , then (2) is equivalent to a system of the following form (cf. Lemma
3):

a, Ve + 22 “«,LV(,‘-‘-BK, LK<

risd=s 3

By virtue of Lemma 2, d.e%((xk) , de%(ﬂm,b) ) dg%(eﬂ) <h4nrd <4 wwd, . Inthe case when the ring R = ¥ 4, the elements
Wy -—-uféfe (u.:f’)t)—i for all 1<K,{<t, where u‘:tadbmu_‘:‘keF[Xi,...,)(({ ], can be reduced to a common
denominator u = g.c.d. ({ WY Jiexler) » 1€ Wi b = uiy wt forallkandl, where Wy = dty, for <k, b <t As
above we apply Lemma 3 to the matrix (& ﬁi’g’) and reduce system (2) to a form analogous to (3). Here since de%_(‘f"(:), [) <
dv? < dm?for L<k, b <1, one has de%(a,(),de%(txk‘,z )y ‘degf(ﬁg)-:lmmai by Lemma 2.

Remark. If initially one considers the system (:‘E.s Vibhicl =1, A< K< instead of (2), then ope should introduce

a different multiplication of matrices (ty,, Ybst) = (Z.:.‘ 63/,15 o, i) .
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. )] e pw
Temporarily we fix ¢,+1 < [ <&. When (i =:ﬁu , in view of Lemma 1 one can find -hi yerey hq, y e zﬁu, , such

that .
® )
ai +a g h=0, 1 <x<t @
where ‘de%(ﬁ,(f’)) degf(w.,?) de%(hu’)) < 16u>m*d, . Now we consider the case when R =y . . Let a& i}, be an
R ) . '
element of the form @y, 0 and @ =a® (a!?)™ , where a® = ity | a®=PX,,.., X1 . Using relggons of the form
' - Y v -4
D; (dw)_P"* (“(2))-‘)3)1 "P(flw)‘P L‘(Q%? ) several times we reducea to the form o = (11(2)) R g @ (cf. the
i
estimates of deg(a) obtained above, where a” < dt, and ~deg,(aw)4§16%2‘m6d?‘+4um3d< 17m®d®’. We reduce all
: a4 (3) PPNty
elements & , & (- to the left common denominator ceF'[XL,...,X,J - and get representations oL, = C (af: )y l=C (u‘mt ),
(3) (%
: : . . (80 ayy G0
where de% (0 ), d;e?[ (%) < 3242w d*. Applying Lemma 1 to the matrix < 07a® & é,’t , we find hh"'; e

L b 0] e 3,812
KO s, such thar (4 holds and deg (h{),..., deg ('), deg ()< se8u>m*d?. .
Sec. 2. Solution of Systems of Linear Equations Over the Weyl Algebra

Throughout this section | =¢ty, . The next lemma is an analog of the normalization lemma for the Weyl algebra.
Below %_U..., 1S #y s a finite family of elements.

LEMMA 4. There is a nonsingular linear transformation over F of the 2n-dimensional space with basis Kis voor Xp
D, ..., D, under Wm‘:h'xt"rx;'-:;lﬁﬁ’;;’xr Z;:X('J,’?D}"Di“’rnﬁz;dlﬁg”xzi +§‘X§}ID3 —— rDa,rxL“,TerDﬁ
1, [ Tx;=1x; M'p; for 14§, N F'xrl"x&l"xi y70iT'p; =, 'p;, (cf. (1)) and in addition for any -4 < b'<< 1 the leading coefficient
0# feo, (Ty)- with respect to D, belongs to F, where f!hea‘kw is obtained from ¢y - with the help of the linear

transformation indicated, in order words T, =((,c Dﬂ(%»p&ﬂ%ﬁ%&,?c , Where d@%m@;t)"‘ de% (9¢) -

Proof. We consider the matrix " = F‘t;il)) [rjg?)) » whose rows correspond to linear forms Ty,,...lx,, 'p,,...,'p, = in the

order listed. Then the relations indicated in the formulation of the lemma are equivalent to I belonging to the symplectic
group Spey, (F) (L, 4, i.e., satistying T(2F)M= (2°F) . Let §p = Doy y Dy D XS XE E0 ), where al
' I3 7

terms of highest degree L,+.. +iyriyr... + t = de% (%g) are gathered in the left summand, i.e., d,e% (7.21) < de% (9{(,) . Then
after performing the linear transformation the leading coefficient {cy, o (1 )= for DAY, is equal to the expression
ﬁ ix,g@ﬁﬁy.@ff “(X:ﬁ " (X(;'Z))“ » Which one can consider as a homogeneous polynomial in the elements of the
last column of I". Since the sympletic group acts transitively on all vectors F 2\ {O} (cf. [4]), one can find amatrix [ e Spay (F)
with arbitrarily preassigned nonzero last column. We choose a column such that all the homogeneous polynomials in its
elements indicated are nonzero. Then such a matrix I' satisfies the requirements of the lemma.

We apply Lemma 4 to the family (cf. (4)) of elements k(ﬂ) A<l <s ; the linear transformation I” obtained
preserves(1),soone can consider dfy - as the Weyl algebra on Ty ,...,Ix, , My ¢+ Ip, » and making a change of variables
we shall assume that 0 Ady=le., n(kw JEF<l<s . Then one can divide Vi (cf. (3)) from the left by #'“ with remainder
(cf. (4)) with respect to Dy, . in the r@g ta,ie., Vy = 19V + ?@, where L'\‘}E(, Vyedt, ., while d,eg,m (VL) < degp, (K).
Namely, let V("= V} = O‘E?D;%5 “. 4D+ I D, At,i , where ¥} :"L,L‘aﬁm [X4] ; one can consider the last
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ring as a polynomial ring with coefficients from the algebra # 4, in one variable X, commuting with it. Let.Vt“’;.
V-t hODEHUp 50 pu = degy, (Vi) <p-Ls in addition ViP=Vy"-oy WD bop, (V) | s0 py = degs,
(Vé”)‘ PL’L , etc. By induction on j we prove that 4691]* (1/1‘1’ )= p-§ . if p-jz -1 ; finally, we get = Veqa)
for suitable jo and M%w&"k de%n(fi(e’J = u=fen’wd  (cf. (4) and the estimates after if).

From (3) we subtract (4) multiplied on the right by \=f¢ for each -1+1= b < g , respectively; we get as a result the
following system of equations, which has a solution in (.’)ﬁn )% if and only if (3) and thus (2) have a solution:

AT+ & 0y Vo=t 1K<t
KR ptebas ket

&)

o)

Since dem(%e"@)s‘mmd + fon*m*d = N, = (nmd) , one has d/e%w@@)s ’i‘@n”(“’uvg) < N, for{sk< .

. o i . _ .
We write each V; —“EN‘.:D,‘ Ty, for 1<j<S where ¥, Le'ﬁ}t- ,[ 41+ Then one can replace (5) by an equivalent

linear system in the variables Tr“ , 1sjss 0= 4 < Nohere each equality is replaced by (N,+1) equalities, namely: if

0Tt T V=L B L 3,7 - BTy and b= T'L 7.
KK ses KETE ocTeh, Pohen, oM k’t+0§sﬂ.1] . u%ks, Oézt;sﬂa%’c’”’tve't and b, ogan‘n”g""” Where Bits

" e , then Qo it Vot + 7 T.=b. . . for 0% : iti
gt P ﬁ““‘V[X”] ogsm.a’“’”’t o s OstEsNo Tagtyit iy = b,y - Tor 0<isNo . In addition deg

(atkz;,f),deg(&,,m,t),deye,,m4nmA, . Thus we have proved
LEMMA 5. The system (2) is equivalent to a linear system

Agisz“Zf':?K’ f<cem Nort) = Ny ©)

over the ring A, [X,] , where deg(&me}, deg(gk), No,.N_,’ < (nmd), sts(ﬁmd,) o) . Moreover, if (6) has a solution
Zyyeo 2y, © Bye [X,1, such that deg (Zy) < N, for 1< B< N, , then (2) has a solutionVy ..., Vs € &, for which deg (V) <
N+ No» 1=bes

Thus, Lemma 5 lets one eliminate D, and pass to the consideration of linear equations over the ring £ n'_{ [ X ,.,] "
Now we shall similarly eliminate X,, . To begin we make the observation that Lemma 1 and hence also Lemma 2 are also valid
for the ring an_, [Xy] . One can verify this by following the proof of Lemma 1 and in addition derive it directly from Lemma
1 in the following way. Let A be an (m-{) x m matrix with elements from the ring ¢t -4 [ X4 ], so by Lemma 1 one can find
a vector 0 #6 = (by..bw)=(#y)" , such that Ab = 0. We represent each element bj, 1<} <w in the form bj =
2'_:.." V)}“L D}L , where 6},4;‘—:-%%-1 [ Xl s while d?%(b},l)<de% (%&) (cf. (1)). Let iy be the smallest index such that

Y)%)'w #  for at least one j. Then A(bi,. ,6m.Lo)T = (), which proves the analog of Lemma 1 for the ring #y-1 (Xa] -
Applying the construction described above in Sec. 1 to (6) as to (2), we reduce (6) to trapezoidal form (cf. (3)):
PK ZK+ : Pk,ﬂ ZL=QIK7 &.QKQ'LA) ) (3’)
PrisleN,

where Px; Pty %Eiﬂin_i [X«,] and -ty is the rank of the Ny x Ny, matrix.(i KJ,). By Lemma2 and the observation made
above, deg (Px) deg(Pxt); deg (g <(nmd)?®,

Further, analogously to (4), in view of Lemma 1 and the observation made above, for each ¢, +4 < { < N, onecan
®) ¢
find 4., 447, 4Pty [ Xy] » such that de%(%(,?),de%(i&( ") <(am dy © and

PK%(:)"'PK," Aé,u’)s()) <kt . 4"

Let %'Lr’v Q;_Eﬂ%uﬂi [X,] be a finite family of elements. The next lemma is an analog of Lemma 4.
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LEMMA 4'. There exists a nonsingular linear transformation over F of (2n — 1)-dimensional space under which
KXo, X =Ly~ K+ 8%, Dy —Ap, =D +8 Xy, d<i<m-l , suchthat-0# Lex, (§k) € Forall1 <

k < t, where T - is obtained from 3;< with the help of the linear transformation indicated.

(k) “ #n-L n
The proof is similar to the proof of Lemma 4. Let ‘%'K Jﬁl 9 D i . X f Xa-t - - .Xf + 23, where
. ~ (K) (@) ‘-u—i 2)\b
all terms of highest degree from ¢, are gathered into the left summand. Then '%xu(%n) = %: P1y O, 1) S( 4
’

(S:fl )2( L (5(4) " One can find SIRIE YN 7‘6;2; L, B e F such that the leading coefficients indicated are nonzero

forall 1 < k < t, which proves the lemma.
We apply Lemma 4' to the family (cf. (4')) of elements 1& <9 L1 -4 <[ < N2, ; the linear transformatxon A

constructed obviously preserves (1), so one can again consider #t 4 -1 as the Weyl algebraon AX_U - Dy Wt Du ST Dty
and making a change of variables we shall assume that Qs fo, e 1}"’)6 F,a+1<sb<Ny .

Similarly to the above, we divide Z ¢ (cf. (3") on the left by y‘e’ (cf. (4")) with remainder with respect to X for
1+sb< Nysinthering £, [X,] , andthus Z, = y® Zy+ Z g, where degx, (Zpr<degy, Y < (mmd)on (¢ (4')). Then
from (3") we subtract (4') multiplied on the right by 7}, for each +,+1< { < N,, respectively. As a result we get the following
system of linear equations which has a solution in (.7%,“ [X.,]) * if and only if (3') and thus (6) have a solution:

P-Z_'f‘ E gz= ) 4‘K$7’1‘ '
L, Pue L= G« 5"

Just as before we estimate d,agx (Zk)sd@gx (pKZ PES maw {d"’ﬂx (Pkezt)} <N < (wmd)0? . Similarly we
1isb
write ZJ p e ‘ X Z. i where 7, i e ,ﬂu_1 , and we replace each of the equations from (5') by (N s+1) linear equations
<L< [ )

in the variables Z}-),; s Agf< Nz’ , Osis N5 over the ring # n-17 (cf. above). Analogously to Lemma 5 one proves the

following:
LEMMA 5'. The system (6) is equivalent to a system of linear equations

s .
LH.Y =4 )

over the ring -ﬂw_; » where the number of equations and the degrees of all ;Lv b fu are bounded by (#md )90 | In addition
if (6) has a solution {Yj ef,  }, where. deg(yj) Ny, for some Ny and all j, then (6) has a solution {Ze "%n-« [¥,1}
for which deg.(Ze)s Ny+ N5, where No< (nmd,) 0

To prove the theorem (cf. Introduction), arguing by induction on n one can assume that the theorem is proved for the
ring B = A, _, and the system (6') has a solution {Y} efni}  (ifitis solvable over the ring # 4_; ), such that deg(Y;)
< (nmd) 42 0, where the constant c; is chosen from the estimates of Lemma 5' and the constant ¢ from the inductive
hypothesis, while by i Increasing c one can assume that £ ¢, AR LD " Then it follows from Lemmas 5' and 5 in succession
that (6) and (2) have solations of degrees at most (4 dm')zm » which proves the inductive hypothesis for the ring dty, and thus
the theorem for the case of the ring R, =iy, -

Sec. 3. Solution of Systems of Linear Equations Over the
Algebra of Differential Operators

Now we return to consxderatlon of the system (3) over the ring ‘R, = t}(,“ For the element %-9” %.;la Ky
where %Foéay D; fui= & D’ ‘}L;Eﬁmﬂu;ar‘[xu el dte [Xul; Yup 705 Ge=F[Xy X
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ine leading coefficient Le.p, (§) =G §a € Ha-(F(Xu ). The nextlemma is an analog of Lemma4. Let-q®, ..., §¥ e Ky
be a family of operators, "}“‘)&Fﬁw 7
LEMMA 6. Thereisanonsingular linear transformation over F of 2n-dimensional space under which the vector (D;,
.., DT =Dy, -, D,)T, where the n X n matrix Q. =(@i }), the vector (xi’...,x%)T__,(Q~L)T (Xeyooos YO
in addition for any 1 < I < t the leading coefficient :0 # L p n('(}w)ef‘ (Xg,..yXy) , where T(£) is obtained from:%(l,)
with the help of the linear transformation indicated.
Proof. Obviously (1) is preserved under the linear transformation indicated. Let g; denote one of the elements gg,,

..., g0g,; we use the notation introduced before the lemma and write 4= Zm Dw, DY fog,* >, , where all terms
I, i Lo 3 7
from g; with maximal sum i;+ ... +i, are collected into the left summand. Then -l,ch(@L)s;(o)ﬂ,%)'”‘?. -Uﬂl,w)w‘}i,l.,EF

[Xy Xg]- Since Z0 (@)™ (@eu)"Furz0 if and only if g(m%,w)w...(wl,u)'h%i;#o , by considering the
coefficient in the last polynomial of a monomial in the variables X,,...,Xy , Which occurs in some polynomial 4, + . itis easy
to prove the existence of (DM’ m..,(ﬂi’ , - for which this coefficient and hence the entire polynomial are different from zero.
Consequently one can find a nonzero vector Wi,y Wy,g  for which the leading coefficients of all %“),..., %W are
different from zero; we supplement it to a nonsingular matrix and this completes the proof of the lemma.

We apply Lemma 6 to the family of operators tt,(”), v+l<l <8 . the linear transformation obtained preserves 03]
and in addition both the n-dimensional linear spaces generated by Dy, ..., Dyand Xy, ..., Xy, respectively, so one can consider
", as an algebra of operators on a vector of variables (Q.— l)T (X Lyre o 7\%)- and a vector of differential operators XDy,
..., D), and making a change of variables we shall assume that -0 # &11,,("(”)“; FXyy Kn), defsbes -

Then just as above in Sec. 2 one can divide Vp (cf. (3)) on the left by 4® with remainder with respect to By for
144 << ginthe algebra X, , 1., V= g 63* \A(E , where- %,Vg < Xy while deq],’;(\?‘,kdgh;(h“’) < (wmd) 0@ . From
(3) we subtract (4) multiplied on the right by Y, for each 1+1<{<s , respectively; we getasa result the following system
of equations, which has a solution in (,’K,n)s if and only if (3) and thus (2) have a solution:

A A
sV, + L a’K)e.VC=£K) 1<k<? - N
1+i50%s
Similarly to Sec. 2 blish the estimates deqg_ (Vi) < dedy (a.V {deag, (T < < (omd )™ for
imilarly to Sec. 2 we establish the estimates 4€(p,, (V)= eh”(a“'\];( )$ mp% 92y (At V0
f<k<%. '
e PR . /\' :
We write Y&fﬂo?‘q{s PR for{< j<s, where U};,iex”"(m")) _Then one can replace (7) by an equivalent system
of linear equations in the variables T, Ae jes , 0<is &, and here each of the equations of (7) is replaced by (J+1)
) ) s 4
equations. Namely, let a be one of the elements of the form &, @6 and \If be the corresponding element Vi , Vi, and
a=a® @@y, where a%% £, e F[Xyor Xud (cf.end of Sec. 1). Using the relation (a®)yP I, = D, (a®y P+
pa®rPt ( ..%P;i’f’-) several times we reduce a1} to the form E:Ll]fat(u‘”)““‘ , where &y &, [Xy]. Consequently,
. 0y <

0= T j)i'ﬁn 1’}1,, where hteﬁf" ,(F’(X,)) , and here '4&(},(}; t)s(.]l"ﬂ)d,eg(u)ﬂ (nmd)?® . Analogously to the
osidsy PV Ao '

proof of Lemma 5 in each of the equations of (7) we equate the coefficients of 3} for 0<é<JY. and we get the Hed

equations required. Thus, we have proved

LEMMA 7. The system (2) is equivalent to a system of linear equations

L BegZ= % {skam(f+1)= S, ®
1<b<ly
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over the algebra Xy, (F(Xy)) , where dcg (Be)s deg@o), N, o, , Sy < (wmd)0® . In addition, if system (8) has a solution
Zis s Zﬂ;e Ko (F(Xy) ), suchthatd,eg(Z‘)sJ}’, for {<t= JY, then (2) has a solution Vj,...,Vg'e Xy (), for which
deg (Vs (M+1), 1= E<s. |

To prove the theorem (cf. Introduction), arguing by induction on n one can assume that (8) has a so}ution AT
Zy, & Ku-y (F(Xy) (f it is solvable over the algebra K- (F(Ka) ), such that vde%(zt)s(nmd)(‘,zz‘f"(“'*)) 1<l =
W', , where the constant c, is chosen from the estimates of Lemma 7 and the constant ¢, from the inductive hypothesis, while

by increasing c,, one can assume that 2.Cp, 0,00 (#=1) & 9 €o* Then it follows from Lemma 7 that system (2) has a solution
of degree at most (ww,ol )Zc""t , which proves the inductive hypothesis. We also note that the base of the induction for the

field o (F(Kyyy Xy )= F (X, Xy) follows from the estimates on determinants over this field. This completes the proof
of the theorem for the case of the ring R, =¥, (F).
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