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Let the polynomials f}, ..., /,e Z[X;, . . ., X,] have degrees deg (f}) <d and absolute value of
any coefficient of f; less than or equal to 2™ for all 1 <i< k. We describe an algorithm which
recognises the existence of a real solution of the system of inequalities /; >0, ..., ; 2 0. In the
case of a positive answer the algorithm constructs a certain finite set of solutions (which is, in
fact, a representative set for the family of components of connectivity of the set of all real
solutions of the system). The algorithm runs in time polynomial in M(kd)"”. The previously
known upper time bound for this problem was (Mkd)>"".

Introduction

The problem of finding real solutions of systems of polynomial inequalities is of known
significance for symbolic computation. For the first time the decidability of this problem
was proven by Tarski (1951). However, the time-bound of the algorithm from Tarski
(1951) is non-elementary (in particular, the time-bound cannot be estimated by any tower
of exponents). Later, exponential-time algorithms were devised for this problem (Collins,
1975; Wiithrich, 1976). In fact, Tarski (1951), Collins (1975) and Wiithrich (1976)
consider a more general problem, namely, quantifier elimination in the first order theory
of real closed fields.

In the present paper we describe a subexponential-time algorithm for finding real
solutions of systems of polynomial inequalities (see also Vorobjov & Grigor’ev, 1985).
This algorithm essentially involves the subexponential-time algorithm for solving systems
of polynomial equations over an algebraically closed field (Chistov & Grigor’ev, 19834, b;
Chistov, 1984; Grigor’ev, 1984; see also Chistov & Grigor'ev, 1984; Grigor'ev, 1987).
Before the papers by Chistov & Grigor’ev (19834, b) only exponential-time algorithms
were known for the latter problem (see e.g. Collins, 1975; Wiithrich, 1976; Heintz, 1983).
On the other hand, it is clear that the problem of solving systems of inequalities over real
numbers is more general than the problem of solving systems of equations, for example,
over the field of complex numbers.

Let fi, ... fi€Z[X;,..., X,] be input polynomials. An algorithm described in the
present paper finds a certain set of solutions in R" (or indicates their absence) of a system
of inequalities

fi>0,. . oS>0, 1 =0,.. ., fi20. (1)
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A rational function geQ(Y;,..., Y;) can be represented as g= g1/9, where the
polynomials g,, g, € Z[Y,, . . ., Y] are relatively prime. Denote by l(g) the maximum bit
lengths of the (integer) coefficients of the polynomials g, g,. Throughout this paper we
suppose that the following inequalities are valid:

degx,, .x, () <d, Uf) <M, 1<i<k @

We estimate the size of system (1) by the value % =kMd" (cf. Chistov & Grigor’ev,
1983a, b; Chistov, 1984; Grigor’ev, 1984; also Chistov & Grigor’ev, 1984).

The running time of the algorithms for solving systems of inequalities from Collins
(1975) and Wiithrich (1976) is bounded by (Mkd)2*".

The notation hy <P(h,, ..., h) for functions h,, ..., h,>0 means that for suitable
natural numbers ¢, p an inequality h, < p(h, . .. h,)? is true.

A subset in R" is called semi-algebraic if it consists of all points in R” satisfying an
appropriate quantifier-free formula IT with the atomic subformulas of the form (g;=0)
with g;eR[X,, ..., X,]. We denote this subset by {IT} = R".

08 &> DR 308 . &5 0) < R

be a semi-algebraic set consisting of all solutions of system (1). The set ¥ is
decomposable (uniquely) in the disjoint union of its components of connectivity 7, i.e.

=%

Moreover, every set ¥ is also semi-algebraic (see e.g. Collins, 1975; Wiithrich, 1976). A
finite set 7~ = 7" is called a representative set for ¥ (or in other words, for the system (1))
iff for each index i the intersection YinT #¢. Denote by Q@ =R the field of all real
algebraic numbers. The main result of the present paper is the following theorem (see also
Vorobjov & Grigor’ev, 1985; Grigor'ev, 1987).

THEOREM. There is an algorithm which, Jor any system of inequalities of the kind (1),
satisfying (2), produces some representative set 7 =¥ Q" with a number of points not
exceeding  P((kd)™). The running time of the algorithm is less than
P(M, (kd)”) < P(L°9?) (i.e. the time-bound is subexponential in &£). For every point
(s -+ XD ET  the algorithm constructs a corresponding polynomial ®e Q[Z], that is
irreducible over Q, and the expressions
%= xdw) =} fPo’ e Qlw],
J
_where fPe@, 1 <i<n, 0<j<deg(®) and we@, ®(w)= 0. Besides that, the algorithm
produces a pair of rational numbers b, b, € Q such that inside the interval (b,, b,) =R there
is a unique real root we (b, b,) of the polynomial ®. In addition, the equality
w = Z Aixiw)
1<j<n
is fulfilled for certain natural numbers 1< A< deg(®), 1<i<n. Finally, the polynomials
and expressions constructed satisfy the following bounds:

deg(®) < 2((kd)");  1(®), l(xi(w)), U(by), Uby) < MP((kd)").
REMARK. Based on the description of the points constructed in the theorem and using, e.g.

Heindel (1971), one can find, for any rational 0 < § < 1, rational d-approximations to the
points from the set 4 within time P(log(1/0), M, (kd)").
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For the proof of the theorem we need the algorithms from Chistov & Grigor’ev (1982,
1983a, b), Chistov (1984), Grigor’ev (1984), also Chistov & Grigor’ev (1984) on
polynomial factoring and on solving systems of algebraic equations. Now we formulate
exactly these results. Taking into account that only fields of characteristic zero are
considered in the present paper, and in order to avoid complex formulas due to
inseparable fields extensions, we restrict ourselves here to the zero characteristic case.

Thus, consider a ground field F = Q(Ty, . . ., T,)[n], where the elements Ti, ..., T, are
algebraically independent over Q, the element » is algebraic over the field Q(Ty,. .., T,).
Denote by

o=_3 (oM)eZ'e(T, ... T)[Z]
O0<i<degz(p)
its minimal polynomial over Q(Ti, ..., T,) with leading coefficient Ic,(p)=1, where
oM, 0P eZ[T,, ..., T,] and the degree deg(¢™®) is the least possible. Any polynomial
feF[X,,..., X,] can be uniquely represented in a form
f= Y @iy, i/DITXE X,

O0<i<degz(p); its..., in
where a; ;, .. _;.,beZ[T,,..., T,] and the degree deg(b) is the least possible. Define
degr,(f) = max {degr(a1,. 1) degrj(b)} .

il,n -’in

Let
degy, (f) <7, degr(f) <7, degr(e) <ty deg.(p) < 74,

IH<M,, llpp)sM, forall I1<m<n 1<Kj<e.

As the size L,(f) of the polynomial f we consider in proposition 1 the value 7" °157, M,
and analogously L,(¢) = 157 M,.

ProrosITION 1 (Chistov & Grigor’ev, 1982, 1984; Chistov, 1984; Grigor'ev, 1984). One
can factor a polynomial f over F within time polynomial in the sizes L,(f), L().
Furthermore, for any divisor f,|f where a polynomial f; € F[X,, ..., X,] has a certain
coefficient equal to 1, the following bounds are true:

degr,(f) < 1. 2(0, 11), I(f1) < (M +M,+et, +n)P(t, 1y).

For the cases when the field F is finite or F is a finite extension of Q, other polynomial-
time algorithms for factoring are described in Lenstra (1984).

Now we proceed to the problem of solving systems of algebraic equations. Let the input
system f, =...=f, =0 be given, where the polynomials f;, .. ., € F[X,, ..., X,]. Let

degx,.. .x.(f) <d, degr, . r.,2(¢)<di,
degr, ..r,(f) <dy, Wf)<M, forall 1<i<k

As the size L of the system is proposition 2 we consider the value kd"d, dM ,Fdit M.
The variety # < F" of all roots (defined over the algebraic closure F of the field F) of
the system f; = .. .=/, =0 is decomposable as the union of its components

w=)W,

defined and irreducible over the field F. The algorithm from proposition 2 finds the
components W, and outputs every W, in the two following manners: by its general point
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(see below) and, on the other hand, by a certain system of algebraic equations such that
W, coincides with the variety of all roots of this system.

Let W< F* be a closed variety of dimension dim W =n—m defined and irreducible
over F. Denote by ¢y, .. ., t,_,, some algebraically independent elements over F. A general
point of the variety W can be given by the following field isomorphism:

F(ty, ..oty )0 ~F(X,,...,X,)=F(W), ()

where the element 6 is algebraic over the field F(ty,...,t,_,). Denote by
D(Z)eF(ty, .. ., t,-)[Z] its minimal polynomial over F(t,....1t,_,) with leading
coefficient lc.(®) = 1. The elements X, .. ., X, are considered as the rational (coordinate)
functions on the variety W. Under the isomorphism (x) ti— X;, for suitable
I<ji<...<jy-m<n, where 1 <i<n—m. Besides, 6 is the image under isomorphism (x)
of an appropriate linear function ) ¢;X;, where ¢; are integers. The algorithm from
1<i<n
proposition 2 represents the isomorphism () by the integers cy, ..., ¢, and apart from
that by the images of the coordinate functions X, ..., X, in the field F(t, . . ., t,_,)[6].
Sometimes in the formulation of proposition 2 we identify a rational function with its

image under the isomorphism.

ProposiTiON 2 (Chistov & Grigor’ev, 1983a, b, 1984; Chistov, 1984; Grigor’ev, 1984). An
algorithm can be designed which produces a general point of every component W, and
constructs a certain family of polynomials YV, ...,y e F[X,, ..., X,] such that W,
coincides with the variety of all roots of the system YM=...=yM=0. Denote by
n—m=dimW,, ,=6, ®, = (see (x)). Then deg.(®,) < deg(W,) < d™, Jor all j, s, the
degrees

degr,..... Totsr.atnom(P)s ACBT, 7oty (X)) degr, 1, (W) < dy?(d™, dy),
degx,, ... x, (W) < d®".
The number of equations N < m2d*™. Furthermore,
(@), (X)) < (M +M,+(n+e)d,)Pd", d,)
W) < (M, + M, +ed,)?(d", d,).

Finally, the total running time of the algorithm can be bounded by P(M,, M,,
(d"dyd,)"*, k). Obviously, the latter value does not exceed P(L*Y), in other words, is
subexponential in the size.

and

and

AN/

The contents of the paper are briefly as follows. In section 1 a device is introduced for
justifying the calculations with infinitesimals which are involved below in sections 2,3.
Some properties of semi-algebraic sets over ordered extensions by infinitesimals of the
field @ are ascertained.

In section 2 an algorithm is suggested that produces a representative set for the variety
of all real roots of a given polynomial. For this purpose an infinitesimal “perturbation” of
the initial polynomial is considered, so that the variety of all the real roots of the
“perturbed” polynomial turns out to be a smooth hypersurface. The algorithm finds on
this hypersurface points with some fixed directions of the gradient, solving an appropriate
system of algebraic equations over an algebraically closed field with the help of
proposition 2.

In section 3 we prove at first some bounds on real algebraic solutions of the system (1).
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After that, for the given system (1), the algorithm yields a relevant polynomial and applies
the construction from section 2 in order to produce a representative set for the variety of
real roots of this polynomial. Then among the points produced the algorithm picks out all
the points satisfying system (1). This completes the proof of the theorem.

In section 4 an outline of the whole algorithm is given, omitting some details covered in
sections 2, 3.

1. Calculations with Infinitesimals

Let K, in the course of this section, denote an arbitrary real closed field (see e.g. Lang,
1965) and an element ¢ > 0 infinitesimal relatively to the elements of the field K, i.e. for
any positive element 0 < a€ K in the ordered field K(¢) the inequalities 0 < & < o are valid.
Obviously, the element ¢ is transcendental over K. For an ordered field K, we denote by
K, o K, its unique (up to isomorphism) real closure, preserving the order on K, (see e.g.
Lang, 1965).

Let us remind some well-known statements about real closed fields. A Puiseux series
(or in other words power-fractional series) over the field K is a series of the kind

a= Y o
i20
where 0 # ;€ K for all i >0, the integers v, <v, <. .. increase and the natural number
u>= 1. The field K((¢*/*)) consisting of all Puiseux series (with added zero) is real closed,
and hence K((¢¥/*)) > K(e) > K(). Besides, the field K[./—1]((e¥/*))=K((e")) is
algebraically closed (here and further a bar over a field denotes its algebraic closure).

If vy < 0, then the element a e K((¢}/®)) is infinitely large; if v, > 0, then a is infinitesimal
(relatively to the elements of the field K). A vector (a4, ..., a,) e(K((e*/®)))" is called
K-finite if each coordinate a; (1 <i< n) is not infinitely large relatively to the elements of
K. For any K-finite element ae K((¢}/®)) its standard part st(a)e K is definable, namely
st(a) =a, in the case vo=0 and st(a)=0 if v,>0. Analogously one can define the
standard part of a Puiseux series from the field K((¢!/®)). For any K-finite vector
(@y, . .., a,)e(K((e¥*)))" its standard part is defined by an equality

st(@y, - . - @) = (st(ay), . - ., st(a,)).
For a set W < (K((¢'/*)))" consisting of only K-finite vectors we define
st(W) = {st(w): we W}.

It is well known (Tarski, 1951) that all real closed fields are elementary equivalent and
that any extension between real closed fields is elementary. This means that if K, K, are
real closed fields where K, = K, and II is any closed formula (without free variables) of
the first order theory of the field K, then the truth values of II in the fields K, and K,
coincide. We refer below to this statement as to the “transfer principle”. Sometimes the
first order theory of the real closed fields is called Tarski algebra.

Now we shall demonstrate, how the transfer principle can work and show (a known
fact) that any semi-algebraic set over a real closed field K can be represented uniquely as
a union of its components of connectivity, each in its turn being a semi-algebraic set.
Consider a semi-algebraic set W = {I1} = K", determined by a quantifier-free formula IT
of Tarski algebra with the atomic subformulas of the kind (f'>0), where the polynomials
feK[X,, ..., X,]. By the format of the formula IT we mean the sum of the number of its
variables, the number of atomic subformulas and the degrees of the polynomials f.
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In the case of the field K = R the set W is uniquely representable as the union of its

components of connectivity
w=UWw,

where every W, is in its turn a semi-algebraic set (and connected in the euclidean
topology). From the papers by Collins (1975) and Wiithrich (1976) one can deduce the
existence of a function M such that if the format of the formula IT is less than A; then the
number of the components W, is less than 9t(4") and, moreover, one can find quantifier-
free formulas IT; of Tarski algebra, each of format less than R(A4"), such that W, = {I1;}.
Indeed, the algorithms from Collins (1975) and Wiithrich (1976) allow to produce a
cylindrical algebraic decomposition of a semi-algebraic set and as a corollary to produce
the decomposition in the components of connectivity. For a given format 4" of an initial
formula (with symbolic coefficients) each of the two algorithms can be represented as a
rooted tree (directed outward the root) having vertices either with the out-degree one or
out-degree three. To the root corresponds the initial formula, to any vertex of the tree
with out-degree one corresponds an arithmetic operation, finally, to any vertex with out-
degree three corresponds a polynomial. The computation for an arbitrary initial formula,
with the specified coefficients substituted instead of the symbolic ones, proceeds along a
suitable path of the tree starting from the root, performing the corresponding arithmetic
operation in a vertex with out-degree one, and branching in a vertex with out-degree
three according to the sign of the corresponding polynomial. This representation as a tree
provides the desired function k.

Thus, for a given .4; one can obtain a formula Q - of Tarski algebra (for the case of the
field K =R), expressing the existence of a decomposition of any semi-algebraic set
W = {II} with the format of II less than 4 into its components of connectivity

W= klj {Hi}

such that the format of every IT;, and the number of them, are less than N(.4"). Moreover,
the formula Q - states that for each pair of indices i % J the components {IT;} and {I1,} are
“separated”, i.e. the following formula of Tarski algebra is valid:

V@, ...,a)e{TI;})Iz>0 (by,..., b,)e {Hj})(l ;{; (@—b)* = z).
Besides, the formula Q, claims the “connectedness” of every {II;}, this means that there
do not exist two “separated” semi-algebraic subsets of {II;}, each determined by a
quantifier-free formula of Tarski algebra with format less than R(NR(A)).

Apart from that, for given 4 .# one can prove (for the case of the field K = R) a
formula Q,, , of Tarski algebra expressing the following. If {IT} (where the format of IT is
less than /") can be represented as a union of more than one and less than .# pairwise
“separated” semi-algebraic sets, each being determined by a quantifier-free formula of
Tarski algebra of format less than .#, then {IT} can be represented as a union of more
than one and less than N(A") pairwise “separated” semi-algebraic “connected” sets, each
being determined by a quantifier-free formula of Tarski algebra of format less than R(A).

Applying the transfer principle to all the formulas Q v, 4, one concludes that any
semi-algebraic set (over a real closed field K) can be uniquely represented as a union of its
pairwise “separated” “components of connectivity”’, moreover, each component is semi-
algebraic and is “connected”, i.e. cannot be represented as a union of a finite number of
pairwise “separated” semi-algebraic sets. Below we utilise the terms “connected semi-
algebraic set” and “components of connectivity of a semi-algebraic set” without
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quotation marks since the notion of connectedness in any topology will not be
considered.
Denote by
DR) = {(X;—w)*+ ... +(X,—w,)* <R?}

the closed ball of radius R > 0 with the centre in the point w=(wy, ..., w,).

LEMMA 1.
(a) Any semi-algebraic set W < (m)” consisting only of K-finite points lies in a ball
D4(R) for a certain r;giigs ReK.
(b) Let V < K", W < (K(g))" be semi-algebraic sets and let, apart Jrom that, W consist
only of K-finite points and st(W) = V. Let

v=UV. W=UW
m 1

be the decompositions of the sets V, W respectively, into their components of
connectivity. Then, for every index m, there exist such indices li,... 1l that
stW,, U ... U W) = V,. Moreover, for each index | there is a unique index m such
that st(W) < V,,.

PROOF. (a) Assume that, on the contrary, for some index 1 <i<n and any ae K, there is a
point w= (W, . . ., w,) € W such that the absolute value |w;| > «. Consider the projection

T: (?(75))" —»f(Te/) on the coordinate X;. Then (W) < EZZ) is a semi-algebraic set (Tarski,
1951). Therefore, m(W) coincides with the union of a finite number of intervals (maybe
endless in one or both sides). Consider the extreme right interval (analogously one can
consider the extreme left interval). It cannot be of the form {X; > a} or {X;> a}, otherwise
the set W would contain points with infinitely large coordinate X;. T hus, the extreme
right interval has one of the four following forms: {a< X;<b}, or {a<X;< b}, or
{a<X;<b}, or {a<X,;<b}. If the element b is infinitely large (relatively to the field K),
then there exists an infinitely large element c € K(g) such that a <c < b in the case when
a < b. Otherwise, put ¢ =a = b, which again leads to a contradiction. Hence, the element
b is K-finite. The extreme left interval satisfies the analogous property. So, we arrive at a
contradiction with the assumption at the beginning of the proof.

(b) First of all we shall show that for any semi-algebraic set ¥V < K" and its component
of connectivity ¥;, one can construct an open (in the topology with the base consisting of
all open balls) semi-algebraic set U = K" such that V; U and, besides that, for every
point ve V\V, there exists 7 >0, for which the intersection Un2,(t) = ¢ (in other words,
VU=V, where U denotes the topological closure of U). Namely, as U one can take
the set of all points ue K", satisfying the following requirement. There exist 0 <t™eK,
0<t®eK and a point v, €V, such that the distance [jv; —ul| < ® and for each point
ve V\V, the distance |jv—ul| =+ 1§’

The latter requirement can be expressed by a formula of Tarski algebra, therefore the
set U c K" is semi-algebraic (Tarski, 1951). The set ¥; < U since, for any point v, €V,
one can put t®) = 0 and take t§’* from the definition of “‘separation” (see above). Now let
us show that U is open. Let a point ue U, let us prove the inclusion 2,(:%/3)cU. For
every point u, € D,(t/3) put @) =1 +18/3, t{? = 1{/3. Then these ¢ t#) are the
required ones. Indeed, there is such a point v, € ¥; that llu—v,|| < *, henceforth,

Ny —vsl] < llwy —ull 4+ =]} < 7.
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Apart from that, for each point ve V\V,, the following inequalities are valid:
lo—uyll = llo—ull—llu—u, || = ™ +7§ —16"/3 = " - 2f).

Finally, let a point ve V\V;. According to the definition of the “separation”, there exists
0 < 7, € K such that the intersection Z,(t;)nV; = ¢. Let us check that D,(1,/2)nU = ¢.
Suppose the contrary, let a certain point u,€%,(t,/2)nU. Then, by virtue of the
requirement formulated above,

4ot < fluy 0]l < 7,12,
@uz(fl/z)n Ifl < @u(rl)m I/'1 = ¢’

therefore, 7“2 > 7,/2. The obtained contradiction completes the proof of the properties of
the constructed set U.

In order to prove (b) it is sufficient to show that for any component of connectivity W,
there is a unique component V,, containing the set st(W,). Assume that, on the contrary,
there exist for definiteness some points

OeV, nst(W), v eV,nst(W).

but on the other hand,

Consider points w{?, w‘2°’e W, such that st(w(?) = v{?, st(w) =v?). The semi-algebraic
set constructed above U is {H} = K" for a relevant quantifier-free formula IT of Tarski
algebra. Introduce a semi-algebraic set U® = {II} = (K(e))" determined by the same
formula II. Let a point v, € ¥;. There exists 0 <1, €K such that 2, (r;) = U. In other
words, the following statement is true:

¥ x(llx—v,l] < 1, =TI1(x)).

The latter statement can be expressed by a formula of Tarski algebra. Hence, this formula
is true also over the field I'("(E) by the transfer principle. This entails the inclusion
92,(t;)=U®. Let a point v,eV\V;. Then for a suitable 0 <7,€K the intersection
2,(t))nU=¢. Reasoning analogously as above, one can conclude that
92,,(15)nU® = . Thus, if a point w, € W,n U, then st(w,)e(V nU) = V,, and if a point
w,e W\U®, then st(w,)eV\U = V\V,, taking into account that the standard parts
st(w,), st(w,) are definable and the distances [jw,—st(w)|l, |lw,—st(w,)|| are
infinitesimals.

Let us check that the semi-algebraic set W, U® is separated from its complement
W\U® in the set W,. According to what we proved above, the points w{®e W,nU®,
w®e W\U®. Therefore both sets W,nU® and W,\U® are non-empty. Let a point
w; e W;nU®. Then for a suitable 0 <t,eK the inclusion D, (t3) = U is true. This
implies 9,,(t3/2) N(W\U®) = ¢. Similarly, one can consider a point w,e W)\U®. This
contradlcts to the connectivity of W, and concludes the proof of the lemma.

Apparently, the set st(W) < K" is semi-algebraic for any semi-algebraic set W < (K(s))
(comsisting only of not infinitely large points relatively to the field K), but we shall not
need this statement further and shall not dwell on its proof.

Define the boundary W of a set W < K" as the set of points we K" such that for each
©>0 both sets Z,()NW # ¢, D,()\W 5 ¢. In the following lemma the polynomials
Jis - o fieK[Xy, ..., X,] and the element 0 < Re K. Introduce the semi-algebraic sets

V={(fi 20&... &(f = 0)} = K",
VO ={(fi+e>08&... &(fi+&>0)} c(K(e))"
and the polynomial
g=(fi+e)...(fi+te)—ceK[I[ Xy, ..., X,].
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LEMMA 2.
(@) VAZy(R) = st(VODy(R))

= st(V9 N {g >0} nFy(R)) = (V¥ n{g =0} " Dy(R));

(b) The boundary
aV9n{g =0} = (Vnig >0}

and, for every point ue d(V®n{g = 0}), _the equality g(u) =0 is fulfilled.

(c) On any component of connectivity U, = (K(e))" of the semi-algebraic set {g >0} each
polynomial f;+e¢, 1 <i<k has a constant sign.

(d) Let a point xedV <V < K". Then there exists a point

2e(V9n{g=0}) = (K@)

such that the distance ||z— x|| is infinitesimal relatively to the field K.

ProoF. (a) Let weV@nGy(R). Then the elements fi(w)—/fi(st(w)), 1<i<k and
||w—st(w)|| are infinitesimals, therefore, st(w)eV NnDy(R). Now let ve VN Dy(R). Then
fiv)+e=e>0 and g(v)>0. This entails veV¥n{g=0}NPy(R) and, taking into
account the equality v = st(v), one deduces that

vest(VOn {g = 0} nDy(R)).

(b) Let wed(V®{g = 0}). Assume that either fi(w)+&< B <0 for a certain 1 <i<k
or, respectively, g(w) < f <0, where e K (). There exists 0 <7 K(g) such that for any
point w;e@,(t) the inequalities |fi(w,)—fiW|<—p/2, 1<i<k and [g(w,)—gWw)l
< — /2 are valid. On the other hand, according to the definition of the boundary, one
can find a point w,e(V¥n{g>0}nF,(7)). This leads to a contradiction to the
assumption. Thus, we have obtained the inequalities fy(w)+&>0, 1 <i<k and g(w) =0.
If f(w)+¢=0 for a certain i, then g(w) = —&* <0. Hence, we (V¥ {g =0}), i.e.

VO {g=0}) = (V@n{g=0}).

Reasoning analogously one can also prove that in every point v on the boundary of an
arbitrary semi-algebraic set

{(@V>0)8&... 4@V >0) & V20 &. .. &(g™ > 0)}

the inequalities g®(v) > 0 for all 1 <i < m are true and an equality g*(v) = 0 is fulfilled for
a certain 1 <i, <m. This implies the equality g(w) =0 for any point wed(V®n{g>0})
by that proved above.

(c) Suppose that a polynomial f;+¢ changes its sign on U, for some 1 <i<k. Then
there exists such a point x € U, that (f;+¢)(x) = 0 by virtue of the connectivity of Uj. This
leads to a contradiction since g(x) = —¢&* <O0.

(d) For each fixed m, the following formula of Tarski algebra

V x V h(((deg(h) < m)&(h(x) > 0))
=((V y(h(y) > O)V 37 3 zV z;((IIx—zll = D&(2) = 0)&((lIx—z4ll < 2)
=(h(z,) > 0)))))
is true where he K[X,, ..., X,] denotes a polynomial with degree deg h<m. One can
prove it, first, for the case K = R and then use the transfer principle. Apply the formula to
the polynomial h=g and the point xedV. Note that fi(x)>0 for all 1 <i< k (see the

proof of item (b) of the present lemma). Therefore g(x) > 0. If g(x) =0 we can take z=x
because of item (a) of the present lemma. So we assume that g(x) > 0.
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If V y(g(y) > 0) is fulfilled, then V y((f;+¢€)(y) > 0) is valid for all 1 <i<k by virtue of
item (c) of the present lemma. But, on the other hand, there exists a point y,€ K" and an
index 1 < i, < k satisfying the inequality 0 > f; (yo) €K, i.e. yo ¢ V' taking into account that
xedV. Hence, f;(yo)+¢& <0 and we obtain the contradiction.

Thus, one can find a point ze(K(g))" such that g(z) =0 and for any point z, € Z,(7),
where 1= ||z—x]|, the inequality g(z,) =0 is true. Then item (c) of the present lemma
implies the inclusion 9,(z) = V@ {g > 0}. So, if 7 is infinitesimal, then z is the desired
point. Otherwise, let 0 <7, <t and 7, € K. Then item (a) of the present lemma implies
that for each point ye 2,(t,)n K", the inclusion yeV is valid. In other words, D (7)) = V.
This contradicts with the condition xedV and completes the proof of the lemma.

LemMA 3. Let 0#feK[X,,...,X,] and assume that, for any point xe(K(e))", the
inequality f(x) =0 is fulfilled. Assume that f(a)=0 for some aeK". Then one can find a
point oe (K(e))" such that the distance ||a—«|| is infinitesimal, the equality f(a) = & is correct,
and apart from that, ||o|| < ||a|| provided that a # 0.

ProOF. One can find a point be K" satisfying the requirement 0 < f=f(b)eK, and
besides that, if a # 0, then ||b|| < ||all. We can reduce the whole proof to the case of one
variable (n = 1) introducing a polynomial

hZ)=fla+Z(b—a)eK[Z].

Evidently h(0)=0, h(1)=pf. There exists ze Ia_é) such that 0<z<1 and h(z)=¢
(obviously, the number of elements z satisfying the latter conditions does not exceed
deg (h)). Denote by z, the least among these elements z. Then, for any 0 < z; < z,, where
z,€K(e), the inequalities 0 < h(z,) <¢ are true. The element 2z, is infinitesimal, since
otherwise there exists an element z, €K, for which the inequalities 0 <z, <z, and
0 < h(z,)e K are valid. This leads to the contradiction. One can put a = a+ z,(b—a), with
lleel] < (X —zg)l|all + zol|b|] < l|al|, provided that a # 0. The lemma is proved.

Now we proceed to considering the critical values of a polynomial fe K[X,,.. ., X,].
An element ze K is called a critical value of the polynomial f'if the system of equations

o _  _of _

Y Ay

0 3

has a solution in the space K".

Let IT; be any quantifier-free formula of the first order theory of the field R and
W ={Il,} «R" be the semi-algebraic set. If n: R"—>R™ is a linear projection, then
Tarski’s theorem (Tarski, 1951) states that =(W)cR™ is also a semi-algebraic set.
Moreover, one can construct a quantifier-free formula IT,, defined over the same field as
the formula II;, such that 7(W) = {I1,} and the format of II, is bounded by a function
depending only on the format of IT, (see e.g. Collins, 1975; Wiithrich, 1976). Therefore,
the statement of Tarski theorem is also correct for an arbitrary real closed field K.

Observe that the set of all critical values of a polynomial f coincides with the projection
of the semi-algebraic set consisting of all roots of system (3) in the space K"*! with
coordinates Z, X, . . ., X, on the line K* defined by coordinate Z. Therefore, the set of all
critical values is semi-algebraic over the field generated by the coefficients of the
polynomial f according to Tarski’s theorem. From this statement and Sard’s theorem
(asserting that in the case K =R, the set of critical values has the measure null, see e.g.
Milnor (1965), one infers that, in the case K = R, there is a finite number of critical values
z (see (3)).
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The result of Milnor (1964) implies that the number of components of connectivity of
the semialgebraic set consisting of all roots of system (3) in the space R"*! is not
greater than 2((deg(f))"). Hence, the number of critical values also does not exceed
2((deg (f))"). For polynomials f of a given degree deg(f) the latter statement can be
expressed by a formula of Tarski algebra. Therefore, the same bound on the number of
critical values is true also for an arbitrary real closed field K. In particular, all critical
values of a polynomial are algebraic over the field generated by the coefficients of the
polynomial.

LEMMA 4.

(a) If feK[ X, ..., X,], then an element ¢ infinitesimal relatively to the field K is not a
critical value of polynomial f (over the field I?—(E'j).

(b) Let feK[X,, ..., X,] and zeK. If z is not a critical value of polynomial f then, for
any vector 0#uecK" and every component of connectivity W of the variety
{f=2z} = K" such that W = D(R) for a certain ReK, one can find a point we W
such that the gradient ((3f/0X)(W), . . ., (6f/8X,)(w)) # O in this point is collinear to
vector u.

PrOOF. (a) Item (a) follows from the fact that all the critical values are algebraic over the
field K.

(b) In the case K = R, the statement is proved, e.g. in Thorpe (1979). For an arbitrary
real closed field K make use of the transfer principle.

2. Finding Real Roots of a Polynomial

Let a polynomial g,eZ[g1[X;,..., X,—,] be given where & >0 is infinitesimal
relatively to the field @. We assume the fulfilment of the following inequalities
deg,,, }_w.,xn_l(gl) <d and I(g,)<M (cf. (2) in the introduction). Define the field
F, =Q(z,). In the course of this section we fix a natural number R (it will be specified in
the next section).

In the present section we look for roots of the equation g; =0 in a ball Z(R) = F{~ L
The general case of finding the solutions of a system of inequalities will be reduced to this
one in section3. We introduce a mnew variable X, and the polynomial
g=g*+(X?+ ... +X?>—R??, which yields the semi-algebraic set ¥, = {g =0} = F}.
Evidently, n(Vy) = {g, =0} "D,(R) where the projection 7 is defined by the formula
nX,, ..., X,)=(X, ..., X,_,). The algorithm described in the present section, produces
a certain representative set &' < V, for the semi-algebraic set ¥, (or determines that
V, = $) and, incidentally, a representative set & = n(&") for the set n(V,).

Let an element & > 0 be infinitesimal relatively to the field F,. Define F = F;(¢). Then &
is not the critical value of the polynomial g according to lemma 4(a). Introduce the semi-
algebraic set V, = {g =&} c F", observe that ¥, = Zo(R+¢'/*) = Do(R+1). In the present
section the term “standard part” st concerns the situation when the field K =F, (see
section 1), i.e. for an element aeF its standard part st(a)eF,;, provided that st(a) is
definable.

Denote by N = (4d)" and introduce the family I' = Z"~* consisting of N"~1 integer
vectors I'= {y = (y3, . . ., ya)} Where each y; runs independently over all values 1,..., N.
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For every index 1 <i<nand a vector y = (y,, . . ., 7x) €T, consider the following system of
equations where

A=Y (3g/oX))%

15j<n P 2
6g Vs ag Vi ;
—t=|o | —A=... =] - A=0 4
g—e (ax) Nn <6X,- Nn & =0 @)

Below, in the course of the following lemma, we consider geQ[e,J[X,, . .., X,] as an
arbitrary polynomial, and let W,.....,n © F" denote the variety of all points defined over

the algebraic closure F = F[,/— 1] satisfying the system (4i) for the chosen polynomial g.

LEMMA 5. There exist integers 1 <y,, . .., ;< N such that for each 1 <i<n any absolutely
irreducible component UY < F* of the variety W..,.....si» cOntaining at least one point from
the space F", has a dimension dimg(UP)=n—i.

The proof of the lemma and the construction of the Y2, .- . ¥; Will be conducted by
induction on i. The base of induction for i=1 is clear. Let us prove the lemma for
arbitrary i > 1 supposing that for smaller numbers the lemma is already proved and the
corresponding 1<7y,,...,7;-; <N are constructed. Let an absolutely irreducible
component U~ " of the variety W,, . contain at least one point from F". Then for at
most one 1<% <N the polynomial (9g/0X;)*—xA/Nn vanishes identically on U4~ D,
Otherwise, A would vanish on U%™Y and also would vanish all the partial derivatives
(09/0X;), 1 <j< n. In particular, the partial derivatives would vanish at every point of the
non-empty set U~ nF" < {g=sg}. We get a contradiction since ¢ is not a critical point
of the polynomial g by virtue of lemma 4(a).

According to Bezout’s inequality (see Shafarevich, 1974; Heintz, 1983) the number of
components of the kind U~V is less than N. Therefore, for a suitable 1 <x <N, the
polynomial (0g/0X,)*>—xA/Nn does not vanish identically on any component of the kind
UfY such that UF~DAF"5 ¢. Put yi=x . Then the dimension of each absolutely
irreducible component of the variety

{(09/0X) ~y,A/Nn =0} A TS~V < Fr

equals to (n—i), provided that U=V~ F" ¢, according to the inductive hypothesis and
to the theorem on the dimension of intersection (Shafarevich, 1974). The lemma is
proved.

Lemmas 4(a), 4(b), (5) entail (taking into account that the set V, is situated in the ball
Do(R+1)) the following

CoRrOLLARY. There exists a vector yV = (V2 - - - Yw €I such that every solution from F" of
the system (4n) is an isolated point in the variety V@ =W, . <F" of all the points
satisfying the system (4n). Moreover, any component of connectivity of the semi-algebraic

set V,={g=e¢} = F" contains a certain solution of the system (4n) for each vector yVeT.

Now we proceed to producing a representative set for the semi-algebraic set ¥, and later
on for the semi-algebraic set V.

The algorithm looks over all the vectors yel. Let us fix a certain vector

w®

N

L
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y= (Y3 ..., ¥ €. Applying the algorithm from proposition 2 (see also theorem 2 from
Chistov & Grigor’ev, 1984), to the system (4n) one can decompose the variety

Ve = U [7j(6)
J

on the components ¥/? defined and irreducible over the field Q(ey, ¢).

Select among them all the null-dimensional components. Thus, let dim ¥ = 0 for some
J. The algorithm from proposition 2 represents the component I7j(5) in the following form.
A polynomial ® e Qfe,, ¢][Z], irreducible over Q, is constructed such that for every point
(¢ ... E)eV® the field

QCey, )&1s - - - &) = Qley, HL0] = Q(ey, HLZT/(D),
where ®(6) =0 and the primitive element

6 = Z Ai&i
1sj<n
for appropriate natural numbers 1 < 4; <deg,(®) < N. Apart from that, the algorithm
explicitly finds expressions

& =<¢(0) = Z ﬁg‘e)ee
O<e<degd
for the relevant f{?eQ(e,, &), 1 <i<n, 0 <e<deg,(®). All points of the component V¥
are conjugate over the field Q (g, ¢) and they correspond bijectively to roots (from the
field F) of the polynomial ®. Finally, the algorithm yields irreducible (over Q)
polynomials @, . .., ®,e Q[e,, ¢][Z] such that ®,(£) =0, I<i<n.
The following bounds are valid: the degrees

dEgel,a,Z((D)7 degs;,a, Z(d)i)’ degz;,s(gi(e)) < "?(d")
and the lengths of coefficients

(@), (D), I(£(0)) < (M +log R)Z(d")

for the component V{? and any index 1 <i< n by virtue of proposition 2.

Observe that a family of points of the kind (¢4, . . ., &,) & V® A F" for all possible vectors
yel" and null-dimensional components V® forms a representative set for the semi-
algebraic set V, according to the corollary of lemma 5 (see above).

Now we shall turn to producing a representative set &’ for the semi-algebraic set V.

If (¢, . . ., ) E VP A F", then taking into account the inequality &+ ... +& < R*+1
one concludes that the standard part st(,, . .., &,)eFi is defined. On the other hand,
0= st(¢:(&)) = ¥;(st(&)), where we denote by y;=st(¢)eQ[e;][Z] the polynomial
obtained from ®; by coefficient-wise taking of a standard part. Notice that the
polynomials y; satisfy the same bounds as the polynomials ®,( see above).

In the sequel, we shall need the following auxiliary

LemMa 6. Let
0= 3 HEEQe n- o b,
<j<n
where the natural numbers 1 < A; < deg(®). Let @M e Z[¢,, €][Z] be an irreducible (over Z)
polynomial such that ®(@) = 0. Then the following bounds are fulfilled:
deg, (@) < deg(®); deg,, (D) < 2(d")

(@) < (M +]1og RY2(d").

and
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Proor. Represent 0" = g(6) for a suitable polynomial g(Z) e Q(e,, £)[Z], making use of the
expressions £,(6), then the following bounds are true:

deg,, [(9) < 2(d") and I(q) < (M +log R)Z(d").
From the latter bounds the following ones for the powers ¢°, 1 < e < deg,(®) can be
deduced:
deg,, (¢°) < 2(d", deg.(D)) < 2(d") and 1(¢°) < (M +log R)Z(d").
For the remainders rem (q°, @) of dividing polynomial ¢° by polynomial ® over the field
Q(e,, &) the same bounds are correct. The following inequality is obvious:
deg (@) = [Qe,, O[6]: Qley, &)] < [Qey, O)C 1, -+ - &) : Qley, €)] = deg.(D)

(here and further [H,:H,] for a finite extension H, < H, of a field denotes its degree).
The equality
o, rem(q°, ®) =0,

O0<e<deg(d(1)
where o,€Z[e;, €] are the coefficients of the polynomial ®U), gives a system of
homogeneous linear equations in the indeterminates o, having a one-dimensional space of
solutions. Involving Cramer’s rule one can infer the bounds
deg,, (2,) < 2@") and [(a,) < (M +log R)2(d"),

which completes the proof of the lemma.

Consider an arbitrary element of the sort
=) Ast()eF,,
1<i<n

provided that st(£)eF,, 1<i<n are defined, where the natural numbers
1<2i<deg,(®), 1<i<n. Then according to lemma 6, for an irreducible (over Z)
polynomial ®(Z)e Z[e,, £][Z] such that

(D(l)( Z ,1251):0,
1<i<n

the bounds
deg (DY) < degy(@); deg,, (®V) <#L(d") and 1(®V)< (M +log R)P(d")
are valid. Evidently (st(®))(z) =0 where the polynomial st(®")e Z[¢,][Z]. Therefore,
for an irreducible (over Z) polynomial Y*)(Z)eZ[e,][Z] such that y)(zr)=0, the
following bounds are fulfilled:
deg (") < degz(@); deg,, (W) < py(@) and 1Y) < (M +logR).

p,(d") for certain polynomials p,, p, by virtue of proposition 1 (cf. also Mignotte, 1974),
taking into account that the polynomial ) divides st(®V).
Now let

= 3 A@stE), =Y s,

1si<n 1<i<€n
where the natural numbers 1 < A{?, A®) < deg,(®), 1 <i < n. Assume that
W = () e Qe,) 2]
for a polynomial ¢(Z)e Q(e,)[Z] such that
degz(q) < [Q(e)[z?]: Q(ey)].
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Let us show that deg, (q)<2(d") and I(q) <(M+log R)Z(d"). Indeed, suppose that
YA(rP) =0, YY) =0 for some irreducible (over Z) polynomials @, Y e[, [Z]
then )

deg,,()?), deg,, (V) <2(d") and I(Y®), 1)) < (M +log R)2(d")

in view of lemma 6 and what was proved just after it. Polynomial ® has a root
™ =g(«®) in the field Q(e))[c¥]=Q(e)[Z]/(W®). Hence, deg, (q)<p,(d) and
I(q) < (M +log R)p4(d") for the relevant polynomials ps, p, according to proposition 1,
since a polynomial (Z —1*) divides the polynomial ® over the field Q(e,)[Z]/(y®).

Now we pass to describing a procedure which produces a family of some classes of
vectors ({;, . . ., {,) € F{ conjugate over the field Q(e,) such that y({) =0, 1 <i<n (let us
recall that y; = st(®;)) and, furthermore, the produced family contains vectors of the kind
(st(€y), . . st(&))eFy for all points (&4, ..., E)eV@ < F" of the null-dimensional
irreducible component ¥V of the variety V© constructed earlier, provided that
(st(&y), . . ., st(&,)) is definable.

In the first step, the procedure factorises the polynomial

l//1 = 1:[ '/’Cljj

over the field Q(e,) by proposition 1 (see also Lenstra, 1984). Here, the multipliers
1;€ Q(e)[Z]. For each multiplier y,; we introduce the field

EY = Q(e)[Z)/ (Y1) = Qley),
which is a finite extension of the field Q(g,). Let ¥, ;(6¢") =0 for a certain 69 eE{, then
B0 = Qe )[69]. Put y§ = v .
Assume that by recursion on i the following objects are already constructed by the

-

procedure: a family of fields {E™},, for every field E{™ an irreducible (over the field
Q(e,)) polynomial ™ e Q(g,)[Z] such that

B = Q(e,)[0"] =~ Q(e)[Z1/(¥™),
where /™ (6™) = 0, and a primitive element

o= Y pl.egm,

1€e<i
with ¥,({,) =0 and the natural numbers
1< p < [EP): Q(ey)] < degz(D)
for suitable indices m,, 1 <e <i. Apart from that the procedure yields the expressions
L= % ples0)
o<s<degy(w{™)

for appropriate p{™ ;€ Q(e,). Each root of the polynomial y/{ is of the same form as 6,
in addition the different roots generate fields conjugate (over the field Q(e,)) to the field
Q(e)O™]. -

For the realisation of the (i+ 1)th step of the procedure we fix a field =™ and factorise

the polynomial
Yiv1 = H'//i+1,j
J
over the field EM™ by proposition 1, where Y., ;€ E™[Z]. For every factor V.1,

consider the field B, = E™[Z]/(;.,.) (for brevity we omit in its notation the
dependence on m), provided that the product of degrees

[E™: Qo)) degz(Yi+1,0) < degy(®),
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otherwise the procedure does not construct the field £ . Let ¢, ({;+)=0 for a
certain {;,, € E{,. Among the elements of the sort 6™+ pu{;, , for all natural numbers

1< p<[EM: Qsy)] deg (¥« 1) =B Q)] < deg (D),
one can find a primitive element of the field Z{} ; over the field Q(e,) (see e.g. Lang, 1965).
The procedure finds for each element of the sort 6™+ pu(;,, its minimal polynomial

over the field Q(e,). For this goal, for any fixed 1 <s < [E{},: Q(¢,)], the procedure
checks whether there exist elements a,, . . ., ;€ Q(g,) such that

Z (0 + pli 1) = 0,
O0ses<s
solving the system of linear equations over the field Q(e,) which arises from the latter
equality. Namely, in order to obtain the system remove the parenthesis in the binoms
(69 + pul; )¢ and compute the polynomials

rem (Z°, Y"™(Z))e Q(e,)[Z], rem (Z°, ;. (Z)) e BM[Z]

for all
0<e e, e, <[EY,:Q%)].

As a result, we obtain expressions of the powers (8 + ul;. )¢ via the basis
O G, 0<d; <degz(Yi™), 0<d, <degy(f;, 1.0

of the field B, over the field Q(g,). The desired system of linear equations is obtained by
setting the coefficients at the monomials (6™)*({;,,)* in the equality
Z (0™ + ul; 1) =0
O<esxs
equal to zero. The element 6}, = 6™+ p,, (., for which the degree of its minimal
polynomial ¥{? , is maximal, is primitive.
If at least one of the two inequalities

deg,, (W) <pi(@) or I(Y{),) < (M+log R)p,(d")

is not satisfied (cf. above), then the procedure does not construct the field B .

The above procedure has produced the transforming matrix from the basis
(0™)y'(141)™ to the basis (6% ,)°. Inverting this matrix, the procedure yields the
expression of the former basis in terms of the latter one, in particular the expressions

Civy = Z P& Li+1,s(02,)° and omy = Z 0§f’s.z(9§'ll)s-
0<s<degz(vl ) O<s<degy(vl) )
Substituting the latter expressions in the equalities obtained in the previous step of the
recursion, we compute the expressions

—_ t .
o= Z p}ll.e,s(egtil)sa I<pgi
0ss<degz(yl) )

If at least one of the following inequalities

deg,, (C(61)) < pa(d) or I1(L(69)1) < (M+1log R)p,(d")

is not fulfilled (cf. above), then the procedure does not construct the field BN,

Thus, the procedure constructs the field 5% , iff all the above inequalities are valid.
This completes the recursive construction of the family of fields {&{™},., <;<,. Observe
that for every point (¢,,...,¢)e V® < F* from the null-dimensional irreducible
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component V¥ of the variety 7, to vector (st(,), . . ., st(&,)) e F (provided that it is
definable), corresponds a certain field among the fields

E;m) = @(81)(8t(€1)= LIRS ] st(én))

constructed. In addition, the vector
(st(€), - - st(&)) = (€15 - - ()

in view of the above-mentioned properties of the polynomials p,, p,, ps, Pa-
Thereby, the following lemma is actually proved.

LeMMA 7. Let a polynomial ® e H[e][Z] be irreducible over an ordered field H, with ¢> 0
infinitesimal relatively to H. Assume that the expressions
&i=4(0) = z ﬁ%”ﬂf,

0xj<degzd)
where "€ H(e), 1 <i<n, 0<j < deg,(®), yield a class of conjugate points over the field
H(e) of the kind (¢,(0), . . ., &,(0)) e H(e)", where ¢p(0) = 0. In addition

9 = Z A’i éi
1<i<n

Jfor certain natural numbers 1 < 1; < deg,(®), i.e. the field

H(E)(C1, - - - &) = H()[0] = H([Z/(¢)-

Then one can produce a set R <H", containing the set of standard parts
(st(&,), . . ., st(&,)) € H" of all those points from the above-mentioned class of conjugates such
that the standard part is definable. Besides that, & is a union of classes of conjugate points
over the field H ({y, . . ., {,)€ H". Here each class is represented analogously as the class of
points (£.(0), . . ., £,(0)) above.

Note that the proof of lemma 7 was conducted for the field H = Q(g,), but one can
easily carry it over to arbitrary ordered effectively given fields. We shall not make the
meaning of the latter claim more precise, since in the present paper we apply lemma 8
only to the case of the field H = Q(g,) (in this section) and to the case of the field H = Q
(in section 3). Estimations on the parameters of the points belonging to £ were, in fact,
given earlier in the case of the field H = Q(g;) (see the properties of polynomials
P1s P2s Pas Pa), In the case of the field H =@, the estimations on the bit lengths of the
coefficients are the same; a time-bound on producing £ will be obtained below in the case
H =0Q(g,) (cf. lemma 8), in the case H = Q the time-bound is the same.

Now we shall continue to describe the algorithm that produces a representative set for
the semi-algebraic set V,. Fix a certain class of conjugate vectors

((1: e C")egn(Egm))n

over the field Q(e,), which was constructed above (see lemma 7). Denote by 5 = 6™ g 2™
the primitive element and by ¥ = /'™ € Q(¢,)[Z] its minimal polynomial over the field
Q(ey). The algorithm tests, whether an equality g({,, - . ., {,) =0 is fulfilled (observe that
the fulfilment of this equality is independent of the choice of the particular vector in the
conjugate class). Namely, involving expressions {;(n) € Q(g,)[n] (see the proof of lemma 7)
one can obtain a representation

g1, - . ., L) = h(n)
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for a certain polynomial h(Z)eQ(e,)[Z]. Then g((y,...,¢,)=0 iff ¥ divides the
polynomial k.

Suppose that g({y, ..., {,) =0. Determine whether \ has at least one root in the field
Fy, with the help of Sturm sequence (Lang, 1965; see also Heindel, 1971). If ¥ has a root
N € Iy, then the corresponding point

Ci(mods - - Lalno))eVo = {g =0} = FY,

and the representative set &', which is produced by the algorithm described, consists of
the points of the kind

Cimds - - L)) eRNFT

for all roots n,eF, of the polynomial y, all possible classes of conjugate points
({ys . ) eFY, where g(ly, ..., §,)=0; (&4, .. ., &) F", and lastly all vectors yeTl.

Now we shall prove that &' is really a representative set for V,. Lemma 3 from
section 1 entails that ¥, =st(V,). Let us consider an arbitrary component of connectivity
Vi of the set ¥, and make sure that the intersection V; N %' # ¢. By virtue of lemma 1(b)
from section 1 there exist components of connectivity Wi, ..., W, of the set V, such that
Vi=st(W,u...UW,). According to the corollary of lemma 5, one can find a vector yeT,
such that for any component of connectivity W, of the set V,, there exists a null-
dimensional irreducible component ¥® of the variety ¥ = F of all roots of the system
(4n), corresponding to the vector ye T under consideration, for which W,V # ¢. This
means that

7
yelidim(V?)=0

is a representative set for the set V, (see above). Fix some 1 <s<e and let a point
€1 &) eW,NV®. Hence, st(é,, ..., £)eV,. Starting with the class ¥ of conjugate
points (see the proof of lemma 7), the above procedure constructs a polynomial
¥ € Q(e,)[Z], expressions (i(m)eQ(e)n] and a set # < F" such that for an appropriate
root

o = . <Z< MIno) e Fy
of the polynomial y, where the natural numbers 1 < A < deg,(y) for 1 <i< n, the
equality
St(élu R gn) = (Cl(no)v R Cn(r’O)) €R

holds. (Note that st(¢,, . . ., £,) is definable since 1. E)EV,cDo(R+1).) Thus, the
point st(&y,..., £)eS NV, which completes the proof of the fact that &' is a
representative set for the set V.

Now we proceed to the time analysis of the algorithm suggested in the present section.

At the beginning of its work the algorithm scans all vectors yel={1,..., @)}
For this time 2(d"") is sufficient. After that the algorithm from proposition 2 is applied to
the system (4n) (producing a representative set for the set ¥}), its running time can be
bounded by 2(M, log R, d**). Then, recursively, the above procedure constructs a family
of fields E{™ and expressions {,(6f™) (see the proof of lemma 7). The field
B, =EM[Z1/(i41.,), where the polynomial ;. ,eEM™[Z] is a certain factor of the
polynomial ¥, = st(®,,,) irreducible over =™. According to proposition 1, lemma 6
and the properties of the polynomials P1, P2, One can construct the polynomial ¥, ,
within time 2(M, log R, d"), furthermore, deg, (V;+1.) <P(d") and

IWit1,) < (M +log R)2(d").
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Next, the procedure searches for a primitive element 6., , solving for every element
O +puliry, 1<p<[E:QE)] < degz(P)

the respective system of linear equations by means of which the procedure finds the
minimal polynomial of the element 6™ + u{;, , over the field Q(e,). The size of the system
and, incidentally, the time for its solution can be estimated by (M, log R, d") in view of
the properties of the polynomials p,, p, and the bounds on deg, (;+.,), [(;. 1.1) (see
above). Therefore, the procedure constructs the expressions ¢ (8% ,), (8™)(6%.,) also
within time (M, log R, d") and by virtue of the properties of the polynomials p,, p, all
expressions {,(6(™) can be constructed within the same time-bound. Thus, the whole
computing time of the procedure constructing the set %2 mentioned in lemma 7 does not
exceed (M, log R, d™) taking into account that the total number of fields of the kind
& is less or equal to the product deg,(¥,) . .. deg,(,) < 2(d™).

After that, for each class ({y,...,{,)€# of conjugate points the algorithm checks,
whether g((;, . . ., {,) = 0 is true, making use of the constructed expressions {,(#), I <i<n,
where # = 69" for an appropriate m. For this time 2(M, log R, d") is sufficient. Then the
algorithm determines, whether the polynomial y = /¢ has a root in the field F,, using
Sturm sequence (see e.g. Lang, 1965). This requires also not more than 2(M, log R, d")
time according, e.g. to Heindel (1971).

Summarising the results of this section we arrive at the following

LemMmA 8. One can design an algorithm which, for a given polynomial
g1€2[e][Xy, ..., X,~,] and for a natural number R > 1, produces a representative set
& = F{™1 for the intersection {g, = 0} N Dy(R). The number of points in & does not exceed
P(d"). Here, the algorithm outputs the set & as a union of classes ({4, ..., {,~1) of points
conjugate over the field Q(e,). For every class the algorithm constructs a certain polynomial
Y eZ[e [ Z] irreducible over Q(e,) and expressions

L) = ; P,

nth ps‘j)EQ(sl)a 1 S i < n~1> O S.’ < degz('/’),
in addition y(n) =0 and

where

n=_Y Al
1€isn—1
for suitable natural numbers 1< X <deg,(¥), 1 <ig<n—1. The set & coincides with a
Jamily of points of the sort ({,(n), . . ., {—1(1)) e F;™*, where n runs over all roots ne F, of
the polynomial v and ({4, . . ., {,—,) runs over all classes of conjugate points. Besides that,
the following bounds are valid:

deg,, z(), deg, ({i(m) < 2(d") and 1(Y), I({i(n)) < (M +log R)2(d").
The algorithm works within time (M, log R, d™).

3. Finding Solutions of a System of Polynomial Inequalities

We turn now to considering the general case and complete the proof of the theorem
(see the introduction).

Let the input system of polynomial inequalities f; >0, ..., f,>0, f,,+: =0, ...,/4=0
be given (cf. (1)), where the polynomials f1,...,f,€Z[X,, ..., X,] satisfy the bounds
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degy, .x,(f)<d; I(f)<M,1<i<k (see (2)). Introduce a new variable X; and a
polynomial f,.;=X,fy,...fn—1. Denote by m, a linear projection defined by the
formula ,(X,, ..., X,)=(X,, ..., X,). Consider the semi-algebraic set

V={/i208&... 8/, Z0&(fos:1 2 0& ... &(/i =0 &(fir, 20)} = Q"
Then
V=a,V)={{/;>0&... &[> 0)&(f+1 =0)& ... &(f,=0)} c@rt

and it is sufficient to produce a representative set ' for the set V, in this case 7 =n,(7")
is the representative set for the set ¥ =mn,(V) as desired in the theorem. Below, the
standard part st concerns the situation K = @ (see section 1), i.e. for an element ae F, its
standard part st(a)e @, provided that st(a) is definable.

The following bound on real roots of a polynomial was originally proved in Vorobjov
(1984). Here we expose a shorter proof.

LemMMA 9. Let a polynomial he Z[X,, . . ., X,] satisfy the inequalities degy,, . x,(h)<d and
I(h) < M. Then any component of connectivity U, of the semi-algebraic set {h =0} < Q" has
non-empty intersection with the ball 9y(R), where the natural number R < exp(M2(d")).

Let us conduct the proof by induction on n. The base for n =1 is well known (see e.g.
Lang, 1965). Consider an arbitrary n. If U, has a non-empty intersection with one of the
coordinate hyperplanes {X; = 0}, where 1 < i< n, then the statement of the lemma follows
from the inductive hypothesis. So we can assume the opposite. In this case U, is situated
in some cone of the kind

& (0.X:>0),

1<i<sn

where 8,6 {—1, +1}, 1 <i<n. Suppose for definiteness that
Upc{ & (X<O).

1<i<n

We can assume w.l.o.g. that h(x) > 0 for all xe@", squaring polynomial h if necessary.
Lemma 5 implies that one can find a vector y = (y,, ..., y,) €I such that any solution
from the space Fj of the system

oh \* 7y, oh\? oh N\ oy oh\?
h—g, =2} T2 il Y L i
&1 <6X2> Nn lS;Sn(an> <5Xn> angs.. (5Xj 0

is an isolated point in the variety We consisting of all solutions of the system from the
space F{. Define

% =./y/Nn>0,2<j<n and o =,/1— Y o?>0.

2<j<n

Introduce the linear function
Xy, . LX) =X+ ... +a,X,.
Let us pick a certain point x@ = (x{?), . . ., x{*) e U,. Consider the closed simplex

S = { & X;<0)&q(X,,.. -»Xn)Zq(x(o))}_

1<isn

Then x®e Uy S and the function g has the maximal value 0> g,e @ on the limited
closed set Uy nS. Moreover, g, is the maximal value of g on the whole component U,
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A set ~
A = {q(Xls R ] Xn) =QO}m UO < @n
lies in the simplex
{1<&< (X;i<0)&(g(Xy, .-, X,) = ‘10)}
and therefore A = 9(z) for an appropriate 7€ Q. Lemma 3 entails the coincidence of the
sets
st({h=¢,} " Do(t+1)) = {h=0}nDy(x+ 1)) = Q".

Let USY = @” be a component of connectivity of the semi-algebraic set {h=0}"Dy(z+1)
such that AW = ANUP # ¢. Obviously U§Y < U,. By virtue of lemma 1(b) there exist
components of connectivity W, . . ., W, of the semi-algebraic set

({h=¢e}NnDo(t+1)) = F!

such that the equality st(W,u ... UW,)) = U is true.

The function g has the maximal value g, € F; on the closed limited semi-algebraic set
(Wyu...uW,)c Dy(r+1) in view of the transfer principle (see section 1). Introduce the
semi-algebraic set

B={q(X,,.. . X)=q,}n(W,u...0W).

Let us show that st(B) = A"). For this purpose it is sufficient to check for any point
yVeB that g(st(y"")) = go. Indeed, pick a point xe A = UV, then there is a point
yeW,u...UW, such that st(y) = x. Hence,

go = q(x) = st(q(y)) < st(q(y'M)) = st(q,)

taking into account the definition of the set B. On the other hand, st(y*")e U’ < U,,
therefore ¢(st(y'")) < go, which was to be shown. One concludes in particular that
Bc 9y(t+1/2).

The following proposition is well known (see e.g. Thorpe, 1979). Let a polynomial
peR[Xy, ..., X,] and a point y*® e {p =0} = R" be such that the gradient

p o A . 2
<6X1(y )""’aX,,(y )} #0

and, apart from that, the linear form g reaches the maximum in the point y® on the set
{p =0} nD,=(r'¥) for a certain ¥ > 0. Then

o . 2 ¥ . @
(8X1 (v )""’aX,,(y )

is collinear to the vector (ay, . . ., &,). According to the transfer principle this proposition
remains also correct if we replace R by an arbitrary real closed field K.

Apply the proposition to the polynomial p =h—z¢,, the field K = F; and an arbitrary
point y* e B. Since y? e B < {h=¢,}, the gradient

oh oh
Bl e N e 0
<8X1 6D 3z O >) #
by virtue of lemma 4(a). As radius t® one can take 0 <t < 1/2 such that
@y(z)(‘f(z))f\ Wu...uW) = @y(z)(’t(z)) N {h = 81} <= Do(t+1).
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The proposition implies that the gradient

oh oh
(y2) (@)
(axl R )>
is collinear to the vector (v, ..., &,). Therefore, the point y® satisfies the system (5).

Besides that, y* is an isolated point in the variety W = F! (see above) and the point
st(y®)e AM = A = U, since y'*® e B.

As in section 2, applying the algorithm from proposition 2, one can produce a null-
dimensional component W{® of the variety W irreducible over the field Q(e,) such
that the point y® = (y?,..., yP)eW ). The algorithm constructs polynomials
®,,...,0,eQe,1[Z] for which ®(y*)=0, 1<i<n, furthermore, the bounds
deg,, (®;) < 2(d") and (@) < MP(d") are fulfilled. Finally, (st(®,))(st(y*)) =0 (remark
that sz(y{*)) is definable, taking into account that the point y® e B < 9y(z +1/2)). Hence,
Ist(¥?)| < exp (MP(d") (see e.g. Lang, 1965; also Heindel, 1971), i.e. the point

st(y®)e Uy Do (exp (MP(d™)),
which completes the proof of the lemma.
Let the polynomials hy, . .., h,e Z[X,, ..., X,] satisfy the bounds degh; <d; I(h) <M,
1 <i<k. Consider an arbitrary component of connectivity W of the semi-algebraic set
{(hy =2 0)& ... &1 = 0)} & @".

The following lemma generalises lemma 9 and estimates real solutions of a system of
polynomial inequalities.

LemMa 10. For a suitable natural number
R <exp (M +1log k)2 (d")
both Zy(R)YNW # ¢ and Do(R)\W # ¢ are valid.

PrOOF. By virtue of lemma 9, for a suitable natural number

R < exp((M +log k)2(d")),
. if a polynomial he Z[ X, . . ., X, {] satisfies the bounds degh < 2d and
I(hy< M+nlogd+logk,

then any component of connectivity of the semi-algebraic set {h =0} = @ has non-empty

intersection with the ball 2,(R). We claim that this R is the one desired in the lemma.
At first we show that W 9,(R) # ¢. Take a set of indices I = {1, . . ., k} maximal with

respect to inclusion, such that there exists a point ze W for which h,(z) =0 for every iel.
Consider the component of connectivity U; = @" of the semi-algebraic set {Z h} = 0}

tel

that contains the point zeU; (if I=¢ then U, =Q"). Lemma 9 entails that
U, N Dy(R) # ¢ taking into account that
I3, h) < M+nlogd+logk.
iel
We assert that U; « W (in the case when I ={1, ..., k} the latter inclusion is trivial, so

w.lo.g. we assume further that I&{1,... k}). Suppose the contrary. Since U, is
connected, there exists a point z,e U, such that for any 7 >0 the intersection U, NDy(7)
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contains points from U, "W as well as points not belonging to W. (In the case of the
field R, the latter statement is obvious, for an arbitrary real closed field one has to make
use of the transfer principle.) Then z,e W, since the semi-algebraic set

(h=0)8&...&(1>0)} > W

is determined by only unstrict inequalities and, hence, W is closed in the topology
generated by the base consisting of all open balls.

On the other hand, there exists an index j, ¢ I for which h;(z) = 0. Otherwise, for an
appropriate t, > 0 and every point ve 2, (t,), the inequality h(v) >0 is true for each j¢I.
Consider the component of connectivity U, of the intersection U;nZ, (1,) which
contains the point z,€ U,. Then U, = W taking into account that W is a component of
connectivity of the set {(h,; >0)&...&(h,>0)}. For a suitable 7, satisfying the
inequalities 7, > 7, >0, any component of connectivity (except U,) of the intersection
U; "9, (t,) has no common points with the ball 2, (,). This leads to a contradiction to
the assumption that the intersection U; N9, (t,) has at least one point not belonging
to W.

Thus, we have proved the existence of j, ¢ I such that k;(z,) = 0. This contradicts to the
maximality of the set I of indices, therefore

WA D(R) 2 U, A Do(R) # .

From the above one can infer that if U is a component of connectivity of some non-
empty semi-algebraic set

((hy>0)&. .. &(hy>0) &y, =0)& ... &(k,>0)} < @,

then for a suitable natural number
R, < exp (M +k)Z((md)")),

the intersection U %y(R,) # ¢. Indeed, introduce a new variable X, ., and a semi-
algebraic set

(Ko ihy. . =12 008 > 0)8&. .. &(hy>0)&(hpsy > 0&. .. &(>0)} = @+

(cf. beginning of the section). There exists a unique component of connectivity U™ of the
latter semi-algebraic set such that 7,(U®) = U, where the linear projection 7, is defined
by the formula

71:2(){15 e X Xn+1) = (Xl’ cen Xn)

According to what we proved above, U " @o(R,) # ¢ is fulfilled taking into account the
bound
(X, . hy.. hy—1) < M+knlogd.

Hence, Un2y(R,) # ¢.

Assume now that @,(R) = W. Then hy(x) >0 is valid for each point x€ Zo(R) and each
1 <i<k. We can suppose w.l.o.g. that the polynomial k, is not non-negative everywhere
on @". (Otherwise, if #; >0 on Q" for each 1 <i<k, then

((hy =0)&...&(M=0} = Q")

Then the intersection {h; <0}NPo(R) # ¢ by virtue of what we proved above. This
contradicts to the assumption and completes the proof of the lemma.
Introduce now the polynomial

g1 =(fi+e). - Jirr +&)—ei Tt eZleI[X, - - o Xl
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Apply the algorithm from section 2 (see lemma 8) to this polynomial and to the natural
number R+1, where R <exp (MP(kd)") is obtained from lemma 10, in which the
polynomials fi, . . ., fy+, are taken as hy, ..., h. As a result, the algorithm produces a
representative set & — F7 for the semi-algebraic set {g; =0} N Dy(R+1). The set & is a
union of classes of points conjugate over the field Q(e,) (see lemma 8). Any class of
conjugate points from the set & is given by a polynomial € Z[e, ][ Z] irreducible over
field Q(e,) and by expressions for the coordinates

L =Y o' (1 <i<n),
J

where p e Q(e,), 0<j<deg,(¥) and neFy, Y(n)=0. Apart from that, the following
bounds are valid:

deg,,,(¥), deg,,({i(n) < Z((kd)") and 1Y), I({i(n)) < MP(kd)").

Apply the algorithm from lemma 7 in the case of the field H=Q to each class of
conjugate points (£;(n), . . ., {,(n)) from the set & Thus, a finite set Z < Q" is obtained
which contains the standard part of every point from the set & provided that the
standard part is definable. Analogously, the set £ is a union of classes of points conjugate
over the field Q (see lemma 7).

Fix a certain class of conjugate points from £ which is given by polynomial ®eQ[Z]
irreducible over the field @ and by expressions for the coordinates

1) =3 B,

where f?eQ, 1 <i<n, 0<j<deg,(®) and we @, ®(w)=0. Besides that, the following
bounds are true:

degz(®) < 2(kd)") and U®), l(x(w)) < MP((kd)")
(see the proof of lemma 7). Write

4e(@) = fe(x1(@), . . ., tl@)), 1<e<k+1

for suitable polynomials g€ @[Z]. If the polynomial ® divides the polynomial ¢, for
some 1 <e<k+1, then g,(w)=0 and vice versa. Select all such polynomials ¢,. Assume
that g,(w) #0 for a certain 1 < ey, <k+ 1. Following, e.g. Heindel (1971), one can find a
polynomial ps such that the inequalities

|CO”—COIl, |wl—a)1l = 2(=Mps(tkd™) —

are correct for all roots ;€@ of polynomial g,, and each pair of distinct real roots
' # " of polynomial the ®. Here we make use of the inequalities

degy(q.) < Z((kd)") and )l(g,) < MP((kd)").

Following, e.g. Heindel (1971), the algorithm yields for every real root w,e@ of the
polynomial @ its rational approximation w,e@Q which satisfies the inequality
lwo—w,| < C/2. Hence, an interval (w, —C/2, w,+C/2) = @ with the rational endpoints
contains only one root w, of the polynomial ®. After that the algorithm evaluates g,,(w,)
for all indices 1 <ey<k+1 such that g, (w)#0 (observe that the latter is valid iff
Ge(@o) # 0). If g, (w,) > 0is fulfilled for an index ey, then the algorithm includes the point
(x1(@o), - . ., xa(®y)) into the set 7, where 7' = & is the required representative set of the
semi-algebraic set

V={(/120&. ..&(fi+, >0)}C@"

(see the beginning of the present section). This completes the description of the algorithm.
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Now we shall show that 7 is really a representative set for the set V. Furthermore, we
determine bounds on the parameters of the points from " and on the running time of the
algorithm which produces 7. These bounds are similar to the corresponding bounds in
the theorem (see the introduction). Let us check at first that ZnV =J". Let a point
(X1(@0), - - -, xau(®@o))€ T, Assume that g, (w,) # O for a certain 1 < e, <k+1 (see above).
Suppose that g,,(w,) < 0. Then there exists a root w; e @ of the polynomial 4., Which lies
between w, and w, since q,,(w,;) > 0. Therefore |w,— w;| < C/2, so the supposition leads
to a contradiction taking into account that ®(w,) = 0. Hence,

Jeo(X1(@q), - - s Xa(@0)) = Goo(@o) > 0

for all 1 <ep <k-+1 such that g, (wo) #0, i.e. (x1(wo), - - -» tu(@o)) €V, thus T' = BAV.
Conversely, let a point
= (11(@q), - - ., t(@)) EZRNV.
Wo = Z Aixi(@o)

1<j<n

Then

for the appropriate natural numbers 1; (see lemma 7), therefore w,e @. Assume that the
point x¢7'. Then one can find an index 1<e,<k+1 such that g, (wy)%#0 and
qe,(@7) <0 (see the construction of 7 above). On the other hand, g,,(w,) > 0 since ye V.
Hence, there exists a real root of the polynomial ¢, between the numbers @ and w,,
which leads to a contradiction similar to the above.

Let us consider now an arbitrary component of connectivity V*) of the semi-algebraic
set V and prove that V"7 # ¢. Remark that the set V¥ is closed (see the proof of
lemma 10 above). Lemma 10 implies that Fo(R)nVW#¢ and Dy(R)\VY # ¢.
Therefore, one can find a certain point

xe(@VINNDy(R) < V'V A Do(R).

Denote by V@ the unique component of connectivity of the semi-algebraic set
Vn9o(R+1) that contains the point xe V®. Observe that V® < VW in view of the
connectivity of V1,

Introduce the semi-algebraic set

W={(fi+e1>08&. .. &(fis:+& >0)&(g, 20)} = Fy.

Lemma 2(d) entails the existence of a point ze W n{g, = 0} such that each coordinate of
the point (z—x) is infinitesimal relatively to the field Q. In particular, the point
z€9Dy(R+1). According to lemma 2(a),

SEWN2y(R+ 1)) =(VnDy(R+1)).

Pick all components of connectivity W®, ..., W® of the semi-algebraic set
WnDy(R+1), for which

st <« V@ 1gj<e.
Then by virtue of lemma 1(b),

VR = st (W, ..o We),

Taking into account that st(z)=x, we deduce by lemma 1(b) that the point
zeWMy . ..U W, Let wlo.g. ze W,

Denote by U the unique component of connectivity of the semi-algebraic set
{g1 =0} D,(R + 1) that contains the point ze U. One can infer that U c WnZo(R+1)
by lemma 2(c) since ze UnW®. This implies the inclusion U< W® in view of the
connectivity of U. Hence, st(U) < V.
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Involving lemma 8 from section 2, the algorithm described above produces a
representative set & for the semi-algebraic set {g, =0} Dy(R+1). In particular, there is
a certain point ue Un S Then st(u)e V» = V") by what we proved above. Besides that,
st(u)eZ according to the construction of # (cf. lemma 7). Thus, the point
stu)e I’ VM. So we have shown that I is a representative set for the set V.

To complete the proof of the theorem (see the introduction), it remains to estimate the
running time of the algorithm and the parameters of the points (and their number) in the
set . For producing the representative set & for the set {g, =0}NDy(R+1) the
algorithm works within time (M (kd)"*) by lemma 8. The running time of the algorithm
from lemma 7, which constructs the set 2, can be estimated by the same bound. Thereby
the algorithm yields a rational approximation w,eQ to a real root wy,e@ of the
polynomial @ such that |wy—w,| < C/2. This requires no more time than 2(M (kd)") (see
e.g. Heindel, 1971). Also, within the latter time-bound one can evalute Geo{®5). Thus, the
time-bound desired in the theorem is guaranteed.

The number of points in the set & does not exceed 2((kd)"™), according to lemma 8.
Hence, the number of points in the set ' also is bounded by 2((kd)") in view of the
construction in the proof of lemma 7. The estimations for deg,(®) and I(®), I(x(w)) were
obtained earlier. Based on Heindel (1971), we get the inequalities (C), I (w;) € MP((kd)").
This entails the bounds on I(b,), I(b,), where by = 0, ~C/2, b, = w,+ C/2€ Q (see above).
This completes the proof of the theorem.

In conclusion we make a remark that the theorem allows a direct generalisation to
input polynomials f, ..., /i€ H[X,, ..., X,], where the field H is, for example, of the
kind H=Q(ey, .. ., &), where ¢;, is infinitesimal relatively to the field Q(e,, . . ., &) for
0<i<s. The method of the proof and all the above constructions are the same, only the
form of the necessary bounds has to be changed respectively.

4. General Outline of the Algorithm

Before implementing the algorithm one has to fulfil the following routine work
(fortunately, this has only to be done once). Namely, one has to determine the bounds in
the proofs of propositions 1, 2, lemmas 9, 10 “hidden” in the denotation 2 and, as a
result, to obtain a specified polynomial pe Z[Z] with non-negative coefficients satisfying
the following property (cf. lemma 10).

Let some polynomials h,,..., heZ[X,,..., X,] satisfy the bounds degh;<d;
I(h) <M, 1 <i<k. Let us set the integer R = 3 +00gkDp@™) Then for each component of
connectivity W of the semi-algebraic set

{(h,=0)&...&(1H>0)} g Q"

both Zo(R)NW # ¢ and Do(R)\W + ¢ are valid.
Now we proceed to exposing an outline of the algorithm.
Let an input system of inequalities

J1>0,.. 1 >0,/0120,..,£i20
be given (see (1)), where the polynomials Jis - w R€Z[X,, .. ., X, _,] satisfy the bounds
degr,,...x,_,(f)<d; I(f)<M, 1<i<k

(see (2)). Introduce a new variable X, and a polynomial f . ; = X, f; .. .f,,—1. Denote by
7, a linear projection defined by the formula

7'51(X1, e ey Xn—l) = (Xz, ey Xn-—l)'
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The algorithm then yields a representative set 7' < @"~! for the system

fizzoa'"9f;;ao’f;+12309--w];;309]1+1 2(1
Then as the representative set J required in the theorem, the algorithm takes
T =n(9).
As at the beginning of the present section we take R corresponding to the polynomials

jl""sj;+1'
Let us introduce new variables ¢y, ¢, X, and a polynomial
g1 =(fi+e). . . (frsrte) et eZle1[X,, .. . X, -1 ]
Consider now the polynomial
g=gi+X3+.. . +X2—-R+D)eZ[e][ X, - ., X,].
Define N = (8kd)" and introduce a family I’ = Z"~! consisting of N"~! integer vectors
I'={y=(y, ... 7.}, where each y, ranges independently over all values 1, ..., N. The

algorithm looks over all elements of I'. Let us fix a vector y=(y,,...,7,)€l’, and
consider the following system of equations where

A= Z (99/0X;)* (cf. (4n)):

1€jsn
N AN N A
g 8_<axz)”N—nA““"' ax,) “nnt=0 ©

Denote by V® < F" the variety of solutions of the latter system. Now the algorithm
from proposition 2 is applied to system (6) and, as a result, components ¥/? of the variety

Ve = U [7j(6)_

J
irreducible over the field Q(e,, ¢) are produced. After that the algorithm selects all the
null-dimensional components.

Then the algorithm, at first for each null-dimensional component, yields a certain finite
family #, < F containing the standard part (relatively to &) of every point (for which the
standard part is definable) from this component. The procedure for obtaining such an 2,
is described in details in section 2 (see lemma 7). Then the algorithm selects the points
from £, lying in the semi-algebraic set {g =0} " F} (see section 2). Collecting the points
produced for all vectors yeI" and for all null-dimensional components 17}5), the algorithm
gets a representative set &' < F} for the equation g =0 (see lemma 8). Denote by =« a
linear projection defined by a formula

n(Xla L) Xn) = (X19 e ey Xn—l)‘

The algorithm produces the set & = n(¥') = Fi L.

After that the algorithm applies the analogous procedure to the points from the set &
As a result the algorithm obtains a finite set £ = @"~! containing the standard part
(relative to ¢,) of every point (for which the standard part is definable) from the set & (see
section 3).

Finally, the algorithm constructs the required set ' < £ as a subset of # consisting of
all those points from £ that belong to the space @~ ! (i.e. have real coordinates) and
satisfy inequalities f; >0, . . ., f, =0, fi +, = 0 (see section 3). At last, set 7 =mn(J).

References

Chistov, A. L., Grigor’ev, D. Yu. (1982). Polynomial-time factoring of multivariable polynomials over a global
field. Preprint LOMI E-5-82, Leningrad.



64 D. Yu. Grigor'ev and N. N. Vorobjov

Chistov, A. L., Grigor’ev, D. Yu. (19834). Subexponential-time solving systems of algebraic equations. I. Preprint
LOMI E-9-83, Leningrad.

Chistov, A. L., Grigor’ev, D. Yu. (1983b). Subexpcnential-time solving systems of algebraic equations. II.
Preprint LOMI E-10-83, Leningrad.

Chistov, A. L. (1984). Polynomial-time factoring of polynomials and finding compounds of a variety within
subexponential time. Notes of Sci. Seminars of Leningrad Departinent of Math, Steklov Inst. 137, 124-188
(in Russian, English transl. to appear in J. Soviet Math.).

Chistov, A. L., Grigor’ev, D. Yu. (1984). Complexity of quantifier elimination in the theory of algebraically
closed fields. Springer Lec. Notes Comp. Sci. 176, 17-31.

Collins, G. E. (1975). Quantifier elimination for real closed fields by cylindrical algebraic decomposition.
Springer Lec. Notes Comp. Sci. 33, 134-183.

Grigor'ev, D. Yu. (1984). Factoring multivariable polynomials over a finite field and solving systems of
algebraic equations. Notes of Sci. Seminars of Leningrad Department of Math. Steklov Inst. 137, 20-79 (in
Russian, English transl. to appear in J. Soviet Math.).

Grigorev, D. Yu. (1987). Computational complexity in polynomial algebra. Proc. Intern. Congress of
Mathematicians, Berkeley.

Heindel, L. E. (1971). Integer arithmetic algorithms for polynomial real zero determination. J. Assoc. Comp.
Mach. 18/4, 533-548.

Heintz, J. (1983). Definability and fast quantifier elimination in algebraically closed field. Theor. Comp. Sci. 24,
239-278.

Khachian, L. G. (1979). A polynomial algorithm in linear programming. Soviet Math. Doklady 20/1, 191194,

Lang, S. (1965). Algebra. New York: Addison-Wesley.

Lenstra, A. R. (1984). Factoring multivariable polynomials over algebraic number fields. Springer Lec. Notes
Comp. Sci. 176, 389-396.

Milnor, J. (1964). On the Betti numbers of real varieties. Proc. Amer. Math. Soc. 15/2, 275-280.

Milnor, J. (1965). Topology from the Differentiable Viewpoint. University Press of Virginia.

Mignotte, M. (1974). An inequality about factors of polynomials. Math. Comput. 28/128, 1153-1157.

Shafarevich, I. R. (1974). Basic Algebraic Geometry. Berlin: Springer-Verlag.

Tarski, A. (1951). A Decision Method for Elementary Algebra and Geometry. University of California Press.

Thorpe, J. A. (1979). Elementary Topics in Differential Geometry. Berlin: Springer-Verlag.

Vorobjov, N. N, Ir. (1984). Bounds of real roots of a system of algebraic equations. Notes of Sci. Seminars of
Leningrad Department of Math. Steklov Inst. 137, 7-19 (in Russian, English transl. to appear in J. Soviet
Math.).

Vorobjov, N. N., Jr., Grigor’ev, D. Yu. (1985). Finding real solutions of systems of algebraic inequalities within
the subexponential time. Soviet Math. Dokl. 32 (1), 316-320.

Wiithrich, H. R. (1976). Ein Entscheidungsverfahren fiir die Theorie der reell-abgeschlossenen Korper. In:
Komplexitit von Entschiedungs Problemen, (Specker, E, Strassen, V., Eds). Springer Lec. Notes Comp.
Sci. 43, 138-162.



