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COMPLEXITY OF QUANTIFIER ELIMINATION IN THE
THEORY OF ORDINARY DIFFERENTIALLY
CLOSED FIELDS

D. Yu. Grigor’ev UDC 518.5

This article presents an algorithm for elimination of quantifiers in the theory of first-order ordinary
differentially closed fields, the algorithm has elementary complexity. The previously known algorithm, due to
A. Seidenberg, is of non-elementary complexity. In the description of the algorithm an important procedure
is construction of a polynomial-time algorithm for finding the greatest common divisor of a family of
polynomials in one variable with parametric coefficients. The GCD is itself a polynomial in several variables.

INTRODUCTION

Assume that we are given a formula in the theory of first-order ordinary differentially closed fields:

Quthy ... Quty (), O

where Qy,...,Q, are quantifiers (existential or universal) and Q is a quantifier-free formula containing, as atomic subformulas,
expressions of the form (f; = 0), 1 <i < N. Here f; € F{u,,...,u,,v},...,v,} are differential polynomials (with differentiation
by X) and the variables u;,...,u, in formula (1) are bound, while vy,...,v,, are free. The field is F = Q(T,...,T,)[n], where
Ti,...,T; are algebraically independent over Q, the element 7 is algebraic over the field Q(Ty,...,T,) and ¢(Z) €
Q[Ty,...,T[Z] is its minimal polynomial, i.e., F = Q(T,...,To[Z]/(¢). By the (bit) size of a rational number p/q, where
the integers p,q € Z are relatively prime, we mean p/g) = logz( | pq| + 1) + 1 (see [2, 3, 8,9, 10, 11]. For any
polynomial g € F[Yy,...,Y,] we write § = " :3:(% i )an,g/%o)'l YEYE where 4 i""’l"'é 190€@[T,,..,T,] and the degree
Aragki0<<ge
degr,,... t,(80) is the smallest possible. We write dﬂ}n, 9{;&(3) o U {deg . me (o 9882 ‘ao)}t' for the elements T,...,T,.

L -z “% o :H-)T"* T . where go(il,“.,ig) € Q; we deﬁne (b1t) sizes of coefficients -l(go)=.~ma{2(‘3§ﬂ,...,ue))} and
e S MR LLCTRMONAC LS
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A differential ring F{u,,...,u,,vy,...,v,} (see [5, 7]) is generated as a ring of polynomials over F[X] by the derivatives
u,uDu @, vov v ® | forl <s<n,1<t<m, where u(§)== -%(‘% (the elements of the field F are treated as con-
stants, i.e., for any & € F we have o) = 0). We denote by ord, (f) the largest of the order of the derivatives ug,u, (D,
u,®,... of the variable ug in the differential polynomial f;. We assume that ordUS(fi) srord,(f) srforalll <s <n,
1 <t < m; then f; can be treated as an (ordinary) polynomial in the ring

© 1) (1) W w w ) @) )
F[Xlu'!.!u'ir--vuh“-;uu)u’m"-xM‘W; ﬂ;ﬁl;-“:ﬂl 1~~-;1YWL;WM t"':ﬁéﬂ 1

We also assume that the degree de?ui)=de%X,u1,...,u§‘3...,ﬁ&’,,..,vw(it ) - of the polynomial f; as an element of this ring (with
respect to all variables) is less than d; moreover, we assume deg,(¢) < d, :de%hm,Te(up), de% T1,0,Te (31)< do, and, finally,
p),if) < Mforalll <i <N,

For the functions g; > 0,g, > 0,...,g, > 0 we write 1< Qs P (93,...,%5)&, for some polynomial P, we have g; <
LP(gs...8).

In [7] there is a description of a method for eliminating quantifiers in the theory of first-order ordinary differentially
closed fields, which method makes it possible to use formulas of the form (1) to construct equivalent quantifier-free formulas.
Here and below we take equivalence of formulas to mean over the differential closure of the field of fractions F(uy,...,u,,
Vise.r, V) Of the ring F{u LreeosUgs V5.0Vt (see [5, 7]). However, the time complexity of the method of [7] is non-elementary
and, in particular, is not bounded above by any tower of exponents of fixed height. The fundamental result of the present paper
is the following theorem, in which we construct an algorithm for quantifier elimination with elementary complexity (see also
(1.

THEOREM. A formula of the form (1) in the theory of first-order ordinary differential equations can be used to
construct an equivalent quantifier-free formula of this theory in the form

Ls\{s.ﬁ<5§};m(%i,&=O>&(%L,o7é0)): o)

where g;; € F{vy,...,v,} are differential polynomials; the execution time is polynomial in M, Nd) m“l{;dz)cmj'" for some
constant ¢ > 1. In addition, for the polynomials g; ; we have the following estimates: oudy,(§ij)<12" ;#X, deg(‘}{g,})s(w‘d) mt

’°‘2“=JlL',deng,...,TE(l}u)ﬂ dp g)(t“"«d,c"“)‘ and for the sizes of the coefficients 13(%@,&)4("1+Eﬂ°%(dz»g’(-)‘kdf )

The method of [7] contains two procedures that transform a system of differential equations into the disjunction of
systems. The first of these methods is used when, for some distinguished variable, at least two polynomials of the system
contain its derivative of maximum order. Application of the first procedure in' each of the systems leaves no more than one
polynomial containing this derivative. In the second procedure, the system is decomposed and the order of the distinguished
variable is reduced if it occurs in a polynomial of the system. It is the first procedure of [7] that leads to the non-elementary
complexity. In this paper we execute a transformation that leads to the disjunction of systems that each contain no more than
one polynomial containing a derivative of maximal order of the distinguished variable; our method is completely different and
is based on construction of the greatest common divisor of a family of polynomials in one variable with parametric coefficients
(Lemma 1, §1); this GCD algorithm appears to be of independent interest. The proof of Lemma 1 is similar to the construction
of [9] (see also [11]), but direct application of the results of [9] yields a worse complexity than Lemma 1. In §2 we present
a modification of the procedure of [7] for splitting and reducing the order of the distinguished variable, an algorithm for
quantifier elimination, and an analysis of the complexity of this algorithm.

In [7] there are also algorithms for quantifier elimination in the theory of higher-order differentially closed fields, but
it is currently unknown whether there are algorithms of elementary complexity for this problem.

§1. FINDING THE GREATEST COMMON DIVISOR OF A FAMILY OF POLYNOMIALS
WITH PARAMETRIC COEFFICIENTS

We present the fundamental result of this section (Lemma 1) in greater generality than required for proof of our
theorem, namely, we present it for polynomials with coefficients in a field H that is finitely generated over a simple subfield
that includes a field of nonzero characteristic (see [2, 3, 8, 91).
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Thus, H = Hy(Ty,...,Tpn], where either Hy = Q (see below) or the finite field Hy = F P (here p is a prime number),
i.e., Hy is a prime subfield, Ty,..., T, are algebraically independent over Hy, and the element ¢ is algebraically separable over
the field Hy(Ty,...,Tp); let ¢ € Hy(Ty,...,T)[Z] be its minimial polynomial.

By the notation length i) foro € F p We mean the number log,(p). The degree and notation length for the coefficients
are defined as in the introduction to this paper.

Consider the polynomials hy,hy,...,hy. € H[X;,...,X,,Y] and assume that (see below)

de%z(tp) <d;; de%xi,...,x“,y(ks,) <dy; de%n,‘.‘,nd“i)yd‘e%n,... ,'re(‘P) <ds;
L), (hi) <M 3)

forall0 < i < k. We write h;, = Z; h;’& Y& | where hi’j € H[Xi,...,X,]. We denote the algebraic closure of the field H
by H.

LEMMA 1. For given hy,...,h, we can construct two families of polynomials - §q.4 € H[Xy,...,Xe ], Wy € H[X,,...,
Xu,Y] for1 < q < Ny, 0 <t < N,, with the following properties:

a) the quasiprojective varieties -“jPal =<[0t eH": %, (== Jq.N z(m)=0,(}u{’o(x)¢0] 1 < q < Ny, form a partition of the
open set (in the Zariski topology — see, for example, [4]) H™\{x € H™ h; ;(x) = Oforall I < i < k and j};

b) forany | < q f N, the following two varieties coincide: {m,«)()eﬁ%xﬁ A" eui(ac,«j) %...=&K(m,lj)=0; &O(I;%)#O}ﬂ
(% xH) = {@ye H" Wy (wy) = ofn (F4*H) . Moreover, the leading coefficient ley(¥y) € H[X;,...,X,] is nonzero
everywhere on ‘*ﬁ{ The time required to construct the indicated families of polynomials is bounded by some polynomial of
M, (didpe*t1, dg"*¢, and k. We have the following estimates for the parameters of the polynomials:

de%xi,...,xn,‘f QPO,), de%xi,.‘,,xw (%o,,t)< 9)(‘10)3
d.e%Thl__,Tteja{), de?m, ...,TE(%O,,t) <d P(dy,d,);

LO[J'Q’), L(%ﬂ,,t) <(M+ (E+n)£0% (dz))tcp(dndo)i NuNzéKJo(db-

Q)

Remark. 1) Property b) shows that ‘I'q is the analog of the greatest common divisor of the polynomials hy,... hy
(assuming hy # 0), treated as polynomials in the variable Y on the quasiprojective varieties ﬂfq .

2) Properties a) and b) hold for an arbitrary algebraically closed field (not only H) containing H.

Proof of Lemma 1. For any 1 < i <k, 0 < j < d,, consider the quasiprojective variety ‘l,{,;"i'={aceH"':ln,do.i(m)
= o=y @ =ho g @)= =y )= hi g - (@)==hi i (@)=0; hi () #0] . Itis clear that- U Uiy =H"™ {2 e by, @)

e~ R
=0 foralll <i < kandj}. We write Y". The system "

i’:j =os"12;;3 i,P
ho=...=ho=0; hy20 ®)
is equivalent to the disjunction over all 1 < i < k, 0 < j < d, of the following systems:
b= binim by g = om by =gy
"‘=&'i"1,0= Bli.,do'f]_:"':&‘i,,jﬂ_:()} cb"&’%j #0.

We temporarilly fix 1 < i <k, 0 < j < d,, and consider the system

e”'w} = hi+1=~-,-=lv,<=05 ho#o. (6)

We now introduce new variables Y, and Y. For any point x = (x;,...,X;) an element y satisfies system (6), (which
is obtained from (6) by substituting xy,...,x, for X,...,X,) if and only if there exists a y; such that R;)&(ﬂﬁ,‘jkkm(%‘j) =. .
=tt.<g',‘é)= Y b (w{lj) -1=0 . We now introduce polynomials that are homogeneous with respect to the variables Y;, Y, and
Yo By (hyoXa Y, Y, Yo ) = YodeﬁYW&t Ry XX/ V) for i < 1< K hy(Kip X, Ya, Y Yo ) =
V& b O, Y/ Y05 bo (Xy o X Yo Y, Yo ) =
YDy /Ny (KX, ¥/ Yo ) 1),
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We consider some field H;, a point x = (x{,...,X,) € H1", and a homogeneous system of equations (in the variables
Y, Y, and Yy):

-{:’b (,‘r’JYA )Y:YO) = ’2-1./;4.1(1‘/,\-{1,\{,\.(0) =..=
hl((m)»Yi)Y:YO) = ho(m:\fh\-{:\{o>=0. (s

We assume that hy(x) # 0; then system (6), has a finite number of solutions. If y € H, is a solution of system (6),, then the
point (1/bg(x,y):y:1) € Pz(Hl) of the projective space is a solution of (7),. Conversely, if (y;:y:yy) € P2(I:11) is a solution
of (7), and yo # 0, then y/yj is a solution of system (6), and y/yy = l/hg(x,y/ye); if, however, yo = O, theny = 0, since
lcY(ﬁi,j) = hi,j. Thus, system (7), has a finite number of solutions in P2(H,), and, in this case, all of the solutions, except,
perhaps, for (1:0:0), bijectively correspond to the solutions of system (6), (under the assumption b ;) = 0).

Now, we require a construction from [6]. Let gy,...,8_; € H;[Yy,...,Y,] be homogeneous polynomials of degrees
Yo = ... = 7,—1, respectively. We introduce variables Uy,..., U, that are algebraically independent over the field
H,(Yg,...,Y,) and the polynomial g, = YoUg+ ... +Y U, € H(U,,...,U)Yy,...,Y,] with degree v, = 1. We set
D= (K Em{t—i,m} (KL'D)*KO -. Consider the linear (over the field H,(Uy,...,U,,)) map - 0 '}goe.,,e%t»}& , where - §By,

(respectively, W ) is the space of homogeneous polynomials in Yy,...,Y,, over the field H,(Uy,...,U,) of degree D — v,
(respectively, D) for 0 < I < t; namely, 6 ( o,y )§t)=§°%o+...+§tgt We fix some enumeration of the monomials of
degrees D — vp,...,D — ¥,,D, respectively, and we write the operator Ol in coordinates corresponding to this enumeration;

we thus obtain a (m‘;D)xo 5‘; " ("“*”]3 B E) - matrix A. The matrix A can be represented in the form A = (A®um), A(for)) where

the submatrix AMM) is called the numerical part of the matrix A and contains 0 sEt-A (Mﬁ'_xl) columns, whose elements

belong to the field Hy; the submatrix A", which is called the formal part of the matrix A, contains ("“”IAJ *1) columns,
whose elements are linear forms in the variables Uy,...,U,, over the field H;. The following result was established in [6].
Proposition 1. a) The system gy = ... = g,_; = 0 has a finite number of solutions in P™(H,) if and only if the rank

T%(A)=(mv:/]>) ; we write - U =(m;tD> and we assume in paragraphs b), c), and d) that rg(A) = r;

b) all r X r minors of the matrix A together generate, in the ring H[Uy,..., U], a principal ideal, whose generator
R € H[Uy,...,U,] is also their greatest common divisor;

¢) the form R, which is homogeneous with respect to Uy,...,U,, factors into product R =1s[;,1<]) Lg , where ' Ly =
g

2 EPU, s a linear form, - (}:g”):m:;(x)eﬂ’m(ﬁi)- is a root of the system gy = ... = g,_; = 0, and the number

0L <M
of appearances of the form L g - in the product R coincides with the multiplicity of the roots - (\‘E %?') E%) of the system
Jo=-- =44, =0 (1< <D);

d) let A be a nonsingular r X r submatrix of the matrix A that contains rg(A®™) columns in the numerical part A("v™)
of the matrix A (it is not difficult to see that a matrix A with the properties given exists); then det(A) coincides with R up to

* _ o (aum)

factors of H, " and _de%Um,..,UM(R) =Dy =1 -14 (A™™).

It is natural to call the polynomial R the generalized U-resultant of the system gy = ... = g_; = 0.

We now apply the construction we have described to (7)(X1,....Xn) and the field H; = H(X,...,X); we obtain a matrix

A with elements in the ring H[Xj,...,X,,U;,U,Ugl. By 1a), for any point x we have 'u}((Am)='L=(D£2‘> for hy ;(x) # 0
(recall that r is the number of rows in the matrix A). We define a variant of Gauss’ algorithm (VGA) as a sequence of pairs

of indices (atg,B0),(1,81)5-++»(e%,8,), Where ary # a,, By # B, for N # ». The VGA determines a sequence of matrices

‘ - e
A® = A, AD, AG+D. We write . A¥=(al%); then 087 =ai- 0] o0y /0dy,py for o # ap,..0 and

ai‘:;:aﬁ?,? -for 0 < s < [; here the leading element’ aﬁ:’g'maﬁo forall0 <[ < p. Then a,&fibfo ,if0<s<!—1land

a # ag,...,a Let A, g0, where L # Loy dpoyp#Po-Pls , denote the determinant of the (I + 1) X (I + 1) submatrix
of A generated by the rows cy,...,;— 1, and the columns By, ...,8;-1,8. Then, ai?fAfﬁ / A&Z!'_i)) I (see, for example, [4]).

We will construct a sequence of VGA’s I'|,T',,..., and a sequence of polynomials Py,P, ... € H[X,,...,X,][U;,U, U]
that are linearly independent over H. Here the algorithm I is properly applied to the matrix: Az for any point % in the

817




(possibly empty) quasiprojective variety Ws {xel":0=Py(x,U,,U,U,) e H [U;,U, U, Jforall1 <t < sand Py(x,Uj,
U,Up) = 0}. Moreover, U W, D ‘1/[ (see the beginning of the proof of the lemma).

Discussions of the current VGA I‘t require the notation introduced above (we apply T, to the matrix A, obtaining the
sequence A® = A A ). We assume that T';,...,T;Py,...,Ps have already been constructed (s = 0). Then, as I'g, | we
take a VGA in which, for any [ > 0, the index of the column B, of the leading element (cy;,3)) of the matrix A® is the smallest
such that 3, > ,_, and the polynomials R,.., Ps ' ﬂ A di,pyare linearly independent over H. Assume that we are unable

to extend the sequence (c,80),---»(% 1 Bpg 1 1) w1thout violating the conditions that have been given. We take this sequence
for the VGA I'g, | and we define the polynomial

®
Pouy = .
St 0<[t13>wA°(t’Pt ®)

If each element of the matrix A is linearly dependent over H on Py,...,P,, we can terminate the process of constructing
I'y,...,Ig (in this case it is impossible to construct I'g, ().
We should note that if p,,; < r — 1, then: WE,,na; j=° - Indeed, let reW,n Ui j - Then, by induction on
%2

0 <! < pypq, we find that in the matrix (A), we have <u, W))m (A M))m/(A,u L )e=0 for B; < B < B, and o is
different from ay,... 0o, since (Aa;,m)m‘iéo for ® € Wiy (see (8)); on the other hand, (A(B A)Jm 0, since otherwise
we might have f,, ; < f, which contradicts the choice of 8, . It follows that (M3 )¢ =0 for § < f,, and a different

from e, ...,0y, since elementary transformations we have performed preserve this property. Similarly, (a(P st ) =() - for

o different from o, ... -7
1a) (see system (7),).
It is clear that % C U W | since, for x € Wi ; g we have rg(A,) = r. In particular, let (a, g), # 0 for some

(- As aresult, rg(Ay) = pgyq + 1 < r, which contradicts the fact that x € “’LL.,,3~, and assumption

o,B, soif © & U W ,ie., 0="Px,U,UUy = Py(x,U;,U,Up) = ..., the element a, z might not be linearly dependent

over H of the polynomials P1.P2,.- , which contradicts the condition for terminating the process of constructing I'},I';,...

We will show that for any point ® € R.,N ‘u,ta the polynomials R, corresponding under assumption 1b) to the
matrix A, coincide (up to factors of HY) with the minor Ag.y(@)= A“,‘_hp,t_l(ﬂt)%o corresponding to the VGA T’ ;. Indeed,
assume that A is such that the "cell" (o) _;,8) ) is in the numerical part Aum) of the matrix A, and the "cell" (a),B)) is
in the formal part A®D); then rg(A,(™™) = X, since (a, ™), = 0if B < B) and « is different from ay,...,a —; (see below).
Thus, A, 1(x) coincides with R, (up to factors from H"), by assumption 1d); in additionr — \ = degy,,u,up(Qs+1); we write
D, =1r— A\

W
Now, we write Agsyy = : E(::1 2= , where E;+Z(Xl,...,Xw>e FX4,. %X, Ui, U] Also, we introduce the
quasiprojective varieties P %= {me%‘gﬂ 0=E&.(@)=..~E& X weR[U,U]; 0 #ES (@] Then, WL N W= forw, =

wy and W, = osw@z R . Since, for T€ Wi ‘L{; ,j » it follows from assumption 1c) and what we proved above that

(&)

Agey(0) = l"lLab , where the linear forms-Lg="7, U, ﬁmU &, - bijectively correspond to the solutions (&m e

a?”) eP (H) . of system (7),, for % € Wsﬁ) n ‘U,,, ,j the form Esﬂ('xﬂAsﬂ (%) coincides (up to factors from H*) with
the product of all those L, for which {,® = 0. Then ) = 0 for each index p according to what was proved before

Proposition 1, so Eg;@)(x) coincides with U@ (up to factors from H*). We write E§ = B UMyt where

Egﬁj’); €H[X4,..., Xn] ; then Efn(x)= E(s“z O(m)U“} for xe WD naL; b - . Further, Ag,;(x)/E4,“)(x) coincides (up to

factors from H*) with product [1L5- ofall those forms L, for which {p® # 0 with & e WP N " j ; in particular, relation
EL ()] E‘;ﬁ;’(ac) -holds in the ring A[U,,U] for any w; > w. Thus, By, ©@D(x) = Owhenw; — v < w, 50 Asgyy (2)/

D -0 @ 3Dy —
EW (2= w) p e Egn y(@U, iy €H[U1,U U,] . Asaresult, the polynomial (Asu(m)/..E(sw:l(m))

Ege, o(®) A<N<Dy ° 0<§<A-0
(0,-1,Y)eH[Y], - coincides (up to factors from H') with the product [} (Y- %) , where y, = /@) runs through

818




the solutions of system (6), (see the material above Proposition 1) for all. % € WeEn Wi -
For fixed i, j, m, and s, we write JFL°=Ws N Ui (from which we obtain polynomials gq,tl(l),gq’tz(z) €

HIX;,...,X,] such that ‘?élé{meﬁ’t:%i(ﬁh(m)=0)& },/z(fz((‘;&z(m)7*0)-}l -+ fixing some t;, we obtain pairwise disjoint quasiprojective
- ) nw.e fa 2) i )
varieties “]f’o,={meH ~%<1(%q¢1(w) = 0)&,.,3;< Ql(ﬁfq,tz(m) =0)k ;(%(a?,‘ts (%) #0)} and thus the polynomials g, , required by Lemma 1a)).

In addit‘:;)n, we set W‘V = Fw,@\ﬁ Df‘b‘E(gi e a(—i)w"Q eH[X,,... ,XW,Y] . Then, for- X &€ “flf’u, -, we have ﬂlfo’ (o) n (Eﬁi,o(m)l\sh
(w)

() /Egu(@)074Y) , from which we obtain the coincidence of the varieties

{(ageR*" w05 F)={e g hiea=.= =0 hofwy) 010
NSy )~y -c,g@«p%wp='..=&K<m,u)=0,ﬁo@»ﬂ)*”}“(“%"”f"m’

required by Lemma 1b). The equation %l’fi: fzef™ by p 0 # 0 for some 1 < i < kand j} is obvious. We should note that

the leading coefficient loy(¥,) = Eq4 o is nonzero everywhere on Y .

It remains to estimate the sizes of the polynomials ¥ and g, determining the quasiprojective varieties "‘lf'w. , their
number, and the time complexity of the algorithm. Since Ay is a minor of the matrix A (depending on i and j), and Py
is the product (see (8)) of no more than < PDy< Pedy) minors of the matrix A, it follows that (see (3)) ,dch,,. ek Ul
U, (A s+ )7 d,&%x“m’xw m,U,U‘.(Psﬂ)) d‘?x,,---;x.,(%,‘f)’ dvﬂgan,x”,y w‘l’kﬁdﬁ);de&,..,‘fsmm)' d""ﬂT ,...,TéPSﬁ ) dfﬂg-r . Ta(%ft ), d«% .f(yq)
s, Fiddo) 5 £(Agy) EPe) s z(%g,t IRUAN Mf(&rn)&fg(d,))y’cd,,d,) because of the size of the determinant (see:,r[fi] and also f’2,’§, 9,
10, 11]). Since Py,P,,... are linearly independent over H, their number is no greater than' J (') , 50! K@s N, < kPidm, 0sb<
Ny<kPcd) , which proves (4). This implies a time estimate that is polynomial in- M, (dydg)™" 4% , since it consititutes
an estimate of the bit size of all intermediate polynomials and an estimate of the number of arithmetic operations executed on
them; this completes the proof of Lemma 1.

§2. SPLITTING AND AN ALGORITHM FOR QUANTIFIER ELIMINATION

Before we describe procedures for splitting we establish the following lemma, which, under certain conditions, makes
it possible for us to reduce the order of systems of differential equations. Let ¢y,4,..05 Gy oy 150 foe Fithty,..., 0 I be
differential polynomials. We assume that vy, (Gp)$-b 5 outly, (1505 Wiui(?ﬁ), Muf:&)sk; deg(g 5l deg(&) <d;. d«%} T,,...,re(ﬂ—ﬁ) ,
d/ch’,,,,,T&(h)g dy; K(g‘f), )M forall0 < f <v,0 < i <k 1 <] < n, where (here and in the sequel) deg denotes the

. ; 1) : [ ®) ) (%
degree in all variables X, W, WOy ) Uegs Wy oo gy s By s thy

LEMMA 2. Given g,...,&,fo,+fic we can construct differential polynomials, f !?1)---:‘:/&5 Wftf,“4,..-,“w5, such that

the system
o= 9'1;“:43: F=- =f=10; 5-0—3—3%)— *0 ®

is equivalent in the ring F{u,uy,...,u,} to the system 90=g‘a..=%=§t:=.,. = §K= 0; 30 5%9:__”_ + 0 . In this case, - oy Gy =3
o’bd»i;j(:f;)s Rt ; deg 5 )< Ped, by d,e(}-,;,w,-re(ﬁ J<d, T, 0 ); U Gre(MenRereélogedy)) Fed, d, 1y forall 0 < i<k, 1 <j <1 The time

. . 4] E+d
required to construct all To,..., T, does not exceed some polynomial in. M, WP, dyddy )5 K

Proof. Note that the derivative 4% u"‘"“"(-&?g,—,”)-as for s = 1, where differential polynomial QseF[X,u,.., (bes1),

(s) -
gy Wty wtl“s’]; It is clear that .'d&q(gf,s%dd degr,. .14 1<dy 5 84" M+ OCsbag s

& S), .
We define the weight of a monomial ¥ el;%( uby sI,T; ( u; )% 0 be wgl =3,,§.‘ v M (t-1+1 ), and we define the weight

of a differential polynomial to be the maximum of the weights of its monomials. Then wegt(ge®) < s.

For a proof by induction, assume that for some 0 < s < t we have constructed differential polynomials '$; seF[X,u,

w T s uP L g uf,“ﬁ’] , 0% k- such that system (9) is equivalent to system. 4= 4 =4f, = =h = G g

(,{3.—&,—)*0. Initially, for s = O (the basis for the induction), we set f; o = f. Assume that 'wgt(fi,s)éwg;dcg(h,s 1< Dy degr -
T e40s b5 Mg dedyFi1<ds (assume that in computing f; ; we give f; (mod(y)) only at the very end, so bere
n figures as a variable — see the introduction). Fix some 0 < i < k. It is clear that ;d&gu<v-s)(f;,s)$ws/ (b-s) . We replace
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w -

f.
obtained by multiplying by the differential polynomial (a—%:ﬁ-)deq'“‘“’( s

e -0 g :”w ,"wj . Itis clear that the system gp--g, st Fie 50705 &

}(‘ s) by the ratio of the differential polynomials @ / ( ‘a'—Lf") , and then eliminate the denominator in the expression
. We thus obtain the polynomial #; s, <F[X,u,

a . .
w5 (3;;%3?))*0 is equivalent to the system

mo= = F, 5" H0s™ 05 Fos (—‘?’T) # 0, and, consequently, to system (9). Since wgt(Q,_,) <t — s = wgt(u~9), it is clear

that with the substitution we have described the weight does not increase, i.e., wy.; < w,. Moreover,

deq(Fi,s,)sd- degyis (§,5)+ D <0 W/ (b~ s)+lls;ﬁ)s,,sdd,+95,dp9,, Tied
<dddg; 05, V< Mgr (Me0(sbogdn) Ws/d;—sh(umd;)n)llag(ﬂs,,ﬁo eley(ds,)) -
Set f; = f;,. Since wgt(f) < wo < dt, we obtain (after giving f; (mod(¢) degc§, =005 by ()5 degr (£)=0(d,d"t"d,);ff
)= 0((Md¢&n} o+ b 369(4)@(13»(»(Ef‘vl+1)f tagedfnebloydid,) + Logcdyddd¥) . The time required for construction of f; , s-+1, beginning with
f; ¢, can be estimated as polynomial in M;,, ,:D‘s'ff‘t’*"‘ gy - . Lemma 2 is proved.

We now turn to a description of a procedure for splitting systems of differential equations. Let gh, €
FIX,u,.. 0,0 ®, o, ®) be differential polynomials satisfying the following constraints: 0 < ord,(g) = p <
r,0 <i < [ We write gisgsrl}w(u“”)“ , where ord (g,) < p — 1. Consider the system

g,:h,:...:h,e:o; h,o* 0 . (10)

System (10} is equivalent to the following disjunctive formulas (we call this equivalence a splitting of (10) and we call g a
splitting polynomial):

[
V =99 - ‘
oqu-i«% "at‘L(P) ' a( F’)P k!& (9&(&03 5 ﬂ*) 11)
Qo==gy=hy= —fva 0)&(% #0). (12)
Assume that the differential polynomials fp,...,fi € F[X,uy,...,u®u,,...,u ®] satisfy the following constraints:

de%(i,‘)<d d"-%T,, RACH )<da,8(§ )<M,0<i<x (see the introduction). We write §; = Z&ts(u,”) , where ord(f; ) < r — 1.
Consider the formula

Q, =5, = =5, =0)& (%, #0)). (13)
Our immediate goal is to describe an algorithm that constructs a quantifier-free formula equivalent to the formula u(Q). We
apply Lemma 1 to (13), using the derivative u® for the variable Y and X,u,...,u"Du, ... u,® . uy,®R) for the

variables X;,...,X, respectively. As a result, we obtain differential polynomials %"lt € F[X Wyt 1,)“11 ,ufﬁ’ ooty ,ua)] e

F[u, SW i 1,)(1,( 1)% ,lb(f,) Wiy ey W, P]- such that formula (13) is equivalent to the following disjunctive formulas (we leave only

those indices q for which ordu(‘lfq) =r):
(tzi(%qut B O>&Ol‘rﬂ{=0>&(%%0%0» 14
ERCRDUCID] | ®

We apply the described splitting procedure to each of the disjunctive terms in (14) (for fixed q), treating this system
as (10), and using, for a splitting polynomial g, an arbitrary polynomial gq,t (t 2 1) for which ord,(gq ) = 0, i.e., it contains
u. We repeatedly apply the splitting procedure to all systems of the form (12) that we obtain, but we do not use Y asa
splitting polynomial. We then apply the splitting procedure to system (15), like (14), taking one of the {fishi = 1is contalmng
u as the splitting polynomial and repeatedly apply the procedure to the systems of the form (12) that are obtained.

Note that the splitting procedure is not applied to systems of the form (12) that are obtained if and only if the obtained
system s either of the form Qj =& . (¢q44=0)& (1|f,,¢’ =0)4(44,0#0) (Gie., itis derived from (14)), where . wlat =
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‘Z&".._(k%qui'(u“’)t‘..(u‘f"’)ii-land Qo YEF (X thyyry s Uy Wy T while 3 = (osi1s++-sr—1), or the system is derived from
(15) and is of the form Q‘5=L &l}S}U(.&L,S,:’:O)&(&o%O) when similar notation is used.

We will show that the formula 3u(Q,) is equivalent to the following disjunction:

v
uo<§;1,u(%°h0ﬂo #0)): (16)
We consider some uy,...,u, and we let K = F<uy,...,u,> be the differential field generated by them. We assume that (16)

is true. We choose u,u(),. .. ,ur~1) to be algebraically independent over field K; then %Q’O(X, w, g,:,‘). .. .w“",’ Wy, .oy u,(f,). SV -

u‘.f’)#() ,50 0# fﬁcww(ﬂfo’)'eK[u,w,;..,u‘fl’“] » by Lemma 1b and Remark 2) on this lemma, and, finally, we choose u to
satisfy the single equation :{rfo;(u,u(t)... AT®)=0 , where ﬁ'fqle K[, 2w™]: is an irreducible (over the field
K(u,u®,...,u®=D) divisor of the polynomial ¥, (i.e., uis a member of the differential quotient ring K{u}/(‘ffq) without zero
divisors (see [5, 7]). Then the u we have selected satisfies the equation ( =1|fo{(u,u“,).'..,ufm,)uﬁ’)eK{w}/(llnfq)‘ , S0 the formula
Ju(Q,) is true, i.e., there exists a u in the differential closure of the field K (see [5, 7]). Formula (16) obviously follows from
the formula 3u($,), which proves the required equivalence. Similarly, the formula 3u(Q3) is equivalent to the disjunction

\:1/0( ;8;135,:1(5@,5,0 =0)&({,,#0) (17)

We apply Lemma 2 to each disjunctive term in any formula of the form (11) obtained after application of the splitting
procedure (for given 8 we choose gy = 3%g/8(u)P; see (9)). As a result we obtain the differential polynomials. ho,p; h’i:P"""
ﬁ/glpeF‘[X,u,lI»(,’?n,u( t’)%---,l,b(zvf._.?uu,...,u(fw]: , so that (11) is equivalent to the disjunction ‘

0 9P N 2 A ot
“J\‘L*'i((%: 5—"% o Wg}r%"‘: z”&F@&(ho,Pg(u_(%)‘P‘x #@)' (18)

We again apply the process we have described to each of the disjunctive terms of the formulas of the form (18) that
are obtained, taking this disjunctive term as a formula of the form (13), etc. This completes the description of our algorithm
for constructing quantifier-free formulas equivalent to the formula 3u(;) (see (13)). We should note that the formulas we
ultimately obtain (and which do not contain the variable u) are of the form (16) or (17.

We will now estimate the number of systems obtained from (13) and their sizes. Note that because, for any intermediate
system, the differential polynomials that appear in such a system belong to the ring  F[X,u, .., w® tty...,t, ot tgruoti®*P] for
some p, the polynomials that appear in systems of the form (16) or (17) belong to the ring F [X,u],...,ul(R""'),...,un, . ,un(R+’)].
From system (13) we obtain kd®1®R+1) disjunctive terms in formulas of the form (14) (as well as (15)), by Lemma 1 (here and
below ¢y,¢,,... are natural constants). The degree of each polynomial that appears in system (14) or (15) is no greater than d°2,
while the degrees of these polynomials in the variables T}, ... ,T¢ can be estimated as dy(dd,)®3, again by Lemma 1. By splitting
disjunctive terms of formulas of the form (14) and (15) we obtain kd<4(mR+1) systems of the form (11) and (12). We apply
Lemma 2 to each disjunctive term of formulas of the form (11). We obtain a formula of the form (18) with polynomials of
degrees less than (d(r — p))°S, degrees in T,...,T, less than dy(dd,(r — p)°6, and coefficients having dimensions less than
(M+(hR+v48) qu(d,,>) ('d,dm— P))C‘

It is not difficult to use these considerations to prove by induction on 0 < p < r that after p applications of the process

. » . . o o ~

there will be no more than (d2)*™**** intermediate systems of the form 7, F=85,=0, Top# 0, Where g 4 FIXuu®.,
. ol A o d C H

P u,"".,%cxf’:’, -:“w-w“‘,:""}» and sskm)e&m»;»);deg(gw)<m).c§ )d‘fﬁg,..,Tg‘ﬁa,.p""a(""‘dﬁ)‘{; bl tM +.(nR?g)%g(dw))(dl¢d,{)R.‘ . Thus, the

formula 3u(Q;) (see (13)) is equivalent to a disjunction of no more than kd, %% systems of the form (compare (16) and (17))

4= =9s=0; 4+ 0, (19)

“~ e

where ¢, € F'D(Iu,“___,@nz:f?}un,.,,’u‘;"’)] ; in this case s< kd,c’ "'n; d,cg(gx)s 4% 5 d&ﬁn,..,,re(gx)fd&(w)""; Ecgw)stm(nha)@d‘»(m,)"‘o .
. s . T

The time complexity for constructing the given quantifier-disjunction of systems of form (19) is polynomial in M, 4 ‘wk+e)

CrEH) &
dyt ) dr@, K
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We now turn to the description of a procedure that reduces a quantifier-free formula of the type Q (see (1) in the
introduction) to disjunctive normal form. We consider all of the fi,...,f, appearing in ( as elements of the ring of polynomials

F X, o 2 s Koo G iy ] - . For any set of indices I C {1,...,N}, we will say that formula Bib S0k & Gt 0)

is an elementary {fj,...,fy}-formula. It was shown in [4] that there are no more than -(, 3{}; N abeg,(fi)l)(nw*m)w! <N Y . ele

mentary {f},...,f}-formulas defining non-empty quasiprojective varieties F®+mr+1 (it is known that this property does not
change when the field F is extended); such elementary formulas are said to be nontrivial. They can all be found by the
following process (see also [9, 11]). We assume that for some 0 < t < N all nontrivial elementary {f,,...,f;}-formulas of the

form B & (h=0%&, é!{{ %ff‘” - have already been found. We will verify that each of the two elementary {f},....f,f}-

formulas P& ({4,,=0)  and B,& (§4,,#0) is nontrivial, using [2, 3] (see also {8, 9, 10]). Thus, we can construct all

nontrivial elementary {fj,...,fiy}-formulas in time fP(M‘,(dwmyﬂi(iZN)wm) W) (see [2, 3D).

Then, for any nontrivial elementary {f;,...,fy)-formula of the form ‘B , the algorithm determines whether it is
consistent with the formula Q by replacing, in ©, each atomic subformula (f; = 0) with its truth value from the formula B. The
formula obtained by such substitution is true if and only if B is consistent with Q. The formula Q is equivalent to the disjunction
of all nontrivial elementary {f;,...,fy}-formulas that are consistent with Q. Eventually, at the end of this process, §3 is replaced
by the equivalent formula ié‘l (§L=O)&(L1;11§L #0) , which reduces it to the form (13) for further application of the

algorithm for elimination of existential quantifiers.

Finally, the algorithm for elimination of quantifiers proceeds with alternate application of the two procedures we have
described to formula (1): elimination of one quantifier and reduction of a quantifier-free formula of the form € (see (1)) to
disjunctive normal form. As a result, we obtain a formula of the form (2). It is not difficult to estimate the size of formula (2)
or the time complexity of the algorithm by induction on n, when we keep in mind that in each successive step of the algorithm

for elimination of a quantifier we are led to a formula of the form (19), and we have established complexity estimates for
formula (19).
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