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COUNTING CONNECTED COMPONENTS
OF A SEMIALGEBRAIC SET
IN SUBEXPONENTIAL TIME

D. Yu. GRIGOR'EV AND N. N. VoroBJOV, JR.

Abstract. Let a semialgebraic set be given by a quantifier-free formula
of the first-order theory of real closed fields with k atomic subformulae of
the type f; > 0 for 1 < ¢ <k, where the polynomials f; ¢ Z[Xy,..., X,
have degrees deg(f;) < d and the absolute value of each (integer) co-
efficient of f; is at most 2™, An algorithm is exhibited which counts
the number of connected components of the semialgebraic set in time
(M (kd)"zo)o(l). Moreover, the algorithm allows us to determine whether
any pair of points from the set are situated in the same connected com.
ponent,
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Introduction

In the present paper a subexponential-time algorithm is designed which finds
the number of connected components of a semialgebraic set given by a quantifier-
free formula of the first-order theory of real closed fields (for a rather wide class
of real closed fields, see Grigor’ev & Vorobjov 1988, Grigor’ev 1988). Moreover,
the algorithm decides, for any two points from the semialgebraic set, whether
they belong to the same connected component.

Decidability of the mentioned problems follows from the quantifier elimi-
nation method in the first-order theory of real closed fields, described for the
first time in Tarski (1951). However, the complexity bound of this method is
nonelementary, and in particular one cannot estimate it by any finite iteration
of the exponential function. In Collins (1975) (see.also Wiithrich 1976) the
construction of a cylindrical algebraic decomposition is proposed, which allows
one to solve these problems in exponential time.

For an arbitrary ordered field F we denote by F > F its uniquely defined
real closure (see, e.g., Lang 1965). In the following we consider input polyno-
mials over the ordered ring Z,, = Z[é1,...,6n) C Qm = Q(b1,...,6n), where
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81y...,0m are algebraically independent elements over @ and the ordering in
the field Q. is defined as follows. The element é; is infinitesimal with respect
to Q (i.e., 0 < & < a for any rational number 0 < a € Q), and for ey}
1 < i < m the element 6;11 >0 is infinitesimal with respect to the field Q,,
—Thus, let a quantifier-free formula = of the first-order theory of real cloged
fields be given as input, where = contains atomic subformulae of the fory
fiz0forl < i < k, with f; € L.[X1,.. ., X,]. Any rational functioy
g € Qn(¥h,...,Y:) can be represented as g = g1/g2, where the polynomials
g1,92 € Lu[Nh,. .. ,Y;] are relatively prime. Denote by I(g) the maximum of
the bit-lengths of the (integer) coefficients of the polynomials g1, g3 (in variables
Yi,eo. Yay 8150y 0m). We will assume that the following bounds are valid:

degy, .. x,(f) < d, degs, _5,(fi) <do, I(fi) <M 1)

for 1 < i < k, where d, do, M are integers. Note that the bit-length of the
formula = can be estimated by the value £ = kMd™dF (see Chistov & Grigor'ey
1983, Grigor’ev 1986).

In the case m = 0, i.e., for polynomials with integer coefficients, the al-
gorithms from Collins (1975) and Wiithrich (1976) allow one to produce the
connected components (in particular to solve the problems considered in the
present paper) within time M oM)(kd)2°™.

We use the notation hy < P(hg, ..., hs) for the functions hy > 0,...,h >0
if, for suitable integers c,7, the inequality hy < c(hg - ...+ hy)7 is satisfied.

Recall that a semialgebraic set (in F™ where F' is a real closed field) is a
set {II} C F™ of all points satisfying a certain quantifier-free formula II of the
first-order theory of the field F', where each atomic subformula of II has the
form (g > 0) for some g € F[X3,... Xa).

A semialgebraic set {E} C (Qm)" is (uniquely) decomposable as the union
of a finite number of connected components {2} = U;<i<:{Zi}, each of them
in turn being a semialgebraic set determined by an appropriate quantifier-free
formula =; of the first-order theory of the field Qnm (see, e.g., Collins 1975 and
Wiithrich 1976 for the field F = R, and Tarski 1951 for an arbitrary real closed
field; see also below).

- In this paper we shall use the following way of representing the points
u = (u,...,us) € (Qn)" (see Grigor’ev & Vorobjov 1988). First, the field
Qm(u1,...,u,) is represented as a primitive extension Qm[n] of Qm (see Lang
1965) where we are explicitly given:

(i) a minimal polynomial ¢(Z) € Q[Z] for n;

(i) integers 0 < oy, .., o, < degy(e) such that g = Fycicn it
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(iii) elements B9 € Q,, such that u; = To<i<desy(v) BYyi

Second, we are explicitly given a sequence of pluses, minuses and zeros that
designate the signs of the derivatives of all orders ¢'(7), eA(n),... , pldes(@)) ()
of the polynomial ¢ at 7. Thom’s lemma (see, e.g., Fitchas et al. 1988) implies
that the latter condition uniquely determines the root n of ¢.

We say that a polynomial g € Z,[Xy,...,X,] satisfies the (D, Do, M)-
bound if the following inequalities hold:

degy,,..x.(9) < D; degs, _s5.(9), degs, s ( )y < Do; 1(g),1(8¥) < M.

One then sees that the bit-length of the representation of the point u does not
exceed P(M, D, Df*,n) (see Grigor’ev & Vorobjov 1988, Grigor’ev 1988). The
main purpose of the paper is to prove the following theorem (see also Vorobjov
& Grigor’ev 1988).

THEOREM 1.

(1) There is an algorithm which, for any formula = of the above form satis-
fying the bounds (1), finds the number of connected components (in partic-
ular, tests the connectedness) of the semialgebraic set {Z} C (Q,)" in time
P(M, (do(kd)™* )™ < £OWE* L) (i . the time-bound is subexponential in L).
(2) For any two points u™,u® € {Z} satisfying the (d,do, M)-bound, the
algorithm can test whether u), u(® belong to the same connected component
of {Z} in time P(M, M, (dodo(kd)™d)™*)*+™) (i.e., subexponentially in £ and
in the bit lengths of the points u(®), (?),

To prove this theorem we shall need some subroutines which we exhibit in
the rest of this introduction (see also Grigor'ev 1986). First, we need the al-
gorithm from Chistov & Grigor’ev (1983) for decomposing an algebraic variety
(considered over an algebraically closed field) into its irreducible components.
We formulate this result here for the case of zero characteristic fields, taking
into account that only ordered fields are considered below. This allows one
to avoid some “swelling” in the formulae that could otherwise occur in non-
separable field extensions. Second, we need the algorithm from Grigor'ev &
Vorobjov (1988) for solving systems of polynomial inequalities. Third, we need
the decision procedure for real closed fields from Grigor'ev (1988). Finally, we
require an algorithm from Vorobjov (1989) for finding connected components
of a semialgebraic curve in the space (Q,)".

We remark that we do not use here the subexponential-time quantifier elim-
ination procedure for real closed fields (see Renegar 1989, Heintz et al. 1990c),
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of which we learned after our paper was already finished. Actually, one cap
deduce the subexponential bound for quantifier elimination from a reductioy
of the whole problem to the problem of eliminating a single quantifier (see
Grigor'ev 1988); one can find the solution of the latter problem in Ben.Q;
et al. (1986).

We mention that in Canny (1988) a similar construction to the one de.
scribed in Section 3 below is contained which allows one to count the number
of connected components of a nonsingular bounded hypersurface. But in the
mentioned work the proof of the correctness of the algorithm and the proof
of the complexity bounds (which is technically very difficult) are absent (see
Sections 4 and 5 of the present paper).

After the paper was already written, the authors learned that a similar
result was obtained (involving a different method) by Heintz, Roy & Solern¢
(1990a,b); see also Grigor’ev, Heintz, Roy, Solerné & Vorobjov (1990).

Notice that the main theorem of the paper can be generalized to finding
connected components of a semialgebraic set with similar complexity bounds,
(This result will appear in Canny et al. 1991.)

So, assume for the time being that we are given a ground field F =
Q(Ty,. .., Ty)[n], where the elements T1,..., T are algebraically independent
over Q and the element 7 is algebraic over the field Q(T1,...,Tm). Let ¢ =
Socic degz(¢)(¢§1) [ Zi € Q(Th,...,Tn)[Z] be the minimal polynomial for g
over Q(T1,...,Tn) with the leading coefficient lcz() = 1, where the poly-
nomials gogl),cp(z) € I[Ty,...,T,] and deg(®) is the least possible. Every
polynomial f € F[Xi,...,Xs] can be uniquely represented in the form

f= > (@iig,oonin /O X -2 X,

0<i<degz(®)ii1sein

where the polynomials a;,...i.,b € Z[T4,...,Tr] and deg(d) is the least possi
ble. Denote the degree

degyy,..1,,(f) = i’%ﬁiﬁn{degﬂﬁ,...,Tm(a‘iril,-..,‘in)? degr,,..1..(0)}
and the bit length of the coefficients I(f) = max;,, . i, {1(@iiy,..in), [(f)} (see
above).

Let an input system of equations f; = -+ = fx = 0 be given, where the poly-
nomials fi,...,fx € F[Xi,...,X,] satisfy the following bounds
deg,, .o (fi) < d, degq, 7. (fi) < do, degq,, 1,() < do, degz(ep) < diy
I(fi) M, l(p) < M for 1 <i < k. For the size £ of the system in Proposi
tion 1 we use the value kd"d,dj' M.
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The variety W C F" of all roots (defined over the algebraic closure F of
the field F) of the system f; = --- = fi = 0 is representable as the union of its
components W = Uy Wa which are defined and irreducible over the field F* (all
necessary notions from algebraic geometry can be found in Shafarevich 1974).
The algorithm from Proposition 1 finds the components W, and outputs every
W, in the following two ways: by its generic point (see below), and by a system
of algebraic equations such that W, coincides with the variety of all the roots
of this system.

Let W C F be a closed variety of dimension dimW = n — n; defined
and irreducible over F. Denote by t1,...,t,_,, some algebraically independent
elements over F'. A generic point of the variety W can be given by the field
isomorphism

Fltyy.rtnony)l0] & F(Xa,..., Xa) = F(W), (%)

where the element 8 is algebraic over the field F(ty,...,tnr,). Denote by
¢(Z) € F(t1,...,tn-n,)[Z] the minimal polynomial of 6 over F(ty,...,tnn,)
with leading coefficient lcz(¢) = 1. The elements Xi,..., X, are considered
here as rational (coordinate) functions on the variety W. Under the isomor-
phism (¥) we have t; — «;; for suitable 1 < ji < ... < juop, < n, where
1 <i < n—ny The element § is the image under the isomorphism (*) of
an appropriate linear function 3-;<i<, AiXi, where Ay, ..., A, are integers. The
algorithm from Proposition 1 represents the isomorphism (*) by the integers
My..., A and also by the images of the coordinate functions Xj,..., X, in
the field F(t1,...,tn-n, )[0]. In the formulation of Proposition 1 we sometimes
identify a rational function with its image under the isomorphism.

PROPOSITION 1. (CHISTOV & GRIGOR’EV 1983, GRIGOR'EV 1986.) An al-
gorithm can be designed which produces a generic point of every component
W, and constructs a certain family of polynomials ¥{,...,»M™ € F[X,,...,
X, such that W, coincides with the variety of all the roots of the system
PP =... =M = 0. Let n — ny = dimWa, 6, = 6, 9o = ¢ (see (¥)). Then
degz(po) < deg(Wy) < d™; and for all1 < j <nand1< s <N we have

deng,‘..,Tm,tl yoontreny (®a)s degn,...,Tm,tl....,tn_.,l (X3), deng,._.’Tm(gbg’) ) <
doP(d™, dy),

and deg)ﬁ,.‘.,x,1 (’/’c(xs))) < d?™. The number of equations N < n2d*™. Further-
more, l((po,), I(X;) < (M + (n+m)do)P(d™,dy), and

() < (M + ndo)P(d", dy).
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Finally, the total running time of the algorithm can be bounded by
P(M, (d"dldo)""'m, k).

Obviously, the latter value does not exceed P(LY8“), in other words, is sube.
ponential in the size L;.

We proceed to formulate the result from Grigor’ev & Vorobjov (1988) on
solving systems of polynomial inequalities over real closed fields. To do this we
need to generalize the notion of a connected component of a semialgebraic set
from the field R to arbitrary real closed fields. It is well known (Tarski 1951)
that all real closed fields are equivalent in an elementary way. This means that
if Ky, K, are real closed fields where K; C K3 and II is any closed formula
(without free variables) from the language of the first order theory of the field
K, then the truth values of II in the fields K; and K5 coincide. In this paper
we refer to this statement as the “transfer principle.”

Now we shall demonstrate how the transfer principle can work and also
show (a known fact) that any semialgebraic set over a real closed field K can
be represented uniquely as a union of its connected components, each in tum
being a semialgebraic set. Consider a semialgebraic set W = {II} c K*,
determined by a quantifier-free formula II of the first-order theory of real closed
fields (henceforth we shall omit the term “first-order”) with atomic subformulas
of the kind (f > 0) for some f € K[Xi,...,X,]. By the format of the formula
II we shall mean the sum of the number of its variables, the number of atomic
subformulas and the degrees of the polynomials f.

In the case of the field K = R the set W is uniquely representable as a
union of its connected components W = |J; W;, where every W; is in turn a
semialgebraic set (and connected in the Euclidean topology). From the papers
Collins (1975) and Wiithrich (1976) one can deduce the existence of a function
H such that if the format of formula II is less than A’ then the number of
the components W; is less than H(N). Moreover, one can find quantifier-free
formulas II; of the theory of real closed fields, each having format less than
H(N), such that W; = {IL;}. Indeed, the algorithms from Collins (1975) and
Wiithrich (1976) allow one to produce a cylindrical algebraic decomposition
of a semialgebraic set and, as a corollary, to produce its decomposition into
connected components. For a given format A of an initial formula (with sym-
bolic coefficients) each of the two algorithms can be represented as a rooted
tree (directed outward from the root) having vertices either with out-degree
one or out-degree three. The root corresponds to the initial formula; each ver-
tex of the tree with out-degree one corresponds to an arithmetic operation;
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and finally, each vertex with out-degree three corresponds to a polynomial.
The computation for an arbitrary initial formula, with the specified coefficients
substituted instead of symbolic ones, proceeds along a relevant path of the tree
starting from the root. It performs the corresponding arithmetic operation in
a vertex with out-degree one, and branches at a vertex with out-degree three
according to the sign of the corresponding polynomial. This representation as
a tree provides the desired function H.

Thus, for a given N, one can produce a formula w of the theory of real
closed fields (for the case of the field K = R) expressing the existence of a
decomposition of any semialgebraic set W = {II}, where the format of II is
less than A, into its connected components W = Ui{IL;} such that the format
of every II; and the number of them are all less than H (V). Moreover, the
formula Q states that for each pair of indices i # j the components {II;} and
{II;} are “separated,” i.e., the following formula of the theory of real closed
fields is valid:

Y(a,...,an) € {IL} 32 > 0V(by,...,b,) € {11;} ( Z (a—b)? > z) .

1<i<n

Furthermore, the formula Qy claims the “connectedness” of every {II;}. This
means that there do not exist two “separated” semialgebraic subsets of {IL;},
each determined by a quantifier-free formula of the theory of real closed fields
with format less than H(H(N)).

In addition, for given A/, M one can prove (for the case of the field K = R)
a formula Qy,u¢ of the theory of real closed fields expressing the following.
Suppose {II} (where the format of II is less than A) can be represented as the
union of more than one and fewer than M pairwise “separated” semialgebraic
sets, each being determined by a quantifier-free formula of the theory of real
closed fields of format less than M. Then {II} can be represented as the
union of more than one and less than H(AN) pairwise “separated” semialgebraic
‘connected” sets, each being determined by a quantifier-free formula of the
theory of real closed fields of format less than H(A").

Applying the transfer principle to all the formulas 0 and A" ,M, OLLE COn-
cludes that any semialgebraic set (over a real closed field K ) can be uniquely
represented as the union of its pairwise “separated,” “connected components;”
moreover each component is semialgebraic and is “connected,” i.e., cannot be
represented as the union of a finite number of pairwise “separated” semial-
gebraic sets. Below we utilize the terms “connected semialgebraic set” and
“connected components of a semialgebraic set” without quotation marks, since
the notion of connectedness in any topology will not be considered.
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Note that a semialgebraic set is connected if it is linearly connected, i e,
each two of its points can be linked by a connected semialgebraic curve, T(;
prove this, observe that for the case of the field K = R the constructiong
described in Collins (1975) and Wiithrich (1976) imply the following statement,
For a semialgebraic set determined by a quantifier-free formula of a fixed forma
N; and for every two points belonging to one of its connected components
W,, these points can be linked by a connected semialgebraic curve lying in
Wo. Moreover the curve can be given by a quantifier-free formula of a format
depending only on Ni. One can write the latter statement as a formula of the
theory of real closed fields, and therefore, by virtue of the transfer principle,
the statement is also true for an arbitrary real closed field K.

Let the polynomials fi,...,fx € Zn[X1,...,X,] be given, satisfying the
bounds (1). We say in this case that fi,..., fk satisfy (d,do, M)-bounds (see
formulation of the theorem).

Following Heintz (1983) (see also Grigor'ev 1988) we use the term {f;,
...y fr}-cell to denote any nonempty semialgebraic set of the form {A;¢;(f; =
0) A /\ileh(fil > O) A /\i2612(f,'2 < 0)} where {U Il U Ig = {1, . ,k} Denote
by U({f1,- .., fr}) the partition of the space (Qn)" into connected components
of all {fi,..., fr}-cells (see Wiithrich 1976; also Grigor’ev 1988). A finite
set T C (Qm)" is called a representative set for the family of polynomials
fi,. .-, fr if every element of the partition U({fi,..., fi}) contains at least one
point from 7. The following proposition was proved in Grigor’ev & Vorobjov
(1988), Grigor’ev (1988), and Renegar (1989) (where the complexity bound was
improved); see also Heintz et al. (1990c).

PROPOSITION 2. One can design an algorithm which yields a representative
set T C (Qn)" for the family of polynomials fi,..., fi (satisfying (d, do, M)-
bounds). Furthermore the algorithm, for each point from T, specifies a cell
containing this point. The running time of the algorithm does not exceed
P(M, (kd)"™+1) dr). The number of points in T is at most P((kd)"). More-
over, the algorithm represents every point from T in the same way as in The-
orem 1 and satisfies the (P((kd)"), doP((kd)"), (M + mdy - P((kd)™))-bound.

In the following we also need a construction from Grigor’ev (1988). Consider
polynomials ¢1,...,9s € Qu[X1,...,Xs, Y1,...,Y.]. We say that a family of
polynomials hy,..., ks € Qu[Xi,...,X,] is thin with respect to the family
91,---,9s (and to the natural projection 7 : Q7+t — Qn) if, for any element
Uy C Qp, of the partition U({hx,. .., k;}) and for any element U, C Q% of the
partition 2({g1,...,9,}), we have either 7(U;) NU; = @ or 7(Uz) D Us. The
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following proposition is contained in Lemmas 12 and 14 in Grigor'ev (1988).
See also Renegar (1989) and Heintz et al. (1990c).

PROPOSITION 3. One can design an algorithm which, for a given family of
polynomials g1, ..., 9s € Ln[Xyy..., Xa, VA, Y.] satisfying (d, do, M)-bounds
yields a family ha,...,h; which is thin with respect to this family and to
the projection m. Furthermore, hy, ..., h; satisfy (P((sd)®), doP((sd)®), (M +
mdo)P(n, (sd)*))-bounds, and t < (sd)™. The running time of the algorithm
does not exceed P(M, (sd)elentm) dm),

2

Finally, we need the following.

PROPOSITION 4. (VOROBIOV 1989, HEINTZ, ROY & SOLERNG 1990c.) Let
the polynomials gi,...,Gs, Gst1,---19s1y Gor41s+-19s; € Lm[X1,...,X,] be
given, satisfying (d,do, M )-bov.y_gds, and suppose that any irreducible (over the
field Q) component W C (Qn)" of the variety determined by the system

of equations g1 = --- = g, = 0 such that W N (Qn)" # 0 has dimension
dimg, (W) < 1. Then one can find the connected components of the semialge-
braic curve {g1 = -+ = gs = 0Agoy1 > OA---Agy, >0A gy 41 2 0A---Agy, >

0} C (Qm)" within time P(M, (s2d™do)™*™). Moreover, the algorithm repre-
sents each connected component as the union of some connected semialgebraic
curves of the kind {hy > OA -+ Ahy > O0A hyyr 20A--- A hy, >0}, where all
the polynomials h; € Zn[Xx,...,X,] for 1 < i < t; satisfy (P(d"*), deP(d™),
(M + mdyp), P(d™))-bounds.

1. Reduction of counting connected components to the
case of a system of inequalities

Let K be an arbitrary real closed field (see, e.g., Lang 1965) and an element
€ >0 be an infinitesimal with respect to the field K (see above). Let us recall
some well known facts about real closed fields. A Puiseux series (or fractional-
power series) over K is a series of the form Yo :e*/#, where 0 # o; €
K, the integers vy < vy < ... increase, and the integer g > 1. The field
K((e'*)) consisting of all Puiseux series (with zero added) is real and closed,
hence K((e}/*)) D K(e) D K(e). Furthermore, the field K[v/=T1]((eV/*)) =
K((e"/)) is algebraically closed.

When vy < 0, the element a € K((¢'/®)) is called infinitely large, while
if vy > 0 then « is infinitesimal (with respect to the field K). A vector
(@1,...,a,) € (K((€1/%)))" is called K-finite if each of its coordinates a;
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(1 £ i £ n)is not infinitely large. The standard part st(a) € K of any
K -finite element a € K((€/®)) is definable (see Grigor’ev & Vorobjov 1988)
namely, st(a) = do when o = 0 and st(a) = 0 when »o > 0. Similarly, ope
can define the standard part of a Puiseux series from K (( 1/%9)). The standarq
part of a K-finite vector (ay,...,a.) € (K((e 1/%)))" is defined componen.
wise: st(ay,...,an) = (s‘t(al),...,st(an)). For a set W C (K((e'/*)))r |gt
st(W) = {st(w) : w € W and st(w) is definable}.

Recall that an input quantifier-free formula = of the theory of real clogeq
fields is given containing k atomic subformulas of the form (f; > 0) for 1 <
i < k, where f; € F[Xu,...,Xz] (here F' is an ordered field; later Q,, will pl ay
the role of F'). The semla,lgebralc set {Z} coincides with the union of severs|

{fl) afk} cells.

~ Let a system of inequalities (see (1))
f1>0,"'1fk1>07fk1+1.>_0""7fk..>_0 (2)

be given, where f; € F[X,...,X,] for 1 <4 < k. The purpose of the present
section is to reduce the proof of the theorem (see the Introduction) to the
design of an algorithm, satisfying the requirement of Theorem 1, that handles
the special case when the system (2) plays the role of the formula = in Theorem
1. Because of that we shall assume for some time that an algorithm for formulae
of the form (2) is already designed (its bounds will be obtained later, in Section
5).

) Applying Theorem 1 to (2) and using Proposition 2, the algorithm produces
a representative system 7 for the partition U({fi,..., fx}) of the space "
such that each element of the partition contains a unique point from 7 (one
can assume that an element of the partition is represented by this point). For
an element of the partition (or in other words, for a {f1, ..., fi}-cell containing
this element) one can easily test whether it lies in {Z}. Namely, Proposition 2
allows one to specify the signs of the polynomials fi,..., fx for a representative
point of this element of the partition, and thereby the truth values of the
atomic subformulae (f; > 0) (for 1 < i < k) of the formula =. The considered
{f1,.+, fx}-cell lies in Z if, after substituting for the atomic subformulas in Z
their truth values, a true proposition is obtained.

To count the connected components of the set {=} it suffices to find out, for
each pair Vi, V; € U({f1,..., fx}), whether Vi N V; # 0 (here the bar denotes
the closure in the topology of the space F™ generated by the basis of all open
balls). Indeed, consider a graph whose vertices bijectively correspond to those
elements of U ({ fiy.++, fi}) which liein {Z}, such that there is an edge between
the vertices corresponding to V4, V; if either V; N V5 # @ or V; N'V; # . Then
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the connected components of this graph correspond bijectively in a natural way
to the connected components of the set {Z} (this is obvious in the case when
the field F' = R; for an arbitrary real closed field one should invoke the transfer
principle). -

Thus, the algorithm has to test whether Vi NV, 5 . Let V lie in a certain
{fiy--.» fi}-cell (its connected component)

Ulz{fil :"'=fiz=0/\(fj1 >0)/\"'A(fj11 >0)
/\(sz1+1 <0)A"'A(fjk_1 <0)}‘

Consider €1 > 0, an infinitesimal with respect to the field F, and &, > 0, an
inﬁnitesimaLl with respect to the field F(e1). Let Fy and F; denote the fields
F(e1) and F(e2), respectively. By st; we denote the standard part with respect
to £, and by st; we denote the standard part with respect to both €y, €,; i.e.,
for a € F, we have sty(a) € Fy, sty(a) € F (provided that these standard parts
of a are definable). Note that an element a — sty(a) is an infinitesimal with
respect to the field F1 and an element a — st;(a) is an infinitesimal with respect
to the field F'. Let Vl(cl’cz) C F} be a semialgebraic set determined in the
space FJ by the same quantifier-free formula of the theory of real closed fields
(defined over the field F) as the set Vi (we also use similar notations below).
Introduce a semialgebraic set

Uh={(-e2< fuSe)A- N2 < fi L) A(fjy, 2 &)
ASERRA (szl 2 51) A (fi11+1 < “51) ARERRA (fjk.-z < "61)}
n DO(EI—I) C F;v

where D,(r) denotes the closed ball {y : ||z — y|| < r}. Clearly, Vi C Uy C Us.

LEMMA 1. (a) There is a unique connected component V; of the set Uy such
that V; D Vi;

(b) sta(V1) C V),
(c) the relation V; NV, 5 0 holds if Vy N V) £ §.

PROOF. (a) Let z,y € V;. There exists a connected, bounded (i.e., lying in a
certain ball Dy(R), where R € F), closed (in the topology with the basis of all
the open balls) semialgebraic curve C C V; C F™ containing points z,y € C
(see the Introduction). Thus there exists 0 < ¢ € F, such that for every z € C,
fiz) > cfor j = jy,... g and fij(z) < efor j = jJi41,-..,Jk-1- Denote
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by Cleve2) C FJ a connected bounded closed semialgebraic curve determineq
by the same quantifier-free formula of the theory of real closed fields as (0
(the formulated properties of the set C(e1:%2) fo}low f.rom the transfer principle;
in particular the inclusion Clers) ¢ Do(R) is Val?d). A%s?, because of the
transfer principle, for each point z; € C(.‘l’”) the }nequahtles fi(z1) > ¢ for
j = J1,.-2J1 and filz1) < —cfor j = Jlitts e s Jh=l hold, and furthermore
fi(z1) = 0 for 1 = 4j,..., 4. Hence Ce22) C Uy, which means that the points
z,y are situated in the same connected coml()eorele)nt of the set U;.

(b) Let z € V1. We show that sty(z) € V;°'*’ (note that sty(z) is definable
since z € Do(er")). Obviously, sta(z) € {fi, =--+ = fl" =0A(fi, >e) A
(fj11 2 EI)A(fJ'zl-u < "51)/\' : 'A(fjk_z < —51)}0D0(5f ) =WcC F}. Note that
U, C W. Consider an arbitrary pair of different connected components Vl("‘),
VO of the cell Uy. Let W = P W, and WO =y @) )y
Observe that ) ¢ Wi, W& ¢ Wi”. Then W{*), W) are dlosed in
the topology with the basis of all the open balls. Indeed, consider a point
z € Wl(“). Then z € W, and taking into account that W is determined

by the nonstrict inequalities, we have z € Ul(el'”), Therefore z € Vl(“)(“’”),
since V{®€*) is a connected component of a semialgebraic set Ulerea) by
the transfer principle (see the Introduction) and by the fact that a connected
component of a semialgebraic set is open and closed in the induced topology
(also by virtue of the transfer principle). The sets Wl(a), Wl(ﬁ ) are determined
by the systems of inequalities with coefficients from the field F'(e;), and they
are closed and bounded. Therefore there exists 0 < ¢ € F(e1) such that for
any two points z® € W and z® ¢ W the distance |z — 23| > ¢ We
can assume that the latter inequality holds for any choice of a pair of different
connected components of Uy (here again the transfer principle is invoked).

We remark that sta(z) € W C UL and assume that sty(z) € (V)=
for a certain connected component V' of the set U; such that V{ = V;. There
exists a connected, closed semialgebraic curve Cy C Vq, for which z € C; and
CiNV; # 0 (see item (a) of the lemma); therefore C1 NV; C Ci NW; # 0,
where Wy = (V1)@= n W, Let W = (V{)(12) N W. For each point y €
Cy C Vi C Uy we have that st3(y) € W, and also that W = U, (V=) nw)
where the union ranges over all the connected components Vl(a) of the set U;.
Denote by W{®)(c/3) the (c/3)-neighborhood of the set W{*) (observe that
Wl(a)(c/S) is a semialgebraic set). Hence C; C U, Wl("‘)(c/ 3), and furthermore
aNWi # 0,z ConW(c/3) #0. This leads to a contradiction with the
connectedness of ¢;, taking into account the property of the element c. This
implies sty(z) € V{**), i.e., item (b) of the lemma.
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(c) First, let Vi N V2 # 0 and let zo be a point in ¥, NV,. For any point
z € Vi N F" there exists an element 0 < r € F(ey,¢,) such that Dy(r) C W,
since Vy is a connected component of the set 24;. Applying the latter statement
to the point o, we get Vi N ‘/’2(51.62) £ 0.

Conversely, let V; N Ve<2) # 0 and let y be a point in V; N V) Ttem
(b) of the lemma implies sty(y) € Vl(”l—”)__ We shall now show that sta(y) €

W, Indeed, the semialgebraic set Vl(E1 *2) can be determined by a formula
of the theory of the real closed fields over the field F. Therefore, if we assume

that sty(y) € V,“*) then there exists an element 0 < 1y € F(g) such that
D,t2(y)(rg) n ‘/2(51,52) # 0 (here again the transfer principle is invoked). This

contradicts the inclusion y € Vz(sl’”). Thus Vl(el’”) n Vl(“’s"’) # 0, whence
V1NV, # 0 by virtue of the transfer principle. O

Because of Lemma 1(c), to test the condition V; NV, # § it suffices to find
out whether V3 N ‘/2(51 ©2) # 0. Let V3 be contained in a certain {fir- ooy fi)ecell
Uy. Applying Proposition 2 and Theorem 1 to the semialgebraic set US™*?)nyy,,
i.e., to the corresponding system of inequalities determining this set, (see (2)
above) the algorithm yields a set of representative points which correspond
bijectively to the connected components of Uz(el *2)14,. For each representative
point z of the set U2 N1, the algorithm tests whether z € V,***2), using the
theorem for the cell US*®) and involving the representative point (produced
again with the aid of Proposition 2 and Theorem 1) of the connected component
V3 of the cell U;. Then, invoking Proposition 2 and Theorem 1 for the cell Uy, a
representative point y of the connected component V; of the cell U; is produced.
Again using Theorem 1 for the cell 2, the algorithm tests whether z and y lie
in the same connected component of the cell 24;. The latter condition holds if
z € V, taking into account that y € V; C V; by virtue of Lemma 1(a). So,
Yy v # 0 if, for some representative point z (among those produced) of
the set Ué" #2) Uy, the inclusions z € Vz(“ ) and z € V; are fulfilled.

To complete the proof of Theorem 1 it remains to describe a procedure
which, for a pair of points u(), u(® € {=}, tests whether they are situated in the
same connected component of the set {=}. First, with the help of Proposition 2
one can find out to which {fi,..., fr}-cells these points belong. Then applying
Theorem 1 to the cell which contains u(*), the procedure indicates a connected
component of the cell containing u® (similarly for the point w®). Finally,
applying Lemma 1 and the algorithm described above, the procedure tests
whether two indicated elements of the partition U({ fi,. .., fx}) containing u(!)
and u(® respectively, lie in the same connected component of the set {=}. This
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completes the reduction of the proof of Theorem 1 to the case of a system of
inequalities which play the role of the quantifier-free formula =.

2. Reduction to the case of a bounded nonsingular
hypersurface

Now we proceed to prove the theorem in the case that a system of inequal-
ities (2) plays the role of the formula Z. In the present section we reduce the
proof of the theorem to the case of a hypersurface. Moreover, we show that
it is sufficient to count only its connected components which lie in a ball of 4

suitable radius. 3
Denote by Vo C F™ the semialgebraic set of all the points satisfy{ng the
system (2). Introduce a new variable X and a semialgebraic set V; ¢ Fntl of

all points satisfying the system
120, /20, Xofi+ fe, = 1. (3)

There is a natural bijective correspondence between the connected com-
ponents of the sets Vo and Vi; namely, if Wy C Fn is a connected compo-
nent of the set Vo then Wi = {(zo,21,...,2n), (T1,...,2,) € Wo Az =
((fr+-* fi)(z1,---,2n))7'} is the connected component of the set V; corre-
sponding to W.

Add another new variable X,.; and consider the polynomials fr4; = Xof;
o fr =1, firr = = fir1y fors = Xnt1, fera = —frts, and a system

120, fr4a 20 4

obtained from (3) by adding the inequalities fr43 > 0, fipq > 0. Then 4
determines the semialgebraic set V' C F"*2 which is “isomorphic” to V; by
means of a linear mapping 7 : (Xo,...,Xn41) — (Xo,...,X,). Clearly V C
{Xn+1 = 0}

Consider the semialgebraic set V C Fyt? determined by the following sys-
tem of inequalities (here €y, €, have the same meaning as in Section 1):

f1+€1>0,...,f}¢+4+61>0. (5)

For a semialgebraic set W denote by W its boundary in the topology with
the base of all open balls. Note that W is also a semialgebraic set.

LEMMA 2. Let W be a connected component of the set V. Then the boundary
OW is also connected.
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PrRoOF. Observe that W is a cylinder, i.e., W = U x (=€1,¢1) is the cartesian
product of a base U C FJ*! on the > open segment (—ey,¢1). Then U is con-
nected and OW = (OU x (—¢1,€1)) UV, UT,,, where T, = {(z0ye vy Tnye1) :
(mo,...,wn) € U}. Here U denotes the closure of the set U in the topology
with the base of all open balls. The set U_,, is defined similarly. Then U.,,
T.., are connected semialgebraic sets which are isomorphic to U. Any two
points (20, - -3 Zns @)s (Yoy - -+, Yn, ) € W\ (Uy; UT_,,) can be linked by the
connected semialgebraic curves (even by the segments of the lines) lying in OW
with the points (Zo,...,%n,€1), (Yo, -+, Yn,€1) € U., respectively. The latter
two points in turn can be linked by a connected semialgebraic curve situated
in U.,. On the other hand, _ea,ch point from Uel ul._ . can be connected
with some point from W \ (U,, UU_,,) by a connected semialgebraic curve.
Therefore W is connected. O

Let g be the polynomial
9= (fiter)  (ferate1) —e2 € Fley, )Xo, . .., Xnys].

LeMMA 3. Let S be a connected component of a semialgebraic set {g = 0} C
FM?. Then S lies in a certain connected component W of some open {fi +
€1+, e+ + €1}-cell (in other words, a cell determined by a system of strict
inequalities of the kind (—1)**(fy 4+ €1) > 0,...,(=1)**(frpq +&1) > 0 for
appropriate o; € {0,1}, 1 <i < k+4).

PROOF. Observe that for any point z situated on the boundary of an arbitrary
cell we have (fy 4+ €1)- -+ (fi4a + €1)(z) = 0. Therefore S has no common
points with the boundary of any cell, and so S lies inside a certain connected
component Wy of some cell. Note that this cell and each of its connected
components is open in the topology with the basis of all open balls. O

LEMMA 4. Let W) be a connected component of the open cell V (see (5))
and let = € F*? N OW,. Assume that W, is a connected component of an
intersection Wy N D, (r), where 0 < r € F, is such that x € OW,. Then there
exists a point y € {g = 0} N\ W, for which sts(y) = z. Conversely, for any point
2€ {g =0} N Wy we have sty(z) € OW:, provided that sty(z) is definable.

PROOF.  Taking into account that W, can be determined by a formula of
the theory of the field Fy, we deduce that Wy N Fi*? 3 0. For any point
w € W, N F{**? the inequalities F; 5 (fi+e) - (fera +€1))(w) > ¢ >0 are
fulfilled for a suitable ¢ € F. Because of this, g(w) > c—€y > 0. Fix a certain
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point wo € Wa N F+? for which r > ||z —wol| = 70 > 0. On the other hand the
equation ((fi+&1) -+ (fesa +¢1))(z) = 0 holds, a'nd therefore g(z) = —¢, <,

For any F, > r; > 0 we have WihnDy(rz) # 0 sice T € OW;; therefore there
exists an element 0 < ry € F; such that, for any point wy € Wo N Dm(rl), the
inequality g(w;) < 0 is true. Consider the least r3 > 0 such that for some point
wa € (Wa UOW,) N Dy(rs), g(wz) > 0 holds; in particular ||z — ws|| = ry. Such
an element 3 < 7o exists since the polynomial A(w) = ||z —w||? has a minimum
value on the nonempty closed bounded set (Wy U W3) N Dy(re) N {g > 0}.
Since wy € W, UOW,, and for any point w € (0W2) NDy(ro) we have w W,
and hence g(w) = —¢2 < 0, we conclude that w; € W.

Consider two cases. First, suppose that sty(rz) > 0. In this case there
exists a point ws € Wy N Dy(sta(rs)/2) N F{*2, so g(ws) > 0 (see above) and
we obtain a contradiction with the choice of rs.

In the second case, sto(r3) = 0. Assume that g(w;) > 0. Then there
exists 0 < rqy € Fy such that r4 < r3 and Dy,(rs) C (Wi N Dy(r)) (since
wy € Wy C Wi), and therefore Dy, (r4) C Wa. We can assume that for any
point wy € Dy, (r4) we have g(w,) > 0 (by choosing ry sufficiently small). Then
any point ws € (Dy(r3) N Duy(ra/2)) \ 0Dx(r3) satisfies g(ws) > 0, and we get
a contradiction with the choice of r3. Therefore g{ws) = 0, and this proves the
first statement of the lemma if we take y = ws.

To prove the second statement, observe that (fi + 1)+« (fr4a + €1) and
(sty(2)) = sta(g(2)) = 0. Thus there exists an element 0 < rs € F such
that Dy, (z)(rs) N Wy = 0; but on the other hand, 2 € Dy,(z)(rs) N Wy. This
contradiction completes the proof of the lemma. O

Let S C F*? be a connected component of the variety {g = 0}. Further-
more, let S C Wy, where W, is a certain connected component of the open set
V (see Lemma 3). Lemma 2 implies connectedness of the boundary dW,.

Alexander’s duality principle (Dold 1972) implies that S decomposes a set
FJ*?\ S into two connected components (here we also use the fact that zero is
not a critical value of the polynomial g, by Lemma 4 of Grigor’ev & Vorobjov
(1988), therefore S is a nonsingular hypersurface). Note that here again the
transfer principle is invoked. Thus it is reasonable to say about any two points
from Fyt?\ S either that they are situated on the same side of S, or on the
contrary, on different sides of S. Note also that S coincides with the boundary
of every connected component of Fjt?\ S.

LEMMA 5. (a) The whole boundary W, is situated on the same side of ;

(b) Any two points z,y € Wy N F*? are situated on the same side of S.
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ProoF.  (a) This follows from Lemma 2, taking into account that the poly-
pomial g assumes the value —e; < 0 everywhere on ow;.

(b) Since Wi can be determined by a formula of the theory of the field £,
there exists a connected semialgebraic curve C c Wy n Fpt? containing z,y €
C, determined by a formula of the theory of the field F, (see the Introduction).
Consider the semialgebraic curve C'€2) ¢ F7*?* determined by the same formula
as the curve C. Observe that C*2) is also connected (see the properties of
the connected components in the Introduction). The polynomial g is positive
everywhere on Wi NF*? (see the proof of Lemma 4). In particular g is positive
on C; hence g is positive on C(*2) by virtue of the transfer principle. Therefore
C(e2) cannot intersect S. O

LEMMA 6. Among all connected components of the nonsingular hypersurface
{g = 0} which lie in W\, there exists exactly one containing a point & whose
standard part sty(z) is definable.

PROOF. Lemma 4 guarantees the existence of at least one connected compo-
nent § C W) satisfying the required properties.

Assume that there are two different connected components S1,82 CW; of
the hypersurface {g = 0}, both having points with definable standard parts
sty. Then the set F3+?\ (S; U S;) consists of three connected components
by Alexander’s duality principle (Dold 1972). Lemma 5(a) implies that OW,
is situated in one of these connected components. Then two other connected
components are situated in Wi, since W, is connected (see Lemma 2) and
because of this the set Fy+? \ W} is also connected. By virtue of Lemma 5(b)
at least one of these two connected components (let us denote it by W,) has
no points in the space FJ**2, Observe that the boundary W, coincides either
with 51, with Sy, or with S; U S;. In particular the polynomial g vanishes
everywhere on OW,.

By the assumption, there exists a point z € OW, for which sty(z) € FPP?
is definable. Introduce a hypercube K determined by a system of inequalities
m‘(o) <X < :c,(o) +1, 0 <4 < n+1 for appropriate wgo),...,mfg)_l € Fy such
that D;(1/3) C K. Then Wy N K # §. Consider a facet € of the hypercube
K of the least possible dimension for which £ N W, # () (we assume that
the hypercube itself coincides with its facet of the highest dimension n + 2).
Denote by £z = {X;, = w,(ll) A AXy = :1:8) } the least affine subspace of
e containing £ (obviously for each 1 < I < j either zfll) = z,(?) + 1 or
zf,l) =z 4 1). Then the polynomial g vanishes everywhere on 8(E N W),
where 9¢ denotes the boundary considered in the space L¢. Indeed, if for a
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certain point y € 95(E N W) we have a(y) # 0, the'n y € W, (taking into
account that g vanishes on 9W;). Hencey ¢ OE by virtue of the choice of ¢,
so we get a contradiction which proves the desired statement.

Denote by ge the polynomial obtained from g by substituting the valueg
mgl) for the variables X;, forall 1 <1< (so ge is the restriction of g on Le).
Tixen the polynomial g¢ has either a maximum nonzero value or a minimym
nonzero value on the bounded closed semialgebraic set (W, NE)U 3£(W2 ne).
Indeed, if not, then taking into account that W, N € contains an open ball in
L it would follow that g¢ vanishes identically and therefore g would vanish at
every point from the set Fr2nLe # 0. This leads to a contradiction with the
observation that g does not vanish at any point from the set F{"*2. Let, for
definiteness, g¢ have a minimum value on (W2n€E)U (W2 NE) different from
zero at a certain point zo (by what we have proven above, zo ¢ (W, N §)).

Any point from L¢ at which ge reaches this minimum belongs to a semialge-
braic set W5 C L consisting of all the points from L¢ satisfying the following
system of equations

0 O0ge
_‘g£ =i == g = 0. (6)
BXO a)(n+1
On each connected component of the semialgebraic set Wj the polynomial
ge has a constant value. Taking into account that g—-}f; € Fi[Xo, ..., Xpp] for

0<i<n+1 (in other words W5 C F3*? is definable over the field Fy), every
connected component of the set Wé") C Le N F*2 determined in L¢ by the
same system (6), can be determined by a certain formula of the theory of the
field Fy. The semialgebraic sets determined by the same formulas are then the
connected components of the set Wj (see the Introduction). In particular, any
connected component of the set Wj contains at least one point from e,

Consider a connected component W; of the set W; which contains the point
20 € Wy. We then have Wy C Wy N E, since Wy N 8°(W, N E) = B because g
has a nonzero constant value on Wj. There exists a point z; € Wy N F{*2 Tt
follows that z; € W,, and a contradiction with the relation W, N Frt? = (s
obtained. O

LEMMA 7. For any connected component Wy of the set V (see (5)) having
at least one point = whose standard part sty(x) is definable, there exists a
connected component Wy of the set V (see (4)) such that Wy C Wo (in the
case that for every point y € W, the standard part st;(y) is definable, such
a connected component Wy is unique; moreover st;(Wo) = Wp). On the other
hand, for any connected component W of the set V there exists a unique
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connected component W of the set V which has a nonempty intersection with
W, and the inclusion W C W holds.

proof. To prove the latter statement, suppose that Wi, W, are connected
components of the set V and that there exists points yy,y, € F"*2 for which
y € WINW and y, € Wy NW. There exists a closed connected semialgebraic
curve C € W C F™*? containing the points y1,y, € C. Denote by Clevea)
Fyt? a semialgebraic curve, determined by the same formula of the theory
of real closed fields as C. C(1#2) is also connected (see the Introduction).
Moreover, for each 1 < ¢ < k+4 the polynomial f; is nonnegative everywhere on
(lee2) because of (4) and the transfer principle, hence C122) V), Therefore,
the semialgebraic sets Wi UC(1#2) and W, UC(1%2) ¢ V) are connected, and so
Wi = Wa. The existence of the connected component W having a nonempty
intersection with W follows from the inclusion V' C V. The already proven
uniqueness implies that W D W.

To prove the first statement of the lemma, assume that a connected compo-
nent Wy of the set V contains a point y € W, for which sty (y) = (yo, ..., Yns1) €
F™t? is defined. Obviously, sty(y) € V. Consider a hypercube X = {vi—1%<
X <wyi+1,0<4i<n+1} C FJ*® Consider also a function f(z) =
mini<i<k+4 fi(2) and then take its maximal value z on a (nonempty) closed
bounded semialgebraic set (K NWo)U (K NW;) (which exists by virtue of the
transfer principle). Observe that for any point z € (K N W) U (K N W) such
that f(2) = = we have z € 0W,. Indeed, for each point y € Wy an inequality
fly) > —¢ is true, therefore # > —e;. On the other hand, for every point
7 € OWo we have f(z1) = —é.

Consider the semialgebraic set i C K consisting of all points at which the
function f has a local maximum in K. So, U can be determined by a certain
formula of the theory of real closed fields with coefficients from the field F'.
Any point z € (K N Wo) U 9(K N W), for which f(z) = z, belongs to Y. Since
z ¢ OW, as shown above, z € Wy NU. Consider a connected component U,
of the set & such that Wo Ny # @. Let us show that 2y C W,. Assume
the contrary. Then there exists a point z; € Uy N W, N (K N W) (in order
to ascertain this, consider a closed connected semialgebraic curve Cy C Uy
containing some point from Wy N, and also some point from U \ Wo; as 2o
one can take a point from 9(Cy N Wy) \ (C1 N Wy)). Hence f(22) = —€1. On
the other hand, for any r > 0 there exists a point z3 € K N Wy N D,,(r), so
obviously f(z3) > ~e;. We get a contradiction with the condition that f has
alocal maximum in K at z;. Thus, the inclusion U; C W is shown.

Taking into account that 2/, can be determined by a certain formula of the
theory of real closed fields with coefficients from the field F, there exists a point




152 Grigor'ev & Vorobjov comput complexity 2 (1992)

€U N Frt+2, Hence z4 € Wy C V; therefore z4 € V since fi(ze) 461 >0 for
1< i< k-+4, and because of that fi(z4) = st1(fi(24) +€1) > 0. This implies
that Vgo NV # 0. Thus Wo N Wy # 0 for a suitable connected component W,
of the set V, and the previously proved second statement of the lemma implies
the inclusion Wy C Wh.

Finally, the uniqueness of Wy in the case when the standard part st, i
definable for any point from Wy follows from the inclusion st;(Wp) C V wity
the aid of Lemma 1 of Grigor’ev & Vorobjov (1988). O

LEMMA 8. There exists an R such that for any By > R and every connecteq
component W of the set V, the intersection W N Do(Ry) is nonempty and
connected, where R denotes in the case

(a) m =0 (i.e, F = Q), an appropriate integer R < exp(M - P((kd)")),
and in the case

(b) m > 0, an element R = §.,° for an appropriate integer s < doP((kd)™).

PROOF. Note that a point z = (zo,...,Zn41) € {¢ = 0} is a critical
point (Hirsch 1976) for the function (Xo,...,Xn41) = X5+ + X2, =
|(Xo,...,Xn41)||* (the square of the norm) on the hypersurface {g = 0}, if
the normal vectors at the point z of the hypersurface {g = 0} and of the
sphere 0Dq(||z||) are colinear. In other words the gradient (8—8)-?3, ceey a—)?f—l) (z)
is colinear with the vector z. The latter condition is equivalent to the foﬂowing
system of equalities

g

0 ..
9(z) = ,E(w)'wi—a—i(m)'mj-‘-ov for0<é,j<n+l. ()

When z is a critical point then the value [|z||* of the function ||(Xy,...,
Xnt1)||* is called a critical value. Sard’s theorem (see Hirsch 1976) implies
that there is only a finite number of critical values. Pick from among them
all the values whose standard parts st; are definable, and denote by R’ € F
the maximum of these standard parts. As R we shall take the least num-
ber larger than (R')!/2 + 1 being an integer in case (a) and being of the kind
6, in case (b). First of all let us check that R satisfies the bounds required
in the lemma. Indeed, the norms of all points from any connected compo-
nent of the semialgebraic set determined by system (7) are equal, again by
virtue of Sard’s theorem. Proposition 2 (see the Introduction) implies that
every connected component under consideration contains a point (20, -+ -, Zn41)
satisfying a (P((kd)*), doP((kd)"), (M + mdy)P((kd)")-bound. The point
st1(205. - -, Zny1) € F™? (provided that st; is definable) satisfies a bound of
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the same type and so the norm of this point satisfies the bounds required in
the lemma (see Lemmas 9, 10 of Grigor'ev & Vorobjov 1988)

One can assume without loss of generality (increasing R if necessary while
preserving the type of the bounds in the lemma; see Lemma 10 of Grigor'ev &
Vorobjov 1988) that Do(R) ¢ V' (hence also Dy(R) ¢ W) and the intersection
of Do(R) with any connected component of the set V is nonempty.

We will prove that R satisfies the lemma. Let R < R; < R;, where Ry, R, €
F, Consider some connected component S of the hypersurface {g =0} cC
Fr*? which contains a point y € S N Dy(R;). Consider the representations
of the semialgebraic sets S N Dy(Ry) = Uses SF) and S N Do(R;) = Ujey Séj)
as the unions of their connected components. Taking into account that the
function (Xo, -+, Xn41) = [[(Xo, - - -, Xn41)||? on the hypersurface {g = 0} has
no critical values in the interval [R3, R3] (Hirsch 1976), one can find a bijective
correspondence o : I — J such that Sf) D S'é”(")) and Sf) is homeomorphic to
S§”(i)). Furthermore, the intersection S N (Dy(R;) \ 8Do(R;)) is homotopically
equivalent to SNDo(Rz); in particular, o provides the bijective correspondence
between their connected components.

Let W be a connected component of the semialgebraic set V (see (5)),
containing a point z € W with definable st;(z). According to Lemma 6 there
is a unique connected component S of the hypersurface {g = 0} such that
S C W and there exists a point y € S with definable st3(y). Lemma 7 implies
the existence of a connected component W C W of the set V. By virtue of
the above remark W N Dy(R) # 0 and W 2 Do(R), and by the same token
wn DO(R) 75 f and WD DO(R).

Consider the representations of the semialgebraic sets W N Dy(Ry) =
User, Wl(i) and W N Do(R2) = Ujey, W) into the unions of their connected
components. Fix a component Wéj) and pick out a point w, € awéﬂ N
(Do(Rs) \ 8Do(Rz)) N F{*2. Such a point exists since each of the following
sets can be determined by a system of inequalities with coeflicients from the
field Fy : V,W,W N Dy(R,) and W), Lemma 4 ensures the existence of a
point y, € {g = 0} N W) such that sta(y2) = we. Then y; € S because
of Lemma 6. Since Fy 3 ||wo|| < Ry € Fy, it follows that |ya| < Rz, ie.,
Y2 € Do(Ry) \ 0Do(Ry).

Our purpose is to prove that there are suitable bijective mappings 7 : [, —
Jiand p : I — I of the sets of indices for which the following commutative
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diagram of inclusions is valid (for every ¢ € L):

Wi 5 W)

U. U , (8)
SO 5 Lol

(for S we utilize the notation introduced above). . ‘

For an appropriate index j, € J we have y2 € 5'5”). Therefore Sgh) C W2(j)'
Now let y; be a point in W n {g = 0} for some J; 3 # j. Lemma 6 implies
that y; € Sz(,jl) for an appropriate index j; € J. We show that j; # j,. Assume
the contrary. Then y1,92 € S¥*) C W N Do(Ry). Therefore y1,y; lie in the
same connected component of the set W N Do(Rz), since Sl s connected,
The obtained contradiction shows that ji # ja. .

Thus, we have shown that to any cqrnponept Wg(J ) corresponds a nonempty
subset of indices J&) C J such that Wz(’) D SZ(,”) for all j, € JU), and moreover
the family {J)};es, forms a partition of the set J. Similarly, there is a partition
{I®}icr, of the set of indices I (into nonempty subsets) such that for every
1 € I, we have Wli) ) Sf‘) for all 4; € I,

We will prove that each of the sets I ® (as well as J )Y consists of a single
element. Assuming the contrary, we follow the proof and the notation from
Lemma 6. Let Sg‘ C Wl(i), 5{12 C Wl(’) for some different ly,l, € I. Consider
an intersection W N (Do(Ry)\ 0Do(Ry)), which is connected since W is open
in Do(R,;). Furthermore (see above), there exists a bijective correspondence
between the connected components of the sets S N (Do(R1) \ 9Do(Ry)) and
S N Dy(Ry), hence the sets S = S{l‘) \ 0Do(R;) and S, = S§l”) \ 0Dy(R))
are connected. In the proof of Lemma 6, Alexander’s duality principle was
applied to the space F3't%; here we apply it to the open ball Dy(R;)\ dDy(Ry),
using the homeomorphism between the space R” and an open ball in it, and
invoking the transfer principle. Consider an open subset W, C Wl(’) such that
W. N F*? = (. Note moreover that W, N (Do(R1) \ 9Do(R;)) coincides
with either S1, S, or 51 U S; (similar to the proof of Lemma 6). There exists
a point z € W, N (Do(Ry — 1/2) \ 0Do( R, — 1/2)), taking into account that
S1 N (Do(Rl - 1/2) \8D0(R1 - 1/2)) is homeomorphic to S1 n (Do(R1) \8@0(}21))
(similarly for S,) since R > (R')/? 41 (see the beginning of the proof of the
lemma). Introduce a hypercube K C Do(R;) \ 0Do(R;) determined over the
field F; with a certain length of its edge 0 < a € F such that D,(f) C K for
a suitable element 0 < b € F. Thereupon we are led to the contradiction of
the supposition Sy, 5; C Wl(') \ 0Dy(Ry), as in the proof of Lemma 6. Thus we
conclude that the set 1) consists of a single element. Denote I() = {p(3)} for
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a suitable bijective mapping p : I — I.

Since User, Wl(') N Do(Rs) = Ujes, Wéj), we have that for every s € I, and
for an a.Ppropnate nonempty subset of indices J C JI,W(’ C Do(Ry) =
Uies® W2 , and moreover {Jl }zeh forms a partition of the set J;. On the
other hand, we have proved above that the cardinalities of the sets I and I
coincide, as do the cardinalities of the sets J and J;. Furthermore, the property
of the bijective correspondence o implies the c01nc1dence of the cardmah‘mes of
the sets I and J. Because of that, each set Jl consists of a single element.
Let J; @ = {x(i)} for a suitable bijective correspondence 7 : I; — J;. Thus,
W () o W(”(')) and we get the required diagram (8).

Now let W be a connected component of the set V ¢ Fn+? (see (4)). W
will prove that the intersection W N Dy(Rs) is connected for any F 3 Ry > R
This would imply the lemma. Assume the contrary and let W) and W® be
the different connected components of the intersection W N Do(Rs) # 0. By
virtue of Lemma 7 there exists a unique connected component W of the set V
which has a nonempty intersection with W'; moreover W O W,

First we suppose that the intersection W N Do(R3) contains at least two
connected components W), W® such that WO aw®) # 0 and WA NWO £
0. Let us prove the existence of an element Ry € F such that Ry > Rs and
such that for an F' 5 Rs > Ry the intersection W N Dy(Rs) # 0 is connected.

Indeed, there exists an element Rg € F' such that for all Rs > Rg the
number of connected components of the intersection W N Dy(Rs) is the same,
i.e., does not depend on Rj (since the statement that W N Dy(Rs) has a given
number of connected components can be expressed in terms of a certain formula
of the theory of real closed fields with coefficients in the field #). Consider the
semialgebraic set U C F7t2) consisting of all points u € W in which the
function (Xo, ..., Xn+1) — XZ + -+ + X2, reaches a local minimum on W.
Then on every connected component of the set U the square of the norm has a
constant value (see the beginning of the proof of this lemma). Choose R to be
larger than R% and R?, and also larger than the values of the square of the norm
on all connected components of the set U. We shall show that R4 is the desired
value. Assume the contrary. Then for some F 5 Rs > R, the intersection
WNDy(Rs) is disconnected. Let the points y;,y2 € W NDy(Rs) be situated in
the different connected components. Since W is connected, there exists a closed
bounded connected semialgebraic curve C' C W containing y; and y;. Then
C C Do(Ry) for an appropriate Rs < Ry € F. Since the numbers of connected
components of the sets W N Do(Rs) and W N Dp(R7) coincide, there exists a
connected component Wy of the set W N Do(Ry) such that Wy N Do(Rs) = 0
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Thus there exists a point wo € Wy at which the square of the norm functioy
reaches its minimum on Wo. Hence wo € U and we obtain a contradiction wity
the choice of Ry. Thus, we have shown that R4 has the desired property,

The above reasoning, with the aid of Proposition 3 (see the Introduction),
allows us in fact to prove Lemma 8 with a somewhat worse bound on R, This
remark will not be used in what follows.

A semialgebraic set Wy = W N Dy(R4) can be determined by a formula of
the theory of the real closed fields with coefficients in the field F'. Then the
set W) C FJt?, determined by the same formula, is also connected and
W4(e1 2) - Do(R4) because of the transfer principle. Furthermore, Wf‘ 2) - Y,
the set W is connected and W.D W, and therefore W4(€1 ©2) C W. On the other
hand, let WNDg(Rs) = U; W,ﬁ') be the representation as the union of connecteq
components. According to the results proved above (see the diagram (8)), there
exists a bijective correspondence between these connected components and the
connected components of the set W N Do(Rs). Let the connected components
W and W correspond to the components W®) and W) (see above). In
particular W,ﬁl) > W and Wf) D W®. On the other hand, the connected set
W) cw NDo(Ry) satisfies W) AW # § and W) A # 0, since
WO W cw, c W,l(‘1 2), Thus, we obtain a contradiction with the supposed
existence of two connected components W), W2 of the set Wn Dy(R3) such
that WO N WO £ and WO N WO £,

Finally let us suppose that there is a unique connected component W® of
the set WN Do(Rs) for which W D W N Dy(R;). Observe that VN Dy(Ry) D
sti(V C Do(R3)) = V N Do(Rs) (see (4), (5)). Lemma 1 from Grigor'ev &
Vorobjov (1988) implies that for W (which is also a connected component
of the set V N Dy(R3)) there exists a unique connected component W of the
set V N Do(Rs) such that st;(W®) C WE). On the other hand, sty (W®) 5
(W N Do(Rs)) D (WD UW®). The contradiction thus obtained proves the
connectedness of the set W N Dy(R3). O

Now we return to system (4) (see the beginning of the present section). Take
R from Lemma 8 and consider a semialgebraic set V; = VN Do(R) C Fri? de
termined by the following system of inequalities: fo = R2—(X2+--- +X2,,)2
0, f120,..., fiya 2 0. Also consider a set V, C FJ*? determined by the sys
tem fo+e1 >0, fit+e1 > 0,..., fupa + €1 > 0 (see (5)), and a polynomial
91 = (fo+e1)(fi+e1) - (fira+e1) +e; (see Lemma 3). According to Lemma
6 there is a bijective correspondence between the connected components of the
hypersurface {g; = 0} C F3*? which lies in V; and the connected components
of the set V; (clearly, V, C D, (R+1)). Lemma 7 implies the bijective correspon-
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dence between the connected components of the sets V, and Va respectively.
Finally, invoking Lemma 8, one gets the bijective correspondence between the
comected components of the set V, and the connected components of the set
¥, and by the same token the connected components of the set ¥ (see (2)). In
particular, the number of connected components of the set Vo coincides with
the number of connected components of the hypersurface {g1 =0} NV, e,
with the number of connected components of the hypersurface {g, = 0} on
which (everywhere, see Lemma 3) the polynomials fy+ey, fiten,.., frpater
are positive.

Below in Section 3 we will deal with the equation g1 = 0. Recall that a
semialgebraic set {g1 =0}isa nonsingular hypersurface, since €, is not a critical
value of the polynomial (fo +&1)(f1 +€1) - (fitn +&1) € R Xo,. .., X0u).
Thus, the proof of the first statement of the theorem (see the Introduction) is
reduced to considering a nonsingular bounded hypersurface {pn=0}nV,.

In the remainder of this section we will also reduce the proof of the second
statement of the theorem to considering the case of a nonsingular bounded
hypersurface. Let @ = (z1,...,2,) € Vo and y = (y1,...,y,) € Vo. The al-
gorithm has to test whether they belong to the same connected component of
the set Vo. The latter condition is true if the points z' = (1/(f;--- fr) (=),
I1yeeesTny O) = (wa’ :1,';, T m:1-+1) and y/ = (1/(f1 e fkl)(y)7 Y1,--- ;ymO),
(Y0 ¥1s-+-1Yng1) in V. C F™? are situated in the same connected compo-
nent of the set V. Take R’ > R (see Lemma 8) such that R' € F is of the
same kind as in Lemma 8, i.e., R' is an integer when m = 0 or R’ = 6°
when m > 0, and the points 2,5’ € Do(R'). Introduce the polynomials
fo= (R)? = (2t + -+ X2p) and g1 = (f+ex)(fi+€1) - (fopa +€1) — &2
(see above). By virtue of Lemma 8 the points /3’ lie in the same connected
component of the set V' if ¢/, y’ lie in the same connected component of the set
Vi=VNDo(R)={fs Z0Afy 20A--- A fyya > 0} C 1,

Let 2 (respectively, y(%)) be a point on the hypersurface {91 = 0} nearest
to the point z" (respectively, y’). Consider a connected component W’ of the
set V' which contains z’. Because of Lemma 7 there exists a unique connected
component W' of the set V' = {f +e1 > 0Afi+e2>0A - A faga+61 >
0} C F3*? such that W O W'. Because of Lemma 6 there exists a unique
connected component S’ of the hypersurface {g; = 0} for which S' ¢ W'

We claim that z(® € §’. Assume the contrary. Then z(© belongs to
some connected component of the hypersurface {gi = 0} which differs from
§'. Therefore, Lemma 6 implies that z(® ¢ W'. In the closed segment
[¢/,2®) C FJ*2 of a line there exists the maximal semi-open segment [z, z(1))
situated in W'. It follows that () € W', Note that g}(z') > e5*® — e, > 0
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and g{(m(l)) = —gy < 0. Hence there.exist§ a point :v('?') € (m’,m(l)) for which
¢, (z®) = 0, and we get a contradiction with the choice of z(®. This proyes
the claim z(® € S*.

Thus, the points z,y belong to the same connected component of the get
Vp if the points z(@, y(© belong to the same connected component of the hy-
persurface {g; = 0}.

Let the point =’ be given in the following way (see the Introduction). For
each coordinate z} a certain polynomial ¥; € Qn[Z] and a sequence S of the
signs of the derivatives of ; of all orders are fixed such that 2] is the unique
element satisfying the conditions %;(z}) = 0 and S;. Introduce new variables
Zoy++ vy Zns1- To find a point z(© the algorithm applies Proposition 2 (see the
Introduction) to the following system of inequalities (see (7) at the beginning
of the proof of Lemma 8):

a(X)=0; ¥(Z)=0, &, for 0<I<n+1,

094 991

(X5 = Zi)gx, = (K= gy

and yields a representative set of points for the semialgebraic set U C F*+
determined by the latter system. Denote by 7 a projection 7 (Xo,..., X,
Zoy- -y Zns1) = (Xoy...,Xn41). Then the projection #(U) contains all local
extremums of the distance from the point z’ on the hypersurface {g; = 0}.
Observe that on every connected component of the set w(U) the distance from
the point z’ has a constant value (see the beginning of the proof of Lemma 8
above). Therefore there is a point among the yielded representative family for
which the distance from the point 2’ is minimal on the hypersurface {g} = 0}.
Again using Proposition 2 the algorithm compares the distances from the point
z' for all the representative points and takes a representative point with the
minimal distance as z(?). In a similar way the algorithm produces a point 3,
Thus, we have reduced the proof of the second statement of the theorem to
the case of a nonsingular bounded hypersurface, namely to testing whether two
points £(®), y(® belong to the same connected component of the hypersurface

{91 = 0}.

for0<i<j<n+1,

3. Producing a skeleton for connected components of a
nonsingular bounded hypersurface

A semialgebraic curve X is called a skeleton of a semialgebraic set U if
Y C U and for every connected component U; of the set U an intersection
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5 U is nonempty and connected. In other words, ¥ N U, is a connected
component of the curve z.

As input the algorithm is given a polynomial h € F[Xj, ..., X,] which sat-
isfies a (D,DO,M)-bound, where the field F = 9(51,...,6m). In addition,
an element R? € F' is given, where 0 < R € F, such that R? also satis-
fies a (D, Dy, M)-bound. We assume in the following that the intersection
{h=0}N 8Do(R) = 0. Finally, let the points u® = ... M), L u® =
(ugp),._.,ugp)) € {h = 0} N Do(R) be given, each of them also satisfying
(D, Do, M)-bounds. The purpose of the present section is to produce a skele-
ton for the hypersurface {h = 0} N Do(R) which is required to pass through
the points u®, .. ul?). The procedure will also produce the connected com-
ponents of the skeleton.

To prove the first statement of Theorem 1 (see the Introduction) this proce-
dure will be applied to the situation in which ¢; plays the role of the polynomial
b and R? + &1 plays the role of R? (see Section 2), and the number p of the
points is 0. To prove the second statement of Theorem 1, g; plays the role of
h and (R)? + €1 plays the role of R? and the points u() = 2(0, 4@ = 4©
(see the very end of Section 2). Furthermore, in order to count the number of
connected components and thereby to complete the proof of the first statement
of the theorem, the algorithm selects only those connected components of the
skeleton which lie inside the semialgebraic set {fi+¢&1 > 0A- - A frya+e1 > 0}
(see (5) and Lemmas 3 and 6 in Section 2). For this it suffices to test the fulfil-
ment of the latter inequalities for an arbitrary point of a connected component
of the skeleton (such points will be produced by the algorithm as it proceeds).

The algorithm will work by recursion on some parameter 1 <! < n. In
the following we need to consider a more general situation than in Section 2.
Namely, we consider for some 1 <[ < n a variety

{h(m'm’n"_l—l)(nla vony Mn—ly Yla LR Yl) = O} C FI

(in the space with the coordinates Y3,...,Yi—from here on (ny,... s Mn—i-1) 18
regarded as an upper multi-index) which has at most one singular point

0 = gMatint) — (01,...,01) € {h(m,.-..nn_m)(m’ vy Tty Y1, ., Y1) = 0},

ie., the point satisfying the following system of equations:

6h(n1”"'n”-—l.—l) ah("lﬂ"’nn—"—l)
'"“"'""‘"aYl (771,---,nn_1,a)=---=——'5}7—"(771,--',77n—h0‘)=0-

We suppose here that the polynomial pMseittnat=1) € F[Zy,. .., Zni] [Y1,. .+, Y]
is already produced by recursion on n — I. In addition, we suppose that by the
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recursion on 1 < i < n — [, polynomials ©™)(Z;) € F[Z)] are already produced
such that (™) is irreducible over the field F° and it is monic, i.e., lc,, (™)) = 1,
Furthermore, for each 1 <1 <n— [, a sequence S () of signs of the derivatives
51—1%;’—-‘1 forall1 <3< degz‘(c,o(”")) is already given. Recall (see Thom’s lemma
in the Introduction) that & (m) defines the unique root 7; of the polynomial )
(provided that & (m) is consistent). In addition, we suppose that a nonsingular
linear transformation M(m-1-1) (defined by a matrix with the entries from
Q) of n-dimensional space with the coordinates Xi,..., X, into n-dimensiona
space with the coordinates Z1,..., Zn1, Y1,..., Y is obtained such that

st (X, X)) = AKX,
Finally, let the points

u(l)(nlv s Tinet) = (M3 Tty u§l)a EER) ugl))Tv ce ,U(Q)(m, ey Mnet)
— (,71, e Wn—l,ugq), . ,ugq))T c {h(’?l:---mn—l—l) — 0}
ﬂM(m"“"’”“"l)Dg(R)

be given, where each coordinate ugl) € F is determined by its minimal poly-

nomial gog"‘]fz'"’""“') and by a sequence S}:’fj’z'"’""“) of the signs of the derivatives
of all orders of this polynomial. In a similar way o, (1 < j, < 1) is determined
by its minimal polynomial LpS,’J’;""’""-‘) and by a sequence Sc(,;?;""”’"-l) of signs of
all its derivatives. We assume for uniformity that (71,...,7s-1,0) is contained
among the points u®M(n1, ..., 7act)y-- -, WD (N1, ..., Nai).

Observe that the polynomials (") and the sequences S() for 1 < i <n-I
fix the values of the coordinates Z; = 91, ..., Zn_i = Nn—i; thus one can consider
h(m»na1-1) a5 a polynomial in the variables Y3,..., Y.

The algorithm will produce, by recursion on 1 < ! < n, a skeleton for the
union of all such connected components of the variety {h(mrm—=1)(n,, .. 5.,
Yi,..., ) =0} C(F*n{Zy =mA--- A Zn_y = nn_y}) ~ F' which lie in the
set M(mrn—1-1)Dy(R), and the skeleton contains the points u® (ny,...,7u),
vo ey u@(n1, ... nazi). The recursive hypothesis claims that the algorithm can
produce a skeleton for smaller values of .

When n = [ the polynomials ¢ with the suitable indices determine the
coordinates of the points u®,...,u®. The polynomial h(m»n-1) = h was
specified at the beginning of the section. For I = 1 (the base of the recursion)
the produced polynomials (") and the sequences (), 1 < i < n—1 determine
uniquely the point (71,...,7n-1). After that, from the roots 5, of the poly-
nomial A(7+M-2) the algorithm selects (see below) those for which the inclu-
sions (71,+ .+, Mn-1,Mn) € M ("1"""7"-2)1)0(72) are true; they constitute a skeleton
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of o mull-dimensional vasiety {A® (1, .1 Vi) = 0} 1 Murem),
D(R)C F"N {Zi=m AN~ ANZyy = 1oy}
Fix for some time the value [ and let for brevity

H(H,H . ,Y;) — h(’?l.mﬂln-—l—l)(nl’ - ,T]n..(,Yi,-- . ,Yl) € F[},la"':y;]'

We also introduce the notation a = b for two linearly dependent vectors and
the notation grad,(H) = (gf,—{, ceey g—%) () for the gradient of the polynomial
H at a point z.

Our next purpose is to find a direction in the space ﬁ", ie,avector0# ¢t =
(oo 1) € Z' such that for any two points 2,y € {H = 0} with grad (H) ~
(by. o 11) R grad, (H), the inner products (z,t) # (y,t). In other words the
points z and y are not both situated in the same hyperplane which is orthogonal
to the vector ¢. In particular, taking into account that grad,(H) =0 ~ ¢, the
hyperplane orthogonal to ¢ and containing o does not contain any other point
from {H = 0} C F' with gradient collinear to t¢.

Consider a semialgebraic set U = {(z,y) = (z1,..., 2, y1,u) € F' x F
H(z) = H(y) =0, grad,(H) # (y — z), grad,(H) % 0} C F%, being a smooth
manifold on its mapping py : U — F'\ {0} determined by the formula

(grad, (H), (y ~ =)
lly — =12

pi(z,y) = grad, (H) ~ (y—=2),

where the numerator of the fraction is the inner product of the vectors. Con-
sider also a natural mapping p, : £ \ {0} — P‘“l(ﬁ‘) into the projective space
over the field 7 and a composition p = papy 1 U — PI-1(F),

One can check by a direct calculation that, for any pair of points z,y such
that (z,y) € U, the gradients grad,(H) ~ grad,(H) are both distinct from
zeo and ((z — y), grad,(H)) = ((z — y), grad,(H)) = 0; i.e., the point (z,y)
is a critical point of the mapping p. For this it suffices to show that the
rank of the Jacobi matrix of the mapping p at the point (z,y) is less than
-1 (Hirsch 1976). To calculate the Jacobi matrix let us choose the local
coordinates as follows. First, in the common hyperplane 7 tangent to the
hypersurface { H = 0} at the points z,y we choose some Cartesian coordinates
Wy,...,Wi_y which are orthogonal and normalized with respect to the initial
coordinates of the space F?, and add a coordinate W; orthogonal to 7. Then,
in a neighborhood of the point (z,y), choose the (21 — 2) local coordinates on
Uin such a way that the first (I — 1) coordinates U, ..., Uiy coincide with the
coordinates W1, ..., W;_; in a neighborhood of the point z on 7 and in a similar
way the last (I — 1) coordinates Vj,...,Vi_; coincide with Wy,...,Wi_; in a
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neighborhood of the point y. In the coordinate sysi}em Wi, ..., Wi_y, let the
point z have the coordinates wr, ..., Wi-1 and the point y have the coordinates
wl,...,w}_;. In the projective space P-YF) = {(T1:...: T1)} we choose an
affine neighborhood {Ty # 0} with the coordinates T2/Th,...,Ti/Ti. In the
chosen coordinates the (I — 1) x 2(I — 1) Jacobi matrix at the point (z,y) has
the form (BO), where the (I —1) x (I — 1) matrix

(w—w)(CT(w—w)T\ (OH
p=(e- RS ) law®):
where w = (wy,...,wi—1) and v’ = (w},...,wj_,) are column vectors and ( i

a matrix defined by \
0*H
C = (—————anan(m)>i,j .

The matrix B is singular since (w — w')TB = 0. This implies that the point
(z,y) is critical for the mapping p. )

Consider now the semialgebraic set U, = {z = (z1,...,21) € F: H(z) =,
grad,(H) # (o — z)} (a smooth manifold), and a smooth mapping p, = p|=,,
U, — P-1(F) which is obtained from p by substituting o for the point y.
As above one can show that any point £ € {H = 0} with z # o such that
(grad,(H),(z — o)) = 0, is a critical point for the mapping p,.

Observe that if a point py(ty,..., %) € P=1(F) does not belong to a semi-
algebraic set X which is a union of the images of the critical points of the
mappings p and p,, then the direction (¢1,...,t;) satisfies the requirements for-
mulated above. Sard’s theorem (see Hirsch 1976) implies that dimz(K) < -1
(here the transfer principle is also invoked).

Now we exhibit a finite family of vectors from Z' such that not all of their
images under the action of p; in P!=(F) lie in the set K. Introduce a semialge-
braic set W in the space F"*%-1 with the coordinates Zi,.. ., Zn_1, X1,...,Xi,

Yi,..., Y, Ts,..., T, determined by the following system of inequalities:

Z (Xi—Yi)z 76 0,

1<ig!

(X1 -Y)+ ¥ T(X: - Y) =0,

2<i<!
h(m,...mn_z-ﬂ(zl’ coisZny, X1y, X0)
= h(m""’""-['l)(Zl, ey Zn,—-I, Yl) L 71/1) = 0’
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ah(ﬂx,-n»ﬂn-l—l)(Zl, sy Iy Xa, , X1)

0X;
Qhlmem—i)(z, 7 X1,...,X)
= 3o T, (%)
QRmetnt=(Zy L Z 1 WL Y)
0Y;
QR (Z, 7 VY
_ (‘3},1 e My o cic
go("")(Zj) =0, S("f), for1<j<n-1. (9b)

Introduce also a semialgebraic set W, C Fn+2i-1 i the space with the
coordinates Z1, .-+, Zn-t, Zn-ty1s- -5 Zny X1,..., Xi, Ty,..., T; determined by
the conjunction of system (9b) and of the system

Z (Xi = Znoia)* #0,

1<i<!

(Xl - Zn—1+l) + E T;(X, o Z'n—l-H) = 0’

2<i<i
h(m.....nn_t_x)(zl, s Znoy X1, X0) =0, (9c)
6h(171y---r77ﬂ—1-1)(Z1, ey Zn—l, Xl7 M )Xl)
0X;
6h(’7l1~--"'r--‘-1)(Z1, s Ty, X1, ., X))
= : < A < ;
X, T;, for2<:i<1

it (Z,_1y5) =0, S{mn=d(Z, 1,0, for 1<j <1,

M

Consider the projections & : Fnt2-1 — fi-1 apd gy« fot2i=1 _, -1 of
the two spaces introduced above onto the coordinates T, ..., T}. Note that if a
direction (1,15, ...,%) € F" satisfies the above formulated requirement (i.e., for
any two points z,y € {H = 0} such that grad,(H) ~ (1,ts,...,t) ~ grad,(H)
holds, (z,t) # (y,t)), then the vector (t3,...,t) does not belong to the union
of the projections (W) Um1(W,). Furthermore dimp(r(W)Um(W,)) <1-1
since py(m(W) Um(W,)) C K.

Next, the algorithm applies Proposition 3 to the family of polynomials oc-
curring in the system (9a), (9b), and to the projection 7. As a result the
algorithm yields a family of polynomials g’ € F[I,...,T) for 1 < i < Ny
(the bounds on the degrees and on the lengths of coefficients of the polynomials
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g8 and also on No will be obtained later i.n Section 5). ¥n a similar way the
algorithm applies Proposition 3 to the family of polynoml'als from the system
(9b), (9¢) and to 'the projection m. As a result the algorithm yields a family
of polynomials ¢V e FTy,...,Tlfor 1 <t < My (their bounds will be algg

obtained in Section 5). Proposition 3 implies the inclusion

W(W)Uﬂ'l(wa)c{glz 14 II gf"’=0},

1<i<Np 1<i<N;

taking into account the inequality dimp(r(W)Um1(W,)) < I—1 proven above,

Let degg, .1,(¢) S N'(a bound on N’ will be obtained in Section 5). Then
at least one of the integer vectors (ta, ..., %) from the set {0,1,..., N"}=1 dogs
not belong to the variety {g’ = 0}.

Thus, the algorithm looks over all the vectors (ta, ..., %) € {0,1,..., N’}
for each of them substitutes t, ..., %; instead of T5, ..., T} respectively, in both
systems (9a), (9b) and (9b), (9¢), and tests with the aid of Proposition 2
whether each of the systems is solvable in F' nt The vector (t2,...,t1) is the
desired vector if both are unsolvable. We summarize what was proved above
in the following lemma, using the notation introduced above.

LEMMA 9. At least one of the integer vectors of the form (1,t,,...,1;), where
0 <t; < N' and 2 <1 <, satisfies the following requirement: any two distinct
points ¢,y € {H = 0} for which grad,(H) ~ (1,13,...,t) = grad, (H), do not
both lie in a hyperplane which is orthogonal to the vector (1,%s,...,1).

Let (1,%s,...,%) be the vector found satisfying Lemma 9. Introduce the
I x | matrix

1t ...
1 0]

B= .
o 1

and let 711'(')1,.-.,7.7:.1_1) = h(m,...,nn_,_l)(zl, e, Zn—l, B_l(?h L 7?I)T) €
F(Zy,...,2Zp1,Y1,...,Y)]. Finally, a polynomial

R (2, Z g Ty, Vi Yica)

is obtained from ™ =i=1) by replacing Y+,...,Y by Zn_t41, Y4, Yty
respectively. Thus, one can introduce a linear transformation of n-dimensional
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space
P 1ty ... 4
M(m"“’n""‘l’"""') = 1 . o M(m,--.,nn-z—l)
o 1
(see the above recursive hypothesis).
The system of inequalities
ShMrein) Oh (M seiitni)
plmmnat) = = — e _
aYi aY;_l 0, (10&)
<p(”‘)(Zi) =0, S(m)’ for1<i<nm—I (10b)

has a finite number of solutions in Fr. To prove this, consider a smooth
variety W= {h(nh.:’nn_l) =0; (P(".)(Zi) =0, 8(7“)7 1<i<n— l} \ (nla SEERY/
B(oyy- .- o1)F) C F™ (taking into account that o is the unique singular point
of the variety {A(Mm-m-t=1)(ny, ... n._y, Yi,...,Y)) = 0}) and its projection
Tp-i41 onto the coordinate Z,_ ;1. The set of critical points of the function
Taip1 ON the variety W coincides with the set of solutions of system (10a),
(10b). By virtue of Sard’s theorem there are only a finite number of critical
values of the function 7,_;41. All the critical points together with the point
(My-«sMamty B(01,...,01)T) have pairwise distinct values under the function
To-141 because of the choice of the vector (1,1,,...,%) (see Lemma 9). Hence,
the number of the critical points is also finite.

In what follows the algorithm produces a finite set of options from F for
an element 7,-141. The algorithm considers all these options and branches
according to them. The algorithm involves three procedures for producing the
options for 7,.;41, which we describe below.

With the help of Proposition 2 we find all the solutions in F™ of the system
(10a), (10b). The algorithm considers all these solutions. Fix one of these
solutions w = (91, ..., Pnet, Wnig1,-.., Wy) € F™. With the aid of Proposition
2 the algorithm tests whether the point w belongs to the set M(m-a-)Dy(R).
Ifnot then the solution w is discarded. Because of this we assume that w €
M@-mn—)Do(R). Relying on Proposition 2 the algorithm yields an irreducible
polynomial (n-11) € F|[Z,_144] for which ¢-141)(w,_141) = 0, and also a
sequence S-1+1) of signs of the derivatives of all the orders of the polynomial
pl—t41) guch that S(Tn-t41) determines the root wp_j41 of go(”"—"“). Thus,
according to the first procedure, the algorithm sets an option 7141 = Wn—i41.
Finally, we put o(n1, ..., n-111) = w.
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According to the second procedure the algorithm sets an element n,,_y,, to
be equal to ugi)+22_<_j51 tjug’) (for different 1 <7 < q); i.e., to the (n'H-l)-th
coordinate of the vector

1 )
; (@01, Ta))-
8] 1
B

Denote by F(mrmn—tmn-i+1) a plane of the kind {Z1 = m A---AZ,_ =
Nnet A Zn-tg1 = nis1} C Fr and by F=U,,_,, F (M r-in—tsfin-t41) the yniop
of such planes ranging over all the options of an _e_l_ement Nn-1+1 according to
the first procedure. Introduce also a polynomial H = i) (g, ot
Znst, Y1, Y1) € FlZnoiy,Ya,.., Y], a2 polynomial A =
Tici<i-1 (%)27 and an integer N; = (2D)'. The proof of the following lemma
is similar to the proof of Lemma 5 in Grigor’ev & Vorobjov (1988).

LEMMA 10. There exist integers 0 < Ay,..., Ay < Ny such that for every

0 < i< l- q and each component W C 7 (irreducible over the field F) of a
variety determined by a system of equations

— [0H\® A — dH\* N —
H"(gﬁ) _‘]@A——(OY,) -—N2ZA-—0 (11),'

for which the intersection W N (F*\ F) # § is nonempty, we have the equality
dimp(W)=1-i-1.

PROOF. The proof proceeds by induction on :. The base of 7 = 0 is obvious
since the equation H = 0 determines a hypersurface in 7. Suppose that
for i — 1 the statement of the lemma is ascertained. We shall prove it for
i <I1-1. Let Wh,..., W, C F' be all the irreducible components of the variety
determined by system (11);_y such that W; N (F'\ F) # @ for 1 < j <'s. Then
dimp(W;) = | — i by the inductive hypothesis. Because of Bezout’s theorem
(see, e.g., Shafarevich 1974) the number of components s < (2D)* < N. For
any 1 < j < s there can exist at most one value of = for which the polynomial

T\ 2 — —
(g}%) b ATA vanishes everywhere on W;, taking into account that A does
not vanish anywhere on W; N (F'\ F). Therefore, there exists an integer

0 < A& £ s £ N, such that the polynomial (‘g'z,{:_‘)z - ﬁ’\;{A_ does not vanish
everywhere on each component W;, 1 < j <s. O

col
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o
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fo.

wl
to
fr

tu
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The algorithm tests all possible 0 < Ay,...,\_, < N, and finds among

them an (I — 2)-tuple Aq,..., A2 satisfying the requirements from Lemma 10
in the following way. Introduce a polynomial

ah(ﬂh"wﬂw—l) 2
s g (B
13&1 oY;

and for any (I —2)-tuple 0 < Aq,..., \i_2 < Ny, consider a system of equations
in the variables Zi, ..., Zn_1, Zn_141, Y1,...,Yi_y (see (11);_y):

plminnat) — M - _)‘.I_.A
oY, Nyl

(ah(nly"':nn—l) 2 An_g
0Y12 Nl

(p(”")(Z,') =0, for1<i<n-—-1L

A =0, (12)

Applying Proposition 1 (see the Introduction) the algorithm finds all the
components, irreducible over the field F', of the variety determined by system
(12). For each of these components W® ¢ F* the algorithm produces a
family of polynomials g¢1,...,9» € F[Zy,...,Zu_141, Yi,...,Yi_1] such that
W® coincides with the variety of all solutions of the system g; = ... = g, = 0.
Using Proposition 2 the algorithm tests the solvability in the space F™ of the
following quantifier-free formula:

Gp=--=g,=0, (13a)

T ( \ (tp(nn_m)(zn_m) =0A S(nn_m)(zn_m))) ; (13b)

n—141
S 1<i<n-1

where the disjunction ranges over all the options for an element 7,41 according
tothe first procedure (see above). A tuple Ay,. .., Aj_; satisfies the requirements
from Lemma 10 if formula (13a,b) is unsolvable for any irreducible component
W whose dimension dimp(W®) > 1. Lemma 10 implies the existence of a
tuple with the latter property. -

Thus, we assume in what follows that A;, ..., \j_2 satisfy Lemma 10. Denote
byCC(F*"N{Z =n A AZuy =nn_})\ F asemialgebraic set determined
by a conjunction of systems (12), (13b).
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LEMMA 11. (1) The dimension dimz(C) < 1;

(2) For every connected component U of the Variet‘){ {h =0} C F* quqp
that U C Do(R) (see the beginning of the section), and any element
o € F' distinct from all options for na_it1, if Uy = MOy n (7, =
MAAnt = Qi Nnipr = a} # 0 is nonempty then each connected
component of the set Uy has a nonempty intersection with C.

PROOF. Part (1) was in fact ascertained above by taking into account that for
any irreducible component W C F" (see (12), (13a)) we have dimg (W
Fm < dimﬁ(W(l)).

(2) Observe that Up is a bounded closed variety. Moreover, Up is a nonsip.
gular hypersurface in the subspace {Zv=mAN N2y =Ny Ny = al,
since the gradient (%, ceey a—;%) does not vanish on Uy by virtue of the chojce
of o (see system (10a), (10b)). Because of this there exists a point in Uy such
that the direction of the gradient is as required in system (12) (see Lemma 4

of Grigor’ev & Vorobjov (1988)). O

Our next goal is to find all local extremums of the coordinate function
Zn141 on the connected components (note that they are either one-dimensional
or null-dimensional) of the curves of the type W) N F* where W) = {gn =
=g, =0} C F" is a one-dimensional irreducible component of the variety
determined by system (12).

Consider a polynomial G = ¥ <<, g2. Introduce an element & > 0 which is
infinitesimal with respect to the field F, and denote the corresponding standard
part by st. Consider a nonsingular hypersurface U, = {G = ¢} C (F(¢))". By
virtue of Lemma 3 from Grigor’ev & Vorobjov (1988), for any point z € f*
such that G(z) = 0 (e, £ € W N F™ and in particular = satisfies system
(12)) there exists a point y € U, for which st(y) = .

Consider a connected component C; of the curve W) N F™ such that C; ¢
Mt [ NZy=mA--AZpy = Nn-1} for a certain connected component
U C Do(R) of the variety {h = 0}, and suppose that at some point z =
(My -+ sMnety Zni1, Y1,---,Y1-1) € Cy the function Z,_4; reaches a local
extremum on the set Cy (let this be the maximum for definiteness). Take
a point y € U, for which st(y) = z (see above). Pick out By, Sz € F such
that B1 < 2z,_141 < B, and the function Z,_j;; reaches a maximum at the
point z on the connected component 01(1) of the set Cy N {f1 £ Zn-ip1 <
B2} which contains the point z. The required B, B, exist since either C; C
{Zn-111 = o} for some «, or any intersection Cy N {Zp1t1 = a} is either
empty or finite, taking into account the irreducibility of W) and the theorem
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on the dimension of intersection (see, e.g., Shafarevich 1974). There is a unique
connected component UM of the closed semialgebraic set 2. N {6, < Z,_, 1 <
By} such that y € UM, Then st(UM) c win fir (the standard part st is
definable everywhere on (") since

ue n 8M(m’""n"-l)D0(R) =

)

taking into account the property of h at the beginning of the section, hence
Y ¢ Mr-mn=)Dy(R)), and therefore we get the inclusions stUUM cen
{81 < Zo-tia < fo} and also st(U) C ¢ using Lemma 1 from Grigor’ev
& Vorobjov (1988). Therefore, the function Z,_;,, reaches its maximum on

the bounded closed algebraic set L) at a certain point y@) = ( z§l), . 27(L1_)h

zfllm)m, yil),- . 'vyl(i) ). Moreover St(z,(ﬁz.,.l) = 2,141 because of the inclusion
sUM) c Cfl). In particular, Z,_i;1 reaches at the point y*) a local maximum
on the variety U,. Hence, the gradient 0 # grad,;)(G) = (0,...,0,1,0,...,0),
~l+1

since U, is a nonsingular hypersurface. "

To find the local extremums the algorithm yields, with the aid of Proposition
2, a representative set of the variety W determined in the space (F(e))" by the
following system of equations:

oG __ 8G_ ¢ e,

For each representative point y' = (2{,...,2,_;.1,9},...,¥!_;) produced,
the algorithm constructs its standard part st(y') € F™ (provided that it is
definable, otherwise we do not consider y’ in the following) using Lemma 8
from Grigor’ev & Vorobjov (1988) and also Proposition 2.

We claim that among the constructed standard parts thereis a point 2’ € C;
at which the function Z,_4; reaches a local maximum z,_;4; on Cy. Indeed,
since the point y(!) € W, there exists a representative point y" = (27,...,20_,,
%141y Y15+ - Y1) situated in the same connected component of the variety
W as the point y®). Hence y” € UM and " = st(y") € Cy. Moreover
Ty = z,(bl_?, +1 (see the beginning of the proof of Lemma 8 in Section 2).
Therefore, the function Zp—141 reaches a local maximum z,_;4; on C; both at
the point z and at the point z”. This proves the claim.

After that the algorithm tests, for each of the constructed standard parts
of the form s¢(y'), whether st(y') € Mm-m-0Dy(R), whether st(y’) is a local
extremal point of the function Z,_;4; on the curve W® N F" and, finally,
whether the equalities st(z]) = n,...,st(2,_;) = 7a_1 are valid (otherwise
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the point st(y’) is not considered in the following). To achieve this goal, we
introduce elements €3, €4 such that €3 > 0 is infinitesimal with respect to the
field F and g4 > 0 is infinitesimal with respect to the field F'(e3). One cay
easily show that the function Z,_i41 reaches a local maximum on the curve
W n Fn at a point st(y’). Furthermore st(z1) = n1,...,8t(2},_;) = 7, and
also st(y') € Mmmn-)Dy(R) if the following condition is true:

st(y') € (M(m-mﬂln—l)Do('R) AW® N F™) A (st(2))

=m Ao A St(Z;_l) = 77,1_.1) A (Dst(y:)(63) n (W(l))(%,u)
ﬂ(F(e3,54))“ N{Zp-141 = St(z;—l+1) + e4) = 0}, (14)

where (W(l))(‘fa-“) C (F(e3,€4))™ denotes the variety determined by the same
system of equations (13a) as W®). The algorithm tests condition (14) with the
help of Proposition 2. In a similar manner the algorithm deals with the local
minima of the function Z,_j41.

Now we can describe the third procedure for producing the options for ele-
ments ,_i+1. Namely, as 7,141 the algorithm takes st(z),_;,,) € F for every
point st(y’) among those produced above which is a local extremum and is sit-
vated in the set {Z; =m & ... & Zny = N} 0 M) Do (R). As above,
for every option for 7,141 the minimal polynomial @(n-141) and the sequence
Stm-t41) of signs of the derivatives of (™~1+1) are produced. The algorithm
considers all the possible curves of the type W@ (i.e., one-dimensional irre-
ducible components of the variety determined by system (12)). It was shown
above that among the produced options of the third procedure are all the local
extrema of the function Z,_i4; on Cj.

Thereupon the algorithm orders (using Proposition 2) all the options for
an element 7,_;41 obtained according to the first, second and third procedures.
Consider two adjacent (in the latter ordering) options 7 < n(® and some
connected component C; of the intersection WINF*N{Z; = p A+ AZyy =
Nn—1 A 7](1) < Zn_1+1 < 77(2)} N M(nl"'"'""“’)po(R).

LEMMA 12. For any n0 < n < 7, an intersection Co N {Zn_141 =0} #0s
nonempty.

PROOF.  Assume the contrary. Then the function Z,_;4; has an extremum
on C, and thus this extremum is also a local extremum on W N F™, This
contradicts the claim about the third procedure and proves the lemma. O

Now consider a variety W) ¢ F" as produced above, irreducible over F
and determined by a system (13a) such that the modified system (13a,b) in
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which the disjunction ranges over all the produced options for elements Nnitl
(including the third procedure) is consistent in #*, Recall that W) is a curve
under this specification. The algorithm considers all pairs of adjacent options
for na—i41 and for each such a pair M) < 5@ finds, with the help of Proposition
4 (see the Introduction), the connected components o~f an intersection W n
(Gr=mAAZng = g A N < Zn_ip1 < 1®}N F*. The curve WO does
not lie in any finite union of the hyperplanes of the kind {Z,-141 = o} because
of Lemma 12. Therefore, an intersection W) n {Zn-141 = o} € F" is either
empty or consists of a finite number of points (see above).

Thereupon the algorithm finds all the points of the intersections W) N
FPn{Za = m A NZny = Nai A Zn_iyy = ny_i4q) for all options for
Tn-l41, using Proposition 2. After that the algorithm selects, again using
Proposition 2, from among these points all the points which belong to the
set M(mmm=)Dy(R) (other points are not considered in the following). These
selected points, together with the points u®(yy,...,9,_), .., w01, ...y )
produced on the previous step of the recursion, and with the points of the type
(M- s M=ty Mn—i41) Produced according to the first procedure, constitute in
whole the family of points of the kind u®(yy,..., 741, 7,-141) for different i
and different options for 9,_;4;, produced at the current step of recursion.

Denote by Cs one of the already found connected components of the inter-
section WOONF"N{Zy = mA- - AZp_y = i@ < Zn141 < D}, (Actually,
the algorithm considers all the pairs of adjacent options (1) < 5(® for Mn—i+1
and all connected components Cs.) Observe that any point of the intersection
of the closure C; (in the topology of the space ™™ with the base of all open
balls) with two planes {Zy = g A+ A Zny = oy A Zygps = 7™M} and {Z, =
MAANZpg =i A Zp_j1 = 17(2)} is contained among the produced points
of the kind u(*)(nl, «voyNMnely Mn—i41) (provided that Cs C M(""“"""—‘)DO(R)).
In order to test whether a point u = u((ny,...,7s_1, Na_is1) lies in the closure
Cs, it suffices to check the nonemptiness of the intersection Du(es)N cfe) (re-
call that the element €3 > 0 is infinitesimal with respect to the field F) where
¥ ¢ (F(es))™ is a semialgebraic set determined by the same quantifier-free
formulas as C5 (see Proposition 4). The algorithm checks the nonemptiness
of this intersection with the aid of Proposition 2. If some point (and hence
any point of C, because of the properties of R discussed at the beginning
of this section) does not lie in the set M{=+m-)Dy(R) then the connected
component Cs is not considered in the following.

By virtue of the recursive hypothesis (see the beginning of this section), for
each option for 7,_41, the algorithm can construct a skeleton (T n-tn-141)
containing all the points of the kind U(i)(nl:'-','r/n—la Nn—i+1) for the union
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of all connected components of the variety {h(’“’""”"—‘)(m,...,nn_, ) Moty
K?‘“)Yi—l) = 0} - (an {Zl =M Ao A Zn-—l = M-l AZ =1+l = 77"—1'{-1})
which lie in the set M@mr=m-0Dy(R). Then as B(mein-t) we shall take the
union of the curves Tmemn-tin—t+1) for all the options for 7,4, together
with the union of all produced curves of the type Cs. In the next section
we describe how the algorithm represents L) We will also prove that
$)(m-mn-1) ig a skeleton for the union of all the connegted components of the va.
riety {h(””""""""‘)(m, <oy Mn-ls Yi,... a},I) = 0} c (Fnﬂ{Zl =MmA- Ny =
na_t}) which lie in the set M(mMm-1=1)Do(R).

4. Correctness of the algorithm for constructing a
skeleton

First, we prove by induction on [ that %(mmm-1) passes through all points
of the kind u®(ny, ..., 7). It suffices to check the basis of the induction for
the case of the plane (I = 2). This follows from the observation that 3 (myemn)
coincides with the intersection {A(T™=2)(ny, ... Mn_2, Zn1, Y1 = 0} N {2, =
Mye e s Znoa = Nag} N MMrmn=)Do(R) (see Lemma 10).

According to the recursive hypothesis, a skeleton B (Meertin—tifin-141) consists
of the union of some family of connected closed semialgebraic curves C) for
1 <i < t, each of which is determined by a certain quantifier-free formula. In
addition, the graph F(mra-tn-t+1) is produced whose ¢ vertices correspond
bijectively to the curves Ct) for 1 < ¢ < t. Two vertices are linked by an
edge if the corresponding curves have common end points (i.e., the points from
[ \ C®). Thus the algorithm represents L(mrmn-tmn-1+1) by the formula
determining C®) for 1 < i < ¢, and also by the graph F (mseenin-tin—t41) | When
n — 1+ 1 =0 we denote the graph by F.

On the current recursive step the algorithm adds to the union of

Myeensn—tyn—l
2( 1enlin=lylin +l)’

over all the options for 7,_41, the closures C of all the curves of the type C;as
in the previous section. As a result we obtain L("7a-1), Next, the algorithm
produces a graph F("-+m-) adding to the union of all graphs of the kind
F(mmn-tin-141) gver all the options for 7,_;41, the new vertices corresponding
to the curves of the type Cs. Also, we add a new edge in F'(71n-1) between a
new vertex corresponding to a curve of the type C3 and some other vertex if the
corresponding curves have a common endpoint (it is of the type u()(n1, ..., -
fMn-i+1))- These new edges can be computed using the algorithm of the previous
section.
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LEMMA 13. ¥ (mn-1) js a skeleton for the union of the connected components
of the variety

{h("'ll.u~,ﬂn—l—~1)(n1, eyt Y, ,Yl) - O}
CHEN{Zi=m A AZpy = o))

which lie in the set M (M yeesiin—t-1) P,y (R).
ProoF. Consider one of these connected components W. If
W C {Zl =MmM Ao A Zn—l = M-l A Zn-1+1 = 777&-I+1}

for a certain option for 9,_;41, then Llmen-tin-t41) | W is a skeleton for w
because of the recursive hypothesis. By the same token

E('ﬂl )--~1"In-—l) N W = Z(ﬂ1v~-'7’n—l'7ln—l+1) n W

is also a skeleton for W. Assume now that W is not situated in any plane of the
considered form for any option for n,_14;. Lemma 11(2) implies nonemptiness
of an intersection W N T0mvin-) o£

Our purpose is to prove that the latter intersection is connected. Denote by
Wi,...,Vu the connected components of the difference W\ U,__, s Zn-ly1 =
Ta-i+1}, Where the union ranges over all the options for 7,_1;. Denote by
U,...,U, the connected components of the intersections WN{Z,_141 = nai41}
for all the options for 7,-141. We consider a pair 7() < 7(?) of adjacent options
for n_141. Suppose that some connected component V; lies in a set {p!) <
Zn1y1 < 7D}, Then, for arbitrary 7®), n®) such that n® < 7@ < 5 < y@,
the intersections V; N {Zp_141 = 7®} and Vi N {Z,_141 = 7} are homeo-
morphic since between n(*) and 5(®) there are no critical values of the function
Zy-141 on the nonsingular variety V;; see system (10a,b) (Hirsch 1976). There-
fore, V; is homeomorphic to a cylinder (V;N{Z,_111 = n®}) x (0,1); hence the
base V;N{Zy—141 = n®} of the cylinder is connected. One can show (using the
transfer principle) that the intersection of the closure V; with the hyperplane
{Zn-1s1 = n} is connected (taking into account the boundness of V;). Be-
cause of that, ViN{Z,_141 = 7} C U; for a suitable unique index j (similarly
for the hyperplane {Z,_;41 = 7®}).

Introduce now the following bipartite graph H whose vertices correspond
bijectively to the connected components V;, U 1<1<p, 1 <5< p). Anedge
linking two vertices corresponding to V;, U; is drawn if V;NU; # 0. A vertex of
H corresponding to V; has exactly two adjacent vertices, corresponding to the
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intersections of V; with the hyperplanes {Zn_141 = 7M} and {Znty1 = ,7(2)},
respectively. Since W is connected, the graph H is also connected.

For two arbitrary points z,y € (WN %.(my-Mm-1)) we now prove the existence
of a (connected) path P C y(mwmmt) linking 2 and y. Let z and Y belong
to some connected components of type either U; or V;. Draw a path P iy
the graph H linking the vertices corresponding to the connected components
containing = and y, respectively. We argue by induction on the length of the
path P. The basis of induction concerns the case when z and y lie in the
same connected component. If this component is U; C {Zn_131 = ("} thep
we apply the inductive hypothesis to the skeleton B eentntin)) Otherwise,
if this component is V; (let Vi C {7V < Zu_iy1 < 7@}), then consider the
connected components Cy,C, C (Vi N E(’“""’""—')) of the intersections of the
curves of the kind W® N F* (see (13a,b)) with the set {n() < Z,_,; < @),
such that z € C; and y € C,. Lemma 12 implies the existence of the points
2y € (Co N{Zpoipr = 1M1, y1 € (Cy N {Zpizr = nM}), and T, €
(Vin{Zn_141 = nW}N B0} C Y; for a suitable index j (see above). The
intersection

E(ﬂl:"-vﬂnwl) nu] —_ 2(7711-"1"n-—h77(1)) n uj

is connected by the recursive hypothesis, and therefore the points z and y can
be linked by a path in X(r7s-1), This proves the basis of induction.

To prove the inductive step, consider an extreme edge in the path P. Let
it correspond (see the graph H) to a pair of connected components V;, U; (let
Vi € {nW < Z,_141 < 7®}). Consider two cases. In the first case y € V;. As
above, consider a connected curve C, C (E(m™-1) 0 V;) such that y € Cy.
Then an intersection C, NU; # @ is not empty. Pick out a certain point
y1 € C, NU; and, as an extreme link of the path P under construction, take
a connected curve contained in C, and linking y; and y. The points z and y
can be linked in %("-1) by the inductive hypothesis.

In the second case y € U;. There exists a connected component Cy of
the intersection of a certain curve of the kind W) N F* with the set {n® <
Zn_iy1 < 1@} such that Cy C (vin Z("l""'""-‘)) by virtue of Lemma 11(2).
Lemma 12 implies that C4 NU; # @ is not empty. Pick out a certain point
y2 € C4NU;. By the recursive hypothesis, for E(m-mn—tm) (here either n = 7
or 7 = n?), the points y and y; can be linked by a path in L= N1f;. An
arbitrary point y3 € Cy can be linked with y; by a path in C4 C B (mentn-i),
Finally, one can link z and ys by a path in E(nrm-1) ysing the inductive
hypothesis. This yields a path P linking z and y in XM=, Thus, the
intersection W N B(mrmm-1) is connected. O
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The description of the recursive construction of a skeleton I for the hyper-
surface {h = 0} NDo(R) containing the points u(®), ... ) (see the beginning
of Section 3) and the proof of correctness of the algorithm are now completed.
The number of connected components of the hypersurface {h = 0} N Dy(R)
coincides with the number of connected components of the skeleton T and,
by the same token, with the number of connected components of the graph F
(see the beginning of the section). Moreover, one can easily test whether two
points ul®), u® belong to the same connected component of the hypersurface
{h =0} NDo(R), using the graph F.

This completes the design of the algorithm required in the main theorem
(see the Introduction). In the next section we shall analyze the complexity of
the algorithm.

5. Complexity analysis of the algorithm

First, we turn to the complexity analysis of the algorithm described in
Section 3. Taking into account that this algorithm has a recursive structure,
and each of its steps consists of performing several arithmetic operations, it
suffices to estimate a priori the bit lengths of the data over which the operations
are accomplished, the number of operations at one step, and finally, the total
number of the steps in the recursion.

Now we proceed to a priori estimate the intermediate data in the algorithm.
By recursion on (n —I) we will produce a certain family of the formula of
the first-order theory of the field F' which we will use to help estimate the
parameters of the part of the skeleton constructed on the (n — I)-th recursive
step of the algorithm. At the beginning of the current step of the algorithm
the points

u(l)(nlw SRR nn—l)v [ERE) u(q)(nla e 77717,—1)
are produced. Fixing j for now, for each of these points u®(n,. .., 10t) we
assume that some formula of the theory of the field F (with three quantifier
alternations) of the following form is already produced:

@V =3Ty; 3Ty, VT21, VT3 7,3Ts 1. 3Ts -, (D).

Here (9) is a quantifier-free formula with the atomic subformulae of the kind
(f 2 0), where fe F[T]_,], ces 7T1,7'17 Tg,l, ceny Tg,v-z, T3,1, ces ,T3,1-3, VAT Zn—l,
},...,¥)). Furthermore, every point from the semialgebraic set {e}Nn{2, =
MA--AZyi =n.y} C F*is a null-dimensional connected component (in
other words, an isolated point) of the semialgebraic set {o()}, and moreover
the point uWV(ny, ..., 1) € ({(¢DIN {21 =M A+ A Zot = 1aa)).
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Thereupon we produce a certain formula ¢ of one of three types, according
to the three procedures producing options for an element 7,_14; (see Sectiop
3). According to the first procedure as ¢ we take the formula:

Yy, Wy (R =)(Zy, o Zneigr, Vi, -, Vi)

_ 8h("1"""’"“)(zl, R Zn.—l+1, )/1.13 sey Y;,I-—l)
= i

_ _ 8h(’“""’”"")(Z1, ceey Zn—1+17 }/1,13 ey I/1,1-—1)
T oY1

A (Zrrevr Tt Vi, Yia) € MOBmadDy(R)) (15

Observe that for Z; = 91,...,Zn-1 = Nn-1, the quantifier-free part of formula
(15)7 has the same finite set of solutions (as a system of inequalities) as the set of
solutions of system (10a,b) which lie in the set M ("1""”’"-')730(7?,). Therefore,
the set of the values of the coordinate Z,_;41 of all points satisfying (15),
(for Zy = m,..., Zn_1 = fn-1) coincides with the set of all options for 1,_,
produced according to the first procedure..

According to the second procedure, denote by () the formula obtained
from (%) by means of the linear transformation of the variables (Yi,..., V)T -
B-(Yy,...,Y))T (see Lemma 9 and the construction just after it). Further-
more, denote by F(7) the formula obtained from %) by replacing variables
Yi,...,Y by Zn-14+1, Y11, .+, Y11, Tespectively. As ¢ take the formula:

BY;,L..EY;,I—I (‘ﬁ(")) (15)[1

=0

Note that the point (n1,..., 701, ugj) + Y acici tiu,(j )) is a null-dimensional con-
nected component of the semialgebraic set determined by formula (15);; (recall
that the point uD(n1, ..., 90st) = (7, -+, Tues, ul?), . .,ufj))).

Denote the following formula by Q(m-n-1) (see (12)):

2
Ryeinint) _ M _ _’}LA
oy Nyl

(M yeeerin=t) 2
S L : __’\’-ZA___O,
0Y_, N,l

According to the third procedure, as ¢ we shall take either the following for-
mula, which we denote by (15) 117 max:

1. 3¥13RVRVAZY, 3 3y, 322,

n
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E) ) ((0 < R® < R) = (@)

(zl v"vZn-len—-l-H le,l 1--‘nyl,l-1)

/\ Q(ﬂl""vﬂn—l)

1
(Zl )---1Zn-hZ$,,_zl+1 ,},‘(;) yorey l(,ll-)-l

/\ Q(ﬂl vmnn—l)

(ZtZnt 2y YD oK)
AMNI(Z1,. oy Znety Zni41, Y10y, Yigoa)
—(Z1y - 2ot 2041, YD, Y, | = RO
A(Zaye e vy Znety Zneig1, Vigy -+, Yiget)
— (Z1y s Znety 22040, YD, YOI = RO
A ((Zaye o Zncts Bnisn, Vi, Yigea) € MO0 Dy(R)
A(Z1y- s Znts Z000, Y, YD)

7é (Zla ey Dnely Z’ELZ—)I-}‘l"Ylle)’ s ’Y;f?-)-l))
A1 < Zociin) & (220 < Zucas)
(here the vertical line is used for the notation of substitution), or the sim-
ilar formula (15)777min, obtained from (15)rrrmax by replacing the latter in-
equalities (Z,Sl_)l +1 £ Zn4a) and (Z,(f_), +1 < Zn_141) by the opposite ones:

(Z,?), 2 Zp-141) and (Z,(f_), +1 2 Zaoi1) respectively. Observe that for
Zy = n1y...y Zng = Nn-i the set L of the values of the coordinate Z,_i41
(excepting the options for 7,141 produced according to the first procedure) of
the points satisfying either (15)777max or (18)1rrmin is finite and coincides with
the union of two following sets. The first set consists of the local extrema of

the coordinate Z,_i4; on the curve (see Lemma 10):

ah("'lly-"ﬂ?n—l) ) 2 Al

h(mimmn—-l) _— ....—..A
{ ( oY Nl

R (Msamn—t) 2 N2
= oee = —_— A = O
(. i ) AT

N{Zy=mAANpa= Mnet} N M(m,...,nn_l)po('R) \ F,

and the second set consists of the values of the coordinate Zn_141 at the points
of the “self-crossings” of the latter curve. Therefore £ contains the set of
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options for Mn—i41 produced according to the third procedure (namely, the first
mentioned set of local extrema, possibly with some added options for Moty

according to the first procedure).
Recall that in the recursion step described in Section 3, the algorithm yields

points of the kind u(i)(m,...,nn_z, Nn-i+1). For each of them we specify a
formula cp((f) similar to o). These points are obtained in three ways accordip
to three procedures (see Section 3). First, there are the points satisfying systeng1
(10a,b). In this case the corresponding formula. is

o) =37 3y P )

(Z11Znt YD YD)
ah("’lx-"mn—l) 6h(771)'"177u-_l)
T )

/\ (h("'ll l-"vﬂn-l) —

Second, in the set of indicated points the algorithm includes the points of
the kind ©\(7y, ... ,nn,I). produced in the previous step of the recursion. As
corresponding formula o in the second case we take () (see above).

Third, the algorithm obtains the points of intersection of the curves of the
type WNF™ (see (13)) with the planes {Z1 = mA---AZn_ = 1y A Zp iy =
Nn—i+1} for all the options for 7,_i141. In the third case as <pg) we take the
following formula:

W3 |V 3
(2 wnZn—l:Yl(’l),...,Ylff))

A AYRMIAZE, 3V 3y, (RW > 0)
= (280041 # Zoc)) N((Z1y -y Dty Zocgas Yoy -, Vi)
~ (21, 20, 2200, YD, K| < RW)

n

A <h(7711---mn..1) = <......_____ah(m’m'ﬂ"'l))2 . U (6h("w~mn-z) )2
on Nol oY,
Ao
- 2228 = 0) )
N2l (th*"vzn—hzf,?”_l,Y;(':),...,Yi(':ll)

This formula is true for any point situated on the planes of the kind {Z; =
MAAZpt =Nt & Zn_141 = Y141} which belongs to the closure of a curve
of the type C; (see Section 3). Note that the number of these points is finite
(see Lemma 12). Moreover, each of these points is a connected component of
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the semialgebraic set determined by the latter formula :,o(()i), taking into account
the properties of the formula 0@ o, _

Thus, in all three cases the formula ga[(,’) satisfies the properties similar to
the formula cp(j? with respect to the next (n — [+ 1)-th step of the recursion.
The formula go((,’) is equivalent to a formula of the following form:

ATy 3Ty,,, 3V 3P, 3V, 3¥,,3R

V1. ¥To, VROVRWITy y 3Ty, 320, (16)
v { 3v 1,322,379 3r®,

328,38 30 (),

where 9 is a certain quantifier-free formula, the conjunction of the quantifier-
free parts of the formula ¢, o, and the suitable formula specified above.
Indeed, gog') has the form of a conjunction of at most three formulas each having
the quantifier prefix of the form 3¥3, and because of this, { is equivalent to
a formula with the prefix of the same form 3V3.

Now we estimate the parameters of formula (16). The number of quantifiers
in the first 3-block is at most 7, 421 —1, in the second V-block is at most 5 +2,
and in the last 3-block is at most 3 + 31. We conclude by induction on (n —1)
that at any step of the recursion a formula of the form (16) with the quantifier
prefix 33 in each of three blocks has at most 3n? quantifiers. Thereupon we
estimate the number of the atomic subformulae in (16). Denote by N the
‘number of the atomic subformulae in ). Then the number of the atomic
subformulae in (16) can be bounded by Ny + O(n). Hence by induction on
(n—1) we deduce the bound O((n + p)n) on the number of atomic subformulae
in a formula of the form (16) on any step of the recursion, taking into account
that on the first step the number of atomic subformulae does not exceed O(pn)
(see the points u®), ..., u( at the beginning of Section 3).

After that we estimate the degrees of the polynomials occurring in formula
(16). At the first step of the recursion the formula contains the polynomial
h, the polynomials from F[Z] determining the points w),...,u(®, and also
the element R? € F'. Therefore, for any polynomial f occurring in the latter
formula we have the bound deg(f) < O(D) (see the beginning of Section 3),
where deg denotes the degree with respect to all the variables, and the bound
degs, . 5.(f) < O(Do). One can easily check that the degrees of the polyno-

mials occurring in (16) in an arbitrary step of the recursion satisfy the similar
bounds.
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Now we estimate the degrees of the polynomials

80("""),905'?1""’7'"") € F[Z]
determining the points «®(71,...,7n-1), ... ,ul@ (01, ...y mat) given at the be.
ginning of the recursive step in the algorithm. For this purpose, for e
1 < j < g, to the family of all the polynomials occurring in the formula o)
we apply Proposition 3 successively three times (see the Introduction); first
with respect to the variables T3 1, ..., T35, second with respect to the variables
T23,...,Ts,r, and finally with respect to Ty,1,...,T1,5,. As a result, we get 5
family of the polynomials

gl""’gp € F[ZI"--aZn—l,Y-l,...,)/l]
for which the following bounds are valid: p < (np D)O(nIS),
deg(g:) < (npD)°™), and deg, . _4,,(3:) < Do(npD)°™™),

for 1 < i < p. The point «)(n1,...,7._1) is a null-dimensional connected
component (in other words, an isolated point) of a certain {1, ..., §,}-cell, ie,
an element of the partition 2/({gi,...,§,}) (see Proposition 2). Therefore, there
exists a suitable set of indices I C {1,...,p} such that ul)(y,... yTn=t) I8 2
null-dimensional connected component of the variety {¥;e; 37 = 0}. Applying
Proposition 2 to the polynomial ¥;c; §? one obtains the bounds:

deg(ip ™), degy(p\ ™) < (npD)°*);
degs, .. 5, (1), dega-l,...,am(wﬁf’,ﬂ""’""“)) < Dy(npD)°™),
Applying Proposition 3 to the families of the polynomials from the left sides
of systems (Qa,b) and (9b,c) respectively, the algorithm in Section 3 yields the
polynomials gé’) € F[Ty,...,T] for 1 <i < N and ¢ € F[T,...,T)] for
1 <£¢ < Ny, respectively. The following bounds are true:

No, Ny < (npD)°™™); degy, . 1(6"); degr,,1,(st") < (npD)OC";

degsl""'b.m(g(()i))’ degslu..y&m(g{i)) _<_ Do(npD)O(n:“).

Hence degy, . 7,(9") < N’ < (npD)°"*®). Because of this, the bit lengths of
the (integer) entries of the matrix B are bounded by I(t;) < O(n'®log(npD));
thus the bit length of any (integer) entry of the matrix M (mr=n-1) does not
exceed O(n'" log(npD)). Therefore, the length of coefficients l(h(m,...,n,._,)) <




comput complexity 2 (1992) Counting Connected Components 181

M+ O(n'"log(npD)) (see the beginning of Section 3). Note that a similar
value estimates also the length of the coefficients of every polynomial occurring
in formula (16).

Applying again, as above, Proposition 3 three times to formula (16), one ob-
tains the bounds I(g;) < (M +mDg)P((npD)™ ) Applying again Proposition
9 to the polynomial E,e 1 G2, one deduces the bounds [ (cp(”"—')) l((,a(’“’ ”""')) <
M+ mDo)P((”PD) Y-

With the help of Proposition 1 the algorithm finds (see Section 3) all the
components, irreducible over the field F, of the variety determined by system
(12). Proposition 1 implies that the polynomials g, .. a8 € FlZy,...,Z,, A1
Yo Yic1) determmmg a component WO ¢ F" satisfy (P((npD)
DoP( npD) *),(M + mDo)P((npD)*"*)-bounds. Furthermore T 5
P((npD)"

Thereupon for each component W) ¢ F which is a curve, and pair n(l) <

n® of adjacent options for 7,_i41, the algorithms finds the connected compo-
nents of the intersection WO N {n® < Z, 11 <@ AZy=m A AZ, =
Na-i} N Fm involving Proposition 4. Any such connected component Cs (see
Section 3) is represented by the algorithm as a union of connected semialgebraic
curves of the form {w; >0A - Awy, > 0Awy,41 2 0A - Aw, > 0}. More-
over, the polynomlals w; € F[Z1, s Zniz1, Y1, .. z 1] for 1 <i < y satisfy
(P((npD)™"), DoP((npD)™"), (.M + mDo)’P((npD) "))-bounds. Therefore,
these bounds are valid for the representation of the skeleton L(71:-n-i+1) and
in particular of the skeleton X.

Now we proceed to the time analysis of the algorithm designed in Section 3.
The algorithm has a recursive structure and it can be represented as a rooted
tree with depth n in which the branching at the vertex of depth n — I (from
the root) corresponding to the values Z; = n1,...,2,_; = nn_; is in bijective
correspondence with the set of all the options for 9,_141. The number of options
for fo—141 produced according to the first procedure is at most P((npD)""*) by
virtue of Bezout’s inequality (see, e.g., Shafarevich 1974), and by taking into
account system (10a,b) and the bounds obtained above on the degrees of i),
The number of the options for 9,_i41 produced according to the third procedure
can be bounded by P((npD)™") (see the polynomial G and the variety W in
Section 3). After that, the algorithm, relying on Proposition 2, produces points
of the type u®)(ny, ..., M1, Tn_i+1) obtained as the intersections of the curves
of the kind W) n F™ with the planes {Zy = m A+ A Znt = et A Zntj1 =
Na-i41}. The number of points of intersection of curves of the type W with
the plane does not exceed the degree of the variety determined by system (12),
and hence does not exceed ’P((npD)"“) because of Bezout’s theorem. Thus,
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one can bound the fan-out at each vertex of the tree by P( (npD)’115 ). Therefore
the total number of vertices of tree is at most P((npD)"") ’

It suffices to estimate the running time of the recursive step describeq iy
Section 3. First, the algorithm looks over all the integer vectors (t,,..., t) e
{0,1,...,N'}*"! and tests whether the vector (%s,...,%) satisfies the condi.
tions from Lemma 9, deciding the solvability of systems (9a,b) and (9byc)
(with substituted t3,...,1;) using Proposition 2. This requires time P(M, Dr.
(npD)"“(m"'l)). Thus, taking into account the procedure of looking over the
vectors (13, ..., %), this stage of the operation of the algorithm takes time P(M,
Dm, (npD)™*("*+m)). Thereupon the algorithm yields the matrix M-
and the polynomial A(-+n-1) also within the latter time bound. After that
the algorithm solves system (10a,b) using Proposition 2. Similarly, the same
time is sufficient for this purpose.

Next, the algorithm considers all (I — 2)-tuples 0 < Ay,..., N2 < N, =
(2D)!, and for each of them finds the irreducible components of the v
ety determined by system (12), using Proposition 1, in time P(M, DIt
(npD)™*(*+™)). Thereupon the algorithm tests solvability of the quantifier
free formula (13a,b) with the help of Proposition 2 in the same time.

After that the algorithm produces a representative set of points for the va-
riety W in the space (F (€))", relying on Proposition 2, in time P(M, Dr,
(npD)™*(™+1)). For each of the produced representative points y’, the algo-
rithm finds its standard part st(y’) € F™ using Lemma 8 from Grigor'ev &
Vorobjov (1988) within the same time bound. The algorithm tests whether
the coordinate function Z,_;41 reaches a local extremum in the point st(y’) on
the curve WM N £ by applying Proposition 2 to formula (14). For this, time
P(M, D, (npD)~*(m+1)) guffices.

After that the algorithm applies Proposition 4 to the curve

WON{Zy=m A AZpg=na AW < Zy_ip1 < @} Em,

(for all adjacent options 7V < 5® for n,_;41) and finds its connected com-
ponents in time P(M, D*™, (npD)™" (**m)). For each of these connected
components C3, and the points of the intersection

Wl n {Zl =mA---A Zn-—-l = Mn-l A Zn—-H-l = 77n-»l+1} N Fm

(which are obtained with the aid of Proposition 2, also within the latter time
bound),__the algorithm finds out which of the obtained points belong to the
closure C'3, again using Proposition 2 within the same time-bound. This allows
one to construct the skeleton X.("rmn-tm-141) and the corresponding graph
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F(’ll,-..,nn_loﬂn-l'l'l) (see the beginning of Section 4). Thus we can summarize
25 follows the bound on the running time of the algorithm from Section 3
constructing the skeleton % (and the graph F), taking into account the bound
obtained above on the number of vertices in the tree of the recursion.

LemMA 14. The algorithm designed in Section 3 constructs a skeleton & (and
the graph F) for a hypersurface {h=0} Q Do(R) (having at most one nonsin-
qular point) in time P(M, Dgt™, (npD)™ ' (*+m)). Furthermore, ¥ contains the
points u®,...,ulP). The algorithm represents T as a union of the connected
semialgebraic curves of the type {wy > OA- - -Awg, > Awg, 41 > 0A---Aw, > 0},
where the polynomials w; € F[X1,...,X,] for 1 < i < z satisty (P((npD)™",
Do’P((nPD)n”): (M + mDO)P((npD)""))-bounds, and the graph F specifies
which pairs of curves have common endpoints.

Now we turn to complexity bounds of the reduction, as described in Section
9, of the proof of Theorem 1 for the case of system of inequalities (2) (see Section
1) to the case of a bounded nonsingular hypersurface considered in Section 3
(see also Lemma 14). Assume that the polynomials f; € Qnm[Xy,...,X,] for
1< i <k, occurring in system (2) (see Section 1) satisfy (d,do, M)-bounds,
and also that the points z and y from the semialgebraic set determined by
system (2) satisfy (d,do, M)-bounds. Recall that in Section 2 a polynomial
@ € Qnler, €2][ X1, Xnt1] was produced which satisfies a (O(dy), doP((kd)"),
(M + mlog do)P((kd)"))-bound. In order to prove the first statement of the
theorem in the case under consideration, we apply the algorithm designed in
Section 3 to the polynomial h = g, and R? = R? + &; (see the beginning of
Section 3), where R was produced in Lemma 8 from Section 2. Therefore, R?
satisfies a (1, doP((kd)"), MP((kd)"))-bound by Lemma 8. Thus, we construct
a skeleton ¥ and select among the connected components of ¥ those which lie
in the cell {fi + €1 > OA-++ A frps + €1 > 0} (the latter is equivalent to
the property that an arbitrary point of the connected component belongs to
this cell). The number of selected connected components coincides with the
number of connected components of the semialgebraic set Vy determined by
system (2). Therefore the algorithm computes this number in time P(M, d3t™,
(nkd)™""(+m)) by virtue of Lemma 14.

To prove the second statement of Theorem 1, let us assume that gj, pro-
duced at the end of Section 2, plays the role of h and (R')® + €1 plays the
role of R?, where R’ equals to the largest among R and an element R’ € F
such that the points 2/,3’ € Do(R") (see the very end of Section 2). One can
easily see that R satisfies a (1, doP((kd)™), MP((kd"))-bound. Hence R? sat-
isfies a (1, (do + do)P((kdd)™), (M+'A_/f)7>((kd2)”))-bound. Because of this, g;
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satisfies a (O(kd), (do + do)P((kdd)"™), (M + M + mlog do)P((kdd)™))-boynq,
Furthermore, the algorithm produces the points z© and y©), picking them gyt
from the representative set for the semialgebraic set U (see the end of Sec-
tion 2), which the algorithm produces using Proposition 2. For this purpose,
P(M, M, (dodo)™, (kdE)"(’"f)) time suffices, and the points z(*) and y(© satisfy
(P((kdd)™), (do + do)P((kdd)", (M + M + mlog(do + do))P((kdd)™))-bounds,
Applying the algorithm designed in Section 3, we assume that z(®) and y(© play
the role of the points u(!) and u(®. Thus, the algorithm tests whether the points
z and y belong to the same connected component of the semialgebraic set ¥
in time P(M, M, (dado)"™™, (k@)™ *+™) by Lemma 14, This completes e
proof of the theorem for the case of system of inequalities (2).

In conclusion let us prove Theorem 1 in the general case (see Section 1).
Recall that for an input quantifier-free formula =, the algorithm first eny.
merates all {fi,..., fi}-cells using Proposition 2, and gives a representative
set for the partition U({f1,..., fr}). This takes time P(M, dg*", (kd)nmt)
and each point from the representative set satisfies a (P((kd)"), doP((kd)™,
(M + mdo)P(kd)™))-bound. Applying the algorithms designed in Sections
2 and 3 to every cell, one can obtain a representative set for the partition
U({f1,- .., fi}) such that each element of the partition contains exactly one rep-
resentative point. By what we have shown above, this requires time P(M, di**
(kd)nlg(n+m))’

After that, for every element V; of the partition U({fi,..., fi}), the al
gorithm tests whether, for the unique connected component V; of the set I,
such that V1 D V; (see Lemma 1 in Section 1), we have Vy N V;2) # 0. For
this we apply Proposition 2 to the semialgebraic set ) N Ué”’”). It requires
time P(M,dg*", (kd)"(™*+), and each of the produced representative points
¢ € Uy NULS™ satisfies a (P((kd)™), doP((kd)™), (M +mdo)P((kd)™))-bound.
After that one can test whether z € V") using the algorithms designed in
Sections 2 and 3. This can be done in time P(M, di+™, (kd)™*(*+m)). Consider
a point y of the yielded representative set for the partition ¢ ({f1,--, fi}) such
that y € V1. Again applying the algorithms designed in Sections 2 and 3, one
can find out whether the points ¢ and y lie in the same connected component
of the set 1. This also takes time P(M,d5*™, (kd)™*(»+™)), This completes
the proof of the first statement of the theorem.

To prove the second statement of the theorem (see the very end of Section
1), the algorithm, using Proposition 2, finds out in which cells the points u®
and u(® lie. For this purpose time P(M, M, (dodo)™+™, (kdd)™™+1)) suffices.
Thereupon one applies the algorithms designed in Sections 2 and 3 to the cell
which contains the point u®) to specify a connected component of this cell
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which contains the point u® (a,_§imil§r procedure can be done for the point
u(®). This requires time P(M, M, (dodo)™*™, ((kd)" d)nls(n +m). The proof of
Theorem 1 is now completed.
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