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COUNTING CONNECTED COMPONENTS
OF A SEMIALGEBRAIC SET
IN SUBEXPONENTIAL TIME

D. Yu. GRIGOR'EV AND N. N. VoroBJOV, JR.

Abstract. Let a semialgebraic set be given by a quantifier-free formula
of the first-order theory of real closed fields with k atomic subformulae of
the type f; > 0 for 1 < ¢ <k, where the polynomials f; ¢ Z[Xy,..., X,
have degrees deg(f;) < d and the absolute value of each (integer) co-
efficient of f; is at most 2™, An algorithm is exhibited which counts
the number of connected components of the semialgebraic set in time
(M (kd)"zo)o(l). Moreover, the algorithm allows us to determine whether
any pair of points from the set are situated in the same connected com.
ponent,
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Introduction

In the present paper a subexponential-time algorithm is designed which finds
the number of connected components of a semialgebraic set given by a quantifier-
free formula of the first-order theory of real closed fields (for a rather wide class
of real closed fields, see Grigor’ev & Vorobjov 1988, Grigor’ev 1988). Moreover,
the algorithm decides, for any two points from the semialgebraic set, whether
they belong to the same connected component.

Decidability of the mentioned problems follows from the quantifier elimi-
nation method in the first-order theory of real closed fields, described for the
first time in Tarski (1951). However, the complexity bound of this method is
nonelementary, and in particular one cannot estimate it by any finite iteration
of the exponential function. In Collins (1975) (see.also Wiithrich 1976) the
construction of a cylindrical algebraic decomposition is proposed, which allows
one to solve these problems in exponential time.

For an arbitrary ordered field F we denote by F > F its uniquely defined
real closure (see, e.g., Lang 1965). In the following we consider input polyno-
mials over the ordered ring Z,, = Z[é1,...,6n) C Qm = Q(b1,...,6n), where
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81y...,0m are algebraically independent elements over @ and the ordering in
the field Q. is defined as follows. The element é; is infinitesimal with respect
to Q (i.e., 0 < & < a for any rational number 0 < a € Q), and for ey}
1 < i < m the element 6;11 >0 is infinitesimal with respect to the field Q,,
—Thus, let a quantifier-free formula = of the first-order theory of real cloged
fields be given as input, where = contains atomic subformulae of the fory
fiz0forl < i < k, with f; € L.[X1,.. ., X,]. Any rational functioy
g € Qn(¥h,...,Y:) can be represented as g = g1/g2, where the polynomials
g1,92 € Lu[Nh,. .. ,Y;] are relatively prime. Denote by I(g) the maximum of
the bit-lengths of the (integer) coefficients of the polynomials g1, g3 (in variables
Yi,eo. Yay 8150y 0m). We will assume that the following bounds are valid:

degy, .. x,(f) < d, degs, _5,(fi) <do, I(fi) <M 1)

for 1 < i < k, where d, do, M are integers. Note that the bit-length of the
formula = can be estimated by the value £ = kMd™dF (see Chistov & Grigor'ey
1983, Grigor’ev 1986).

In the case m = 0, i.e., for polynomials with integer coefficients, the al-
gorithms from Collins (1975) and Wiithrich (1976) allow one to produce the
connected components (in particular to solve the problems considered in the
present paper) within time M oM)(kd)2°™.

We use the notation hy < P(hg, ..., hs) for the functions hy > 0,...,h >0
if, for suitable integers c,7, the inequality hy < c(hg - ...+ hy)7 is satisfied.

Recall that a semialgebraic set (in F™ where F' is a real closed field) is a
set {II} C F™ of all points satisfying a certain quantifier-free formula II of the
first-order theory of the field F', where each atomic subformula of II has the
form (g > 0) for some g € F[X3,... Xa).

A semialgebraic set {E} C (Qm)" is (uniquely) decomposable as the union
of a finite number of connected components {2} = U;<i<:{Zi}, each of them
in turn being a semialgebraic set determined by an appropriate quantifier-free
formula =; of the first-order theory of the field Qnm (see, e.g., Collins 1975 and
Wiithrich 1976 for the field F = R, and Tarski 1951 for an arbitrary real closed
field; see also below).

- In this paper we shall use the following way of representing the points
u = (u,...,us) € (Qn)" (see Grigor’ev & Vorobjov 1988). First, the field
Qm(u1,...,u,) is represented as a primitive extension Qm[n] of Qm (see Lang
1965) where we are explicitly given:

(i) a minimal polynomial ¢(Z) € Q[Z] for n;

(i) integers 0 < oy, .., o, < degy(e) such that g = Fycicn it
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(iii) elements B9 € Q,, such that u; = To<i<desy(v) BYyi

Second, we are explicitly given a sequence of pluses, minuses and zeros that
designate the signs of the derivatives of all orders ¢'(7), eA(n),... , pldes(@)) ()
of the polynomial ¢ at 7. Thom’s lemma (see, e.g., Fitchas et al. 1988) implies
that the latter condition uniquely determines the root n of ¢.

We say that a polynomial g € Z,[Xy,...,X,] satisfies the (D, Do, M)-
bound if the following inequalities hold:

degy,,..x.(9) < D; degs, _s5.(9), degs, s ( )y < Do; 1(g),1(8¥) < M.

One then sees that the bit-length of the representation of the point u does not
exceed P(M, D, Df*,n) (see Grigor’ev & Vorobjov 1988, Grigor’ev 1988). The
main purpose of the paper is to prove the following theorem (see also Vorobjov
& Grigor’ev 1988).

THEOREM 1.

(1) There is an algorithm which, for any formula = of the above form satis-
fying the bounds (1), finds the number of connected components (in partic-
ular, tests the connectedness) of the semialgebraic set {Z} C (Q,)" in time
P(M, (do(kd)™* )™ < £OWE* L) (i . the time-bound is subexponential in L).
(2) For any two points u™,u® € {Z} satisfying the (d,do, M)-bound, the
algorithm can test whether u), u(® belong to the same connected component
of {Z} in time P(M, M, (dodo(kd)™d)™*)*+™) (i.e., subexponentially in £ and
in the bit lengths of the points u(®), (?),

To prove this theorem we shall need some subroutines which we exhibit in
the rest of this introduction (see also Grigor'ev 1986). First, we need the al-
gorithm from Chistov & Grigor’ev (1983) for decomposing an algebraic variety
(considered over an algebraically closed field) into its irreducible components.
We formulate this result here for the case of zero characteristic fields, taking
into account that only ordered fields are considered below. This allows one
to avoid some “swelling” in the formulae that could otherwise occur in non-
separable field extensions. Second, we need the algorithm from Grigor'ev &
Vorobjov (1988) for solving systems of polynomial inequalities. Third, we need
the decision procedure for real closed fields from Grigor'ev (1988). Finally, we
require an algorithm from Vorobjov (1989) for finding connected components
of a semialgebraic curve in the space (Q,)".

We remark that we do not use here the subexponential-time quantifier elim-
ination procedure for real closed fields (see Renegar 1989, Heintz et al. 1990c),
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of which we learned after our paper was already finished. Actually, one cap
deduce the subexponential bound for quantifier elimination from a reductioy
of the whole problem to the problem of eliminating a single quantifier (see
Grigor'ev 1988); one can find the solution of the latter problem in Ben.Q;
et al. (1986).

We mention that in Canny (1988) a similar construction to the one de.
scribed in Section 3 below is contained which allows one to count the number
of connected components of a nonsingular bounded hypersurface. But in the
mentioned work the proof of the correctness of the algorithm and the proof
of the complexity bounds (which is technically very difficult) are absent (see
Sections 4 and 5 of the present paper).

After the paper was already written, the authors learned that a similar
result was obtained (involving a different method) by Heintz, Roy & Solern¢
(1990a,b); see also Grigor’ev, Heintz, Roy, Solerné & Vorobjov (1990).

Notice that the main theorem of the paper can be generalized to finding
connected components of a semialgebraic set with similar complexity bounds,
(This result will appear in Canny et al. 1991.)

So, assume for the time being that we are given a ground field F =
Q(Ty,. .., Ty)[n], where the elements T1,..., T are algebraically independent
over Q and the element 7 is algebraic over the field Q(T1,...,Tm). Let ¢ =
Socic degz(¢)(¢§1) [ Zi € Q(Th,...,Tn)[Z] be the minimal polynomial for g
over Q(T1,...,Tn) with the leading coefficient lcz() = 1, where the poly-
nomials gogl),cp(z) € I[Ty,...,T,] and deg(®) is the least possible. Every
polynomial f € F[Xi,...,Xs] can be uniquely represented in the form

f= > (@iig,oonin /O X -2 X,

0<i<degz(®)ii1sein

where the polynomials a;,...i.,b € Z[T4,...,Tr] and deg(d) is the least possi
ble. Denote the degree

degyy,..1,,(f) = i’%ﬁiﬁn{degﬂﬁ,...,Tm(a‘iril,-..,‘in)? degr,,..1..(0)}
and the bit length of the coefficients I(f) = max;,, . i, {1(@iiy,..in), [(f)} (see
above).

Let an input system of equations f; = -+ = fx = 0 be given, where the poly-
nomials fi,...,fx € F[Xi,...,X,] satisfy the following bounds
deg,, .o (fi) < d, degq, 7. (fi) < do, degq,, 1,() < do, degz(ep) < diy
I(fi) M, l(p) < M for 1 <i < k. For the size £ of the system in Proposi
tion 1 we use the value kd"d,dj' M.
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The variety W C F" of all roots (defined over the algebraic closure F of
the field F) of the system f; = --- = fi = 0 is representable as the union of its
components W = Uy Wa which are defined and irreducible over the field F* (all
necessary notions from algebraic geometry can be found in Shafarevich 1974).
The algorithm from Proposition 1 finds the components W, and outputs every
W, in the following two ways: by its generic point (see below), and by a system
of algebraic equations such that W, coincides with the variety of all the roots
of this system.

Let W C F be a closed variety of dimension dimW = n — n; defined
and irreducible over F. Denote by t1,...,t,_,, some algebraically independent
elements over F'. A generic point of the variety W can be given by the field
isomorphism

Fltyy.rtnony)l0] & F(Xa,..., Xa) = F(W), (%)

where the element 8 is algebraic over the field F(ty,...,tnr,). Denote by
¢(Z) € F(t1,...,tn-n,)[Z] the minimal polynomial of 6 over F(ty,...,tnn,)
with leading coefficient lcz(¢) = 1. The elements Xi,..., X, are considered
here as rational (coordinate) functions on the variety W. Under the isomor-
phism (¥) we have t; — «;; for suitable 1 < ji < ... < juop, < n, where
1 <i < n—ny The element § is the image under the isomorphism (*) of
an appropriate linear function 3-;<i<, AiXi, where Ay, ..., A, are integers. The
algorithm from Proposition 1 represents the isomorphism (*) by the integers
My..., A and also by the images of the coordinate functions Xj,..., X, in
the field F(t1,...,tn-n, )[0]. In the formulation of Proposition 1 we sometimes
identify a rational function with its image under the isomorphism.

PROPOSITION 1. (CHISTOV & GRIGOR’EV 1983, GRIGOR'EV 1986.) An al-
gorithm can be designed which produces a generic point of every component
W, and constructs a certain family of polynomials ¥{,...,»M™ € F[X,,...,
X, such that W, coincides with the variety of all the roots of the system
PP =... =M = 0. Let n — ny = dimWa, 6, = 6, 9o = ¢ (see (¥)). Then
degz(po) < deg(Wy) < d™; and for all1 < j <nand1< s <N we have

deng,‘..,Tm,tl yoontreny (®a)s degn,...,Tm,tl....,tn_.,l (X3), deng,._.’Tm(gbg’) ) <
doP(d™, dy),

and deg)ﬁ,.‘.,x,1 (’/’c(xs))) < d?™. The number of equations N < n2d*™. Further-
more, l((po,), I(X;) < (M + (n+m)do)P(d™,dy), and

() < (M + ndo)P(d", dy).
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Finally, the total running time of the algorithm can be bounded by
P(M, (d"dldo)""'m, k).

Obviously, the latter value does not exceed P(LY8“), in other words, is sube.
ponential in the size L;.

We proceed to formulate the result from Grigor’ev & Vorobjov (1988) on
solving systems of polynomial inequalities over real closed fields. To do this we
need to generalize the notion of a connected component of a semialgebraic set
from the field R to arbitrary real closed fields. It is well known (Tarski 1951)
that all real closed fields are equivalent in an elementary way. This means that
if Ky, K, are real closed fields where K; C K3 and II is any closed formula
(without free variables) from the language of the first order theory of the field
K, then the truth values of II in the fields K; and K5 coincide. In this paper
we refer to this statement as the “transfer principle.”

Now we shall demonstrate how the transfer principle can work and also
show (a known fact) that any semialgebraic set over a real closed field K can
be represented uniquely as a union of its connected components, each in tum
being a semialgebraic set. Consider a semialgebraic set W = {II} c K*,
determined by a quantifier-free formula II of the first-order theory of real closed
fields (henceforth we shall omit the term “first-order”) with atomic subformulas
of the kind (f > 0) for some f € K[Xi,...,X,]. By the format of the formula
II we shall mean the sum of the number of its variables, the number of atomic
subformulas and the degrees of the polynomials f.

In the case of the field K = R the set W is uniquely representable as a
union of its connected components W = |J; W;, where every W; is in turn a
semialgebraic set (and connected in the Euclidean topology). From the papers
Collins (1975) and Wiithrich (1976) one can deduce the existence of a function
H such that if the format of formula II is less than A’ then the number of
the components W; is less than H(N). Moreover, one can find quantifier-free
formulas II; of the theory of real closed fields, each having format less than
H(N), such that W; = {IL;}. Indeed, the algorithms from Collins (1975) and
Wiithrich (1976) allow one to produce a cylindrical algebraic decomposition
of a semialgebraic set and, as a corollary, to produce its decomposition into
connected components. For a given format A of an initial formula (with sym-
bolic coefficients) each of the two algorithms can be represented as a rooted
tree (directed outward from the root) having vertices either with out-degree
one or out-degree three. The root corresponds to the initial formula; each ver-
tex of the tree with out-degree one corresponds to an arithmetic operation;
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and finally, each vertex with out-degree three corresponds to a polynomial.
The computation for an arbitrary initial formula, with the specified coefficients
substituted instead of symbolic ones, proceeds along a relevant path of the tree
starting from the root. It performs the corresponding arithmetic operation in
a vertex with out-degree one, and branches at a vertex with out-degree three
according to the sign of the corresponding polynomial. This representation as
a tree provides the desired function H.

Thus, for a given N, one can produce a formula w of the theory of real
closed fields (for the case of the field K = R) expressing the existence of a
decomposition of any semialgebraic set W = {II}, where the format of II is
less than A, into its connected components W = Ui{IL;} such that the format
of every II; and the number of them are all less than H (V). Moreover, the
formula Q states that for each pair of indices i # j the components {II;} and
{II;} are “separated,” i.e., the following formula of the theory of real closed
fields is valid:

Y(a,...,an) € {IL} 32 > 0V(by,...,b,) € {11;} ( Z (a—b)? > z) .

1<i<n

Furthermore, the formula Qy claims the “connectedness” of every {II;}. This
means that there do not exist two “separated” semialgebraic subsets of {IL;},
each determined by a quantifier-free formula of the theory of real closed fields
with format less than H(H(N)).

In addition, for given A/, M one can prove (for the case of the field K = R)
a formula Qy,u¢ of the theory of real closed fields expressing the following.
Suppose {II} (where the format of II is less than A) can be represented as the
union of more than one and fewer than M pairwise “separated” semialgebraic
sets, each being determined by a quantifier-free formula of the theory of real
closed fields of format less than M. Then {II} can be represented as the
union of more than one and less than H(AN) pairwise “separated” semialgebraic
‘connected” sets, each being determined by a quantifier-free formula of the
theory of real closed fields of format less than H(A").

Applying the transfer principle to all the formulas 0 and A" ,M, OLLE COn-
cludes that any semialgebraic set (over a real closed field K ) can be uniquely
represented as the union of its pairwise “separated,” “connected components;”
moreover each component is semialgebraic and is “connected,” i.e., cannot be
represented as the union of a finite number of pairwise “separated” semial-
gebraic sets. Below we utilize the terms “connected semialgebraic set” and
“connected components of a semialgebraic set” without quotation marks, since
the notion of connectedness in any topology will not be considered.
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Note that a semialgebraic set is connected if it is linearly connected, i e,
each two of its points can be linked by a connected semialgebraic curve, T(;
prove this, observe that for the case of the field K = R the constructiong
described in Collins (1975) and Wiithrich (1976) imply the following statement,
For a semialgebraic set determined by a quantifier-free formula of a fixed forma
N; and for every two points belonging to one of its connected components
W,, these points can be linked by a connected semialgebraic curve lying in
Wo. Moreover the curve can be given by a quantifier-free formula of a format
depending only on Ni. One can write the latter statement as a formula of the
theory of real closed fields, and therefore, by virtue of the transfer principle,
the statement is also true for an arbitrary real closed field K.

Let the polynomials fi,...,fx € Zn[X1,...,X,] be given, satisfying the
bounds (1). We say in this case that fi,..., fk satisfy (d,do, M)-bounds (see
formulation of the theorem).

Following Heintz (1983) (see also Grigor'ev 1988) we use the term {f;,
...y fr}-cell to denote any nonempty semialgebraic set of the form {A;¢;(f; =
0) A /\ileh(fil > O) A /\i2612(f,'2 < 0)} where {U Il U Ig = {1, . ,k} Denote
by U({f1,- .., fr}) the partition of the space (Qn)" into connected components
of all {fi,..., fr}-cells (see Wiithrich 1976; also Grigor’ev 1988). A finite
set T C (Qm)" is called a representative set for the family of polynomials
fi,. .-, fr if every element of the partition U({fi,..., fi}) contains at least one
point from 7. The following proposition was proved in Grigor’ev & Vorobjov
(1988), Grigor’ev (1988), and Renegar (1989) (where the complexity bound was
improved); see also Heintz et al. (1990c).

PROPOSITION 2. One can design an algorithm which yields a representative
set T C (Qn)" for the family of polynomials fi,..., fi (satisfying (d, do, M)-
bounds). Furthermore the algorithm, for each point from T, specifies a cell
containing this point. The running time of the algorithm does not exceed
P(M, (kd)"™+1) dr). The number of points in T is at most P((kd)"). More-
over, the algorithm represents every point from T in the same way as in The-
orem 1 and satisfies the (P((kd)"), doP((kd)"), (M + mdy - P((kd)™))-bound.

In the following we also need a construction from Grigor’ev (1988). Consider
polynomials ¢1,...,9s € Qu[X1,...,Xs, Y1,...,Y.]. We say that a family of
polynomials hy,..., ks € Qu[Xi,...,X,] is thin with respect to the family
91,---,9s (and to the natural projection 7 : Q7+t — Qn) if, for any element
Uy C Qp, of the partition U({hx,. .., k;}) and for any element U, C Q% of the
partition 2({g1,...,9,}), we have either 7(U;) NU; = @ or 7(Uz) D Us. The
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following proposition is contained in Lemmas 12 and 14 in Grigor'ev (1988).
See also Renegar (1989) and Heintz et al. (1990c).

PROPOSITION 3. One can design an algorithm which, for a given family of
polynomials g1, ..., 9s € Ln[Xyy..., Xa, VA, Y.] satisfying (d, do, M)-bounds
yields a family ha,...,h; which is thin with respect to this family and to
the projection m. Furthermore, hy, ..., h; satisfy (P((sd)®), doP((sd)®), (M +
mdo)P(n, (sd)*))-bounds, and t < (sd)™. The running time of the algorithm
does not exceed P(M, (sd)elentm) dm),

2

Finally, we need the following.

PROPOSITION 4. (VOROBIOV 1989, HEINTZ, ROY & SOLERNG 1990c.) Let
the polynomials gi,...,Gs, Gst1,---19s1y Gor41s+-19s; € Lm[X1,...,X,] be
given, satisfying (d,do, M )-bov.y_gds, and suppose that any irreducible (over the
field Q) component W C (Qn)" of the variety determined by the system

of equations g1 = --- = g, = 0 such that W N (Qn)" # 0 has dimension
dimg, (W) < 1. Then one can find the connected components of the semialge-
braic curve {g1 = -+ = gs = 0Agoy1 > OA---Agy, >0A gy 41 2 0A---Agy, >

0} C (Qm)" within time P(M, (s2d™do)™*™). Moreover, the algorithm repre-
sents each connected component as the union of some connected semialgebraic
curves of the kind {hy > OA -+ Ahy > O0A hyyr 20A--- A hy, >0}, where all
the polynomials h; € Zn[Xx,...,X,] for 1 < i < t; satisfy (P(d"*), deP(d™),
(M + mdyp), P(d™))-bounds.

1. Reduction of counting connected components to the
case of a system of inequalities

Let K be an arbitrary real closed field (see, e.g., Lang 1965) and an element
€ >0 be an infinitesimal with respect to the field K (see above). Let us recall
some well known facts about real closed fields. A Puiseux series (or fractional-
power series) over K is a series of the form Yo :e*/#, where 0 # o; €
K, the integers vy < vy < ... increase, and the integer g > 1. The field
K((e'*)) consisting of all Puiseux series (with zero added) is real and closed,
hence K((e}/*)) D K(e) D K(e). Furthermore, the field K[v/=T1]((eV/*)) =
K((e"/)) is algebraically closed.

When vy < 0, the element a € K((¢'/®)) is called infinitely large, while
if vy > 0 then « is infinitesimal (with respect to the field K). A vector
(@1,...,a,) € (K((€1/%)))" is called K-finite if each of its coordinates a;
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(1 £ i £ n)is not infinitely large. The standard part st(a) € K of any
K -finite element a € K((€/®)) is definable (see Grigor’ev & Vorobjov 1988)
namely, st(a) = do when o = 0 and st(a) = 0 when »o > 0. Similarly, ope
can define the standard part of a Puiseux series from K (( 1/%9)). The standarq
part of a K-finite vector (ay,...,a.) € (K((e 1/%)))" is defined componen.
wise: st(ay,...,an) = (s‘t(al),...,st(an)). For a set W C (K((e'/*)))r |gt
st(W) = {st(w) : w € W and st(w) is definable}.

Recall that an input quantifier-free formula = of the theory of real clogeq
fields is given containing k atomic subformulas of the form (f; > 0) for 1 <
i < k, where f; € F[Xu,...,Xz] (here F' is an ordered field; later Q,, will pl ay
the role of F'). The semla,lgebralc set {Z} coincides with the union of severs|

{fl) afk} cells.

~ Let a system of inequalities (see (1))
f1>0,"'1fk1>07fk1+1.>_0""7fk..>_0 (2)

be given, where f; € F[X,...,X,] for 1 <4 < k. The purpose of the present
section is to reduce the proof of the theorem (see the Introduction) to the
design of an algorithm, satisfying the requirement of Theorem 1, that handles
the special case when the system (2) plays the role of the formula = in Theorem
1. Because of that we shall assume for some time that an algorithm for formulae
of the form (2) is already designed (its bounds will be obtained later, in Section
5).

) Applying Theorem 1 to (2) and using Proposition 2, the algorithm produces
a representative system 7 for the partition U({fi,..., fx}) of the space "
such that each element of the partition contains a unique point from 7 (one
can assume that an element of the partition is represented by this point). For
an element of the partition (or in other words, for a {f1, ..., fi}-cell containing
this element) one can easily test whether it lies in {Z}. Namely, Proposition 2
allows one to specify the signs of the polynomials fi,..., fx for a representative
point of this element of the partition, and thereby the truth values of the
atomic subformulae (f; > 0) (for 1 < i < k) of the formula =. The considered
{f1,.+, fx}-cell lies in Z if, after substituting for the atomic subformulas in Z
their truth values, a true proposition is obtained.

To count the connected components of the set {=} it suffices to find out, for
each pair Vi, V; € U({f1,..., fx}), whether Vi N V; # 0 (here the bar denotes
the closure in the topology of the space F™ generated by the basis of all open
balls). Indeed, consider a graph whose vertices bijectively correspond to those
elements of U ({ fiy.++, fi}) which liein {Z}, such that there is an edge between
the vertices corresponding to V4, V; if either V; N V5 # @ or V; N'V; # . Then
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the connected components of this graph correspond bijectively in a natural way
to the connected components of the set {Z} (this is obvious in the case when
the field F' = R; for an arbitrary real closed field one should invoke the transfer
principle). -

Thus, the algorithm has to test whether Vi NV, 5 . Let V lie in a certain
{fiy--.» fi}-cell (its connected component)

Ulz{fil :"'=fiz=0/\(fj1 >0)/\"'A(fj11 >0)
/\(sz1+1 <0)A"'A(fjk_1 <0)}‘

Consider €1 > 0, an infinitesimal with respect to the field F, and &, > 0, an
inﬁnitesimaLl with respect to the field F(e1). Let Fy and F; denote the fields
F(e1) and F(e2), respectively. By st; we denote the standard part with respect
to £, and by st; we denote the standard part with respect to both €y, €,; i.e.,
for a € F, we have sty(a) € Fy, sty(a) € F (provided that these standard parts
of a are definable). Note that an element a — sty(a) is an infinitesimal with
respect to the field F1 and an element a — st;(a) is an infinitesimal with respect
to the field F'. Let Vl(cl’cz) C F} be a semialgebraic set determined in the
space FJ by the same quantifier-free formula of the theory of real closed fields
(defined over the field F) as the set Vi (we also use similar notations below).
Introduce a semialgebraic set

Uh={(-e2< fuSe)A- N2 < fi L) A(fjy, 2 &)
ASERRA (szl 2 51) A (fi11+1 < “51) ARERRA (fjk.-z < "61)}
n DO(EI—I) C F;v

where D,(r) denotes the closed ball {y : ||z — y|| < r}. Clearly, Vi C Uy C Us.

LEMMA 1. (a) There is a unique connected component V; of the set Uy such
that V; D Vi;

(b) sta(V1) C V),
(c) the relation V; NV, 5 0 holds if Vy N V) £ §.

PROOF. (a) Let z,y € V;. There exists a connected, bounded (i.e., lying in a
certain ball Dy(R), where R € F), closed (in the topology with the basis of all
the open balls) semialgebraic curve C C V; C F™ containing points z,y € C
(see the Introduction). Thus there exists 0 < ¢ € F, such that for every z € C,
fiz) > cfor j = jy,... g and fij(z) < efor j = jJi41,-..,Jk-1- Denote




































































































































