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COMPLEXITY OF COMPUTING THE GENUS OF A SYSTEM
OF EXTERIOR DIFFERENTIAL EQUATIONS

UDC 518.5
D. YU. GRIGOR'EV

In [1] the notion of genus of a system of exterior differential equations was intro.
duced; from its definition one sees that computing the genus reduces, in principle, t
quantifier elimination in a certain formula of the first order theory of algebraically
closed fields (see [5]). However, if one follows directly this method of computing
the genus, the estimate obtained for the running time of the algorithm is consider-
ably larger than in the algorithm described below. This algorithm is based on some
properties (see the lemma below) of the varieties of ordinary and regular points and
the varieties defined by polar systems [1]; it also employs subexponential complex-
ity algorithms for finding the irreducible components of algebraic varieties [2]-[4].
Recall that it was proved in [1], on the basis of the Cauchy-Kovalevskaya theorem,
that there exist integral varieties, satisfying the given system of exterior differentia]
equations, of arbitrary dimension not exceeding the genus.

So suppose we have a system of exterior differential equations (cf. [1]) of the form

(1) A X)) =0, 1<i<k
m_ 1 ‘
2 S >z-rh—!;A,,,~de,/\f--/\dem=0, I<m<n, 1<i<k.

Here fi(o), Ay € Q[Xy,..., X,] are polynomials of degrees deg( fi(o)) =degy, x( fl.‘o)),

.....

deg(4,,) < d; the multi-index J = (ji,..., jm), where 1 < ji,...,jm < n, and the

coefficients A4, ; are skew-symmetric with respect to the multi-indices J.
For a rational number p/q € Q, we denote by /(p/q) = log,(|pg| + 1) + 1 its size

in bits, By /( fl.(o)) we denote the maximum of the sizes in bits of the coefficients of

f,.(o). Suppose that /( f,.(o)), [(A;;) £ M for some natural number M. Then the size in
bits of the system (1), (2) may be estimated as Mk(nd)" (see [2]-[4]).

1. We introduce the following auxiliary constructions (cf. [1]). Denote by W© ¢
C” the algebraic variety defined by the system (1). For any 1 < m < n, denote by
Wm c Crim+D) the variety, in the space with coordinates X1, ..., Xy, Xl(l),...,X,gl),
e XM, XS™ defined by (1) and the equations

(3) Do AnXy) X =0, 1<t<m 1<i<k,
J

forall 1 </; < .- <[ < m (fixed for a given equation); here the multi-index
J=(J,--5 ) (see (2)).
Consider the projection z(™): C""+!) —, C"" along the coordinates X",.. LA
for I <m < n. Then ntm (W) = pim-1),
Nonsingular points of the variety W(® [7] will be called its ordinary points, and
the set of them will be denoted by W© c WO (cf. [1]). Let W© = U, w9 be
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he decomposition of WO into irreducible components (here and below we mean
irreducible components over Q [6]). Then Wofo) = WO n w9 is an open dense
subset of w9 (here and below we consider the Zariski topology (61, [7D).

Suppose that we have already defined, by induction on m, the (open in W("=1)
variety W= ¢ Wm=1 of ordinary points, and also the (open in W("~2) variety
~(m=2)

~

7 c Wm=2 of regular points (cf. [1]) for some 1 < m < n. The collection of
Jll equations of system (3) in which /; = m (for all 1 < ¢ < m) may be considered as
s linear system of the form &2 = 0 (it is called a polar system; see [1]), where &
s a vector of the variables X (., XY™ and & = & ™ is a matrix over the ring
Q[Xl,...,X,,,...,Xfm”'), ..., X{" D1, Note that, for any point y € Wn=1), w(m n
({yyxC") = {(y,x): & (y)x = 0}, where the matrix & (y) is obtained from & by
qbstituting the coordinates of y for the variables Xi,..., Xy, ..., X"V, x{" Y.

Fix an irreducible component ¥ of W(m=1. For any irreducible component wim
of W its projection 70 (W™ is also irreducible [6], hence 7™ (W™ ¢ Wém’l)

for some (possibly nonunique) irreducible component ng”’“) of w(m=1)_ Below, we
consider those components W™ of W(m) for which n(’”)(W;(m)) cv.

If, for almost all points y € V' (see [6]), rank(&/ (y)) = r, then, for any y; € V,
rank(#/ (y1)) < r. Consider an r x r submatrix of the matrix ./ with determinant
A not identically equal to zero on V. Then the open and dense in V' subset V, =
vn{y: A(y) # O} is irreducible [6]. There is an isomorphism of quasiprojective
varieties W™ N (¥ x C") =~ V) x C"~7, due to the fact that, for y € ¥}, a solution
of the linear system (& (y))2 = 0 is obtained by fixing arbitrarily the values of the
n - r coordinates outside the considered submatrix with determinant A, and the r
coordinates corresponding to that submatrix are then uniquely determined [7]. The
variety ¥, x C"~ is irreducible as a product of irreducible ones [6], [7]. Therefore
we can find an irreducible component U = W™ of WM such that W" > W n
(Fax C").

For any r x r submatrix of & with determinant A; not identically equal to zero
on V we have U > W n (Va, x C"), since U is closed and contains an open
dense subset W™ O (Va, x C*) = WM 0 (Va, x C") N{(y,x): A(y) # 0} of the
ireducible set W™ n (¥, x C") (see above). Note that am(U) ¢ V; in fact,
m(U) C W;m_” for some irreducible component Wé’"’l) of W(m=1) (see above);
then Wé’"'l) contains a dense open subset Vj of the irreducible component ¥, and,
consequently, ngm_l) =V. ‘

The set U’ = UN({y: &,(A,(y) = 0)} x C"), where A, runs over the determinants
of all ¥ x r submatrices of .%7, is closed; clearly U’ G U, and hence U\ U’ = wim
U,(Va, x C") (see above) is an open dense subset of U. If, for some irreducible

component W™ # U of W™ such that amwimy c v, Wi ¢ {y: &,(8,(») =
0)} x C", then

wamn (U{y: Ay(y) # 0} X Cn) =wmnJa, xC) CU\NT
JV

7

is an open dense subset of W™ and, consequently, U S5 wim (cf. above); we arrive
ata contradiction, hence W™ c {y: &,(A,(y) = 0)}x C". Thus there is exactly one
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irreducible component U of W™, among the components W™ with 7 m) ()
V, for which U > W™ n Uy(VA,/ x €C"); moreover, for any of those wim £y
wm U, (¥, x C") = @.

Consider, further, the irreducible closed set V' x {0} c W) Since 1 containg
the open and dense in ¥ x {0} set U, (Va, x {0}), we see that U > ¥ x {0}, which
implies that ™ (U) = V. B

We define the set of regular points of ¥ as ¥ = ¥ N (U ¥a,)- Further, we g

the points of U = U N (17 x C") ordinary (cf. [1]). Consideration of all irreducible
=(m-1)

components of W ("m=1) completes the inductive step in the definition of W and
WM, We have thus proved

LEMMA. For each irreducible component W.® of the variety W) c ¢ (defined by
system (1)), there exists a uniquely determined sequence of varieties W9, wi
wi (after a suitable renumbering of the subscripts) such that W™ is an irreducible
component of W(m ¢ Crm+) and am(W™) = WY for 1 < m < n. For each
pointy € WY, the inverse image (™)~ (y)N W™ is a plane of dimension not less
than n—(Sga+- - +5Sm—1.4); moreover, for almost all y € W™V we have (2m)=1(3)q
wim = ()=t (y) N W™ and dim((20) 7 () N ) = 1= (S0 + -+ + 5]

~(m=—1) —
for some nonnegative integers S, S1a,-..- The respective sets W, c wimh -

WY of regular and ordinary points of W™V are open and dense in WY gng
=~(m—1)
foranyy e W, , the inverse image (™)~ (y) N W™ = (z(m)=1(3) o W™ pyg
~(m—1

dimension n—(So,+- - ++Sm—1,4); Mmoreover, wim = (n(’"))‘l(Wa Nal/ A% Finally,
Jor each irreducible component Wém) # W of W) such that n(’")(Wé’")) c wim
the following holds: for any y € n(’”)(ngm)),

dim((z"™) T P) N W) > 1= (00 + -+ + Sm—1.0).

We remark that dim(W,\") — dim(W{" ") = 5 — (80,0 -+ Sm—1.) (se€ [6]).
Recall (see [1]) that the greatest 4, such that S0t +Sh,—1.4) S B—hy is called the
genus of the system (1), (2) relative to the irreducible component W%, The number

Sm, 18 called the mth character of the system relative to w0 the (global) genus of
system (1), (2) may be defined as 4 = max,{4,}.

2. We now turn to a description of the algorithm for computing the genus, and
also the characters, of system (1), (2). First we find, by means of the methods of

[2] and [3] (see also [4]), the irreducible components W[gm) of the closed varieties
WM Then, for each component w9 we consecutively find W, ..., W™ so that
W) = W forall 1 < m < n (in virtue of the lemma, W, is uniquely
determined by W """ Finally, we consecutively compute So ., 5145 - - Su—1,0 404
then £, (see the remark after the lemma).

The algorithm should verify the equality My = w1, To this end we

could again apply the methods of [2]-[5] and construct the projection 7 (W™);
hpwever, the time estimate we would get is considerably greater than in the procedure

given below. Note that, in virtue of what has been proved above, for any irreducible
component ng'") of WM the equality n(m)(Wé’”)) = W is tantamount to the

434




fact that
n(m)(ng’")) c wim=1 and dim n(m)(ng’”)) = dim W(m=1),

Just as in the proof of Lemma 2 in [5] (cf. also [3]), the algorithm constructs a general
point of the closed irreducible set ¥V = n(™(W,;™), i.e. an isomorphism of fields of
the form

g QT T Q) = QW X X, 7).

where ¢ = dim 7™ ( ng'")), the elements T, ..., T, are algebraically independent over
Q, the element 8 is algebraic over the field Q(71,..., T,), and

D(Z)=Q[Th,...,Th]Z]

is its minimal polynomial, Q(V") being the field of rational functions on V; here
Xiyooes Xns Xf”,..., (m=1) are coordinate functions.

The methods of [2] and [3] (see also [4]) allow us to construct polynomials ‘I’f;’j‘ De
Wy X X{es X"~ "] such that the variety {y € C"": &; (¥~ (y) = 0)}
of their common zeros coincides with W."~". Then the inclusion ¥ c W™ " is
santamount to the fact that substituting into ‘I’f;f’j") the images in Q(T1,..., T,)[0]
inder the isomorphism (4) of the coordinate functions X, ..., X,, X\',..., xim=b
yields the zero element of Q(Ty,..., T,)[6] for all j (see [2] and [3]). Given an
ireducible component W) this allows us to find W,™ among the irreducible
components of W™, which completes the description of the algorithm.

We now estimate the running time of the algorithm. The estimates of [2]-[4] (see
also Theorem 1, the remark that follows it and the proof of Lemma 2 in [5]) imply the
following estimates for the parameters of general points (see (4)), the polynomials

‘I‘f{"j") and the time needed for constructing them (to simplify the notation, we

identify here the coordinate functions Xi,..., Xy, X 1(1), . ¢ ,(1”"1’ with their images
inQ(Ty,..., T,)[0] under the isomorphism (4) and we drop the indices, writing X
for any coordinate function):

deg (®) < (d +n)";
Tq(‘b),degxl ,,,,, X,,,X{” .... X’(""—l)(\PE)Z._I)) S (dn)O(nZ);

1(®), 1(X), 1(¥") < M(dn)O);

.....

the number of the polynomials ‘I’fff’j”l) does not exceed n(d+n)*". The time needed
m

for constructing the general points and the polynomials ‘I’fl, j"), and also for verifying
the inclusion 7(m (W™) ¢ W™~ !, may be estimated as (M k(dn)™)o),
We have thus proved the following

THEOREM. The characters So.u, St - -« »Sn—1,0 the genus ho (and thereby the global
genus h = max,{h,}) of the system (1), (2) of exterior differential equations, and also
the sequences of varieties W.°), w .., W of the lemma, can be found in time
(Mk(dn)n*yo1),
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