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Let a formula of Tarski algebra contain k atomic subformulas of the kind (f; 20), 1 <i<k,
where the polynomials ;e Z[X,, ..., X,] have degrees deg (f;) <d, let 2¥ be an upper bound
for the absolute value of every coefficient of the polynomials f;, 1 i<k, let a<n be the
number of quantifier alternations in the prenex form of the formula. A decision method for
Tarski algebra is described with the running time polynomial in M(kd)©™™* ™% Previously
known decision procedures have a time complexity polynomial in (M kd)zm"’

Introduction

The decidability of the first order theory of real closed fields (or, in other words, Tarski
algebra) was proved for the first time in Tarski (1951) (see also Seidenberg, 1954; Cohen
1969). Moreover, quantifier elimination methods for Tarski algebra were suggested in
these papers. The running time, however, of the method from Tarski (1951) cannot be
bounded by any finite tower of exponential functions. Collins (1975) (see also Monk,
1974; Wiithrich, 1976) proposes a quantifier elimination procedure for Tarski algebra
with a running time bounded by #°°"”, where . denotes the size of an input formula and
n is the number of variables occurring in the formula. In the present paper we present a
decision algorithm for Tarski algebra that works within time £©®*™* where a<n
denotes the number of quantifier alternations in the input formula which can be assumed
w.l.0.g. to be in the prenex form.

So the running time of the algorithm described is essentially better than that of the
algorithms known earlier in the case of a small number a of quantifier alternations. One
can observe that Fischer-Rabin (1974) prove an exponential lower bound on the
complexity of deciding Tarski algebra for a sequence of formulas in which the order of
growth of the number a of quantifier alternations is the same as the order of growth of the
number n of variables. Thus, the number a of quantifier alternations makes the most
essential contribution to the complexity of the decision problem. Further, the result of
Fischer-Rabin was generalized in Berman (1980) to alternating Turing machines. Besides,
EXPSPACE-completeness of the decision problem of Tarski algebra was proved in Mayr
& Meyer (1982) and Ben-Or et al. (1984). The time bound of the algorithm from the
latter paper is the same as in Collins (1975).

The present paper continues (Grigor'ev & Vorobjov, 1987) (see also Vorobjov &
Grigor’ev, 1985) and uses its main result (see below, theorem 1 in section 1). One can
even consider the present paper as a generalization of Grigor'ev & Vorobjov (1987),
where an algorithm is described for finding real solutions of a given system of polynomial
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inequalities (i.e. a=1 in the notations adopted in the present paper). In section 3 a
certain construction from Chistov & Grigor’ev (1984) is involved. Chistov & Grigor’ev
(1984) present a quantifier elimination method for the first-order theory of the -
algebraically closed fields with time-bound Z©@®™***,

Let

3X, . 3X, WYXy YV X, X, 3 X, (P) )

be a formula of Tarski algebra, where P is a quantifier-free formula with atomic
subformulas (f;20), | <i<k,and fieZ[X, 1,.. ., Xy o Xa1s -« Xas,)- We denote
by n=s,;+ ... +s, the number of all the variables and by a < n the number of quantifier
alternations (in the presentation of the formula (1) a is odd, but this is not essential). The
degrees degy, , ..x,,(f)<d and the absolute value of each integer coefficient of a
polynomial f; is supposed to be less than 2, 1<i<k. For a rational function
geQ(Xy, .. ., X,) we denote by I/(g) the maximum of the bit lengths of the coefficients in
relatively prime polynomials g,,g,€Z[X, ..., X,], where g=g,/g,. In this notation
<M, 1<i<k.

A decision method for Tarski algebra is an algorithm determining for any formula (1),
whether it is valid. By validity of a formula we mean here validity over the field R of real
numbers. On the other hand, one can consider validity over an arbitrary real closed field
F (see e.g. Lang, 1965) by virtue of the following statement expressing the fact that all the
real closed fields are elementary equivalent (Tarski, 1951) and that any extension of real
closed fields is elementary.

Transfer principle. Let a formula (1) be such that the polynomials f;e F[X, |, .. ., Do
for some real closed field F, and let F; > F be any other real closed field containing F.
Then the truth values of the formula over the fields F and F,, respectively, are the same.

The main purpose of the present paper is to prove the following theorem (see also
Grigor’ev, 1985; Grigor’ev, 1987).

THEOREM. One can design a decision algorithm for Tarski algebra which determines the truth
value of a formula of the kind (1) within a time polynomial in M (kd)©@* ™2,

The latter estimate does not exceed F©@m*~?
formula (1) (cf. Grigor’ev & Vorobjov, 1987).

We shall utilise the notation g, < 2(g,, .. ., g,,) for the functions g:>0,...,9,>0if
for appropriate natural numbers p, g the inequality g, <p(yg, . . . g,)* holds.

Let us mention that the running time of the algorithm from Collins (1975) (and also
Wiithrich, 1976) can be bounded by 2((Mkd)2*™).

Further, for the proof of the theorem we need the algorithms from Chistov & Grigor’ev
(1982, 1983a, b), Chistov (1984), Grigor’ev (1984), also Chistov & Grigor’ev (1984) on
polynomial factoring and on solving systems of algebraic equations. Now we formulate
exactly these results. Taking into account that only zero characteristic fields are
considered in the present paper and in order to avoid some swelling of formulas due to
inseparable fields extensions we restrict ourselves herein to the zero characteristic case.

Thus, consider a ground field F = Q(T;, .. ., 1.)[n], where the elements T, ..., T, are
algebraically independent over @, the element 7 is algebraic over the field T, ..., ),
denote by

where % denotes the size of the

p= 3 (oMePZ'eT,,..., T)[Z]

0<i<degz(o)



Complexity of Deciding Tarski Algebra 67

its minimal polynomial over Q(Ty, .. ., T,) with the leading coefficient lc,(p) = 1, where
oM, P eZ[T, ..., T,] and the degree deg(p'?) is the least possible. Any polynomial
feF[X,, ..., X,] can be uniquely represented in a form

f= z (ai,il,..‘,i,,/b)nixill oo X

0<i<degz(9)iits. . in

i i DEZLTy, . .., T,] and the degree deg (b) is the least possible. Let
degr,(f) = max. {degT,-(ai,i, ..... i) degr (b)}.

[ 75 ST in

where g;

Let degy, (/) <T, degr,(f) <t,, degr () <74, degz(@) <7y, I(f) < My, (@) < M, for
all t<m<n, 1 <j<e. As a size L,(f) of the polynomial f we consider in proposition 1 a

n+e_e

value t"*"°t5 1, M, and analogously L (o) =" M,.

ProrosiTiON 1 (Chistov & Grigor’ev, 1982; Chistov, 1984; Grigor’ev, 1984; Chistov &
Grigor’ev, 1984). One can factor a polynomial f over F within time polynomial in the sizes
L,(f), Li(@). Furthermore, for any divisor f,|f where a polynomial fie F[X,, ..., X,] has
some coefficients equal to 1, the following bounds are true:

degTj(.fl) S L2t 1y), (1) S M+ My +et, +n)P(, 1))

For the cases when the field F is finite or F is a finite extension of @, other polynomial-
time algorithms for factoring are described in Lenstra (1984).

Now we proceed to the problem of solving systems of algebraic equations. Let an input
system f, =...=f,=0 be given, where the polynomials f, ..., e F[X,,..., X,]. Let
degy,,...x,(f) <d, degr,,...1,.2(0) <dy, degr,, . 1, (f) <dp I(f) <M, for all 1<i<k.
As size of the system in proposition 2 we consider the value

L = kd"d, ds M, +dS* 1M,

The variety # < F" of all roots (defined over the algebraic closure F of the field F) of
the system f; =...=f, =0 is decomposable in a union of components

w =)W,

defined and irreducible over the field F. The algorithm from proposition 2 finds the
components W, and outputs every W, in two ways: by its general point (see below) and,
on the other hand, by a certain system of algebraic equations such that W, coincides with
the variety of all roots of this system.

Let W < F" be a closed variety of dimension dim W = n—m, defined and irreducible
over F. Denote by ¢, . . ., t,_, some algebraically independent elements over F. A general
point of the variety W can be given by the following fields isomorphism:

F(tls L] tn—m)[e] = F(le L] Xn) = F(W), (*)

where the element 0 is algebraic over the field F(¢y,... t,-,), denote by
®(Z)eF(t,, ..., t,—)[Z] its minimal polynomial over F(t,...,t,—,) Wwith leading
coefficient lc,(®) = 1. The elements X,, ..., X, are considered herein as the rational
(coordinate) functions on the variety W. Under the isomorphism (¥) t;— Xj, for suitable
1<j; <...<J,—m<n where 1 <i<n—m. Besides, 6 is an image under isomorphism (*)

of an appropriate linear function Y ¢, X; where ¢; are integers. The algorithm from
1<i<n

proposition 2 represents the isomorphism (*) by the integers ¢y, . . ., ¢, together with the



68 D. Yu Grigor’ev

images of the coordinate functions X, . .., X, in the field F(t,, . . ., t,—m)[0]. Sometimes,
in the formulation of proposition 2, we identify a rational function with its image under
the isomorphism.

ProrosiTiON 2 (Chistov & Grigor’ev, 1983a, b; Chistov, 1984; Grigor’ev, 1984; Chistov &
Grigor’ev, 1984). An algorithm can be designed which produces a general point of every
component W, and constructs a certain family of polynomials Y, . . ,yMeF[X,, .., X,]
such that W, coincides with the variety of all roots of the system WM = . .. =¥YM =0,
Denote n—~m=dim W,,0, =6, ®,=® (see (*)). Then deg,(®,) < deg W, <d™, for all j, s
the degrees

degr,... retnertyn(@a> €81, 1,y (X degr, 1, (UY) < d,2(d™, dy)
and
degy,, ... x (&) <a*™
The number of equations N < m*d*™. Furthermore,
H(®y), UX;) < (M + M, +(n+e) log d)P(d", d)
l(lllgs)) < (Ml + M2 +e log dz)‘q}(dn’ dl)

and

Finally, the total running time of the algorithm can be bounded by
P(My, M, (d'dydy)"*, k). Obviously, the latter value does not exceed 2(I°¢L), in other
words, is subexponential in the size.

Let us briefly describe the further contents of the paper. In section 1 we present an
algorithm for producing a representative set for the partition of the space R” into maximal
connected subsets on each of which a given family of polynomials has constant signs
(lemma 2).

In Grigor’ev & Vorobjov (1987) (see also Vorobjov & Grigor’ev, 1985) a relevant tool
for calculations with the infinitesimals was introduced. It is developed further in section 2.
We ascertain some properties of semialgebraic curves over real closed fields; in addition
some properties of the decomposition of a semi-algebraic set in its semialgebraic
components of connectivity under passage to the limit (or standard part), i.e. when zeros
are substituted for infinitesimals (lemmas 3, 4, 5).

In section 3 we describe a construction allowing to reduce a projection of a
semialgebraic set along many variables to a projection along two variables (lemma 10). In
this connection the question, whether a point belongs to the projection of a semi-algebraic
set, is replaced by the question, whether a point infinitely close to the initial one belongs
to the projection (lemma 6).

At the beginning of section 4 it is proved that the construction suggested in section 3
has a relevant additional property (lemma 11) which, together with sections 1 and 3,
completes the description of the decision algorithm (lemma 13).

An outline and time analysis of the decision algorithm described is carried out in
section 5. This completes the proof of the theorem.

As an application of the theorem we give a procedure to compute the dimension of a
semialgebraic set within subexponential time in the last section 6.

If we were supplied with either a polynomial-time procedure for eliminating one
quantifier in Tarski algebra or with a polynomial-time algorithm for finding the
components of connectivity of a given semialgebraic set, then it would be possible to
design a quantifier elimination method for Tarski algebra with the same time-bound as in
the theorem. This follows from the construction in section 3 (see lemma 10). The author
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would like to conjecture the existence of a quantifier elimination procedure with the same
time-bound as in the theorem.

1. Producing a Representative Set for a Semialgebraic Set

Let polynomials f1, . . ., f,e Q[ X}, . . ., X,] with rational coefficients be given, in addition
deg (f)) =degy,,.. x,(f)<d and bit lengths I(f) <M, 1<i<k Let II be a certain
quantifier-free formula of Tarski algebra with atomic subformulas of the kind (f; = 0).
Then the set, consisting of all points from R* satisfying formula II, is a semialgebraic set
which we denote by {IT} = R". The set ¥ = {II} = | J ¥ coincides with the union of its

components of connectivity V;, each of which is also Ja semialgebraic set (see e.g. Collins,
1975; Withrich, 1976; and also Grigor'ev & Vorobjov, 1987). The procedures described
in Collins (1975) and Withrich (1976) find quantifier-free formulas IT; of Tarski algebra
such that ¥;= {II,} within time (Mkd)>*".

A finite set & < Vis called a representative set for the set V if for every j the intersection
Vin& # ¢. With the help of procedures from Collins (1975) and Wiithrich (1976) one can
produce a representative set for ¥ also within time (Mkd)2’". Further, we need the main
result from Grigor'ev & Vorobjov (1987) (see also Vorobjov & Grigor’ev, 1985)
considerably improving the latter time-bound.

THEOREM . One can design an algorithm which, for an arbitrary semialgebraic set of the
sort

{(1>08. .. &(fn > 0)&(fn+1 2 0& ... &(/, 2 0)} = R,

produces a representative set & with a number of points not greater than P((kdy”); the
running time of the algorithm does not exceed P(M,(kd)"™). Furthermore, for every point
(&4, ..., &) e the algorithm constructs a polynomial ® € Q[ Z] irreducible over the field Q,
and expressions

L=&O = Y aP,
0 j<deg(®d)

where o’ e Q, 1 <i<n, 0<j < deg(®) and e R, ®(0) =0. Moreover, the algorithm yields
a pair of rational numbers by, b, € Q such that in the interval (by, b,) = R 0 is the unique real
“root of the polynomial ®. Moreover,

0 = Z LG

1<isn
for suitable natural numbers 1 < A; < deg(®). Finally, the following bounds are valid:
deg(®) < 2((kd)");  U®), I(0)), 1(by), U(bs) < MP((kd)").

In particular, the coordinates of the points from & are real algebraic numbers.

REMARK. Based on theorem 1 and on a result from Heindel (1971), one can find
d-approximations to the points of the representative set & within time
P(log (1/8), M, (kd)"™).

Following Heintz (1983) we call ({ f;}1 <i<i)-cell any nonempty semialgebraic set of the

form
{& (fi=0)& & (iy>0& & (f;,<0),

iel i1ely i2ela

where TUI, UI, = {1, ..., k}. The next lemma allows us to find all ({f;},<;<i)-cells.
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LEMMA 1. One can enumerate all partitions of the set of indices IUl, Ul, = {1, ..., k} such
that the corresponding semialgebraic set
[BU=0& & (f,>08& & (f,<0))

is nonempty, i.e. is a ({ f;}, <i<i)-cell, within time P(M, (kd)"*). Furthermore, the number of
({ fi}1 <i<w)-cells does not exceed P((kd)").

PrROOF. We shall conduct the enumeration of all ({f;},<;<i)-cells by recursion on k.
Assume that all ({f;},<;<j)-cells are already selected for a certain 0<j<k. For each
({fi}1<i<y)-cell K = R, the algorithm detects with the aid of theorem 1, what sets among
the following three:

Kn{fi+1=0}, Kn{fiz1>0}, Kn{f+, <0}

are nonempty, i.e. are ({f;}; <i<;+1)-cells. Thus, all ({fi}1 <;<;+1)-cells will be enumerated.

Let us now estimate the number of all ({f;} <;<,)-cells. Any nonempty subset of C" of
the kind

(& (i=0)& & (/i #0),
iel i¢l
where [ = {1, ..., k} is called a complex ({f}, <i<i)-cell (see Heintz, 1983).
According to Heintz (1983) the number of complex ({f;} <;<i)-cells is less or equal to
(14 ), deg(f))" For an arbitrary fixed subset of indices I < {1, . . ., k}, the number of
&

<i<k

({fi} 1 <i<i)-cells of the sort

{&(i=08& & (f,>08& & (f,<0)} =R’
iel 1 I

1181 2€12
for all possible I, I, does not exceed the number of components of connectivity (in R") of
the semialgebraic set

(& (=08 & (f£0) <R,
iel i¢l

because on every such component of connectivity all the signs sgn(f}), 1 <i<k are
constant. The set

(& (i=0)8& & (/i#0))
iel ¢l
coincides with the projection of the semialgebraic set
v {& (fi=0&(Z Hf;= 1)} c Rrtt
iel igl

along the variable Z. By virtue of Milnor (1964) the number of components of
connectivity of the set V) is less or equal to (2kd)"*!. Therefore, the whole number of
({fi}1 <i<w)-cells does not exceed
A+ 3 deg(f)"2kd)y"*tt < 2kd)").
1<i<k
This entails also the required in the lemma time-bound in view of theorem 1 and
completes the proof of the lemma.
Let the polynomials gy, ..., g,€R[X], ..., X,]. Denote by %({g;},<i<w) the partition
of the space R" into maximal connected subsets on each of which the signs sgn(g;) are
constant for every 1<i<m (cf. Wiithrich, 1976). Observe that the family of elements of
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the partition %({g;} <;<m) coincides with the family of components of connectivity of all

possible ({g;}; <;<m)-cells. A finite set ¥ < R" is called a representative set for the partition

U({g;} 1 <i<m) if each element of the partition contains at least one point from the set &.
Consider now polynomials

gi» - Im€QLY, .., ¥, Xy, X,

Let y=(y,..- y)€R? be a real algebraic point given in the following form (cf.
theorem 1): ®,(Z)e Q[Z] is a polynomial irreducible over Q;
yp = yp(gl) = Z p}p) 9]1
0.<j<deg(®1)

are expressions where pPeQ, 1<p<g, 0<j<deg(®;) and 0,eR, ®,(0,) =
furthermore, a pair of ratlonal numbers c,, ¢, €@ is given such that in the mterval
(cy, ¢;) =R, 6 is the unique real root of the polynomial ®,. Moreover,

Y AP0
1sp<q
for some natural numbers A", 1 < p <g. In addition, the following bounds are fulfilled:
deg(g;) <d; l(g)) <M for every 1 <j<m and deg(®,) <d,;
(DY), 1(yp(61)), Ucy), Uca) < My

for all 1< p < gq. Introduce polynomials

aj(XIS . aey XII) = gj(yl’ .y yq, Xl’ .« u ey XH)G[R[Xl’ ey Xn], 1 $j<m.

The following lemma allows us to produce a representative set for the partition
UG 1 <j<m)-

LEMMA 2. One can design an algorithm which produces a representative set & < R" for the
partition U ({gj}l\ j<m) Within time (M, M, q, (mdd,)"), where & contains not more than
P((mdd,)"™) points. Moreover, for every point (¢y,...,¢,)€S the algorithm constructs
polynomial ® e Q[Z] irreducible over Q, and expressions

LE=¢0 = Y e

0<j<deg(®)

where o’e Q, 1 <i<n, 0<j<deg(®) and OeR, ®(0) =0; apart from that, the algorithm
yields a pair of rational numbers by, b, € Q such that in the interval (by, b,) = R 6 is the only
real root of the polynomial ®. Furthermore, the expressions

Vo=y0) = 3

0<j<deg(®)
are constructed by the algorithm, where (P e Q, 1< p < g, 0 <j<deg(®). In addition

0=200+ Y, A&
1<i<n
for certain natural numbers 1< A, <deg(®), 0<i<n. At last, we have the following
bounds:
deg (®) = P((mdd,)")
and

(@), IEB)), (3,0, (1), 1(by) < (M + M, +q)P((mdd,)").
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Proor. Consider the following family consisting of (m+2) polynomials in (n+ 1) variables
T, X4, ..., X, with rational coefficients:

gj(Ts Xl: RS Xn) = g](yl(T)s RS yq(T)’ X1= s e Xn)ﬂ 1 S.] S m;
I (T, Xy o s X)) = OT); Guao T, Xy, .., X,) = (T—cy)ey—T).

To begin with, let us enumerate all ({g;}; <;<m+2)-cells based on lemma 1. Next for every
({gj}l€j$m+ 2)-cell .

{& gi=0& & (g, > 0)& & g, < 0)}

jeJ Jredy J2eJ2
such that the requirements §,,.; =0, §, ., > 0 are satisfied, i.e. (m+1)eJ, (m+2)eJ,, the
algorithm produces a representative set % ; ; «R"*' using theorem 1. Denote by
m: R"* 1 R" the linear projection defined by the formula n(T, X;, ..., X,) =(X,,..., X,)
and put
&= U (S a.0) = R,
g, J1,J2

where the union is taken over all ({§;};<;<m)-cells satisfying the requirements stated
above. Then & is a representative set for the partition %({§;}, <;<nm) since the partition
U({9j}1<j<m) is isomorphic by means of the projection 7 to the partition of the space
R"* '~ {T =6,} ~ R" formed by the components of connectivity of all ({3} 1 < jem=+2)-cells
satisfying the requirements (m-+1)eJ,(m+2)eJ,, taking into account that the
requirements g, 4 ((T) =0, §,,4,(T) > 0 imply the equality T = 4,.

Let a point (0, &y, . .., )€ 4, 5, According to theorem 1, a polynomial ®eQ[Z]

irreducible over the field Q corresponds to the point, as well as expressions
E=8O)= Y o, 1<ign
O£ j<deg(®d)
and )
=00 = Y ol
0<j<deg(®d)
moreover, the algorithm from theorem 1 yields an interval (by, b,) =R (with rational
endpoints b,, b, € @) which contains a unique real root 8e(b,, b,) of the polynomial ®.
Furthermore,
0=120+ Y A&
1<i<n

for appropriate natural numbers 1 < 4; <deg(®), 0 <i< n. Substituting the constructed
expression 6,(0) in the expressions V(01),1<p<q we obtain the expressions
¥p(0), 1 <p <gq. Observe that degy y, .. x.(d) <dd;, 1 <j<m+2. Hence, the number of
points in the set &; ;, ;, is not greater than #((mdd,)"™) by virtue of theorem 1; on the
other hand the number of ({J;}; <;<m+2)-cells does not exceed P((mdd,)") in view of
lemma 1. Therefore, the set & contains not more than P((mdd,)") points.

Theorem 1 entails the bound deg (®) < 2((mdd,)"). The bit lengths of coefficients are
bounded by

I(g) < M+M,d+dlog (d,)+qlog (d);
from this we obtain the bounds:

(®), IE(6)), 1(B1(0)), 1(b1), U(bs) < (M + M, +q)P((mdd,)"), 1<is<n

)

thus,
(y,(0)) < (M +M,+q)P((mdd,)"), 1<p<q.
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Finally, the running time of the algorithm can be estimated by (M, M, q, (mdd,)"")
by lemma 1 and theorem 1, this completes the proof of the lemma.

2. Semialgebraic Curves Over Real Closed Fields
(With Infinitesimals)

First of all we shall recall some facts about real closed fields.

Throughout the present section, F denotes a real closed field. Consider the ordered field
F(¢), in which the order is defined by the condition 0 <& < f for all 0 < feF, in other
words, the element ¢ is infinitesimal relatively to the elements of the field F. For any
ordered field F, denote by F, > F, (defined uniquely up to an isomorphism of the ordered
fields) the real closure of the field F; (see e.g. Lang, 1965). For instance, Q@ = R is the field
of real algebraic numbers.

A Puiseux series (or in other words, power-fractional series) is a series of the kind

b = Z ﬂis"i/ﬂ1
i20

where 0 # ;€ F for each i, the integers vo <v; < ... increase, the natural number p>1
may depend on Ebf, series. The totality of all Puiseux series (with added zero) forms the
field F((¢!/*)) o F(g) o F(¢) containing the real closure F(e) of the field F(e). The order in
the field F((¢*/*)) (that induces the order in the field F(e)) is lexicographical. Furthermore,
the field

F((e)) > F(e) = FE[/—1]

of Puiseux series over the algebraic closure F = F[,/—1] of the field F contains the

algebraic closure F(g) of the field F(e).

If v, <0, then the element b is called infinitely large (relatively to the field F); if v >0,
then b is infinitesimal. A vector (by, ... b,)e(F((¢'/®)))" is called F-finite if every
coordinate b, is not infinitely large. For any F-finite element be F((¢"/®)), its standard part
st(b)eF is defined and is equal to B, in cases when v, =0, or st(b) =0 when v, >0. For
an F-finite vector (by, . . ., b,) € (F((¢Y/®)))", its standard part is

st(by, ..., b)) = (st(by), ..., st(b,).

If each point from a set ¥ < (F((¢!/®)))" is F-finite, then its standard part st(V) < F" is
defined as the set of standard parts of all points from the set V. In the sequel, we deal with
the subfield F(z) of F((¢/®)) and apply to it the notions introduced.

Now we shall demonstrate how the transfer principle can work and show (a known
fact) that any semialgebraic set over a real closed field F can be represented uniquely as a
union of its components of connectivity, each in its turn being a semialgebraic set.
Consider a semialgebraic set W = {IT} = F”, determined by a quantifier-free formula IT of
Tarski algebra with the atomic subformulas of the kind (/> 0), where the polynomials
feF[X,, ..., X,]. By a format of the formula IT we shall mean the sum of the number of
its variables, the number of atomic subformulas and the degrees of the polynomials JA

In the case of the field F =R, the set W is uniquely representable in a union of its
components of connectivity W =] W, where every W, is in its turn a semialgebraic set

(and connected in the euclidean topology). From e.g. the papers by Collins (1975), and
Wiithrich (1976), one can deduce the existence of a function 9 such that if a format of a
formula IT is less than .# then the whole number of the components W, is less than N(AN)
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and, moreover, one can find quantifier-free formulas IT; of Tarski algebra each of the
format less than (A7) that W, = {I1;}. Indeed, the algorithms from Collins (1975) and
Wiithrich (1976) allow to produce a cylindrical algebraic decomposition of a
semialgebraic set and as a corollary to produce the decomposition on the components of
connectivity. For a given format 4" of an initial formula (with symbolic coefficients) each
of the two algorithms can be represented as a rooted tree (directed outward the root)
having vertices either with out-degree one or out-degree three. To the root corresponds
the initial formula, to any vertex of the tree with out-degree one corresponds an
arithmetic operation; to any vertex with out-degree three corresponds a polynomial. The
computation for arbitrary initial formula, with specified coeflicients substituted instead of
symbolic ones, proceeds along a suitable path of the tree starting from the root,
performing the corresponding arithmetic operation in a vertex with out-degree one, and
branching in a vertex with out-degree three according to the sign of the corresponding
polynomial. This representation as a tree provides the desired function 9.

Thus, for a given .4 one can yield a formula Q. of Tarski algebra (for the case of the
field F = R), expressing the existence of decomposition of any semialgebraic set W = {IT},
with the format of IT less than .4 into less than 9(A") its components of connectivity
W = | J {I;}, such that the format of every II, is less than R(4#"). Moreover, the formula

Q, states that for each pair of indices i#;j the components {II,} and {II;} are
“separated”, i.e. the following formula of Tarski algebra is valid:

Y((ag,....a)e{Il;}})3z>0 (by, ..., b,,)v’s{I'Ij}~)(1<Zl:< (a,—b)?* > 2).
sisn
Besides, the formula Q- claims the “connectedness” of every {IL;}, this means that there
do not exist two ‘“separated” semialgebraic subsets of {II;}, each determined by a
quantifier-free formula of Tarski algebra with the format less than R(R(A)).

Apart from that, for given 4, .4 one can prove (for the case of the field F=R) a
formula Q. of Tarski algebra expressing the following. If {IT} (where the format of II is
less than ") can be represented as a union of more than one and less than . pairwise
“separated” semialgebraic sets, each being determined by a quantifier-free formula of
Tarski algebra of the format less than ., then {II} can be represented as a union of more
than one and less than N(A") pairwise “separated” semialgebraic “connected” sets, each
being determined by a quantifier-free formula of Tarski algebra of the format less than
N(A).

Applying the transfer principle to all the formulas Q,, Q ., , one concludes that any
semialgebraic set (over a real closed field F) can be uniquely represented as a union of its
pairwise ‘“‘separated” “components of connectivity”, moreover, each component is
semialgebraic and is “connected”, i.e. cannot be represented as a union of a finite number
pairwise ‘“‘separated” semialgebraic sets. Below, we utilise the terms connected
semialgebraic set and components of connectivity of a semialgebraic set without
quotation marks, since the notion of connectedness in any topology will not be
considered.

As usual, one can define a semialgebraic curve C = F" as a semialgebraic set for which
there exists a linear projection on the line (i.e. on F), such that the inverse image of every
point under the projection consists of a finite number of points and in addition the latter
number is less than a certain number depending only on the curve C. A mapping
@: Vi=V, where V; < F", V, = F™ are semialgebraic sets, is called semialgebraic if its graph
is a semialgebraic subset in the space F™*". We shall utilise the terms continuous
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mapping, open and closed set in the sense of the topology with the base of all open balls.
We denote by 2,(R) the closed ball of radius R with the centre in the point x.

We shall call a set ¥V < F" monotone iff there exists a vector (§,,...,8,)e{—1, +1}"
satisfying the following property: for any pair of points

1) _ gl
oV =@, .., o), P =0@, ... eV
either
1
.00 =809, ...,6,00 =8,082 or 5, <6,0?,...,08,0<5,vP

are fulfilled.

One can prove the next lemma first for the case of the field F = R bounding the formats
of the constructed semialgebraic sets (and their number) via the formats of the given
semialgebraic sets, and after that make use of the transfer principle. The proof for the case
F =R is quite cumbersome and routine, on the other hand, the reader can reproduce it
for himself without great difficulties, therefore we omit the proof.

LeEMMA 3.
(a) The image of any connected semialgebraic curve under the action of a continuous
curve on this semialgebraic mapping is also a connected semialgebraic curve.
(b) Any pair of points of a connected semialgebraic set can be joined by a closed
connected semialgebraic curve entirely situated in this set and in a certain ball.
(¢) One can represent any closed semialgebraic curve as a union of a finite number of
monotone closed semialgebraic curves.

Let the elements &, >¢&,>...>¢,>0 be such that the element ¢, is infinitesimal
relatively to the field F(eq, . . ., &) for each 0 <i<m. For every element aem,,)
one can uniquely define its standard part st(«) € F (provided that it exists) by recursion on
m. We denote F,, = F(g,, .2 6yy)-

LEMMA 4.

(a) Given a closed connected semialgebraic curve C < 9y(R) < F", where ReF, one can
find a closed connected semialgebraic curve C®cPy(R)c F, such that
C® > 5t(C®) = C and, furthermore, for a certain quantifier-free formula I1 of Tarski
algebra both C = {II} = F" and C® = {I1} < F}, are true;

(b) Let W = @y(R) < F* be a connected semialgebraic set where ReF. Assume that the
set st(W) < V < F" for a certain semialgebraic set V. Then st(W) c V, for a suitable
component of connectivity V; of the set V.

REMARK. Under the conditions of item (b) it is apparently possible to prove that
st(W)  F" is a semialgebraic set, but since we shall not need this further, we do not dwell
on its proof.

PRrOOF. (a) By virtue of lemma (3c), one can represent C as a union of monotone closed
curves and after that decompose each monotone curve on the components of connectivity.
Thus, we obtain a representation C = | ) C; of C as a union of monotone closed connected

curves C;. Let C;= {IT;} for an appropriate quantifier-free formula IT; of Tarski algebra.
We set
CO={}cF, MN=VI and C®={}=)CP.

i
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Evidently C®>C; and st(C#)> C;. The transfer principle implies the inclusion
CP? = Dy(R), since it is equivalent to the formula V x(IT,(x)=>||x|| < R) of Tarski algebra.

We fix a curve C; and we claim that C® < F" is a monotone closed connected
semialgebraic curve and besides that C; = st(C{®). From this the statement of item (a) will
be concluded easily.

The closedness of semialgebraic set C{® can be inferred from the transfer principle. Now
we are going to prove that C® is a monotone curve. Consider a linear projection = of the
n-dimensional space on the line which is given by the formula

T(Xp, - X)) = Y. X,
1<j<n

where J; = +1 are taken from the definition of monotonicity of curve C;. In view of lemma
(3a), the image n(C;) = F is a connected semialgebraic set, therefore, 7(C;) is an interval.
Moreover, in the case of the field F =R, the image n(C,) of the compact set C; is also a
compact, in particular n(C;) is a closed interval. The transfer principle entails that
n(C;) =[y1,y2] is a closed interval in the case of an arbitrary real closed field F.
Moreover, the mapping n: C;—[y,, y,] is bijective, since C; is monotone. Henceforth,
n(CP) = [y, 2] = F,, according to the transfer principle, furthermore, the mapping =
Cﬁﬁ’ia [71. 721 is bijective. In particular, we deduce that C{? is a semialgebraic curve and,
in addition, it is monotone again by the transfer principle.

Now we shall check that st(C#) < C;. Indeed, let a point x = (x,, ..., x,) € C®; then
there exists a point

y= (yI’ e yn)eci < CEE)

such that
n(y) = st(n(x)) e[y, 2] < F

(see above). The elements d;(x;— y;) € F,, are cither non-negative for all 1 <j<n or non-
positive for all 1<j<n, since C® is monotone. On the other hand,
St( Y, 005—y) = st(n(x)) —n(y) = 0,
1<j<n
therefore,
st(x;—y;) = 9; st(8;(x;— ;) =0
forall 1<j<n, ie. st(x) =y, that proves the inclusion st(C%?) < C,.

At last, consider a semialgebraic mapping n~*: [y;,7,]—C®. The mapping is
continuous by virtue of monotonicity of C{, henceforth, the curve C® is connected in
view of lemma (3a). Now we shall show that C® is connected. Suppose the contrary.
Then for some family I of indices the intersection
(IELJI ng)) A (lﬁq C?)) = ¢

Taking into account that the curve C is connected and that curves C, are closed, we
deduce the existence of a point

xe(J ey cy= )y

The obtained contradiction proves the connectivity of C®.

(b) For every component of connectivity V; of the set V, consider the following
semialgebraic set U; = F" (cf. lemma 1 in Grigor’ev & Vorobjov, 1987). A point x e U, iff
there exist such t{® >0, t§ > 0 that the intersection 2,(z%?) "\ V; # ¢, and for each j # i the

U Cﬁ'”).

i¢l
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intersection Z,(t¥" +1§7) N V; = ¢. Now we shall establish various properties of the set U,
which is semialgebraic since it is represented by some formula of Tarski algebra.

(@) The inclusion ¥; < U, is correct. Indeed, for any point ye V;, one can set 1) =0 and
can take 19} from the definition of components of connectivity (see above).

(B) The set U; is open. Let a point xe U;, we shall check that the ball 2,(<{?/3) = U..
Actually, we assert that for any point ze 2.(7%?/3), one can take ¥ =t +1{2/3 and
¢ = 1%9/3. There is such a point ye V; that the distance ||y —x|| < t{™, henceforth,

lly—zll < lly—xll+llx~z|l < f.
Besides that, for any point z, € V;, where j # i the inequalities

llzy =2l = llz; — xll = llz—x|| > {? + 7§
are true.

(y) For i#] the intersection U;n U; = ¢. Suppose, on the contrary, that a certain point
x€ U, n U,. There exist points y;e V, y;e V;, for which [|x— pjf| < 1, [lx—y/l| < . On the
other hand, ||x—y;l| > 7§ 4%} and [|x — y;|| > 7j* -+ {7, this leads to the contradiction.

Let U;={II;} for each i for suitable quantifier-free formulas II; of Tarski algebra.
Consider semialgebraic sets U® = {I1;} < Fy, for which properties (), (f), (y) are fulfilled
according to the transfer principle.

Let an arbitrary point we W; then the point st(w)e ¥, (which is defined since ||w|| < R)
for an appropriate i,. By virtue of («), (8) the ball D,,,(1) < Uj, for a suitable 0 <€ F. In
view of the transfer principle, the inclusion Dy, (1)< UY is valid in the space Fy.
Therefore, w € D, (t) = UY. Thus,

W c U Ui(s).

Since set W is connected, one can infer that W < U® for a certain iy, taking into
account properties (B), (y) of sets U{®. This implies according to the proved above that
st(W) < V;,. The lemma is proved.

Consider polynomials

pieFles, .., e[ Xy, ... X, ], 1<i<k.
Write p; in the form

b= X pene e,
Jisee o dm
where p{t-~im are polynomials in F[ Xy, ..., X,].

LEMMA 5.

(@) Let W = F" be an element of the partition U({p" "}, i<k j...... ;) (s€€ section 1),
and let C<WN9Dy(R) be a closed connected semialgebraic curve, where ReF.
Furthermore, let C® = 9o(R) < FZ, be a closed connected semialgebraic curve such
that C® = st(C®) = C and such that for a suitable quantifier-free formula I1 of Tarski
algebra equalities C = {I1} = F*, C® = {I1} < F}, are fulfilled (¢f. lemma (4a)). Then
C® < W for some unique element W® < F, of the partition U({p:}1 <i<w)-

(b) For any element W of the partition U({p¥" 9™} <i<iiy,....;m) there is a unique
element W of the partition %({p;}1<i<x) Such that W =« W A F".

(c) Let gy,...,g; be polynomials in F[X,,...,X,], and let W, <F" be a certain
component of connectivity of the semialgebraic set {(g; = 0)&. .. & (g > 0)} = F".
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Then there exists a unique element W < F% of the partition

U{gr+e o giten(g+e). .. (Grt+e1)—e3})
which contains W, = W,

PROOF. (a) Taking into account that the curve C* is connected, it is sufficient to show
that C* is situated entirely in some ({pi}1 <i<i)-cell (see section 1).

Assume that the polynomial p{/**'~# vanishes on the set W for some j,, . . ., j,. Since
the curve C = {IT} < W, the following statement is correct: if a point xe F" satisfies the
formula II, then p{t-im(x)=0. The transfer principle entails that the polynomial
pd-++im vanishes also on the curve C® = {IT} < F.

We introduce a lexicographical order on multi-indices setting (j/, . . o dm) < Uts - v oafm)
if ju=jm.-oji=j and ji_y<j_, for a certain 1<I<m+1. Let us denote
least(p;) = pii---»/m iff the sign sgn(p{-+/)) is different from zero on the set W
(otherwise, if there is no such multi-index (jy, . . ., j,), then we set least(p,) =0) and in
addition the sign (p{"'~/) is equal to zero for each multi-index (. . . .. /2) < (i, - - -, o)
We recall that sign sgn (p,@"""""'j;"’) is constant on W for every multi-index (j/, .. ., Jm)-
Note that polynomial p{ -/ vanishes on the curve C®, provided that
(15 - dm) <1, - - »jm) by virtue of the facts proved above.

For any point ce C® we claim the equality

sgn (pi(c)) = sgn ((least (p))(st(c))), 1<i<k.

In the case when least (p;) = 0, both sides of the claimed equality are zeros according to
the ascertained above. If least(p,)=p{' -+ £0, then pYveim(st(c)) #0  since
st(c)e C = W. Therefore, taking into account the equalities

pic) = pil i cyel L el wie) el
= pir I (st(c)elt . . . eim 4wyl ... gl

for suitable infinitesimals w,, w, e F,, (relatively to the field F), one can deduce the desired
equality

sgn (pi(c)) = sgn (p{*+~I"(st(c))) # .

Finally, for an arbitrary pair of points c,, ¢, e C®, points st(cy), st(cy)e C = W. So the
definition of the partition #({p{*+ I}, . i<kiji....j») implies

sgn ((least (p))(st(c,))) = sgn ((least (p))(st(c,)))

for all 1 <i<k, therefore, sgn (p,(c,)) = sgn(pic,)); 1 <i<k in view of the fact claimed
above. Thus, arbitrary points ¢,, ¢, e C® belong to the same ({p:}1 <1<1)-cell, which was to
be shown. ‘

(b) Suppose that there are points x, e W AW, x, & W AW for two distinct elements
W 3£ Wi® of the partition U({pi}1<i<i)- According to lemma 3(b), there exists a closed
connected semialgebraic curve Cc Wn@y(R) for some ReF which contains points
X1, X2 € C. By virtue of lemma (4a) one can find a closed connected semialgebraic curve
CP<=Py(R)c= F", such that C®o st(C®)=C and, furthermore, C= {Il} = F",
C® = {1} = F}, for a suitable quantifier-free formula IT of Tarski algebra. Then C®¥ < W®
for some unique element W® of the partition A({P:}1<i<i) in view of part (a) of the
present lemma, in particular x,, x, € W®, which contradicts the hypothesis.
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(c) One can uniquely decompose W, = U W;, where W, ; is an element of the partition

J
U({g:}1 <i<w) for every j. Taking into account the equality of the partitions

(19 hi<is) = U({Giti<isu Y {H g; }Ic(l

one deduces from part (b) of the present lemma that for each W,; ; there is a unique
element W < F% of the partition

U(Gy+er, .- gten (Grter). . (gete)—es),
which contains W;; < W,

Suppose that for some indices j, # j,, elements W{® 9 2 W2 are distinct. Let us pick out
points x, € Wy, x,€ W,;,. According to lemma (3b), one can find a closed connected
semialgebraic curve C « W, N 2,(R) for a suitable R € F such that x,, x,& C. By virtue of
lemma (4a) there exists a quantifier-free formula IT of Tarski algebra which satisfies the
following conditions: C={I1} = F", the closed connected semialgebraic curve
C¥Y ={IT} =« 2¢(R) = F} and C® o st(C®) = C. For any point ce C = W,, the inequalities
gi(©) =0, 1<i<k are valid. So for every point ¢®eC", the inequalities g(c®)>0,
1<i<k are also correct in view of the transfer principle, therefore g4(c)+¢; >0,
1<i<kand

@1 +e1) .. (gulc) + o) —63 = 6 —£3 > 0.

Since the curve C® is connected, the inclusion C® = W{® is fulfilled for an appropriate
clement W® < Fi of the partition %(g,+&1, ..., gt (g1+€1)...(g+8)—¢s), in
particular, x,, x, € W{. We have obtained a contradiction which completes the proof of
the lemma.
3. Projections of a Semialgebraic Set
Let a formula of Tarski algebra be given by

3X .. 3X (1 > 08 (> 0&(fnr 1 2 0& .. &/ 20), ()

where fi,...f,-€Q[Z,,...2Z,,X,,...,X,-;] are polynomials with deg(f}) <d,
H<M, 1<i<k—1. We add a new vanable X, let f,=X,1:. —1, and consider
the formula
X, ... 33X, 3X((fi Z2008&... 8(fi-1 =2 0)&(f, = 0) 3)
equivalent to formula (2). We introduce one more variable Z,, denote
fo=Zo—X}—...—X?

and consider the formula
1Zp3X,...3X,,3X((f6=0_&(f1=0&...8&(fi-1 = 0&(} 0)) 4

which is equivalent to formulas (2) and (3).

In the present section we describe an algorithm which constructs (see lemma 10 below)
a formula of the first-order theory of a certain real closed field F5. The formula is of the
form 3 T(P,), where P, is a quantifier-free formula with the coefficients in the field F3, and
is such that 3 T(P,) is equivalent (over the field @) to the formula

IX .3 X 3 XS0 2 0&(1 2 0& ... &(fi-y 2 0&(fi = 0)), )

i.e. both formulas determine the same (semialgebraic) set in the space @"**; in other
words a point (ze, z4, . - ., z,) € @"* ! satisfies (5) iff it satisfies the formula 3 T(P,). So, the
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algorithm reduces a projection along many variables (see formula (2)) to a projection
along two variables Z,, T, taking into account that formula (2) (and (4)) is equivalent to
the formula 3 Z,e@ 3 Te F4(P,) (being not a formula of the first-order theory!)

We begin with the construction of the formula 3 T(P,). Let the element &, >0 be
infinitesimal relatively to the field Q, let the element ¢, > 0 be infinitesimal relatively to
Q(e;) and let the element ;>0 be infinitesimal relatively to Q(e,, ;). We denote
Fy=Q()), F, =0y 5y), F5 = Q(e,, £5,%5) (see section 2). Consider the polynomial

g=Uot+e)(fit+e) ... (fite)—e3eQfe, ellZ0, 2y, 2, Xy, ., X
and the formula

3X, ... 3X(9 = 0&(fo+e, > 0&. .. &(f+¢, > 0)). 6)

Consider points z=(zo, zy, .. ., 2,)e@"** and 0 £ ve @"**, and let Z = z+g,ve F4*1,
We denote the semialgebraic sets

V={(fo = 0&...&(f, > 0)} = Qs+t
Ve = {(f0+81 > O)& Cen &(fk+81 > O)} - F53+n+1‘

LEmMMA 6.
(@) For an arbitrary 0 < Re @, the following three sets coincide:

V 0 Dy(R) = st(VO n 9y(R))
=s5t(V®n {9 = 0} N D(R)) = (VO {g > 0} N Do(R)) = F5tnt;

(b) The sign sgn (fi+e,) is constant on any component of connectivity of the
semialgebraic set {g >0} = F§*"*1 for each 0 <i <k,

(¢) Formula (5) is true at point z iff formula (6) is valid at point z. Moreover, if formula
(3) is true at point z and some point (z, x)e Q**"** belongs to a certain component of
connectivity V; of the set V, and by the same token (cf. part (a) of the present lemma)
the point (z, x) belongs to a corresponding component of connectivity V® of the set
{g >0}, then there exists a point (3, %)e Vi such that (%, %) = 0 and such that point
(z, st(X)) = st(Z, ) e @**"* 1 is defined.

PROOF. (a) (see also lemma 2 from Grigor’ev & Vorobjov, 1987). Let a point
ue V9N gy(R), then [|st(w)| <R and f(st(u))=0 for every 0<i<k; this entails the
inclusion st(V® N 94(R)) = VN Dy(R). Now consider a point weVn9y(R), then
SiW)+e; 26 >0,0<i<kand g(w) > e+ —¢, > 0, henceforth,

(VNnDo(R)) = st(VO N {g = 0} 0 Do(R)) A (V@ {g = 0} " Do(R)).

(b) (see also lemma 2 from Grigorev & Vorobjov, 1987). Let W, = {g> 0} bé a
component of connectivity of the semialgebraic set {g > 0}. If the sign sgn (f;+¢,) is not
constant on W, then there exists a point ue W, such that Ji{u)+e; = 0. The inequality
g(u) = —g; < 0 leads to contradiction.

(c) Assume that formula (6) is valid at point Z, then there exists a point
(2,%)e V@ {g=0}. Since fy(%, X)+¢, >0, ie. %[> < zo+2¢,, one concludes that the
point st(%) is defined and (z, st(%)) e V is fulfilled according to part (a) of this lemma, i.e.
formula (5) is true at point z.

Conversely, suppose that formula (5) is valid at point z, then some point (z, x)eV
belongs to an appropriate component of connectivity ¥, of the set ¥, whence (z, x) e v
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for a snitable component of connectivity V{® of the set V¥ n {g= 0} (see item (a) of this
lemma). Note that ¥, < V{® by virtue of lemma 5(c). Since f(z, x)+¢; > &, 0 <i< kand
g(z,x) = ¢&i* 1 —¢e,, there exists such a natural number ¢ that for any point
(7, x)€ D, o(¢}) the inequalities fi(z, x)+&, > £./2, 0<i<k are -correct; so
g, X) = (6,/2)F Tt —e3 > 0, Le. Dy, (e]) = V. Obviously, (2, x)€ D, (8}).

On the s-dimensional plane & = {(%, x): x' € F3} = F§*""' we consider an arbitrary ray
yc ¥ with endpoint (Z,x) and with a rational directing vector. The intersection
K, =yn{g <0} is not empty. Indeed, otherwise y = ¥{* in view of part (b) of the present
lemma; so for any point (Z, x') €y the inequality [IX]|> < zo + 2¢, is fulfilled, which leads to
a contradiction. The set K, is semialgebraic and, henceforth, K, is the union of a finite
number of intervals. We denote by (2, ¥) ey one of the endpoints of these intervals which
is the nearest to the point (%, x). Then g(Z, X) =0 since in an arbitrary neighbourhood (on
the ray y) of the point (, X) there is a point in which the polynomial g has a negative
value as well as a point in which g has a positive value.

The closed interval J =y with endpoints (Z, x) and (%, %) is contained in ¥{?, according
to part (b) of the present lemma, in particular (, %) e V9, this entails ||X]|* < z,+2¢, and
that the formula (6) is true at point Z. It remains to show that st(Z, X)eV,. The set
st(Jyc @+ is well defined and coincides with the closed interval with endpoints (z, x)
and (z, st(%)). Indeed, let (uy, ..., u)e@° be the directing vector of the ray y. Then
% =x+ oy, . . ., ug) for a certain 0 < ae F; being Q-finite by the facts proved above. For
any 0< B < a, f € Fs, the equality

st(x+Puy, . . . ug) = x+5t(B)uy, . . ., 1)

is correct. This implies that st(J) is a closed interval. Finally, st(J) = V by virtue of part
(a) of the present lemma, henceforth, st(J) = V4, which completes the proof of the lemma.

Now we return to the description of the algorithm. It involves the following
construction from Grigor'ev & Vorobjov (1987) (see also Vorobjov & Grigor’ev, 1985).
We denote by I'< Z°~ ! the family consisting of vectors of the kind y=(y,, ... y9€l,
where y;, 2 <i<s run independently over all integers from 1 up to N, = (2(k+1)d)’. For
a point z¥ e F3™ ! we denote by g(z*) the polynomial

g(z?, X,, .., X)eF,[e5][ Xy, . . X
The following lemma can be inferred from lemmas 4, 5 in Grigor’ev & Vorobjov (1987)
(see there the corollary after lemma 5; of. also Vorobjov & Grigor’ev, 1985).
LemMaA 7. Let a point 2P e F3* 1.

(a) For each component of connectivity V, of the variety {g(z®) =0} = F3, provided that
V, is situated in a certain ball, and for every vector 7= (y2, - - - y,) €T the system of

equations Nz
o9\ 12 dg(z ))
(2N — 2 =,..
9() ( 0X, Nys 1<Zi'ss 0X;

_ ag(zm) 2— __yi‘ Z ﬁg(zm) 2=0 (7)
T\ 0X, N,s 1&7<s \ 0X;
has a root in V5.

(b) There exists a vector y= (3, ..., ¥ such that any solution of system (7), wh_ich
belongs to the space F, is an isolated point of the algebraic variety consisting of all
solutions of system (7) in the space F3.
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We recall that Fy = F3[,/—1] is the algebraic closure of F5. Lemma 7(b) entails, in
particular, that for a relevant yeI’, system (7) has only finite number of solutions in the
space F3.

In order to verify formula (6) in a certain point z3, it is sufficient to test, whether there
exists a component of connectivity ¥; of the variety {g(z¥) =0} = F§ and a point xe V,
from some representative set for the variety {g(z®) = 0} (considered below) such that the
inequalities fi(z®)(x)+&, >0, 0<i<k hold, taking into account that signs
sgn (fi(z*)+e;), 0<i<k are constant on V, according to lemma 6(b). As a
representative set of the points x, the algorithm will take solutions of system (7) in the
space F3, this family of points x suffices in view of lemma 7(a) and the observation that if
sgn (fo(z®)(xM)+¢,) > 0 for points x'*) € V; belonging to some component of connectivity
V; of the variety {g(z'*)) = 0} < F§, then V5 < Do((z0 +2¢,)"3).

Let us fix for the time being a vector yeI” and denote h; =g,

g '\ Vi dg 2 .

s | — ] — = _— ) Z”"’ZH’X""’Xs;z*{S.
£ <6Xj> Nys 1<Ziss 0X; e Qle,, &31[Z, 1 1 j<s

We introduce a new variable X, and polynomials

Ej = Xgegxl'"-'xs(hi)hj(zo’ s Zm XI/XO= .oy Xs/XO)-v 1 S_] gS

homogeneous with respect to variables X,, X;,..., X;. Consider a certain point
z¥eF3*!, one more new variable Y and the following system of equations homogeneous
with respect to variables X, . . ., X, (cf. section 5 in Chistov & Grigor’ev, 1983b; Chistoy
& Grigor’ev, 1984):

]_1].(2(3))_ YXgegXo ..... X0 0; 1<j<s )
over a field F5(Y).
Besides, consider a system of equations
By~ YXfosxon @) = 0 1<j<s ®)

in the variables X, ..., X; over a field Q(e;, e3)(Y, Z,, .. ., Z,). Further, we need some
similar statements about both systems (8) and (8'). Thus, we consider an arbitrary field F
(of zero characteristic), a vector Z e F"*! and a system

B(Z)— Y Xferro -0 = 0; 1<) <s. 8"

Define the field H, =F(Y). Later we consider two cases: F=F, and &=z or
F=Q(e, e)Zo, - . ., Z,) and F=(Z,, . . .. Z,).

PROPOSITION 3. System (8') has a finite nonzero number of solutions in the projective space
P*(H,) (see section 5 in Chistov & Grigor’ev, 1983b and also Chistov & Grigor’ev, 1984).

Proor. We define T, = 1/Y, then H, = F(Y,) and system (8”) is equivalent to a system
erlj(g)"‘deegx"“"'x’mj) =0; 1<j<s

(i.e. the varieties of solutions of the latter system and system (8") in the space PS(H,)
coincide). The latter system has a finite nonzero number of solutions iff its u-resultant
(Y1) e Fluo, - . ., u][Y;] does not vanish identically. On the other hand, 2(0) # 0, taking
into account that #(0) equals to the u-resultant of the system Xgesxo-.x:®) = 0; 1 <j<s
having a finite number of solutions in P(F). This completes the proof of the proposition.
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Consider now system (8") in the variables X, . . ., X,, Y over the field F and the variety
of its solutions Uy < F**2,

PROPOSITION 4. The irreducible (over F) components ¥, < F**2 of the variety Uy that are not
situated in any union of a finite number of hyperplanes of the kind {Y = f}, where BeF,
correspond bijectively to the classes of solutions conjugate over the field H, in the space
PS(H,) of the system (8"). Under this correspondence, if J < F[Y, X, . . ., X,] is an ideal of
a component ¥;, then H; ®pJ = H{[X,, . . ., X,] is an ideal of the corresponding conjugate
class. Furthermore, dim ¥%;=2 for each t (see section 5 in Chistov & Grigor’ev, 1983b and
also Chistov & Grigor’ev, 1984).

Proor. Indeed, denote by Jy, (resp. Jp) the ideal, generated by the polynomials
h(Z)— YX o8 for 1 <j<s in the Hj-algebra Ay, =H;[Xo, ..., X] (resp. in
F-algebra Ap = F[Y, X, ..., X.]). Then

Ay, = H, ®rAr = (F[Y]\{O})_IAF”

Therefore, there is a bijective correspondence preserving the inclusion relation between
prime ideals £ Ay, and on the other hand, prime ideals #{’ <Ay such that
#9 A F[Y] = {0}; besides, under this correspondence # = H, @y #§ (see Lang, 1965).
Apart from that, to every prime ideal #{’ such that #@PnF[Y]={0} corresponds a
variety ¥yp < F**? irreducible over F, which is not situated in any union of a finite
number of hyperplanes of the kind {¥ =p} for feF (and conversely). Denote by
Vg < PS(H,) a variety irreducible over H, corresponding to a homogeneous prime ideal

@, provided that #9 # (X,, ..., X,). Let #@ > Jy, (resp. #¥ > Jp) be a certain
prime ideal homogeneous (resp. homogeneous relatively to X,, ..., X;) and minimal
among prime ideals containing Jy, (resp. Jp). In other words, the factor ideal #@ /Jy,
(resp. #¥/Jp) is a minimal prime ideal in the factorring Ay, /Jy, (resp. Ag/Jr). Hence, ¥ 4
(resp. ¥ 4y) is an irreducible (over H,, resp. F) component of the variety of roots of system
(8") in the space PS(H,) (resp. F**?), taking into account that #{ # (X,, ..., X,) since
system (8”) has at least one root in the space PS(H;) by proposition 3. This entails the
correspondence claimed in proposition 4 between components #; and, on the other hand,
classes of solutions of system (8”) conjugate over H,. Finally, for each 7] there is a
suitable prime ideal #{ such that ¥; = ¥, therefore

dim ¥ = deg trp(Ag/ #¥) = degtry((H, ®pAp)/(H, @ F )
= deg trp(Ay,/#R) = deg trg (A, /FH) +1=dim V9 +2 =2

(the latter equality follows from proposition 3). The proposition is proved.

PROPOSITION 5. The variety B
(Ur)n{y=0yc oo
t

considered as a subvariety of the space F**' with coordinates X, ..., X, is a union of a
finite number of lines passing through the origin of coordinates. Besides, for every isolated
solution (x,, ..., x,)€F* of system hy(¥)=...=h(%)=0 (obtained from system (7) by
replacing the point z® by the point %) its cone (which is a line)
{(h AXy, - . oh AXS)ser} = F*T1 is a component of the variety

(e {r=0}

irreducible over the field F.



84 D. Yu Grigor’ev

Proor. For each ¢, by virtue of proposition 4, dim¥/=2. Apart from that,
¥%n{Y =0} g%. Therefore, dim (% n{Y=0})=1 according to the theorem on the
dimension of intersection (see Shafarevich, 1974). Furthermore, the variety ¥, n{Y =0} is
homogeneous since ¥/ is a component of the variety, consisting of solutions of system (8"),
which is homogeneous relatively to the coordinates X,, .. ., X,. Thus, %n{Y=0}isa
union of a finite number of lines passing through the origin of coordinates.

Taking into account that con = {(4, Axy, .. ., Ax),.5} < Upn {Y =0}, one can infer that
there exists a certain irreducible component ¥ < U, of the variety Up which contains
conc ¥ If ¥" = for some ¢, then con is a line being a component of ¥ n{Y =0} and
the required statement of the proposition is valid. Otherwise, ¥ is situated in a union of a
finite number of hyperplanes of the kind {Y = B}, therefore, ¥ {Y =0} because of the
irreducibility of ¥ Denote by # < PS(F) a projective irreducible variety such that the
cone con(#7)=7v. According to theorem on the dimension of intersections (see
Shafarevich, 1974), dim7">2, hence dim# >1. On the other hand, the point
(Lix;:. .. 1 x;)€ # is an isolated solution of a system h,(%) = . . . = h(%) = 0. This leads
to a contradiction with the fact that % also satisfies the latter system. The proposition is
proved.

In the sequel we shall make use of the following construction from Lazard (1981).
Let  go,. . gu-1€F[Xo, ..., X;] be homogeneous  polynomials of degrees
0920,>...20,_,, respectively. Introduce new variables Ug, ..., u; algebraically
independent over a field F(X,, ..., X,). Consider a polynomial g, = Xouo+ . . . + X,u,
and set

D = Z 5i—s,
0<iss
where 6,=...=0,=1 if k<s. Denote by &; (resp. %) a space of homogeneous

polynomials in the variables X,,... X, of degree D—§; (resp. D) over the field
F(u,, . . ., u;). Consider alinear mapping o/ : #, @ . . . ® % — A over the field F(uy, . . ., u,)
given by the formula

M(bo, . ey bk) =0 gibi'

i<k

<n+D—5i) <n+D>
pi = H T=
n n

binomial coefficients. One can write an arbitrary element b = (by, ..., b) € B, ® ... @ %,
in the form

A

Denote by

b= (bo,la BT bO,po’ b1,1» cen bl,plu B bk,l» Cee bk,pk)a

where b, y,...,b;, are the coefficients of the polynomial b;, provided that some
numeration of monomials of degree D—4, is fixed. Similarly, one can write elements from
the space #. In a chosen coordinate system the mapping o/ has a matrix 4 of size
tx(_ Y p). The matrix A can be uniquely represented in a form 4 = (4™, AYY), where

0si<k
A™ (we call it the number part of A) contains  }° p; columns and AL (we call it the
O<ig<k—-1
formal part of 4) contains p, columns; furthermore, the entries of 4™ belong to the field
F, the entries of A are linear forms in variables Ug, . . ., U over F.

The next proposition is a certain effective version of Hilbert’s Nullstellensatz.
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PROPOSITION 6. (Lazard, 1981). 4 system g, = ..=g,_, =0 has no roots in P*(F) iff the
ideal (o, . - > Gi—1) = Xo» - . ., X)P.

The proof of the next proposition is based on the latter one.

ProposiTION 7 (Lazard, 1981).

(@) A system go=...=gy_, =0 has a finite number of roots in P(F) iff rank
rank (A4) = t; in parts (b), (c), (d) we suppose that rank rank (A) = 1.

(b) All ©x 1 minors (by a minor we mean the determinant of a submatrix) of matrix A
generate a principal ideal whose generator R € Fluy, . . ., ug] is their greatest common
divisor.

(¢) a form R homogeneous relatively to the variables u, . . ., ug is a product

R= [] I

1<i€D>
of linear forms o 3
Li:o;séj uj’ 1$1<D2
with coefficients from F, furthermore, (&: ...: )€ P*(F) is a root of the system
go=...=gx—1 =0 with the multiplicity e;.

(d) Let A be a nonsingular t Xt submatrix of A containing tank (A™) columns in the
number part A™ (obviously, such a submatrix exists). Then the determinant det A
equals to R up to a factor from F*, besides,

degR=D;= Y e =1—rank(4").

1<€isD2

We shall apply later this proposition in the case when k =n. In this case, R coincides
with the classical u-resultant of the system of the polynomials g, . . ., g,—;. We shall make
use of the suggested explicit form of R.

The algorithm constructs a matrix 4 with entries in the ring

Qley, &31[Y, Zos - - s Zps g, - - -, Ug)

corresponding to system (8') considered in the variables X,, ..., X;. Denote by A ey
(resp. Ag) a matrix corresponding to system (8) (resp. (8”)) and obtained from matrix A4
by substituting the coordinates of the vector z¥ (resp. &) instead of the variables
Z,, ..., Z,. Denote by

ReQley, 83, Y, Zg, . . s Zy» g, - - -» U] (r€SP. Ry € Fa[ Y, ug, .. ., ug],

resp. RyeF[Y,ug,...,u]) the u-resultant of system (8) (resp.(8), resp. (8")) (see
proposition 7(b)). u-Resultants do not vanish because of proposition 3. One can assume
w.lo.g. that Y[R, Y[R, Y[Ry, otherwise one divides the respective polynomial by
the highest possible power of the variable Y.

Consider arbitrary polynomials E,...,B,€F[Y, X,, ..., X;] homogeneous in the
variables X, ..., X, such that the variety | ] # (see proposition 4) coincides with the
t

variety of all roots in the space F**? of the system H,=...=E,=0. By virtue of
proposition 4, the variety of all roots of the latter system over the field H, coincides with
the variety Uy, = P5(H,) of all roots of system (8"). Owing to proposition 3, Uy, has a
ﬁmte number of points; denote by A, a matrix with t, rows corresponding to the system
Ey=...=E,=0and by 0+ RyeF[Y,uq, ..., ug] its u-resultant. Again, dividing R, by
the highest poss1ble power of Y, we can sssume w.lo.g. that Y[ R,.
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Proposition 7(c) entails that
R =TI Ro =]
J

where the linear forms L‘”—é‘”u + ... +E&9Du; correspond bijectively to the points
(&P, L 1 &P e Uy, of the variety Uy, . Furthermorc the integers 9;, y; are positive. Hence,
the relations R,|(Ry) and Ru|(R,)" are valid in the ring H,[u, ..., ug] for relevant
integers %, y. Therefore,

R0, g, . - -, u)l(Re(0, g, . . » g))) and Ryp(0, tg, . . -, (R0, thg, - - -, 1))’
are true in the ring Flug, . . ., 4.
Consider a system
20(0, Xg, .- X) = ... =E, 0, Xo, ..., X)) =0.
It has a finite number of roots #" < PS(F) and herewith the cone
con(¥#) = (Ltj Y)n{Y=0} = F**!

(see proposition 5). The matrix A,(0), corresponding to the latter system is obtained from
the matrix A, by substituting O instead of Y. Let A(0) be a certain nonsingular X7y
submatrix of the matrix A,(0), containing the maximal possible number of columns in the
number part of 4,(0), then

det (A0)) = T] L

is the u-resultant of the system
o0, Xgy - - X = ... =5,0, Xo, ..., X) =0,

where the linear forms L; correspond bijectively to the points of the set #” according to
proposition 7(b). Denote by A the 7, x t; submatrix of the matrix Ay formed by the same
columns as the matrix A(0). Then det (A) 0 and, by proposition 7(b), R|det(A) in the
ring H,[u,, . .., ug]. Hence, R0, ug, . . ., ug)|det (A(0)). Thus

RQ«’(O, uo, v ey us) = n L‘r:;

is fulfilled for suitable integers ¢;. Our next purpose is to show that each ¢; > 0.
Denote by #¥ < F[Y, X, . . ., X,] the prime ideal defining the component ¥;, and by
M < H,[Xo, - . ., X,] the prime ideal defining the class of points of the variety Uy,
on_]ugate over the field H,, that correspond to each other by proposition 4. Introduce a
polynomial

E(Y, Xo, .o ey XS) = RQ’(Y, - Z uiXi, u1X07 .y uon) = Z E]ul
1

1<i<s
where the polynomials E;e F [Y Xo, ... X,] and uf =ul’ ul* is a monomial respective
to a multi-index I =(l,, ..., [). Let a point (&y: .. .: fs) € UH1 and
(1)(140, PR us) == 50“’0 PPN +ésus

be the corresponding linear form. Consider a polynomial
ED(Xo, - X) =Lj) (- Yow X, u Xe,. U Xo)

1<iss

=""éo Z uiXi+élu1X0+...+ésusXOEH—1[X0,..., Xs, ul,..., us].

1<i<s
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Obviously,
E(Y, Xo. .., X) =[] (B (X, - . ., X))
Then !
= E\V(¢&,, ... E)eH uy, ..., ul,
an(.i, conversely, if E}O”(CO, .. {)=0and some of the {,, .. ., {, does not vanish, then the
points

(oo &) =(lo:...:L) e PX(H)Y)

coincide. Therefore

0= H (E}“(Em L] zs))” = E(Y, EOa LG ] zs)

for every point (&;:...: Es)e Uy, This implies that a polynomial E, e #{f for each I, t.
Hence, by virtue of proposition 4, E;e #%. This means that the polynomial
E(Y,Xq, ..., X, vanishes on the variety (U ¥;). Therefore, the polynomial
E(0, X, . . ., X) vanishes on the variety

(U7)n{y=0}

t

By the above arguments, this entails that, for any point of the variety
() {y =0}

iQ‘R,“I’(O) UO, o ey us) = H E{.
This completes the proof of the following

and its corresponding linear form L;

PROPOSITION 8. Let Ry be the u-resultant of system (8"). Then
R0, ug, . . ., ug) = H LG
for appropriate positive integers c;, where the linearforms L;={ouo+ ... +{u,correspond
bijectively to the points ({y: ... (e W of the set W < P(F) such that its cone
con(#) = (sz ¥)n{Y =0}

Applying lemma 7(a), (b), proposition 5 and proposition 8 to a point & =z® e F}*!
one can infer the following

COROLLARY. A point 22 e F3*1 satisfies formula (6) iff there exist a vector

Y= (YZ:' L ys)el"

and a linear form L;=&Quy+ . .. +&Pug such that LR, ug, . .., u;) and EP 0.
Furthermore, the point (ED/ED, .. ., EV/EQ)eF5 belongs to the space F3. Finally, the
inequalities

S, D, ., B e, >0; 0<i<k
are fulfilled.

Our next aim is to contruct a polynomial
‘po(ZO’ e ey Zn)e@[ﬁl, 63][20, e vy Z”, uo, -t .y us]
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and a polynomial

P(Zo, ... Z)eQley, 851 Zos - - - Z,]
such that
Vo(Zor -+ Z2) = A [T RO, Zo o Zys g )
is a product (up to a factor 2€ F3(Zy, . . ., Z,)*) of all linear forms L; = {Pug+ ... +(Py,,
iel which are factors of the polynomial R(0, Zy, ..., Z, u,, ..., ug) such that
PeQley, e3)(Zo, - - -» Z,), {9 #0 and, besides,
Yo(z®) = A [] BYR,6(0, g, . . ., uy)
ieJ

is a product (up to a factor 1€ F¥) of all linear forms
L= (&Quo+ ... +EPu)R,(0, ug, . . ., u), i€l

such that {PeF;, £ #0, provided that P(z®)#0, where a point z¥e Fi*1 (cf. the
construction from Chistov & Grigor’ev, 1984).

Now the algorithm applies the Gaussian algorithm to the matrix 4. Let p steps of
Gaussian algorithm be already carried out and let (i, j,), . . ., (ip-1.Jp-1) be a sequence of
leading entries, herewith j, <. .. <Jo-1-> and i, # i, when a3 f. By the current step the
matrix 4 is reduced by elementary transformations to a matrix A® = (a®) (at the
beginning A‘” = 4) with entries from the field Q(e,, £5)(Z,, . . ., Z,, Ugs -+ oy Ug).

Moreover, a{? =0 if either Jp-1<Jj<jg for a certain 0K < p—1, or j=j, for some
O0<p<p—landis#i,forall 0<a<<p—1, or j=j, for some 0< < p—1and i=i, for
some 0 < f <o < p—1. The next leading entry (i,,J,) 1s picked out so that j, is the least
possible index such that j,_, <j, and a?; #0. For each i different from all i, . . ., i, set
the entry a*! = af) —a? 4} /a¥); (an elementary transformation over rows with the
leading entry (i,, j,)). This completes the description of applying Gaussian algorithm to
the matrix 4 and producing matrices 4 = A®, ..., A=Y where  is the number of rows
in the matrix 4, taking into account that rank(4)=1 by virtue of proposition 3 and
proposition 7(a).

Leti##i, forall 0<a<p—1andj#j, forall 0< f < p—1. Denote by A¥ a submatrix
of the matrix A, formed by the rows iy, . . ., l,~1,1 and by the columns jq, . . ., j,—y, - It
is well known (see e.g. Heintz, 1983) that a;; = det(A¥")/det (AP ). This statement, as
usual, guarantees that the Gaussian algorithm can be realised within the available time
(see section 5 below).

After carrying out the Gaussian algorithm, the algorithm under description calculates
polynomials

Yi=aQy .. .af" =det(AFTD )

nd 10s jo * -1 Ji—-1 br=1sJr=~1
a
— () ye—p (p)
Po= I (@)= ] det (A)
Ospsr—1 O0<spse—1

from the ring Q[e,, e5][Y, Zy, ..., Z,, ug, . .., u]. Denote by p, the unique number such
that the entry af%) . belongs to the number part of the matrix 4 and the entry al®
belongs to the formal part of A. Because of the choice of entry af??’; ~with the least posgibfe
Joo One deduces that the rank of the number part of 4 equals p,. Therefore, proposition
7(d) implies the coincidence of the polynomial y/, with the u-resultant R of system (8') up

to a factor from (Q(e,, &3)(Y, Z,, . . ., Z,))*. Observe that if

0# Pz eF[Y, uy, ..., ul,
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then the polynomial /,(2®) coincides with the u-resultant R, of system (8) up to a
factor from (F,(Y))* again according to proposition 7(d).

Let us write -
l/’l = Z l/J(lj) Yja
jo<j
where the polynomials
w(lj)(ZO’ LIRS Zn)EQ[gla 83][205 v Zn> Ugy -+ oy us]s
furthermore, ¥/ 0. Then the polynomial
RO, Zg, ..., Z,, upy . ., U € Qley, £31[Zo, - . -y Zyyy Ugy - + -, U]
coincides with the polynomial /¥ up to a factor from (Qe,, £3)(Z,, . . ., Z,)*. If
0 #* ‘//(IjO)(Z(S))GF_B[an LT us]
and P,(z?) 50, then the polynomial
R0, ug, . . ., u) € Fs[ug, . . ., u]

coincides with the polynomial ¥{(z®) up to a factor from F¥.

We write , .

VO = 3 g,

m<mg

where the polynomials
Y9o"™(Zo, .. Z,)eQley, 651[Z0s + « o Zny Uy + . -y U],

furthermore, Y™ s£0. Then a polynomial ¥{>™ coincides up to a factor from
Fy(Z,, ..., Z,)* with the product
H E;IR(Oa ZOa LI Zn: LRIRY ) Zn: an RECEETY us)
i¢gl
of all linear forms .
L;={0uy+ ... +{%u, i¢l

being factors of R(0, Z,, . . ., Z,, o, - . -, u;) such that (P =0; {?eQ(e,, e)(Zo, - - ., Z,)
(see proposition 8). If

0 # lp(ljo‘mo)(z(a))EI?V'S[ul’ CRNETY us]

and P,(z®™) # 0, then a polynomial y{o-"(z®)) coincides up to a factor from F¥ with the
product [] L R,(0, ug, . . ., u;) of all linear forms
i¢J

Li=EQuo+ ... +&u
being factors of R,a(0, uq, . . .,u,) such that ¢§ =0; £PeF; (see again proposition 8).
Hence, the desired product
T RO, Zo, - - > Z, thgy - - - 45)

iel
of all linear forms » )
L;={Oug+ ... +{u, iel

such that {{ # 0, coincides up to a factor from Fy(Z,, . . ., Z,)* with a quotient

lP(IjO)/w(ljo,mO)E@(sl, 53)(ZOa ce Zn)[uoa Ugy ooy us]’
hence
Yo o € Qey, 83)(Zos - - s Z) ks - - 2 ]
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for each m < m,. Similarly, the product
T ZiIR.a(0, ug, - . ., 1)
teJ
of all linear forms _
=EDug+ ...+, ied

such that & # 0; &P F; coincides up to a factor from F¥ with a quotient

WO TN (D) € Fyluo, uy, - - - 1]
Hence, , . _
Wm0 e Fyluy, . . . ug]
for each m < my, provided that /Yo ™)(z®) s£ 0 and Pl(z‘j”’) # 0.

After that the algorithm calculates the quotient y{o/y/§°-™ factoring both polynomials
Yo, yhjome over the field Q(ey, €3)(Zo, . ... Z,) using proposition 1. The quotient
(/o ™) (z3)) is obtained by substituting in the quotient (y/7/y)¥* ") the coordinates
of the point z® instead of the variables Z,,..., Z,, provided that {omo(z3) 0,
P,(z®) #£0. We represent §ofe-mo = xﬁo/P% for a certain polynomial
P,eQle, e51[Zg, - - -, Z,] of the least™  possible degree and
Yo€Qley, 831 Z0s - - s Zys g, - - - U] IF Py(z®) #0, §§om(z3) 0, Pi(z¥)#0, then
Wo(z®) coincides with (Y/§2/o-m)(z3) up to a factor from F¥ and thus, with the
product

H El‘ |R3(0, ug, . . ., ty)
ieJ
of all linear forms
Li=&ug+ ...+, ieJ

such that £ =0, &P e F; up to a factor from F¥. So, the polynomial y/, is constructed.
In order to produce a polynomial P, represent

Z 51((1)(20, .. n)uKi}) fgl)YKgL),,

Vo = 3 2o ZEP

where
KO = (K, .. KD,  KP = (KP,.. ., K)

are multi-indices and the polynomials
55’(1()1):' (2()2)601[81, 83][20, ey Zn]'

Pick out some multi-indices K, K® for which 8¢/, # 0 and 6@}, # 0. Finally, we put the
polynomial P = 6,085 P,. If P(z3) 0, then Py(z®) %0, y{omol(z3) 0, P,(z®) #0.
This completes the construction of polynomials ,, P

Thus, based on the above corollary, we have proved the following

LemMa 8. A point 2% e F3*! such that P(z) 9& 0 satisfies formula (6) iff there exist a vector
Y= Y2, ..., 7)€l and a linear form L, = EPu, + EDug such that L;|yo(z?) (therefore

EQ#0). Furthermore, the point (ﬁ“’/f“) .. ,é("/fg’)ng belongs to the space F5, and,
finally, the inequalities

fi(#?, EP/EQ, . ., EP)ED) +e, >0, 0<i<k
are fulfilled.
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With the aid of proposition 1 (see introduction) the algorithm factorises the polynomial
Yo over the field Q. Since Y, is a product of linear forms, its irreducible factors
QeQle;, €3, Zos - . £y, Ug, . . ., U] correspond bijectively to classes of linear forms L,,
which are conjugate over the field H, = Q(e,, &5, Zy, . . ., Z,), moreover, the product of all
linear forms L, from the considered class corresponding to ©Q, equals to Q up to a factor
from H,.

Now fix Q for the time being and define D, = deg,, . ,.(Q). Let a linear form

L, = ({8 uo+ ... +{Mu)iQ

be a factor of Q, consider a field

HY = B/ - 10/
being a finite extension of H,. Let §: H}’— H, be any field embedding over H,. Then
S(Ly/C8") = Ly/C§ = uo + (P08 uy + . . . + P/,
for a suitable unique index p since §(L,/£§")|Q. Therefore, there exist not more than D,

embeddings, hence the field degree [HY’:H,]<D, (see Lang, 1965). In fact,
[HY:H,] = D,, taking into account that a polynomial

1;[ 5(Lv/cg))EH2[u0’ tet us]

is a factor of the polynomial Q irreducible over H,, where the product is taken over all
embeddings §: HY'—> H, over H,. This entails the existence of integers 1< 4; <Dy,
1 €i< s such that the element
0= 3 AL
1<i<s
is primitive in the field H,[6"] = HY’ by virtue of the theorem on primitive elements (see
Lang, 1965).
The algorithm considers all s-tuples (A, ..., A, where 1 <A® <D, 1<i<s. For
each s-tuple (A, .. ., A{?) it checks, whether the element
o= T IS
1<iss
is primitive over the field H,, in the following manner. Substitute in the polynomial Q the
vector (=2, ..., —A?) instead of (¥, ..., u,). Then a polynomial

£2O(uO) = Q(u09 _'1(10)5 EIRIERY _2&(?0))
= (H CE)V))(]_—[ (uO_eg)))e Q[EI’ 83][203 ey Zns uO]'

Since Q,(6%’) =0 and deg, (Q,) = D;, the element 6§’ is primitive in the field HY” iff the
polynomial Q, is irreducible over the field H,. The algorithm tests its irreducibility with
the help of proposition 1 and thus, finds a primitive element
O = 3 AE/E)
1<iss

and its minimal polynomial

® = Qo/([1 28").
Then the algorithm produces for each element
WY = @O = T, (@ /5Oy eH,[0V] = HY
0<i<

\J\Dl
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its expression via 6", where the polynomials
a}i), b € @[813 83][205 LRI} Zn]
For this goal consider a polynomial
Q= Q= Ay, m i gs =D tly — Ay e sy — A

= ([TCONLT (o — 08+ (L/L8)uy)

and factorise it over the field HY? based on proposition 1. Then we obtain a linear factor
U — O+ (L/LE)(O)u; of Q; and as a result the expression (S YICRY
Thus, the algorithm has produced a polynomial
= > (4/ATeH,[T]
o<
irreducible over H,, where o, feQ[e;, &31[Z,, .. ., Z,] with the leading coefficient
le4(®) = 1. The expressions
MO = 3 (/b)) e H,[6™]
0<j<D;
and the integers 1 <4, <D, 1 <i<s satisfy the following properties. For each root
o€ H, of the polynomial ® the equality
o= > A( 3, (a/b)6))
1<i<s 0<j<D;
holds, furthermore, a linear from
L% = (uy+ (Y (@/b)ohu)Q
1€7<s 0<7<D,
divides the polynomial Q in the ring H,[0,][uo, ..., 4] and I®) =L /(§ for an

appropriate index v; conversely, every linear form L,|Q dividing Q equals L, = {10 for
a suitable root 6, of the polynomial Q. The fields

H,[00] ~ H,[TI/®) = Ho[6™] = H (/L. . ., (/L8

are isomorphic. Further, we assume that any element ne H 2[00] is represented in the

form
n=_3 ubh
0<j<Dy

Then Q= [{%)y®) for a certain polynomial 2% e Hy[0,][uo, . . ., u;] homogeneous in
variables uo,...,u; of degree D,—1. The algorithm finds the coefficients of the
polynomial y® factoring the polynomial Q over the field H,[6,] with the aid of
proposition 1. Let us denote by L™, x'™ e H,[T1[u,, . . ., u,] the polynomials obtained by
replacing f, by the variable T in the polynomials I¢%), y%), respectively. One can show
that the polynomial

Q=LY M) = ®r, €(®) < H,[T][uo, . . ., ug]
belongs to the principal ideal (®). Analogously, taking into account the equality
0= 3 MUY

1<i<s
one deduces

1<iss

T— Y A (@b = dr,e(®).



Complexity of Deciding Tarski Algebra 93

Let us write

. . o T
209 =Y (@ /b8, 1, =Y (/BT rz=z°‘f; ,
J J Jj 2

where the polynomials by, f,, B, €Qfey, €3, Zy, . . ., Z,] and the polynomials

Gi15 %15 % €Qley, &3, Zo, -« - Z,1[ug, . . ., ug].

Assume that a certain point z® e F2*?! satisfies the following conditions:

((bby BB B2)(=) # 0) & (V (9,(z™) #0)),

and let 89 ¢ F, be one of the roots of the polynomial ®(z'®)(T) e F5[T]. Then the linear
form I(z®)Qz®) divides the polynomial Q(z®) in the ring Fi[ug, ..., u.], since
(@1,)(z)(6®) = 0. So the linear form I (z®) is collinear to one of the lincar forms L,,
in the factorisation

Q@) =[] &
P1

(cf. above the factorisation of ¥o(z*)).
Let us denote by
D = Res(®, @F) = (a,/b,) € H,

the discriminant of polynomial ®, where a,, b, are polynomials in Q[ey, &3, Zy, . . ., Z,].

LEMMA 9. Let a point 2 e F3*! satisfy the conditions
((bby by BB B2)(z) # 0) & (91(z™) # 0) & (D(z!) # 0). ®

Then
Q™) = & [] L4 ()

for an appropriate 0+ € Fy where the product is taken over all roots 02 eF, of the
polynomial ¢(z3)(T). Moreover,

() A3)
© _ (5 EE7) o
0., /11(; ) (69)

1<iss

where ®(z3)(6%) = 0.

PROOF. The linear form L% (z)|Q(z) divides the polynomial Q(z'¥) for all x according
to the facts proved above, furthermore 0 # 62 when %, # x, since D(z¥) #0.
Finally,
aP(z?)

9§c0) = L Ees A <; b(z(3)) (GLO))j),

in view of the equality (®7,)@®)OL)=0. Therefore all linear forms L) are
pairwise distinct for diverse x, and so [ ] L%"(z®)|Q(z*), where the degrees of both these

polynomials are equal to deg(®) = deg,,, .. ,,(Q). This completes the proof of the lemma.

The conditions (9) concern the case of a fixed vector yeI' and an irreducible factor
Q|¥,. We introduce a hypersurface .# consisting of all points z¥e F3™! which do not
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satisfy the conditions similar to (9) for at least one vector yVeI” and one irreducible
factor Q'V|W¥,. Then the degree

deg(#) < N, = (card I')((deg yo)(deg (bb, b, B, B, D)) deg ¢,

(an estimate on N, will be found below in section 5). Let us denote N = Nyn+1. It is easy
to construct (see e.g. section 2 in Chistov & Grigor’ev, 1983a) linear forms Y, ..., Yy
over integers in the variables Z,, . .., Z, such that any (n+1) among them are linearly
independent (one can set, for example
Y=Y iZ).
0xj<n

Let us fix a certain point z®eFi™!, We assert the existence of indices

1<i; <...<i,< N such that the line

ED+2{Y, = ... =Y, =0)),5, < FiH!

is not situated in the hypersurface % (cf. section 2 in Chistov & Grigor’ev, 1983a).
Arguing by induction on 0 <j < n, we assume that j < n and indices 1 < L <...<i<N
are already found, for which

dm(LAED+AY, =.. .= ¥% = 0}),5) = n—j.

There is an index 1<i< N such that the linear function Y,— Yi(z®) does not vanish
identically on any irreducible component of variety

PO, = = Y= 0,

Otherwise, on some irreducible component at least (n+1) functions among
Y=Y, ..., Yy— Yy(z®) vanish, taking into account that the number of irreducible
components is less or equal to

deg (gm(z(3)+l{yl'1 =.00= Yij= 0})}“61:_'3) < deg(g) < Nl

by virtue of Bezout’s inequality (see Shafarevich, 1974; Heintz, 1983). This leads to a
contradiction with the property of linear forms Y, . . ., Yy and proves the existence of the
desired index 1 <i< N. Let us add index i to indices iy, I, reorder them in increasing
order and get the indices 1 <i, <...<1i;,; <N. Therefore, if a point z® is defined over
the field Q(e,, £3), then the intersection

LEP+MY, =... =Y, =0)),.5,

consists of a finite number of points which are defined over the field Q(eyq, €3)-

For any sequence of indices 1 <i; <...< i, <N, let us pick out an arbitrary vector
0+#uv, ;e€Q""! lying on the line {Y,=...=Y, =0 c 1+, Furthermore, we
require that one of the coefficients of vector Uyy,...i, €quals 1. Then for any point ze Q"*!
there exists a sequence of indices 1< ij<...<i, <N such that point
2@ =z+ev, , €Fi*! does not belong to the hypersurface %, taking into account that

the point z® is not defined over the field Q(ey, &5). According to lemmas 8,9 point

zZ® e F3* 1\ & satisfies formula (6) iff there is a vector yeT, an irreducible factor Q|y, and

a root @ e F; of the polynomial ®(z@)(T)e Q(ey, ¢, &3)[ T] for which the inequalities
a(z) a9z

.f; (Z(Z)’ Z b(Z(Z)) (0(0))j9 cr L W (0(0))j) +81 > 09 0 <i < k
J J
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are valid. Here, we use the observation that the point

(1)(,(2) (8)((2) ) _
(; az,(i(ZZ))) @y, ... % a;)(gz))) (9(0))’)61‘"‘;,

j

where ®(z?)(6”) =0, belongs to the space Fj iff 6 e F, since

(i)(Z(Z)) )
9 — (v 4% (0)\i
1szi:ss 4 <; b(Zm) ™ )
by virtue of lemma 9. We recall also that lemma 9 implies that the linear form
() 5(2)
1Oy ,@)y = 4@ song)
(Z ) u0+ 1$zigs ; b(z(z)) (8 ) u; | € F3[u03 LY us]

divides the polynomial Q(z'¥). Thus, in view of lemma 6(c) we have proved the following
lemma, in which we use introduced above notations.

Lemma 10. A point ze Q"+ satisfies formula (5) iff there exist a sequence of indices
1<iy <...<i, <N such that the point z*) =z+¢,v, ; ¢%. Furthermore, a vector yeT,
a factor Q of ¥, irreducible over Q and, finally, a root T =8®eF, of the polynomial
d(zP)(T), where the polynomial ® is associated with the factor Q, such that the inequalities

alP(z? ) a9z . -
S (Z(Z)’ 7 _;??Z(T’)z Y, .. - 2(2(2))) (9(0))’) +e >0, 0<i<k
J J
are fulfilled. Here, the linear form

ah
Bo) = uo + ZJ_ 6‘] ui
1<iss b

J

being a factor of the polynomial Q was constructed by the algorithm described above.
Furthermore, the point

aV(z®) . al(z'?) N\ =
<j ljv(x‘z)) .- Z;J_(ZW (@Y )5

j

is a solution of system (7) for every root 0V e Fy of the polynomial ®(z?)(T).

4. Verifying Formulas of Tarski Algebra

In lemma 10 a formula of the kind 3 T(P,) is produced which is equivalent to formula
(5) (over @, i.e. both formulas determine the same set in "*1), where P, is a quantifier-
free formula of Tarski algebra with atomic subformulas of the sort (g;>0), with
polynomials g;e Q[e,, &, &51[ T, Zo, . . ., Z,].

Applying the construction from section 2 in Wiithrich (1976) (see also Collins, 1975) to
the family of polynomials {g;}; (which are considered over the real closed field F;) and to
the variable T, one gets a family of polynomials {p,},, where p, € Q[e;, &;, &31[Zo, - - -, Z,]
which satisfies the following property (see theorem 1 in Wiithrich, 1976 and theorem 5 in
Collins, 1975). For every element W® < F3*! of the partition #({p.}.) (see section 1)
there exists a sequence of semialgebraic functions ¢, . . ., q,: W® — F, continuous on W®
(with respect to the topology with the base of all open balls), such that ¢, <...<g, and
the partition, formed by the components of connectivity of the intersection of all elements
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of the partition %({g;};) with the cylinder F; x W® < F{*2, coincides with the following
partition of the cylinder:

F3 X W(f:) = {T< q1(209 ©h ey Z”)} ) {T>qt(ZO’ v ey Zn)} )
U . {qi(Z(), .oy Zn) <T <qi+1(ZO’ R Z")} W)

1sist—

U {T=aq(Z,,...Z)}.

1sist

As above (see section 2), one bounds the formats of the semialgebraic functions q,, . . ., g,
via the formats of {p.}, in the case of the field R and then spread these bounds and the
properties of q4, . . ., ¢, to the field F; according to the transfer principle.

Let us denote

Pe= Z . p(ej"jz’j:‘)ﬁjilﬁézﬁ%a,
J15J2:73
where the polynomials p{t/>#eQ[Z,y,...,Z,] (cf. section 2). We denote by
my: @1 Q"*! the linear projection defined by the formula

7T1(Zo, vy Zn, Xl’ ey .Xs) = (Zo, ey Zn)

In the following lemma we use the notations from the previous section.

LemMa 11. Let a point (29, x®) = (2, ..., 2 x0, .. ., x!%) belong to some component
of connectivity V, of the semialgebraic set

V={(fo=0)&...&(f, > 0)} = Qstr+!

and the point 2 =, (29, xX®) e W, where W < Q"+ is a certain element of the partition
U PG99, 1 o). Then the projection my(V;) > W.

PrOOF. In view of the properties of the vectors {v;, .} constructed in the previous
section, there exist indices 1 <i; <...<i, <N such that 2 =20y, , ¢% (cf.
lemma 10). According to lemma 5(c) there is a unique element Vi< F5*"*1 of the

partition %(g, fo+¢4, . . ., fy+¢;) which contains the component V, = V. Lemma 6(a)
entails the inclusion V < {g > 0} n V), where

VO = ((fo+e,>0)& ... &(fi+2, >0)} < F§Fr+L,

therefore V¥ < {g > 0} n V. Let us denote by V{® the unique component of connectivity
of the semialgebraic set {g >0} N V® which contains the set V{2 < V®. Thus V¥ > V.
By virtue of lemma 6(c) one can find a point (z'%, X) e V{? such that g(z*¥, %) = 0 and
(9, st(%)eV;. Let V{ be the unique component of connectivity of the variety
{g=0} = F§*"*1, which contains the point (z®,%)e V{?. Then V& < V® in view of
lemma 6(b). Consider the unique component of connectivity ¥ of the semialgebraic set

{2, y): yeF3, g(z®, y) = 0} c F5*r* 1,
which contains point (2%, ) e V2. Obviously, V < V{9. Note that
Vi& < Dy, (28 + 22)112),

since fo(u)+ &, > 0 for any point ue V& < V@,
Lemma 7(a), (b) implies the existence of a vector yeI" such that system (7) has a
solution x = (x,, ..., x) e F§ where point (z?, x)e V. Moreover, point x is isolated
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in the variety of all the solutions of system (7) in the space F§. Hence, the linear
form  wg+xuy+...+xu, divides the  polynomial  yo(z?¥),  where
YoeQley, 83, Zg, .. ., Z,, U, - - -, ;] (see systems (8), (8') and lemma 8). Consider some
irreducible (over Q) factor QeQle,, &3, Zq, - - -» Z,, Uos - - -, Ug] Of the polynomial v, for
which (ug+x,u; + . .. +x,u.)|Q(E?).

Let W® be the unique element of the partition %({p.}.) such that z®e W®. Lemma
5(b) entails the inclusion W < W®. For a point ze W® and an element §e F, we denote

(1)
g (z+e0;,. i)
(6, Z)y,Q,i,,m,i" = <Z+820i,,...,im Z : 2 ! 01, R

7 bz+e,u;,, .,i,.)

y a(z+ea0;,,...1)
7 Bz+eav,. )
(see lemma 10). According to lemma 9 and to the construction of a primitive element
in section 3, there is a root 6®@eF,; of polynomial ®(z?P)T), for which
(22, x) = (0, 29), q,;, s, furthermore,
00 =% Ax

1<€iss

Gj) eF53+n+1

for suitable natural numbers 1 < 4; < deg,,,... ,,(Q). Since point x is a solution of system
(7), the following equality in particular is fulfilled:

g((0®, 2, 0,1,...,i) =0 (10)

Moreover, taking into account that point (z, x)e V{® = V{® < V'® belongs to V® the
following inequalities are true:

S0, 2, 0,,..,0) 1> 05 O<is<k 11)

Consider the unique element G, = F;*? of the partition %({g;};) which contains point
(69, e G,. In view of the definition of partition #({g;};) and of lemma 10 for an
arbitrary point (0, z) € G, the value of polynomial b(z+e,v;,, ... ;) # 0 and, moreover, the
conditions obtained from (10), (11) by replacing the point (8”, %) by the point (6, z),
respectively, are valid for the given y, Q, iy, . . ., i,. Furthermore, y € F5, where

(2+62U;’1,,,,,in5 J’) = (09 Z)y,ﬂ.il....,in

satisfies system (7) by virtue of lemmas 8, 9.

One can observe that the intersection G, n(F5 x W®) coincides with a union of some
sets of the sort {(¢u,(2),2)}zeww, Where z runs over all points of the set W® for
appropriate indices 1 <m, <t (see above the beginning of the present section). Otherwise,
suppose that

GiN(F3x W) 2{(0,2): g, (2) <O <gp, +1(@}

for a certain m,, then for any point ze W (for instance, one can take z = z(), there are
infinitely many points of the kind (9, z) € G,, but on the other hand, every such 6 is a
root of polynomial ®(z+e,v;, . ;)T) (see lemma 10), that leads to contradiction.
Consider such unique index 1 <m <t that

Gl a (F3 X W(S)) = {(Qm(z>’ Z)}zeW(E)

and point (09, 29 € {(gu(2), 2)},ewe. Let us define g = g, for brevity. '
For any point zV e W the standard part st((g(z"), 2"), q.5,.....;,) €Q°T""" is defined,
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since fo((q(z™), V), 0,i,,..,1) +81 >0 (cf. (4)), taking into account that for a point
ze W® a point (¢(2), z) € G, satisfies the inequalities obtained from (11) by replacing point
(69, 29 by point (q(z), z). Therefore,

0 < st(fl(q(2), Dy,aiy,...,10) = [i(5t((q(2), 2)y,0,,,...5)), O0<i<k,

provided that = st((q(2), 2),.q,i,....;,) i defined. This means that point
st((q(2), 2)y,0,i,,....1,) € V. For the completion of the proof of the lemma it suffices to show
that for any point zVeW point st((g(z*), z2"), o.;,...;) belongs to V;, taking into
account that

ﬂl(St((q(Z(l)), Z(l))y,ﬂ,il’,“,in)) = Z(l).

Let us fix an arbitrary point z"’e W. By means of lemma 3(b) one can join the points
2@,z e W by a closed connected semialgebraic curve z@, z(0'e C = W~ @y(R), where
ReQ. In view of lemmas 4(a), 5(a) there exists such a closed connected semialgebraic
curve C® = W 9y(R) that C® = st(C®) = C. Consider the image p(C®) of the curve
C® under the action of the continuous on W® semialgebraic mapping

p:z—(q(2), Z)y,ﬂ,i;,...,i“EFg+"+l'

Lemma 3(a) entails that p(C®) < F§™"*! is a connected semialgebraic curve.
We claim that p(C®) = (R +1). Indeed, let us denote

P(2) = p(zo, - - 5 2) = (Z+E20,, 1,0 Y)
for an arbitrary point ze C®. Then the euclidean norm ||z|| < R, furthermore,
le@I* = llz+e50s,,.. 5,1 +I9I? < llzl* +20+26; < R*+R+1

by virtue of inequality (11) in the case i =0 for the point (q(z), z) € G,. This proves the
claim. Hence, the standard part si(p(C®)c@*"*! is defined and st(p(C®)) <V,
according to inequalities (11) (cf. above).

The projection m,(st(p(C®))) = @"** contains both points z®, z1), since C® > C and
n1(st(p(2))) = z for any point ze C = W. To complete the proof of the lemma it remains to
show the inclusion st(p(C®))< V. In view of lemma 4(b) it suffices to check that
st(p(C¥)) NV, # ¢, taking into account that the curve p(C®) <= P,(R+1) is connected
and st(p(C®))<= V. With the help of lemma 3(b) one can find a closed connected
semialgebraic curve C,cV® joining the points (z®,x), (¥, %)eC,. Then
Cy VP < Do o(25”+2e,)Y/?) (see above). Lemma 6(a) implies the inclusion
st(C)cV  since C,cVPcVP<VP<V® On the other hand, point
st(z'?, %) eV, nst(C,), hence st(C;) = ¥, by virtue of lemma 4(b), in particular, point
st(z'¥, x) € V;. Finally, the equality (z®, x) = p(z'?) entails

st(z®, x) = st(p(z”)) € st(p(C®)),
1e.
st(z?, x) e V; N st(p(C®)) # ¢.
The lemma is proved.

Now we proceed to the description of the algorithm which verifies formula (1). Let us
first design by recursion on 0 <« <a—1 (we remind the reader that g is the number of
quantifier alternations in formula (1)), a certain procedure consisting of a—1 stages.
Before the implementation of the first stage the algorithm sets polynomials g{® =1,
0<i<k (see formula (1)). As a result of the implementation of « stages of the procedure
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(we assume here that o < a—2) a family of polynomials {g{}; is produced, where
gja)e@[Xl.l’ “ ey Xl,Sl’ e s Xa_a’sn_m].

The algorithm enumerates all ({g®} )-cells K,, K,, . .. based on lemma 1 from section 1.
Let us fix for the time being a certain ({g®};)-cell K, and let K, = {IT;} for a suitable
quantifier-free formula of Tarski algebra

(& @ =0& & (g7 >0& & (4,<0)

jeJy Jj2eta

(see section 1). Consider the following formula of Tarski algebra
3 Xa—a,l . 3 Xa [ - Ht (12)

and let us apply to it the construction from section 3, taking (12) as the input formula (i.e.
(12) plays the role of the formula (2) in the construction from section 3). As a result, the
algorithm produces a formula of the form 3 T(P,) (see lemma 10). Here the quantifier-free
formula P, has atomic subformulas of the form (g% >0), where the polynomials

+1
gfﬁ t )E@[81, 829 83][T’ ZO: Xl,la LR Xl,sn AR ] Xa—a—l,l% L] Xa—u*l,sa-u—l:]'

We recall that (see (4), (5)) formula (12) is equivalent (over the field @) to formula
31Z,eQ 3 TeF;(P) (being not a formula of the first-order theory). Observe, that we do
not use the latter claim.

As in the beginning of the present section the procedure yields polynomials

Pf?zﬂ)‘—:@[sla &3, €31[Z0s X115+ Xa-a—l,sa_a..lj

by means of the construction from section 2 in Wiithrich (1976) (see also Collins, 1975),
which is applied here to the family of polynomials {g©¥ "}, and to the variable T. Next,
we write
pETD = % plt i e ek,
Ji1:J2:73
as above, where the polynomials
pf‘,"t+1)(jl’j2’j3)5@[20a X1,1’ e Xa—¢—1,sa-,,-1]-

Finally, the procedure applies again the construction from section 2 in Wiithrich (1976)
to the family {p{%"V0viz}, . . .. consisting of polynomials corresponding to the
totality of ({g{®})-cells K, (cf. formula (12)), and to variable Z,. As a result, the procedure
obtains a family {g{** )}, of polynomials

+1 ;
gga )E@[X1,17 .o ey lesl, o .y Xa—a—l,l’ e e uy Xﬂ"d“l,sa—a—l;l'

This completes the description of the recursive procedure which produces the polynomials
{9™}; . Let us denote by {K®}, the family of all ({gi*};)-cells. Note that the procedure
produces also this family. Let us adopt the convention that for a = a, the families {K{"},
and {g{}; are empty.

LEMMA 12. For any element W of partition U ({g™};) of the space Qs+ Fse-a it natural
projection onto the space Q% *%-==1 coincides with a union of a suitable collection of
elements of partition U({g**V'},).
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PrOOF. Let us denote n; =5s;+ ... +5,-,- and consider a commutative diagram

@n1+sa «t2 " @n1+1
ol Lo

e T2

@"1 Sa-a_y @nl’

where all four mapping are linear projections. The space @™ has coordinates
X1+ Xaca-1,5, , .5 the space @™ *! has the additional coordinate _Zy, the space
@ +%-= has coordinates Xy 1+ Xyogs,, and at last the space Qritsaat2 pag
coordinates X Xovsyows Xy tsaegr 12 Zo

The set W < @" ¥~ is a compdnent of connectivity of a certain ({g{*})-cell K, being
given by a quantiﬁer~free formula

(& @ =08 & (@>0& & (g <0)
Jjiely J2eJ2

(cf. (12) above). Let us introduce a semialgebraic set U, = @™ *%=-«*2  which is given by a
formula

IL & (X, 4y gt HJ g\ H (=g =D&
Jiedt J2€J2
(ZO'—X7%1+S,,_°‘+1—X¢12—01,1_ _‘Xaz o, Sq— ,/0)

(cf. formulas (3), (4), herein variable X, ., _, .+ plays a role similar to the role of variable
X, in formula (3)). Then o,(U) =K,

For any point xe K, the intersection o, {(x) " U, < a5 }(x) ~ @2 of its inverse image
with set U, is a connected semialgebraic set. We show that semialgebraic set
07 (W)U, = Q" *%-«*2 js connected. Indeed, let us pick out an arbitrary pair of points
xM, x@eW, According to lemma 3(b) one can find a closed connected semialgebraic
curve C < W N Dy(R) joining the points x™*, x? & C for a certain Re Q. Then set

-1
{(C = (xl,la cees Xg o, Sg - a ( H (g_(ia:)(c)) H (-g&?(c))) '

Jredy J2eJ2

(I @ TT (a0 +stoat g e =

is a connected semialgebraic curve by virtue of lemma 3(a) and, furthermore, the
projection of this curve under the projection ¢, contains points x), x®. This implies, in
view of the arbitrariness of the choice of points x(*), x?, that there is a unique component
of connectivity #" of the set U, such that o,(#") = W and, moreover, o5 }{(W)nU,=#.
Lemma 11 entails that the projection ’

mo) =) <

coincides with a union of an appropriate collection of elements ¥;" of the partition
U({pe;F DRy, L) for the given t. A fortiori
(W) = U
v
coincides with a union of a suitable collection of elements ¥ of a finer partition
U({pF ey, ). According to theorem 1 from Wiithrich (1976) (see also Collins,
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1975), the projection N
o1 (7)) = % c Q"

1

coincides with a union of a certain collection of elements ¥ ,, of the partition % ({g** V'}).
Thus,

(W) = n30,(W) = oy 71,(W) = U Voxs

Vo ¥
which completes the proof of the lemma.

Now we describe one more recursive process, consisting of a stages. At the first stage it
applies lemma 2 from section 1 to a family of polynomials {g{*""},. As a result, the
process produces a representative set {wi" 1V}, <@ for the partition % ({gf*~ 1)};) (see
section 1).

Assume that for a certain 1 < f<a—1 a finite set of points

- S+ ...+
{Wsr‘:;..ﬁ.).,mﬁ}ml,.“,mp < @Sl B

is already produced by recursion. For each point wi#~# , the process applies lemma 2 to
the intersection of partition %({g{"~#~},) with the s, ,-dimensional plane

Emu. {(W ﬁ) m/nx) XEQSﬂ+l} < @Si+ +Sﬂ+1

in other words, lemma 2 is applied to a family of polynomials (in the notations of

lemma 2)
{Qi}; {g(a p- 1)(W(a ﬂ) amg? X)}U
where polynomial

gz b D(W ﬂ) mps X)e@[Xﬁ+1 1302 Xﬂ+1,sp+1]'
As a result, the process gets a representative set
{(we=P we=p—1)
1.

cmpd mp+1)}mp+1 = { Mg, mt3+1}mﬂ+1 <
for the partition formed by the components of connectivity of the intersections of all
elements of partition %({g{*~#~"},) with the plane &,
By means of the following lemma one can easily complete the decision algorithm for
Tarski algebra (cf. theorem 3 in Wiithrich, 1976).

@m+4..+sg+1

LemMA 13. Formula (1) is equivalent to quantifier-free formula

VvV &.. VP(Wsr?x),mz,.,.,m.z)' (13)

my mz

Proor. We shall prove by induction on 0 < o < a that for all points x, w) .  eK{®,
which belong to the same element of partition #(g},), the following formula of Tarski
- algebra (depending on point x)

z'lX'a—aH»l,l HX —a+t+1,5,- a+13 Xa —a+2,1" ..3 Xa—a+2,s,,.-a+z R

(1%
E| Xa,l ...d Xa,s,.(P(xs Xa—u+1,12 sy Xa—u+1,s,,_a+1’ voe s Xa,la LR ) Xa,sa))
is equivalent to the quantifier-free formula (depending on indices m,, . .., m,_,)
VA V. V@O, w) 3% e
Mymgt 1 Myg—a+2 Mma

Note that formula (1) (respectively (13)) is identical with formula (1) (respectively
with (13)).
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The induction basis for « =0 can be deduced from the fact that the truth value of
formula P(x) for a point xe @ * -~ *% is determined uniquely by signs

sgn fi(x) = sgn g{®(x) = sgn gO(w) ) =sgn fiwi) | )

for all 1 <i<k. Let us observe that here we did not exploit the statement that in every
element of partition % ({g{®’};) one can find at least one point of the sort w{® _ (a
proof of this statement can be extracted from the further proof of the present lemma).

Suppose that the equivalence of formulas (1) and (13§ ,._) is already proved for
arbitrary points y and w® . which belong to the same element of the partition
U({g{"};). Consider points X, w‘“‘” - €W, where # is a certain element of partition
U ({g#*1},). Assume that the plane Em,....mso—, has a nonempty intersection with some
element W of partition % ({{”},). The image m,(W) under projection

. )Ss1t. .. Fsa— 81+ ... +Hag—a-
7[2.@51 aa_,@l a-a=1

coincides with a union

(W)= %..

of a suitable collection of elements ¥, of partition %({g**V},) by virtue of lemma 12.
According to the process of constructlon of the points {w® }mg-, there
exists such an index m that

ceMg—g—1,Ma—g

Wgz....,ma:—u—l,me W n‘:‘ml,,.

Mg-g—1"
Since

nZ(W(d) Mg—g=1, m) = W(a+1)

»Ma—g—1?
the intersection m,(W)n# # ¢. Hence, # =¥, , < n,(W) for appropriate indices v, x.
Therefore, one can find a point x, € W with the projection 7,(xy) =

So assume that formula (13§71, 3 is valid, then for a suitable index m,_, the
formula (13%) . ... ..m._) is false. Let point wi) . ..., €W, for a relevant
element W, of partition % (gj‘“)}J) Then 7, (xy,) =x for a certaint Xy, € W, in view of the
fact proved above. The inductive hypothesis implies that formula (1&) is false. This
entails the truth of formula (1%*Y), which was to be shown.

Conversely, suppose that formula (1#*Y) is valid, then there exist x,, . . ., x,,_ € @ such
that formula (1%) is false, where we denote a point

X= (xa (xla Ceey xs,,_,,))efbsl+"'+s“‘ﬂ_

Let the point Xe W, for a suitable element W, of the partition %({g{™};). Taking into
account that m,(X)=x, one concludes that n,(W,)n # # ¢, whence # <n,(W,) by
virtue of lemma 12 (cf. above), in particular point wis*" , e m,(W;). Thus, there
is an index m,_, for which point w§) . . e W1 (see above). Then formula
(138 e m,-,) 18 false according to the inductive hypothesis. Therefore, formula
(13‘“” ma-a—y) 18 true, which completes the proof of the lemma.

5. Time Analysis of the Decision Algorithm

First of all we estimate the time required for the algorithm in section 3 constructing the
formula 3 T(P,) (see lemma 10) and the size of this formula. Let formula (2) be given. In
the beginning, the algorithm yields the family of vectors I' = Z*~*. According to Grigor’ev
& Vorobjov (1987) (see also Vorobjov & Grigor’ev, 1985) card (I') < 2((kd)™).
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Furthermore, for each vector (y,, . . ., y,) €T the inequalities 1 < y, < P((kd)), 2<i<s are
correct; finally, the algorithm yields the family I within time P((kd)*).

Next, the algorithm constructs the matrix A with entries in the ring
Qley, &31LY, Zo, . . ., Z,, g, - . ., u5] corresponding to system (8') (see proposition 7) and
applies to it the Gaussian algorithm. As a result, the polynomials

Y1, PLeQley, e31[Y, Zy, .. ., Z,, U, - . ., 1]

are produced. The number t of rows of the matrix 4 =(a;) can be estimated by
< P((kd)), each entry a;; of A is of degree :
degsl,za, Y, Zo,...,Zn,uqg,..., u,(aij) < O(kd)
and the size I(a;)) <O(M +nlog(kd)). Taking into account that both Yy, P, are the
products of not more than 7 minors of the matrix 4 we obtain the bounds
degm,e;g,l’, 20y ey Zins 0y ..y us(llll)’ deg}:].ea, Y.Zo,...,2Zp,ugq,..., us(Pl) < '@((kd)s);
1), I(Py) < (M +n)2((kdy).
Similar bounds are valid for the polynomials }/{, y/{o™) Since executing the Gaussian

algorithm with the matrix A requires 2((kd)") arithmetical operations with entries a) of
intermediate matrices A%, and taking into account that the bit sizes of rational functions

ag’)) = det(Afj’))/det(A(‘" Y )EQ(SD 83)(20:’ s Zna Ugs - oy us)

Ip—1.Jp~1
do not exceed 2(M, (kd)*"*?) according to the bounds obtained on degrees and on sizes
I, one concludes that the time necessary to construct the matrix A and the polynomials
¥y, Py, Y0, o™ can be estimated by 2(M, (kd)***9).

Then the algorithm calculates the quotient y{o /4™ = /P, where polynomials
P,eQley, 51[Z0, - - -» Z,] and Yo Qey, £31[Z, . - ., Z,, tg, - - -, Ug] Wwith the help of
proposition 1 factoring polynomials ¥ and y{™. Then the algorithm computes the
polynomial P = 6{,0@%P,, where 6¢,683%€Qle,, e51[Z,, . . ., Z,] are some nonzero
coefficients of the polynomials Py, y{>™ respectively. Proposition 1 implies the bounds

degm,sa,lo,...,Z”(P)ﬂ deg81,£3.Zo....,Z",uu ..... us('lJo) g '@((kd)s)s
I(P), l(ho) < (M +nm)P((kd))
and the time required to produce P, {, does not exceed (M, (kd)***9).

After that the algorithm factorises the polynomial ¥, over the field @, picks out a factor
QY of the polynomial ¢, irreducible over Q. By virtue of proposition 1

deg.,,e5.20.2, () < 2((kd));  H(Q) < (M +m)P((kd)’)

and the algorithm yields Q within time (M, (kd)*"*¥). Then for each s-tuple
A9, ..., 29, where
1< A <Dy =deg,, . Q<7 1<i<s

the algorithm tests irreducibility over the field H, of the polynomial
Qo(utg) = Q(ug, =20, . . ., =A%)
within time 2(M, (kd)*") again by proposition 1 and the bounds
deg, o0 20..... 201 @0) < P(KAY),  UQ) < (M +mP((kd)).

Since the whole number of s-tuples (1, . . ., A{?)) is less than 2((kd)**), one concludes that
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the algorithm produces a primitive element

0¥ = 3 LS

1<Siss

O = Z (“j/ﬁ)TjEHz[T]

0<Tén,
within time (M, (kd)*"*%), herewith
deg,, 1. zo,.... 20 (@) < P(kd)), (@) < (M +m)P((kd)).

Next, the algorithm finds the expressions ({/(§7)(6") again by proposition 1 factoring
the polynomial

and its minimal polynomial

0 0 0
Qizg(_/l(lo),..., ’—15'0_)1, —/15 )+Ui, _)'g"’)l""’ —A.g )).
Hence, :

deg.,,es, za.....z,(L/LENEW) < P((kd)?),  HE/LPNEN) < (M +nm)P((kd))

and the required time for finding ({/Z$N(6™) does not exceed (M, (kd)*S*™).
After that the algorithm yields a polynomial ¥ = Q/I%) factoring the polynomial Q
over the field H,[6,] based on proposition 1. Proposition 1 entails the bounds

dege,,es.zo, ... Znuos e TLT) < P((RAY),  1(x™) < (M +m)P((kd))

and that the time required to produce x'™ can be estimated by 2(M, (kd)*"*+9).
Thereupon, the algorithm finds the polynomials

7 = (Q-LDy D)/,
T, = (T—— YAy (a}i’/b)Tj)/(DeHz[T][uo, v l]

1<iss J

dividing each coefficient at a monomial in the variables ug, . . ., 4, on the polynomial ® in
the ring H,[T7]. It takes time #(M, (kd)*"*9) by virtue of, e.g. proposition 1 (though this
is a rather strong tool to use it for dividing polynomials), and the following bounds are
true:

degeg,eg, 2055 Znstigy .oy Us, T(Tl)’ dege;, £3,20y--+3ZnsU0s « . ., Ug, T(TZ) < '@((kd)s);
I(z)), l(zz) < (M +n)2((kd)').

After that the algorithm finds the hypersurface ¥ < Fi*! (see (9)). It is given by not
more than (card I')(degy o) < 2((kd)*") polynomials, each of degree less or equal to
P ((kd)*). Hence, N, < P((kd)*’), N < n?((kd)*"). The algorithm finds the hypersurface %
within time 2(M, (kd)*"**). At last, the algorithm produces the family of linear forms
Yi,..., Yy and the family of vectors {v;, . i }i<i«<...<i,ey OVer the rationals. Then
v,,...i,) < P(n, s, log(kd)); in addition, the whole number of vectors {v; ;,; and the
time for producing them do not exceed

()<

(cf. section 2 in Chistov & Grigor’ev, 1983a).
Thus, we have proved the following

LEMMA 14. For a given formula (2), the algorithm, described in section 3, yields a formula of
the form 3 T(P)) (see lemma 10) which is equivalent to formula (5), within time
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P(M, (kd)*™). Furthermore, the quantifier-free formula P, contains P((kdy™) atomic
subformulas of the sort (g; > 0) where polynomials g;€ Q[e,, &3, &31[T, Zo, Z,, . . ., Z,], with

deg(g) < 2((kdy’);  Ugy) < MP(n, (kd)").

We recall that the decision algorithm for Tarski algebra described in section 4, after
implementation of « stages of the procedure enumerates first all ({g{®})-cells. Let us
introduce the notations: k™ is the number of polynomials g%, i.e. 1 <j <k®; next

d“ = max deg(g®), M®= max Ig).
1SSk 1< j<kim
Based on lemma 1 the algorithm enumerates all ({g”})-cells within time 2(M®,
(k@d@y” where n=s,+ ... +s, Note that the whole number of all ({5} )-cells does
not exceed 2((k@d®)") in view of lemma 1. r

Next, the algorithm applies the construction from section 3 to a formula of the form
(12) and outputs a formula of the sort 3 T(P,) within time 2(M®, (k®d®)%-<) according
to lemma 14. The quantifier-free formula P, contains atomic subformulas (g*+* > 0). By
virtue of lemma 14 the following bounds are true:

m< y((k(d)d(a))sg—zn)’ deg (9@t 1) < 2((kWd@)ysa-s),
(gt ™) < M2 (n, (Kd@)e), (19
moreover, the polynomials “hidden” in the notations £ do not depend on a.

In the next step the algorithm produces polynomials {P{" "}, within the same time-
bound 2(M®@, (k®@d@)%-<") where bounds similar to (14) are correct for the polynomials
P+ in view of the construction in theorem 1 in Wiithrich (1976). Hence, the same time-
bound and the bounds similar to (14) are satisfied for polynomials P{* Ui Finally,
the algorithm applies the construction from Wiithrich (1976) to the family of polynomials
{pfr Dn sy, . and obtains, as a result, polynomials {g¥** D}, within the same time-
bound. In addition, the polynomials g{**!’ again satisfy bounds analogous to (14) and, as
above, the polynomials “hidden” in the notations 2 do not depend on «.

Let us denote N® = k®@d®. One can infer by induction on « (taking into account for
the induction basis o = O the estimates on the parameters of formula (1)) inequalities

NOe+D < gﬁ((N(a))sg-an) < (kd)(o("))s(“ 1)

(see 14)), where the constant factor “hidden” in the notation O(n) does not depend on «.
In addition,

M@ D < M(kd) @ a-a < M (kd)©@m>*,
The algorithm produces polynomials {g®} for all j, O0<a<a—1 within time
PM, (kd) ™).

Thereafter, the algorithm produces by recursion on 1< p<athe representa?ive set of
points {wi # .}, . .m, Assume that for a certain 0<f<a the algorithm has

Miyensy )
constructed for each p-tuple of indices m, . . ., my a polynomial

DY(Z) = Dy, ... .m(Z)€Q[Z],
irreducible over @, and expressions

Wpe)= 3 o
0Sj<deg(d’ﬂ)
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for the coordinates of the point

ng:.ﬁ.}.,mﬁ = (W%I)(Bl): . w}gsl+...+sﬂ)(gl))E(@[()l])sw...ﬂﬁ’
where

pPPeQ, 1 <p<s;+...+s5 0<j<deg(®) and 0,e@, y6,)=0.
Furthermore,
b= Y WP,
1Sp$s1+..,+sﬁ
for certain natural numbers 1 < A%V < deg(®,). Besides, we assume that the algorithm has
found a pair of rational numbers ¢y, ¢, € Q such that in the interval (¢, ¢;) = R, 6, is the
only root of the polynomial ®;. Let us define

dy =deg(®y), M, =max {I(®y), (WP(B,)), l(cy), l(c,)}-

Applying lemma 2 to the family of polynomials
{9:}: = {gga—ﬂ‘l(wir‘:;.p.).,m,,a X}
the algorithm produces for given my, ..., m, the set of points

(with

FYS1+... +sptsger
1.“.,mﬂ,mﬂ+1}mﬂ+1 < @ ?

a corresponding polynomial

q)l””l = q)'m EQ[Z]’

. yeensMpyy
expressions

wih 1(0)€QLO], @p,1 () =0 for 1<I<s;+...+S54;

(cf. above) and, finally, a pair of rational numbers b, b,e @ such that in the interval
(by, by) =R, 6 is the unique root of the polynomial @, ,. Lemma 2 implies the following
bounds (taking into account the inequalities for N, M® proved above):

dper SPNCTITVAYY Mpey < (MO7P70 4 My JP(NEA~ D)),
From this one can deduce by induction on # the bounds
dpiy < (RO My < M(kd) O™

Moreover, the constant factors “hidden” in the notations O(n), do not depend on
(cf. above).

By virtue of lemma 2, for given my, ..., mg, the number of points in the set
(W 2 mhmpe 1 pmge; doES DOt exceed (kd)©™* ™™ The algorithm can produce the set
{wl- .ﬂ..—,;lrli,mﬂ+l}mﬂ+l within time 2(M, (kd)©™****™") again according to lemma 2 and to
the bounds on d,; M; obtained above. Thus, the number of all points from the
representative set {w{®) 1 s not greater than (kd)©™*”’ the time for the
construction of this set can be estimated by (M, (kd)©™* ™),

At the end of its work the algorithm evaluates the signs sgn( j}(wi,?}w,ma)) for all
1<j<k; my,...,m, and thereby verifies formula (13) (see lemma 13). One can evaluate
the sign sgn (w3 ,.)) for given j,m,,...,m, in the following way. First, the
algorithm replaces the coordinates of the point w(® . e(Q[6,])" by their expressions
via appropriate real root 6, Q of polynomial ®, (see above the representation of points
WP ). So, the algorithm gets the expression SR ) =h(6,) for a suitable

polynomial h(Z)e Q[Z]. Obviously, f(W® . )=0is valid iff polynomial ®,|h;. If the
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latter relation is false, the algorithm finds a suitable rational approximation wy€ @ to the
root , in order to guarantee the equality sgn hi(wg) =sgn hi(8,) #0 (cf. section 3 in
Grigor’ev & Vorobjov, 1987). The rational approximation can be found, e.g. by means of
Heindel (1971) within time (M, (kd)©™* ") in view of the bounds on d,, M, proved
above. This completes the proof of the theorem (see the introduction).

6. Computing the Dimension of a Semialgebraic Set

Let V ={IT} = R" be a semialgebraic set, given by a quantifier-free formula II of Tarski
algebra. We shall prove the following statement. If the dimension dim V =m<n, then
there is an index 1 < j < n such that dim (z¥(V)) = m, where n/ denotes the projection
onto the coordinates Xy, ..., Xj— 1, Xj4r1 - X,. We conduct the proof by induction on
m. When m = 0, the statement is trivial, so we assume further that m > 1. For any number
xeR consider a semialgebraic set V& =V n{X,;=x}. If for a certain x,€R the equality
dim V& =m is valid, then one can take j=1. Suppose that, on the contrary,
dimV® <m—1 for all xeR. Let us denote by W <R the semialgebraic set, which
consists of all numbers x € R such that dim (V) = m—1 (the set W is semialgebraic since
the condition xe W can be written as a suitable formula of Tarski algebra). Then W
contains some interval, taking into account that dimV =m. For each 2<i<n we
introduce the semialgebraic set W@ < W consisting of all points xeW for which
dim (z®(V®)) = m—1. The inductive hypothesis entails the equality

= )
W= 2 y <n W
Therefore, for a suitable 2 <i, <n, the set W9 contains a certain interval. Setting j=1o
completes the proof of the statement.

~ One concludes from the statement that dim V = m iff m is the greatest natural number
such that there exist indices 1<i; <. .. <ip <N, for which dim (z;, . ; (V))=m where
T,....i: R"—R™ denotes the projection onto the coordinates X;». .- X, On the other
hand, for given ij,... i, the condition dim (m;,, (V) =m is equivalent to the
requirement that the semialgebraic set 7;,, ;. (V)<= R" contains some m-dimensional

ball. The latter requirement is equivalent in turn to the following formula of Tarski
algebra

TweR" 31> 0V w, eR" 3, e R ((|lw, —wll <7) = (Wi, 010 EV))

in n+m+1 variables with the number of quantifier alternations a=3. Here,
(wy, 0> =@, .. ., u")eR" denotes the unique vector such that m;, (W1 v >) =Wy
and u9 = for 1 <I<n—m, where

{igy oo imy O {15 - nemy = {1 .0,
indices j; < . . . <Jju_ms Point v, =@, . . o*=m). The algorithm verifies for every m and
set of indices iy, . . ., i,y the designed formula of Tarski algebra based on the theorem (see
the introduction) and thereby determines dim V. Thus, the following corollary is true.

COROLLARY. Let II be a quantifier-free formula of Tarski algebra, which contains k atomic
subformulas (f; = 0), where f; are polynomials in Q[X,, . . ., X,] with deg (f)) <4, l({:l;) <M,
1 <i<k. Then one can compute the dimension dim {IT} within time 2(M, (kd) @™,
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