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Abstract. Let a semialgebraic set be given by a quantifier-free formula of the first-
order theory of real closed fields with atomic subformulae of type (f; > 0),1 <i<k
where the polynomials f; € Z[.X}, ..., X,] have degrees deg(f;) < d and the abso-
lute value of each (integer) coefficient of f; is at most 2™, An algorithm is designed
which finds the connected components of the semialgebraic set in time MM (kdy“".

The best previously known bound MOM(kd)**™ for this problem follows from
Collins’ method of Cylindrical Algebraic Decomposition.
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In this paper we describe a subexponential-time algorithm which finds the connected
components of a semialgebraic set, given by a quantifier-free formula of the first-
order theory of real closed fields (for a quite wide class of fields, cf. [1,2]). This
result generalizes the main theorem from [15] (see also [13]) and is obtained by a
modification of the construction from [15]. In [4] (see also [5]) the now well-known
method of cylindrical algebraic decomposition was intrbduced, which allows one to
find the connected components within exponential time.

For an ordered field F by F O F we denote its unique real closure (see e.g.
[8]). In the sequel we consider input polynomials with coefficients in an ordered ring
Ly = Z[81, ..., 5m] C Qm = Q(&y, ..., 6m) where &y, ..., bpare algebraically
independent elements over Q and an order in Qp, is determined as follows. An
element §; > O is an infinitesimal w.r.t. Q (i.e. 0 < 6; < a for any rational number
Q 3> a > 0), thereupon for each 1 < 7 < m the element 6;41 > 0 is infinitesimal
w.r.t. the field Q;.

So, let a quantifier-free input formuly £ of the first-order theory of real closed
fields be given, containing k atomic subformulas of the form fi>20,1<i<LkE,
where f; € Zpy[X1, ..., Xnl.

A rational function g € Qun (Y3, ..., Y3) is representable in the form g = g /92
where the polynomials g1, g2 € Zm[Y1, ..., Y3] are relatively prime. Denote by I(g)
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the maximum of bit-sizes of (interger) coefficients of the polynomials g, g,. In the
sequel we assume that the following bounds hold:

degx, . x,(fi) <d, degs 5,(fi)<do, UfDSM 1<i<k (1)

for some integers d, dy, M. Then the bit-size of the formula = does not exceed a
value % = kMd dy* (cf. [1, 2, 6, 7]).

Note that in the case m = 0 (in other words for polynomials with integer coef-
ficients) the algorithms from [4, 5] allow us to find connected components in time
polynomial in M (kd)°™., .

The semialgebraic set {Z} C (Qy,)™ determined by the formula = and consisting
of all the points satisfying the formula = can be uniquely represented as the union of
its connected components {Z} = |J {Z;}. Bach of them in turn is a semialgebraic

1<ist
set determined by a suitable quantifierfree formula =; of the first-order theory of the
field Q,,, (see e.g. [4, 5] for the field R, for an arbitrary real closed field it follows from
[3], see also below). Note that the number of connected components t < (kd)O™ (cf.
(1, 2).

In the present paper the algebraic points u = (uy, ..., un) € (@m)n will be
represented in the following way (cf. [1, 2]). A primitive element 7 (see [6]) of the field
Qm(ui, ..., uy) is produced such that Q,(ui, ..., un) = Q7). For the element
n its minimal polynomial is denoted p(Z) € Qpn[Z], moreover n = Y a;u; for

1<i<n
appropriate integers 0 < o, ..., an < degy(p). In addition we obtain an expression
up = > ,6?)77" , where ,6?) € Q. Finally, for specifying the root n of ¢,
0<j<degz(v)

a sequence of signs of the derivatives of all orders ¢)(), p@(n), ..., @ee@l(n)
of the polynomial ¢ in the point 7 is given. Thom’s lemma (see e.g. [9]) implies
that the latter condition specific the root 7 of ¢ uniquely. We say that a polynomial
g € Zm[ Xy, ..., Xy] satisfies a (D, Dy, .#)-bound if the following inequalities hold:
degy, . x,(9) < D degs, _s,.(9), degs, 5. (B%) < Do; U(g), I(BY") < . The
point u satisfies a (D, Dy, .#)-bound if the polynomials ¢, ,62.(") satisfy this bound.

Then the bit-size of the representation of the point u does not exceed
(ADDFm)°D (cf. [1, 2]).

Theorem. One can design an algorithm, which for any formula of the form = satisfy-
ing the bounds (1), finds the connected components of the semialgebraic set
{Z} € @)™ within time M 0(1)(I~cd)"o(1)(7’"““1)(1(‘)7 (™) (subexponential in %). The
algorithm outputs each connected component by means of a certain quantifier-free for-
mula =; (see above) with (kd)"o(l) atomic subformulae of the type g > 0, where a poly-

nomial g € Zm[ X1, ..., Xn) satisfies a (kd)""", do(kd)™*"”, (M +mdo) (kd)"°®)-
bound.

For proving the theorem we shall need the following subexponential-time algo-
rithms: (1) the algorithm from [6, 7] for finding irreducible components of an alge-
braic variety (defined over an algebraically closed field; (2) the algorithm from [1]
for solving a system of polynomial inequalities; (3) an algorithm (see [2, 16, 17])
for quantifier elimination in the theory of real closed fields for the formulas with a
restricted number of quantifier alternations.

Let us mention that in [15] (see also [13]) an algorithm is describe which counts the
number of connected components of a semialgebraic set {= } within time
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MOD(dy(kdy™”YOn+m) Moreover, this algorithm allows one to recognize for two
points from {Z}, whether they are situated in the same connected component. When
[15] was already written, the authors learned that a similar result was obtained by
J. Heintz, M.-F. Roy, P. Solerno, see [19-22]. The algorithm described in the present
paper can be regarded as an “uniformization” of the algorithm from [15]. More pre-
cisely, when one of two given points is considered to be “variable”, the algorithm
expresses the condition that the “variable” point belongs to the same connected com-
ponent as the second fixed point via a suitable quantifier-free formula.

In the sequel we shall need some geometrical and topological notions and state-
ments about the space (Qn,)™. To justify them we make use of the following statement
called the “transfer principle”. Let K; C K, be an extension of real closed fields and
IT be a certain closed formula of the first-order theory of the field K, then its truth
values over the fields K and K, coincide (see [3]). In particular, in [1] the existence
and uniqueness of the decomposition of a semialgebraic set in (Q,,)™ into a union of
its connected components was proved with the aid of the transfer principle.

Let polynomials fi, ..., fx € Zp[Xy, ..., X,], satisfying (1) (or (d, dg, M)-
bounds), be given. We call {f1, ..., fy}-cell (cf. [1]) any nonempty semialgebraic

t of the kind ;= f ) =
set of the Kin {;sz(f 0& & (>0 & (s <0}, where TUL U T,

{1, ..., k}. By Z({f1, ..., fi}) we denote the partition of the space (Q,)", whose
elements are connected components of all {fj, ..., f}-cells. A finite set of points
7% C (Qm)™ we call a representative set for the polynomials iy ooey fi if for
every element W C (Qn)" of the partition Z{fy, ..., fr}) ZNW # @ holds.
The algorithm described in [1] yields a representative set 2 for fi, <.+, J& within
time M 0(1)d00 ™) (kd)Onm+1) Rurthermore, each point from .78 satisfied ((kd)O™,
do(kd)°™, (M + mdy) (kd)°™)-bounds. Applying the algorithm from [15] one can
find a subset %' C % such that for every element W € %({fi, ..., fi}) the inter-
section .%8' N W consists of a single point.

1. Reduction of Finding Connected Components
to the Case of a System of Inequalities

Let K be an arbitrary real closgd field (see e.g. [8]) and an element £ > 0 be
an infinitesimal with respect to the field K (see above). Let us recall some well
known facts about real closed fields. A Puiseux series (or fractional-power
series) over K is a series of the form Y cye¥i/# where 0 # o; € K, the inte-
>0

gers 1y < ) < ... increase and the integer 1 > 1. The field K ((£!/*)) ’Eg_nsisting of
all Puiseux series (with zero added) is real closed, hence K((e!/® > K(e) D K(e).
Furthermore, the field K [v/—1] ((¢1/®)) = K((c!/®)) is algebraically closed.

When 14 < 0, the element a € K((€1/®)) is called infinitely large, if vy > O then
a is infinitesimal (with respect to the field K). A vector (ay, ..., a,) € (K (G
is called K -finite if each of its coordinates a;(1 < 4 < m) is not infinitely large.
For any K-finite element a € K((e}/*)) its standard part st(a) € K is definable
(cf. [1, 2]).

Namely, st(a) = a9 when 1y = 0 and st(a) = O when » > 0. Similarly,
one can define the standard part of a Puiseux series from K ((€1/*)). The standard
part of a K-finite vector (ay, ..., a,) € (K (/)™ is defined componentwise:
st(ay, ..., an) = (st(a1),st(@2), .- ., st(an)).
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Let a system of inequalities [cf. (1)] be given
f]>O7"'7fk]>O7fk|+1207“'7fk20 (2)

where f; € Zm[X1, ..., Xn] The purpose of the present section is to reduce the
proof of the theorem to the case where the formula = has the form (2). Because
of this we suppose for the time being that the algorithm required in the theorem is
designed already for formulae of type (2) (complexity bounds for this algorithm will
be given later).

Applying the theorem to each {fi, ..., fi}-cell, the algorithm for every element
of the partition #({f1, ..., fx}) yields a certain quantifier-free formula determining
this element. Observe that any connected component of the semialgebraic set = is a
union of several elements of the partition and one can select all the elements contained
in {Z}. Therefore for finding the connected components of the set {Z} it suffices
(cf. [15]) to test for each pair Vi, Vo € Z({f1, ..., fu}), whether Vi NV 5 ¢ (here
the bar denotes the closure in the topology of the space (Q,,)™ whose basis consists
of open balls).

Let V) lie in a certain {f, ..., fi}-cell

Ui ={ g(i=0& & (> 0& & (f, <O,

thus V] is a connected component of U;. Let €, > 0 be an infinitesimal w.r.t. the field
Qm and & > 0 be an infinitesimal w.r.t. the field Qm(e1). Denote Fi = Qp(e1),
F, = Fi(g;). By stp we denote the standard part w.r.t. &5, by st; we denote the standard
part w.r.t. €1, €, i.e. for an element a € Fj sty(a) € F, sty(a) € Q,, (provided that
these standard parts are definable) and the element (a — sty(a)) is infinitesimal w.r.t.
Fy, and the element (a — st;(a)) is infinitesimal w.r.t. Q,,.

Denote by Vl(el 2 © FP a semialgebraic set defined in the space FJ' by the same
quantifier-free formula (with the coefficients in the field Q) as the set V; (an upper
index will be utilized in a similar role for other semialgebraic sets below). Introduce
a semialgebraic set

th={&a<hi<a)& & (fiy2e)& & (f, <—e)} NS C Py
el i€} i€l

(henceforth &,(r) denotes the closed ball {y : ||z — y|| < r}). Evidently, V; Cc U; C
7.

Lemma 1 [15]. a) There exists a unique connected components % of the set 94,
which contains Vy;

b) sta(7() € V{2,
¢) the relation Vi N V5 # o is valid iff 7N %'(61’62) # .

Applying the theorem to the set 7/, the algorithm yields a certain quantifier-free
formula which determines 7{. In order to test the condition Vi NV, # ¢ it suffices
to check, whether Z{'N %”(E“EZ) # by virtue of Lemma 1 c). One can test the latter,
applying the algorithm from [1] (cf. above) to the yielded quantifier-free formulas,
determining the sets 7{" and V5, respectively.
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2. Reduction to the Case of a Nonsingular Hypersurface

We proceed by proving the theorem in the case where the formula = is a system
of inequalities (2). In the present section we reduce the proof of the theorem to the
case when the semialgebraic set determined by (2) is a nonsingular hyper-surface.
Moreover, it suffices to find the connected components situated in a ball with an
infinitely large radius (w.r.t. the field Q,,).

Denote by ¥y C (Qy,)" the semialgebraic set determined by the system (2). In-
troduce a new variable Xy and a semialgebraic set V; C Q)™ determined by a
system

fr20,., 620, Xo-fioofi, =1 (3)

Assume that the connected components of the set V; are already found and for each
connected component a certain quantifier-free formula Egl) determining this compo-
nent is given. There is a bijective correspondence between the connected components

of the sets V5 and V;: namely, to a connected component {Eﬁl)}
corresponds a connected component of the set Vj, determined by a formula
ﬁél)&(f 1> 0)&...&(f, > 0). Where ’55‘) is obtained from Efl) by substitut-
ing 1/(f1-...- fx,) (X1, ..., X,,) for X and then multiplying all the polynomials
occurring in the formula by an appropriate power of (f; - ... - fe) (X, .0, Xp) in
order to clear the denominator.

Add one more variable X, 1, introduce the polynomials fi1 = Xofi-...- fr, —1

H

frt2 = — fr+1s fe43 = Xnt1, frs = — fiqs and consider the system of inequalities

f120,..., frra 20 4)
Then (4) determines a semialgebraic set V C (Q,,)"*2 which is isomorphic to V; by
means of the linear projection 7 : (X, ..., Xp41) — (Xo, ..., Xp).

Consider a semialgebraic set 7° C F2"+2 determined by the following system of
inequalities (€1, e, have the same meaning as in Sect. 1):

fiter>0, ..., fipa+er >0 ©))

For a semialgebraic set W by OW we denote its boundary in the topology whose
basis consists of open balls. Observe that W is also a semialgebraic set. Later on
we shall need some lemmas (2—7), whose proofs one can find in [15].

Lemma 2. For any connected component % of the set 7 its boundary 0% is also
connected.

This lemma was the reason for introducing X,+;. Consider a polynomial g =
(fit+e): ... (fur1 + 1) — e

Lemma 3. Any connected component S of the semialgebraic set {g = 0} C F{‘“
lies in a certain connected component %% of a suitable open {fi +¢€1, ..., frea+€1}
-cell (i.e. a cell determined by a system of strict inequalities (—1)°1(fi+&1) >0, ...,
(=1)k+4(frpa + 1) > O for some (k + 4)-tuple ; € {0,1}, 1 <i < k+4).

Lemma 4. Let 74 be a connected component of the open cell %, some point
T € FI”’F2 N 0% and an element 0 < r € Fy. Suppose that %5 is a connected
component of the intersection I N (r) such that x € 0. Then there exists a point
y € {g = 0} N D& for which sta(y) = z. Conversely, for any point z € {g = 0} N7,
Sta(2) € O, provided that sty(z) is definable.

Let S be a connected component of the hypersurface {g = 0} and S C 74, where
P4 is some connected component of the open cell 7 (see Lemma 3). Lemma 2 entails
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the connectedness of the boundary 0%4. Alexander’s duality principle [14] implies
that S decomposes the set Fyt2\S into two connected components each having S as
its boundary. Here we use the fact that zero is not a critical value of the polynomial
g (cf. Lemma 4 [1]) and hence S is a nonsingular hypersurface. In this argument the
transfer principle is involved. Thus, it is reasonable to say: two points are situated on
the same side of S, or on the contrary, two points are situated on different sides of .S.

Lemma 5. a) The whole boundary 8% is situated on one side of S;
b) Any two points z,y € P4 N Fl’"”r2 are situated on the same side of S.

Lemma 6. Among all the connected components of the hypersurfaces {g = 0} which
lie in 4, there exists exactly one which contains at least one point with definable
standard part sty.

Lemma 7. For every connected component % of the set %" which contains at least
one point with definable standard part sty, there exists a connected component Wy of
the set V such that Wy C % (if for any point y € %, the standard part sty(y) is
definable, the connected component Wy is unique and in this case sty(%5) = Wp).
Conversely, for each connected component W of the set V there exists a unique con-
nected component %" of the set 7" having a common point with W. Furthermore, an
inclusion %" > W holds.

Relying on Lemma 8 [15] and on the transfer principle, one can prove the following
lemma, but we give its independent proof. Below £ > 0 is an infinitesimal w.r.t. the
field Q,,.

Lemma 8. The connected components of the set V correspond bijectively to the con-

nected components of the intersection Vo = (VO N Zy(e™")) C (Qum(e))*+2. More-
over, 1o each connected component W of Vi corresponds the connected component
W N (@Q)™t2 of the set V.

Proof. There exists an element R; € Q,, such that for all Q,, > R, > R; and for
each connected component W of the set V' the intersection W N Z5(R,) has the same
number of connected components as the intersection W N 24 (R;) has. One can easily
prove it observing that the set of all R, for which the intersection W N 2 (R;) has a
given number of connected components, is a semialgebraic subset of a line Qm, and
on the other hand an upper bound on the number of connected components of the
intersection WN%(R;) does not depend on R, (but only on the number of variables,
on degrees and on the number of polynomials occurring in the representation of the
set V, cf. [2]).

Consider a semialgebraic set U € (Q)"*? consisting of all the points u € W, in
which the function “square of norm” (Xo, ..., Xpq1) = X3 +...+ XTZL 41 Teaches a
local minimum on W. Then on every connected component of the set U the square
of norm has a constant value. Take R? to be larger than R? and than all the values
of the square of norm on the connected components of the set U.

Let us prove that for any Ry > R; the intersection W N Z4(R,) is connected.
Assume the contrary. Let the points y;, y» € W NZp(Rs4) belong to the different con-
nected components of this intersection. Since W is connected, there exists a bounded
connected semialgebraic curve C' C W containing both y1, 4. Then C' C Z5(Rs) for
a certain Rs, R4y < Rs € Qp,. As the numbers of the connected components of the
intersections W N Z(Ry) and W N Zp(Rs) coincide, there is a connected component
Wy of the set W N Z(Rs) such that the intersection W N Z(Rs) = 0. Therefore,
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there exists a point wg € Wy in which the square of norm reaches its minimum on
Wo. Hence wo € U and we get a contradiction with the choice of Rs.

Because of Fhe transfer principle, for each Q,,(e) > R4 > Rj the intersection
W© N Zp(Ry) is also connected (cf. [1]), in particular, W N % (e™!) is connected.
The lemma is proved.

Noti«ieé that2V2 can be determined by the following system of inequalities:
fo=e? = Xg—... = X2, 20, fi 20,..., frs1 > 0. Further in the appli-
cations of Lemmas 6, 7 the field K = Q,,(¢) will play the role of the field Q,,. The
element £; > 0 is irli_i\rlitesimal W.LL. . K, and the element &, > 0 is infinitesimal w.r.t.
K(ey). Let Ky = K(e1), K> = K (e;) (similar to the above we utilize the notations
sty, st). Consider also a semialgebraic set % C K;_‘*z determined by a system of
inequalities: fo+¢e1 >0, fo+e; >0, ..., frua +€1 > 0 [cf. (5)] and a polynomial
g = (foted(fit+e) ... (fopa +€1) — € (cf. Lemma 3). In consequence of
Lemma 6 there is a bijective correspondence between the connected components of
the nonsingular hypersurface {g; = 0} C K7*? which lie in %, and the connected
components of the set 7. By virtue of Lemma 7 there is a bijective correspondence
between the connected components of the sets 25 and V3, respectively. Finally, apply-
ing Lemma 8, we get a bijective correspondence between the connected components
of the sets V, and V, respectively [and thereby, of V}, see (2)].

Now we shall describe the reduction of finding the connected components
of the set V' to finding the connected components of the nonsingular hypersurface
{91 = 0} NG (v/e2—&1) (cf. fo). An algorithm for finding the latter connected
components will be described in the next section. Thus, we assume that for each
connected component of the hypersurface {g; = 0} N Z(v/e2—¢1), a certain
quantifier-free formula {2 determining it is already given (one can deem w.l.o.g. that
all the polynomials f; +€1, ..., frs +€1 are positive on this connected component,
cf. Lemma 3, otherwise we don’t consider this component).

Introduce new variables £y, ..., &nt1, Yo, --., Yni1 and consider a formula I7
of the first-order theory of the field K, with free variables Zy, ..., &,.1, which
expresses the condition that the point (Zy, ..., Zn41) belongs to V52, Further-
more, any point (Yp, ..., Yn41), being the nearest to the point (Zy, ..., Zpy1)
among the points of the hypersurface {g; = 0}, satisfies the formula (2. Apply-
ing Lemma 6, to the connected component {{2} of the hypersurface {g; =0} there
corresponds a unique connected component % of the set %, such that %5 D {2}.
By virtue of Lemma 7, to %4 corresponds a unique connected component W, of
the set V, for which W, C %4. It is proved in [15] that for the above formula IT,
W, = {IT} N K™*? holds. Apply the quantifier elimination procedure from [16] to
the formula IT and obtain as a result a quantifier-free formula II; of the theory of
the field K, equivalent to it with atomic sub-formulae of the type (h > 0), where
h € Qmlelle1, €2, &0, - .., Bny1) and represent h= 5>, hg, 5,8, - €5, where
hiI,iz € Qmlel &y, - .-, Lny1l. 0<iyiz<e

Thereupon we produce a quantifier-free formula I, with coefficients from the
field K, being equivalent to the formula IT; for any point (£, ..., &n+1) from the
space K™t2. Toward this aim, replace every formula (h > 0) in IT; by the following
formula:

(ho,o > 0) V (ho,o =0&h1p> 0)V (hoo = hip =0&Mo>0)V...
V(hop =hio="...=hp10&hp0> 0)
V (ho,o =h1,0=...=hg’0=0&h0,1 >0V...
V(ho’o =...= hg’g—-l = O&hg,g >0)
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which is equivalent to the inequality h > O for any point (Zy, ..., Zny1) from
K™t2 The resulting formula we denote by IT,. Thus, the formula I7, determines the
set W, in the space K™*2.

Each-polynomial h € Qulel (%, ..., 1] occurring in the formula I7,, we
represent as h = Zeiﬁi, where h; € Ql%y, - .., Zn41]- Replace each atomic sub-

formula of the form A > 0 in the formula IT, by the formula (ho > O)V (ko = 0 & h; >
0)V... (in a similar manner as above), which is equivalent to the inequality & > 0 for
any point (Zy, ..., Zny1) from (Q,,)"*2. We obtain as a result a formula 1T, which
determines in the space (Q,,)"*? the semialgebraic set Wa = W, N (Q,)"+2 being
a connected component of the set V' because of Lemma 8. Thus, the algorithm de-
scribed above produces all the connected components of the set V by force of Lemma
8, thereby all the connected components of the set V) by means of substituting zero
for Xpn41 [cf. (4)], and finally, all the connected components of the set V; (see the
beginning of the section).

3. Finding Connected Components of a Nonsingular Bounded Hypersurface

In the present section we describe an algorithm which finds the connected components
(i.e. yields for each of them a certain quantifier-free formula determining it) of the
nonsingular hypersurface {g; = 0} C K3** which lie in the set Z(1/e=2 + 1) N
{fi+e1>0,..., fuy1 +&1 > 0} [cf. (5) and Lemmas 3, 6]. Notice that {g; = 0}N
(% (Ve +e1)) = 0 (see Sect.2). The described algorithm relies essentially on
the method from Sect. 3 [15] (we mention also that a similar construction is exposed
in [18]) for testing whether two points belong to the same connected component of a
nonsingular bounded hypersurface.

The algorithm produces by recursion a rooted tree .7~ of depth n+ 1 (the depth of
a vertex is its distance from the root). Suppose that according to recursive hypothesis,
all the vertices of depth at most n—I (where 0 < n—1 < n) are already produced, let
v be one of the vertices of the depth n — I. Suppose also that a certain quantifier-free
formula A, in the variables &y, ..., &4 corresponds to the vertex v.

In the sequel we need to consider a more general situation than in Sect. 2, namely
when for a given 0 <1 < n a variety {hy(n1, ..., Nnp, Y1, ..., Yiga) = 0} C K.
(provided that the point (£, ..., &,,,) satisfies the formula Ay) has at most one
singular point o, = (o7, ..., o74), ie. a point satisfying the following system of
equations:

Ohy,
hv(m, ceey 7],1*1,0'1,) = 5}71(771’ ey 77n-l70"v) =...

Ohy,
= ia My o ooy Yoty 00) = 0.

We assume that the polynomial h, € K len, el 2y, ..., Zp] V1, ..., Yiya] is pro-
duced by recursion on (n—1). In addition we suppose that by recursion on 1 < ¢ < n—|
the polynomials <p§,"i)(Z,~) € Kley, ] [Zo, ..., Zny1][Z;) are already computed
(here and further (n;) is regarded as an upper index). Apart from that for each
1 <4 < n—1asequence %™ of signs of the derivatives oW 1978 for all
1<£j5< degzi(cpg,"")) is given such that 7; is the unique root of the polynomial

(ps,"‘)(Zi) satisfying %™ (cf. the introduction).
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Also we assume that a nonsingular linear transformation M, (defined over the field
Q) is produced,. which transforms the (n 4 2)-dimensional space with coordinates
Xo, -+, Xn+1 Into an (n + 2)-dimensional space with coordinates 21y iy Zny
Yy, ..., Y42 such that b, (90,(Xy, ..., Xn+1))=g1(Xo, ooy Xoi1). y ooy D,

Finally, let some points be defined:

US,I)(m, e Tn=1)

— 1) 1
- ("71, seey 77n—l1U1 3 ey Ugﬁz)Ta cery qu)("h; LR nn-l)
(@) (@)

::(771; teey nn—laul [IEER ul+2)T E{hw(’l']l, "‘1777‘1.—1)},1: ey YZ-I—Z).:O}
nm'u'{fO"‘El >O> ey fk+4+51 >0}CK§+2

(p;ovided that the point (&, ..., %y,) satisfies formula Ay). Here each coordinate
ug?) is determined by a polynomial ¢37) € Kle,e)] (&, ..., Znii][Z] and fur-
thermore, by a sequence %7 of the signs of the derivatives of all orders (w.r.t. Z)
of this polynomial. In a similar way o;(1 < j < 1+2) is determined by a polynomial
gpi,a]) and by a sequence 55( °7 of the signs of the derivatives of this polynomial.
We’ll require for uniformity that the point (1, ..., 7,_;, o) is contained among the
points w1, « .y Nuet)y ooy UL, - Tns).

We describe now the base (n = [) of the recursion producing the tree .7, Namely,
to the root vy of the tree corresponds a formula A, = {g; = 0, fo +&1 > 0, ...,
fe+s + €1 > 0}, where g; plays the role of the polynomial hy,. For the points

ul)yy, ..., u® we take the union of the representative set for the hypersurface

{g=0n@(Ve2+e)N{fi+e >0, ..., frs1 + & > 0} (cf. [1] and the
introduction) and the point (&, ..., &y+1).The transformation 01, maps Xy — V1,
X1 —Ys, ..., Xn+1 — Y4 respectively.

Lemma 9 [15]. For any point (%y, ..., &nt1) satisfying the formula A,, at least
one of the integer vectors of the type (1,ta, ..., tiy2), where 0 < t; < N' < (kd)"om,
2<i<I1+4+2 satisfies the following property. Every two different points vy,

¥ € {h(m, ..., e, Vi, ..., Yiua) = 0} C K5 in which the both gradients

8hv("71; *--7nn—l:Yia ey 1/l.—l-?.)>

grady(hv) = <

8}/1 [ |
- <5hv(771: ) nn—laY'ly (AR }/l+2)>
Y1y
and grady/(h,,) are collinear to the vector (1,ta, ..., tiy2), do not lie in the same
hyperplane orthogonal to the vector (1,%, ..., tiz2).
The algorithm tests all possible vectors (1,1, ..., ti42). Fix some (1,12, ..., t142)

which yields a formula @gl’tz"“’t” 2) with coefficients from the field K (g1, &,) of the
first-order theory of the field K>, which expresses the latter condition in Lemma 9

(concerning the points ¥, ¥'). So @il’tz""’t‘“) has free variables Zo, ..., Zn41 and
besides, the variables Z, ..., Zn-i, Y1, -+, Yi42, ¥{, ..., Y/}, bounded by the uni-

versal quantifier (observe that ¢§1’t2’ =%42) qoes not depend on the formula 4,). Apply
to di(ll’tz"“’t‘“) the quantifier elimination procedure from [16] and as a result obtain
a quantifier-free formula !P;l’tz’ = 142) gquivalent to it.
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Consider the (I +2) x (I + 2) matrix

1 th...t142
B = . 1 . 0 ,
1
introduce new variables Y1, ..., Yi42 and define a polynomial l:zv =hy(Z1, ..., Zn_1,

.)Z’—‘l(ﬁa caey YZ-FZ)T) S K[51752] [Zly ey Zn——lal_,h (RN }_/i+2]- Finally7 a p01yno_

mial h, is obtained from h, by replacing Y1, ..., Yi42 by Zn_i11, Y1, ..., Vi
respecti\}ely. Thus, we can introduce a linear transformation of (n + 2)-dimensional

spaces ﬁv = (lg %) IM,, where E denotes the identity matrix.

Based on [15] [see there system (10a,b)], one can prove that for any point
(&, ..., Znp1) satisfying the formula A, & é(zl’tz"“’ 2) o system of inequalities

Ohy _  _ Ohy _
a, T i (6a)
FONNZ, . Zne Yy o, Vi) e >0, 0<j< K4y

PMN(Zy =0, M 1<i<n-—I (6b)

hy =

has a finite set of solutions in the space K;”‘z with coordinates Zi, ..., Zn_i41,
.Yla (KRR} Yi+1 .

In the sequel we have to solve several times some systems of polynomial inequali-
ties with coefficients which are polynomials in &y, ..., &,+1. Moreover a quantifier-
free formula A in &y, ..., &, is given such that for any point (Zy, ..., Hni1)
satisfying the formula A, the system under consideration has a finite number of so-
lutions (in the space K;—;-z with coordinates Zi, ..., Zp—it1, Y1, ..., ¥ia1). Our
next task is to describe a subroutine for solving systems of this sort. Using the
subroutine, we produce a partition % of the semialgebraic set {A} = |J{AD}

J
into semialgebraic sets {A“)}, determined by some quantifier-free formulae AY).

Furthermore, the subroutine yields, for each AY), a family of polynomials Efflj)l o
v, € Klened(Zo, ..., Bl [Z, 1 < iy Sn—1+1,1< i <1+1,

1 <. < t9 for a suitable £, Finally, the subroutine yields the sequences .57

i g i, 1,5
%2(32)/ of signs of the derivatives of all orders of the polynomials Wz(,])1/ ij,)z,y,
respectively. For any point (Zy, ..., &p41) satisfying A9 a formula

\/ (Wicljf)l,f =0, Zf.?l),ya 1<y <n—-1+1,
1<y <t
!p".(;:}zr‘/ = 0’ ‘7{2(.,72),.9“) 1 S 'iz S l -+ 1) (7)

determines the (finite) set of solutions (in the space K2"+2) of the system under

consideration. For a fixed 1 <.% < £ the disjunctive term in (7) determines one of
the solutions of the system.

We describe this subroutine in applying it to the system (6a, b), with the formula
Ay &di(zl’tz""'t’“) playing the role of A (in other situations the subroutine would be
applied in similar ways). Denote by U C Kzz("”) the semialgebraic set determined
by system (6a,b). Applying the algorithm from [16] for each index 1 < i, <[+ 1 or
iy =n—1l+1, we obtain a projection U; C K3 of the set U onto the space Kp3
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with coordinates Lo, ..., Zni1, Vi, or &y, ..., & :

algorithm from [16] represents U; asa unioxi) of cénﬁ;:tli,vez g;éﬁzigr:;f;icctls‘;iiyéfzg:
kindU = {Po =0, P, >0, ..., P, > 0} where P; € K[e},&,] [Zy, ..., Znii, 2).
Applying again the algorithm from [16], we find the projection on I onto the s,pace
K3+% with coordinates Zq, ..., &pny1 in the form {A} for an appropriate quantifier-

free formula A. For any point (2, ... s Zn1) satisfying A& A, & 45(21»1‘2, o tad) oo

is a finite number of points being projected into this point from the set U, because of
the property of system (6a, b). Using [1] we find all the possible feasible sequences of
i

o P
signs of the derivatives -5279 of all orders j for the points from U. As a result we get

a partition {4} = U {A®} into semialgebraic sets, moreover for each A® a family

7

{f?‘i)} of sequences of signs of the derivatives of the polynomial P, is produced such
that

U N (A9} x Kp) N ({4, &8 1201 x k)
= {(Po =0)& (\/ ﬁf-(i)>} N{A, &2 42)  Kr).

J

Thereupon considering different semialgebraic sets U C K;‘“ (from the partition
of the set U;) the subroutine yields a partition %, of the projection of the set U
onto the space K7*? such that each set {A®} is a union of several elements of
the partition #4,. The subroutine constructs %4, by applying [1] to the family of
polynomials occurring in formulae A® for all partitions corresponding to different
sets U. The subroutine yields for every semialgebraic set U C K;“ (being an
element of the partition %) a quantifier-free formula A, of the kind (7) (with the
difference that A; is defined in the space K{“’3) such that

Uy N (U x Ky) N ({Ay &S5 2} 5 K)
= {A} N ({4y & B> 149} x Ky) C KJP.

Actually, A, determines the values of the coordinate under consideration (among
Yi,, 1 <ip < 142 or Zp—yy41) for the solutions of system (6a,b) for the points
(P, ..., Zn1) from the set Up N ({Av &@(1’t2""’tl+2)} x K>).

Next the subroutine produces the partition %4{ being finer than all the partitions
of type %4, for various coordinates Y;,, 1 <ip <1+1 and Z, ;41 again involving
[1] (cf. above). Fix some element of %. Our next task is to clarify which of the
values of the coordinates Y;,, 1 <4y <1+ 1and Z 141 determined by the formulae
Ay N ({ Ay & B2 152} % K>) constitute the solutions of system (62, b). In order
to do this, for each coordinate among Yj,, 1 <12 <1+ 1 and Z,_141 We choose the
corresponding formula determining it and apply the algorithm from [1] to the con-
junction of the chosen formulae and of (6a,b) and as a result obtain a formula of type
(7). Finally, as the required partition % of the semialgebraic set {4, &Pt}
we take the restriction on the latter set of the partition %5]. .

This completes the description of the subroutine for solving systems of polynomial
inequalities with coefficients which are polynomials in Zo, .oy Zpt1.

We remark that the polynomials @bﬁ?l’ o wg )Zy occurring in formula (7), 'do not
depend on the initjal formula A (but only on a system of inegualities to which the
subroutine is applied). Moreover, a formula A9 which determined an element of the
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partition 7 is a conjunction of the form (AY)Y & A, where the formula (ADY (it
determined an element of the partition %4}, see above) does not depend on A. We
shall make use of these remarks in Sect. 4.

Now we return to the recursive step of an algorithm finding connected components
of the hypersurface under description. The recursive step includes three procedures for
producing the options for the values 7,4, of the coordinate Z,,_;,{ (see above). The
algorithm will test (branching in the tree .7~ under construction) all different elements
of the partition %;. Fix a certain element { A"} of this partition, and denote A3 = A®,
The algorithm looks over various formulae A, given above for the space K;‘”
with coordinates 2y, ..., Znt1, Zn_i+1, Such that K§+3 D{MLIN{4:} x Ky) =
Ui N ({43} x K>) (in other words, the projection of {A,} contains {43}, see above).
For any point (Zy, ..., @n41) satisfying formula As, formula A, determines a finite
set of options for 7,.;41. This completes the description of the first procedure for
producing the options for n,_;41.

Recall that a formula of type (7) was found such that for any point (Zy, ..., Zny1)
satisfying formula A;, there exists a finite number of points satisfying (7) [thereby
satisfying system (6a, b)], moreover for every option produced (according to the first
procedure) for 7,4 there exists a unique point with the value of coordinate Zin—1+1
equal to 7n-y41, by virtue of Lemma 9. It would be the only singular point of the
variety {hy(n1, - .., Tnt, Tn-i41, Vi, .., Yig1) = 0} € K51 and we denote it by
oMMl In-141) cf. above.

According to the second procedure the algorithm takes as an option for 7,,_;,; and
expression u(lz) + X tjuﬁ-” (for various 1 <4 < g), i.e. (n — [ + 1)-th coordinate

2<5<l42
I 0
of the vector ( " ) @O, ..., 9e)).
0 B
Denote by 7%M: M-l Mm~1+1) the plane of the form {Z, =y, ..., Zn_y = Tn_1,
Zin—141 = Np-141} (for a point (Lo, ..., Bpy1) satisfying formula As, the plane
G s Tl Tt ) KQ“). By 2= |J Z%M=Mn-1:Mn-111) we denote the union

n—1+1
of these planes which ranges over all options for 7,_;, according to the first proce-

dure. Denote N, = (2kd)*+2 and
A'__. Z (671/1,(771,...,7]71_1, Zn—l+11Y'17---7}/l+1))2'

1<igl+1 0Y;
Lemma 10 [15). For any point Zy, ..., Zpt1) satisfying formula As, there exist
0< Ay, ..., NS Ny such that for each 0<i<l and every component

W c I—(é”"z irreducible over the field K, (here K, = K, [\/—1 denotes the alge-
braic closure) of a variety determined by the following system of equations

Ev('ﬂl) coey Mo,y Zn—l+1) lea sy }/ll-l-l)

— (aﬁv('ﬂl, cooy N1, Zn-l+17 },11 ey Y2+1) — )‘1 A_ _
Yy Ni+2)" T
_ 6}-7'1)(771) vevy Mn=1, Z’I’L—H-la lfl) ey Yl+l) 2 )\’i T
'( oY, ) “Na+n =0 ®

for which an intersection WN(KS*\P)#0 is nonempty, the dimension
dimyg, (W) =1 — i+ 1.



Finding Connected Components 229

Lemma 11 [15]. For any point Zy, ..., Zpy1) satisfying formula Ay and for
every connected component U of the hypersurface {m=0}c K;‘“ such that
UcC _@Z{)(\/ e2+ 51) (see the beginning of the section) and any o € K, differing
ﬁ~om all the options for 0,111 produced according to the first procedure, if an inter-
section Uy = MU N{Zy = n1, ..., Zn_y = Npy, Znr1 = a} 3 O is nonempty
then each connected component of the set Uy has a point which satisfies system (8)zj

The algorithm tests all possible 0 < Ay,..., \; < N, and for each of them
(let us fix some Ay, ..., ;) yields a quantifier-free formula A4 in the variables
20, -+, Zn1 such that for any point (Zy, ..., Bpi1) satisfying formula A3 & Ay,
the variety determined in the space Ké‘” by system (8),, is a semialgebraid curve,
Namely, firstly the algorithm yields a formula /), with free variables 2, ..., Z 1
which expresses a requirement that a projection of the set difference Gs-+Mn-t) of
the semialgebraic set determined by formula (8), & (fo+&1 >0, ..., fers +21 > 0)
and the set &” into each two-dimensional coordinate plane (i.e. a plane spanned by
some two coordinates among Y;,, 1 <4y < 1+ 1 and Z,_;4) does not contain any
disk (with a positive radius). We suppose here that the elements 7;, ..., 17,—; in (8);
are given by formulae of type (7). The requirement means that the dimension of the
set difference is at most 1. Observe that formula A has three quantifier alternations.
Apply to formula A, the quantifier elimination algorithm [16] and as a result obtain

- an equivalent quantifier-free formula Ay in the variables £y, ..., £n41.
Lemma 11 implies that the dimension of the variety CMs~7n-1 is at least 1. On
the other hand, Lemma 10 entails the existence of an I-tuple 0 < Ay, ..., \y < Ny

for which the mentioned dimension is at most 1, thus C1s++-1) is a curve.

Our next task is to represent the local extrema of the coordinate function Z, ;.
on the curve C:~ -0, One can easily produce a formula As determining local
extrema (provided that the point (&y, ..., 1) satisfies the formula A; & A4). The
formula Af has free variables Zy, ..., Znt1, Z1, -- -, Zn-i+1, Y1, -- ., Y141 and for
its description, two quantifier alternations suffice. Apply the quantifier elimination
algorithm [16] to A% and as a result obtain an equivalent quantifier-free formula A5.

Thereupon produce the projection of the set {A%} C Kg(nﬂ) into the space K7t
with coordinates Py, ..., &nr1, Zn-1+1 again invoking the algorithm [16]. The algo-
rithm determines the projection of the set {A?} by a quantifier-free formula A5’ which
is represented as a disjunction of systems of polynomial inequalities. To each system
of inequalities apply the subroutine exposed above for solving systems of polynomjal
inequalities with coefficients polynomial in &y, ..., @nt1. As aresult, for each sys-
tem of inequalities, we get a partition of the semi-algebraic set {43 & As} C K3+
and for every element of the partition we get a formula of type (7). After that the
algorithm yields a partition which is finer than the partitions of the set {43 & A4} for
all systems of inequalities under consideration (using [1], see above). The algorithm
tests all the elements of the latter partition. Fix a certain element of this partition, and
let it be determined by a quantifier-free formula As. Moreover the algorithm yields
formula (7)4, of the kind (7) corresponding to As such that by restricting on the
cylinder {As} x K5 formula (7) 44 determines the set {A¥} N ({As} x K3) (cf. above
the exposition of the subroutine).

Observe that for any point (Zy, ..., Zn1) satisfying A3 & Ay &As there is a fi-
nite number of values of the coordinate Z,_;,; which satisfy formula (7)45. Namely,
the values of the local extrema of the coordinate function Z,-;+; on the curve
C1s-2Mn-1)_ We take these values as the values of 7,11 being produced according
to the third procedure (cf. above), and this completes the description of the third
procedure.



230 J.Camny, D. Yu. Grigor’ev, and N. N. Vorobjov jr.

The algorithm finds all the feasible orderings of the produced values of 7,4 in
the following way. Take any pair of values of 1,41 determined by quantifier-free for-
mulae ¥y, ¥, respectively, of type (7) with variables Z, Z® (apart from the variables
Zo, ..., Zni1) respectively. Invoking [16] the algorithm produces the projections of
the following 3 semialgebraic sets {¥ & ¥, & ZV > ZP}, {1 & ¥, & 2V < 7Y,
(I &0 & 2D = Z@} c KP™ into the space K3*+? with coordinates 2y, ...

Zpp1. Let their quantifier-free formulae be A, AP, AP, respectively. Collect all

the polynomials occurring in formulae of types AL, AP, AD for all pairs of val-
ues of 7,1+ and find all feasible families of signs of these polynomials invoking
[1]. Observe that every feasible family of signs determined some ordering of the
produced values of 7,—i41 (provided that a point (&, ..., £n11) satisfies formula
Az & A4 &As). Fix some family of signs and denote the corresponding quantifier-free
formula with variables 2y, ..., &4 by As.

Thereupon the algorithm produces the endpoints of the curve CO-Mm-1), je,
the points lying in the intersections of planes of type {Z) = n1, ..., Zn-i = Tn1,
Zp-i+1 = Nn—141} (for different values of 7,-;4+1 produced according to the three
procedures exhibited above) with the closure of the curve C™1>- -1} (in the topology
with base of open balls. Notice that there is a finite number of end-
points. For this purpose one yields a formula determining the endpoints with free
variables &y, ..., Znt1, 21, ..., Zn-it1, Y1, ..., Yiy1 (provided that the point
(Zo, ..., Zny1) satisfies formula Az & A4 &As & Ag) and having two quantifier al-
ternations. Using [16] the algorithm yields an equivalent quantifier-free formula A7.
Apply to A5 the subroutine exposed above for solving systems of polynomial inequal-
ities with polynomial coefficients. As a result we get a partition of the semialgebraic
set {A3 & Ay &As & Ag}. The algorithm tests all the elements of this partition. Fix
one of the elements of the partition, let it be determined by a quantifier-free formula
Az in the variables Zy, ..., &,.1. Moreover the algorithm yields a formula (7)’/17

of the form (7), which by restricting on the cylinder {47} x KJ*? determines the set
{45} N ({47} x K3*2) (cf. above).

One can easily yield a formula (7)4, of the form (7) such that for any point
(£, ..., Znyy) satisfying formula A3 & Ay & As & Ag & A7, the set of points which
satisfy formula (7)4, coincides with the union of the points satisfying formula (7)’,17,
as well as the points produced earlier w’(ny, ..., Np-t), ..., w@(1, ..., Npy) and
lastly the points of type o=~ Mm-i+1) for various values of Nn-i+1 produced
according to the first procedure. All the points which satisfy formula (7)1, we denote
by 4l = @, ..., mut), ..., @D = LM, .., o).

Our next task is to specify what points among @, ..., %2 are linked by the
curve CUT»-7n-1), For this purpose one needs (similar constructions were exposed
in [10, 18]) a projection of the space K7** onto a plane K3 with the property that
only a finite number of the points of the plane have more than one inverse images of
the curve C -1 (provided that a point (Zy, ..., L) satisfies the formula
A3 & Aq & As & Ag & A7). Observe that a projection with this property does exist (and,
even “almost” any projection fits) because of “general position” argument.

Consider a projection of K;“L?‘ onto a plane K3 in parametrical form

{Tl = Z w2 + Z ﬂi,lYiy D= z Qipd; + Z ﬂi’zy':}

1<isn~l+1 1<igl+1 1<ig<n—I+1 1<i<i+1

?

where Tj, T3 are the coordinates of the plane and o, 8 (with subindices) are the



Finding Connected Components 231

parameters. For a point on a closed (in the topology with base of open balls) semi-
algebraic curve we shall call its ramification degree the number of points of in-
tersection of the curve with a circle of an arbitrary sufficiently small positive ra-
dius with the center in this point. The projection satisfies the desired property iff
firstly, any point of the projection of the closure Cs>-+%n-1) with the ramifica-
tion degree 2 has a unique inverse image on the curve C™ -7~ and secondly
for any point y of the curve C: -0 for all sufficiently close points z to y on
the curve CM>-n-1) the points y, z have distinct projections into the plane. The
conjunction of the two latter conditions can be written as a formula having coeffi-
cients in the field K, and free variables o1, ..., Bi41,1, @1,2, - .+ Bi41,2 and with
6 quantifier alternations (provided that a point (&Zy, ..., %M’l) satisfies the formula
As & Ay &As & Ag & A7). Invoking [16] one can yield an equivalent quantifier-free
formula which contains at most (kd)"om atomic subformulae of the kind (p; > 0),

MOTEOVeT degq, | . fru1 1 oo 3 iy o P S (K™ Thus, if the product of all poly-
nomials p; does not vanish in a point ey 1, ..., Bi41,1, 1,2, -- -, Bi+1,2 then the pro-
jection with these values of the parameters a1, ..., Bis1,1, 012, - .-, Biy1,2 satisfied
the desired property. Therefore for a suitable Ny < (kd)“o(” there exist integers
0< @iy B4 12, ..., P12 for which the projection satisfies the desired
property.

The algorithm tests all integer values 0 < ay,1, .-+, Bi+1,1, Q1,25 -+ Bir12 < Ny
Fix one of them and write down the condition that the corresponding projection

satisfies the desired property as a quantifier-free formula Ag with free variables
Zy, ..., Zny (cf. above).

Denote by % CK%WFZ) a semialgebraic set {(8)1 & & Ai)} \Z (cf. Lemma 10).
3<i<8
Using [16] the algorithm produces the projection of % into the space K7™ with

coordinates 2y, ..., Lni1, 11, T,. To this projection we add the projections
ﬁé})(m, ooy Ty oeey P01, .., -t)  of the earlier produced ~ points
DO, <oy Taet), s BLM1, -+, Mn—t), and let the resulting semialgebraic set be

determined by a quantifier-free formula (2;.
Observe that for any point (2o, ..., Zn1) satisfying the formula & A; every
31

<i<8
line of the type {T, = const} C K3 has only a finite number of common points
with the set {{2;} taking into account that the curve Cms-Mm-1) ig situated in the

ball _%(\/5*2 + 51) being a union of some connected components of an appropriate
algebraic curve (cf. Lemma 3 in Sect.2) and the main property of the projection.
Thereupon the algorithm produces all the points in the projection of the curve
C12-m2) of one of the following two sorts. Firstly, the points with ramification
degree at least 3. Secondly, the points in which the coordinate J; reaches a local ex-
tremum on the projection of the curve C¢»--0. Denote by A0, <oy Tet)s -ens
4@(my, ..., Tn—1) the union of all the points of the first and the second sorts with
the points G (M1, -+ -y Mact)y > LN, -+, Tn1)- For producing these points the
algorithm expresses the condition of membership of a point in either to the first or
second set, or to the family of points {G(, .- -, In-1); - -+ aDm, ...y M-}
as a formula with free variables T1, Tz, Zo, .-, Dn+1 and 3 quantifier alternations.
With the aid of [16] the algorithm yields an equivalent quantifier-free formula {2,.
Apply to (2, the subroutine for solving systems of polynomial inequalities with poly-
nomial coefficients (cf. above), as a result obtain a partition of the semialgebraic set

{ & Ai)} c KJ*?. The algorithm tests all the elements of the partition. Fix a
3<i<8
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certain element, let it be determined by a formula Ay, then the algorithm yields a
i if={m& & 4}
formula (7)4, of the kind (7) such that {(7),19) & & A } { & & 4
Our next goal is to specify how the points 2°(1, ..., 9p1), ..., 8D, ..., 1ay)
are connected, by means of the projection of the curve Ct> -1, Introduce an ele.
ment &3 > 0 being an infinitesimal w.r.t. the field K, and &4 > 0 being an infinitesimal

w.r.t. the field K(e3), denote the field Ky = Ks(e3, £4). Let us draw the lines of type
{T = const} through the points &0y, ..., Gy, ..., @D (m1, ..., Mn—y). The algo-
rithm finds (see below) all the points of intersections of these lines
with the projection of the curve CM:="- and unites these points with the
points AV (ny, ..., Wn-y), ..., 8Dy, ..., n,_y) denote the obtained points by
AP0, -y Taet)y -, 8Dy, .., Mny). Consider one of the mentioned lines and
denote it by L = {T} = x}. Furthermore, consider also the lines L+ = {T} =
k+e} L7 = {Ti = k- g4} and the algorithm finds (see below) the points
of intersection of these lines with the projection of the curve (CUM: - Tn-b)(€3.64)
(recall, according to the notation of Sect. 1, that the latter curve is determined in
the space K" by the same formula as the curve C(i>-n-_ Let a certain point
ﬁ(j)(m, -+ Tin—1) lie on the line L, observe that the number of points of intersections

situated in a disc @12(,-) — l)(Eg), coincides with the ramification degree of the
1y ey e
point &7 (ny, ..., 7,_;) provided that 2oy .oy Zppl) € {3 & . Aip N KPP,
<<

The algorithm finds the points of intersection with the lines of type L, LY, L~
invoking the subroutine for solving systems of inequalities with polynomial coeffi-
cients. Coen

£3,E.
The subroutine produces a partition of the set { & Ai} o C K7*? into semi-
3<i<9
algebraic subsets. The algorithm tests all the elements of the partition. Fix one of the
elements, and let it be determined by a quantifier-free formula A’lo with coefficients
from the ring K;[e3, 4] Moreover, the algorithm yields a formula (7) Al (with co-
efficients from Kj[e3, e4] of the type (7) which determined the points of intersection
of the projection of the curve G n-0)(€3.) with the lines of type L, LT, L™ in

the cylinder {3 & A &A’m} x K2.
<i<9

Thereupon the algorithm produces the inverse images on the curve
G n-1)(€364) of the points of intersections with lines of type L, L*, L~ again
invoking the subroutine for solving systems of polynomial inequalities with polyno-
mial coefficients. As a result the algorithm obtains a partition of the semialgebraic

set { 3<&<9 A; &/1’10} CK Z‘”. As above the algorithm tests all the elements of the
TS

partition. Fix some element, let it be determined by a quantifier-free formula A/, with
free variables Z, ..., %ny1 moreover the soubroutine yields a formuyla (7) A of

type (7), which determined the inverse images of the points of intersections on the
curve G2 Mn-0)€5:28) in the cylinder { g A & Ay & Afy b x KPH2,
3<i<9

Provided that a point (Z,, ... y Zny1) belongs tose set { & A; & A’lo}ﬂKg”'Z,
3<i<9

consider a line of type L} corresponding to one of the computed lines L; (provided
that it does exist) such that between the paralle] lines L* and LT there are no com-
puted lines (we call L* and LT adjacent lines). Observe that the lines L+ and Ly
contain both the same number of points of intersection and the projection of the curve
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s+ Mn-0)(3:84) links the respective points according to their ordering on the lines
L+ and L7 . Hence, the standard parts of these points w.r.t. €3, €4 (lying on the lines
L and L, respectively) are also linked by the projection of the curve. The structures
of links for all pairs of adjacent lines determine, in particular, the structure of links
of the pOil’ltS ﬁg})(nla EERN | ?7n—l)7 cery 'ﬁ'gj)(nl: cey 77n—l)-

After that applying a procedure similar to the one that was used for finding all
the feasible orderings of the values of 7,41 (see above) the algorithm finds, firstly,
all the feasible orderings of the computed lines of the type {1} = const}, secondly,
all the feasible orderings of the computed points of intersection on lines of type
L+, L~; thirdly, the algorithm tests pairs z, y of computed points of intersection on
lines of type LT, L~ with some inverse images z;, y; respectively, on the curve
(1 M=) (€3,64) [recall that the inverse images are determined by the formulae of
the type (7) AL l], such that the distance between x1, y; is less than €3 (i.e. their stan-
dard parts w.r.t. €3, &4 coincide). Fourthly, the algorithm tests for which points of
intersections z and for which points @ (ny, ..., Mn-1) (Where 1 < j < §) some in-
verse image of = on the curve G~ 7n-D(324) and the point @ (n, ..., Nn-1)
are situated at a distance less than e3. Recall that for a point (Zo, ..., Zn+1)

from the set {3<&<9 A; & A &A’u} N K72 the inverse images under considera-
i<

tion are unique. The algorithm tests all the possibilities for the four described tests.
Fix one of the possibilities. Observe (provided that a point (Zo, ..., Znt1) be-

longs to the set {3<&<9 Ai&A’w&A’u} N K7*?) that the possibility determines
S

also the structure of links of the points DML, ey Tty - T, oy Mret)
by the curve (151 (the mentioned structure can be represented by a graph
in which the indicated points are vertices and are adjacent if they are connected by
the curve G- M- The algorithm yields also a quantifier-free formula A, with
free variables By, ..., &pn+1 such that for any point (Zo, - .., Zn+1) from the set
{ & A&hy&h & Ay} NKF*? the fixed possibiliy is valid

3<i<9

For each atomic subformula of the type p>0 occurring in the formula

o & Al & AL, where'the polynomial p € Kj[es,e4] [Zo0y vy Zngr], write

p= S pyeie), where pi; € Kal[&o, .o, Zry1). Then the formula p > 0
0<i, §<7

for the points (Lo, - -+, Ln+1) € KZ””*2 is equivalent to a formula

(000 >0V (poo =0&p10>0) V...

V (oo =P1,0=---=Ps-1,0= 0&pyp>0)
V (poo=..-= P50 =0&pyr 1 >0 V...
V(oo = ... = Drr-1 =0&psry > 0)

(cf. the end of Sect.2). Replace in the formula Al & A}y & Ay, each atomic subfor-
mula of the type p > 0 by the indicated formula, as a result we obtain a formula
Ao & Ay & Az, _ )
Thus, we can complete the description of the recursive step for 'constru.ct%ng
the tree .7 (see the beginning of the section). Namely, to each pair consisting

of a certain computed formula of the form 3<¢$i - A; and of a certain produced

value of 7,—141, there corresponds some Vertex w of the tree .77~ which is an im-
mediate descendant of the vertex v (different pairs of this type correspond to
different immediate descendants of v). Ay(1, « - -5 Tn~ls Tin—i+1> Y1, ..., Yi41) plays
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the role of the polynomial Ay. oW1, .., Mn-i, Tn-i+1) plays the role of the
point ¢y, (provided that the value of 7,_;.; under consideration was produced
according to the first procedure). The points among the produced

points M1, ..., Tne)y -+, TPy, ..., Nn-1) Whose coordinate Zy, i, equals to
the value of 7n-;41 under consideration, play the role of the points
uc(ul;)(nla teey 7]'n.~l+l); ey ugﬁ)('rlla ceey 77n—l+1)~

As a linear transformation 9, we take ,. Finally, the algorithm out-
puts a graph representing the structure of links between the points
AP, -y Maet)y oy BN, -, M) defined by the curve CT:-7n—b, Thig
completes the description of the recursive step (for n — ).

To each leaf w; of the tree .7 corresponds the value ! = —1 and a quantifier-free
formula A;. The variety {hw, (71, ..., Mn41Y1) = 0} consists of a finite number of
points on a line.

Collect all the polynomials occurring in the formula A, for all the leaves w;
and denote them by ¢V, ..., ¢® € Kl[ey,e2] [Zy, ..., Znt1]. Relying on [1,2] the
algorithm enumerates all the {g{V, ..., g®¥}-cells (see the introduction). Fix for the
time being a certain cell & C K;‘“. Select (again involving [1]) all the vertices v,
of the three .7~ such that {4,,} D &. For every selected vertex v; the algorithm
yields by recursion on its depth a graph Gs,’f). Base case of the recursion: For a
selected leaf wy the vertices of Gﬁﬂ’? correspond bijectively to the points of the variety
{Pwe@1, .., Mnt1Y1) = 0} and G'%) has no edges. For considering a recursive step
assume w.l.o.g. that a vertex v of .7 is selected, i.e. {A,} D &, and we utilize the
notations introduced above. Consider all the selected immediate descendants w in the
tree .7 of v, observe that for all of them the formulae A, are the same, namely,
{4y} is the unique element of the partition yielded above of the set {A,} such that
{Aw} D % s0 the same are also the graphs representing the structure of links of the
points of the kind @’ (ny, ..., M), ..., TP, ..., mus). In fact different vertices
w of this type correspond (for the fixed formula A,,) to different values of Nn—l+1
(see above). Thus, the set of vertices of the graph G{*? is the union of the sets of
vertices of the graphs G{*) for all the selected immediate descendants of v. The
set of edges of G{) is obtained as the union, firstly, of all the sets of edges of
Ggf), and secondly, the edges of the graph representing the structure of links of the
points of type (1, ..., 1), ..., TP, ..., Nn_y) which corresponds to the
formula A,,.

At the end of this process the algorithm yields the graph Gﬁfg) corresponding to
the root vy of the tree 7. One can prove (following the proof of correctness of
the algorithm in Sect.4 [15]) that the number of the connected components of the
graph G coincides with the number of the connected components of the hyper-

surface {g; = 0, fo+e1>0,..., fera + & > 0}, moreover each connected com-
ponent of G} contains a unique representative point among ully -+, ul@ for the

hypersurface {g1 =0, fo+&1 >0, ..., fora+ e > 0} (produced at the beginning
of the present section). Hence there is a unique representative point (%) = u) for a
suitable ¢ such that u") and the point (£, ..., Zni1) belong to the same connected
component of the graph Ggp Then the connected component of the hypersurface
{01=0, fo+e1 >0,..., fopater > 0} which contains a representative point uifg>,

coincides with the union on all the {g, ..., g®}-cells % such that (%) = uo (it
follows from Sect. 4 [15]).
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This cornpleFes the description of the algorithm which finds the connected compo-
nents of a nonsingular bounded hypersurface of the form {;1 =0, fo+e >0,...,

fr+a + €1 > 0}, and thereby the algorithm which finds the connected components of
an arbitrary semialgebraic set (see Sects. 1, 2).

4. Complexity Analysis of the Algorithm for Finding Connected Components

First of all we turn ourselves to complexity analysis of the algorithm exposed in
Sepp. 3. Firstly, we shall obtain a priori bounds on the degrees of the polynomials
¢{7) determining the points uP(ny, ..., Gny), ..., u@P(y, ..., Na-y) and also of
the polynomials ") defining 1., then we shall obtain a priori bounds on the bit-
sizes of the coefficients of these polynomials. After that we shall bound the degrees,
the bit-sizes of the coefficients and the number of the polynomials occurring in the
formulae As, ..., Ay, finally, we shall estimate the running time of the algorithm.
We say that a formula satisfies a (D, Dy, .#)-bound if all the polynomials occurring
in this formula satisfy this bound and the number of the atomic subformulae in it
does not exceed D.

By recursion on (n — [) we yield some family of S formulae of the first-order
theory of the field K>, with the aid of which later on we get a priori bounds on the
degrees and on the bit-sizes of the coefficients of the polynomials @), i) which
correspond to the vertex v of the tree J~ (cf. Sect.5 [15]). We’ll utilize the notation
introduced by describing the recursive hypothesis at the beginning of Sect. 3. For each
of the points u{®(n1, ..., Nn—1) (we fix 1 for the time being) assume that a suitable
formula of the first-order theory of the field K, (with 3 quantifier alternations) of the
following form is already computed:

9 =371 ;... 30 VD1 ... VDo, 3Th 1 . VT3, (),

here ¥ is a quantifier-free formula with atomic subformulae of the kind (f >0),
where f S K[€1,€2] [Tl,l, veey T3,.,-3, Zl, ey D1, Yy, ..., YH_z, SZ(), ey f":n.l_;]
Moreover for any point (Zy, ..., Zn1) (fix it for some time) satisfying the formula
Ay, every point of a semialgebraic set {8P}N{Z; =1, ..., Zn-t = Nt} C K5+
is a zero-dimensional connected component of the semialgebraic set {@%}, besides
the pOint “g)(ﬂh LR 77n—l) € ({@%)} N {Zl =M .- Ipi = nn—l})-

Thereupon one yields a formula 455)”)1 (cf. formula (15); 9n [15]) of the form

&D with free variables Zi, ..., Zn—t, Zn-i41, L0, -+, Ln41 such that for any
point (&, ..., Zn1), satisfying formula As, exactly the values of 7141 pro-

duced according to the first procedure (see Sect.3), satisfy a formula @S}I &Zy) =
m&... & Ty = Np-y. Similarly a formula 955}1)_,1 can be computed (cf. formula
(15);7 in [15]) corresponding to the second procedure for producing values of 7p—141.
Lastly, one can find a formula @S}IU (cf. formulae (15)777max> (15)r71min in [15])
such that exactly the values of 7,41 produced according to the third procedure,
satisfy a formula @%}III&Zl =m&...&Zn 1 = Ty, provided that a point
(Zo, ..., &ny) satisfies a formula of the kind As (see Sect. 3). |
For each of the produced values of f,_i4; (satisfying one of the formulae @S’ I
&P $P ) one can yield a formulae S (again with 3 quantifier alternations)
v, II° T I117 ~ w o P
having free variables Z1, ..., Zn—i+1, Y1, -+ Yitly 205 -+ Lt such that for
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any point (Zy, ..., £n41) satisfying formula , &<7 A; every point of a intersec-
<i<

tion {BYN{Z, =m1, ..., Zpnot = i, Zp—141 = Tn-1+1} 18 a zero-dimensional
connected component of a semialgebraic set {%}, as well as every point among
ay), ..., @2 (see Sect.3) for which the coordinates Z; = 11, ..., Zn_j = Ny,
Zn-141 = Nn-141 satisfies formula &2 (cf. Sect.5 [15]). On the next step of recur-
sion, the formulae of form &{ play a role similar to the role of the formula & (by
constructing the tree .77).

Applying the bounds for the quantifier elimination algorithm from [16] to the
formulae of the form ®{ we obtain the bounds:

iy . o
degz, 2., z,., (¥57), degz,, 2., 2., @) < kd)™ " ;

i > o)
deg61,..., bm.&,€1,89 (wg’j)L d6g51 s ooy OmaE,E1,En ((pfun-/) < do(kd)™ )

for 1 <j<I+2,1< < n- [ [ef. (1) in the introduction] taking into ac-
count that in formula of the form &{, there occur polynomials of type h,, but

neither polynomials {7, ¢ nor formular of the type 4;, I < 12 (cf. the re-

mark after the description of the subroutine for solving systems of polynomial in-
equalities with polynomial coefficients and the bounds in Sect.5 [15]). Using these
bounds one can estimate N/ from Lemma 9 as in Sect.5 [15]. After that, one can
bound the bit-sizes of the coefficients of the polynomials of type h, (and thereby
the bit-sizes of the coefficients of the polynomials occurring in formulae of the
form ) as (M + mlog do) (nkd)®™. Therefore applying again [16] to the for-
mulae &), we obtain the bounds for bit-sizes of the coefficients: LBy, 1)y <
(M +mdp) (kdy"”" [c£. (1)].

Now we proceed to the estimates for the quantifier-free formulae of type 4;. Re-
call (see the remark just after the description of the subroutine for solving systems
of polynomial inequalities with the polynomial coefficients) that the formula Ay 18
obtained on the recursive step as a conjunction A, & A’ for an appropriate formula A’
and moreover A’ does not depend on A,,. Namely, A’ is the conjunction of several for-

mulae yielded at the recursive step. The first yielded formula has a form dig’tz’""t”z)
(see Lemma 9). The bounds ascertained above for (7)), ™) and the bounds from

[16) imply that the formula "%+ satisfies a

o1

k)™, dotkd)™ ", (M + mdo) (kd)")-bound.. )

Similarly, the formulae A3, ..., A, satisfy (). Hence each formula of the type A,
also satisfies (). Because of that the yielded quantifier-free formula which determines
a connected component (see the end of Sect. 3) also satisfies ().

Consider now the formulae which determine the connected components of the
semialgebraic set Vo C (Q,)" being determined by system of inequalities (2) (see
Sect. 2). Recall that in Sect. 2, the quantifier elimination algorithm [16] is applied to
a formula of the type IT; applying the bounds ascertained above we conclude that the
quantifier-free formula IT; and thereby the formulae which determine the connected
components, again satisfy (). Taking into account the construction in Sect. 1 and the
bound (kd)®™ on the number of the elements of the pattition Z({f1, ..., fx}) (see
[1,2]), we deduce a bound of the form (%) on the formulae which determine the con-
nected components of a semialgebraic set {Z7} (see the theorem in the introduction).
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To complete the proof of the theorem, it remains to estimate the running time of
the algorithm. First, we estimate the running time of the algorithm in Sect.3. The
algorithm in Sect.3 has a recursive structure which is represented by means of the
rooted tree .~ with depth n — 1. The branching degree at every vertex of .7~ does

o) .

not _exceed (kd)*" by virtue of the bounds in [16], hence the whole number of
vertlces_of the threc? T can be bounded by a similar value. Besides, the recursive step
(producing all the immediate descendants of the vertex v in the tree .77) requires at

most MOD . (kdy"° (m + 1) - ™™ time, since the algorithms from [1] or [16]
deal with systems or with formulae which contain polynomials h,,, ¢, ©*’, and
into the applications of [1] or [16] are iterated a fixed number of times (at most 11
times corresponding to the formulae eb(zl'tz""’t”z, As, ..., App). Here we take into

account the bounds ascertained aboves of the form (*) for the polynomials A, (),
) and the time-bounds in [1,16]. Apart from that the algorithm at the beginning
produces a representative set for the variety {g; =0, fo+&1 >0, ..., frrat+e > 0}
such that each of its connected components contains a unique representative point, also
within a similar time-bound (see [1, 15]). Thus, a similar value bounds the running
time of the algorithm in Sect. 3.

The running time of the reduction in Sect.2 can be also bounded by a similar
value in force of the time-bound of the algorithm in [16]. A similar time-bound is
valid also for the reduction in Sect. 1, relying on [1]. This completes the proof of the
theorem.
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