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Abstract

Given a set of semi-algebraic obstacles in the plane and two points in the same
connected component of the complement, the problem is to construct the shortest path
between these points in a given homotopy class. This path is unique and has some
canonical form. We use the representation of homotopy classes in a way that is as
general as the classical one. It consists in representing generators of a free group which
describes the classes of homotopy by disjoint cuts [GS97] homeomorphic to rays. We
show that given such a system of generators and a word representing a homotopy class,
one can contruct the shortest path of this class in time polynomial in the size of the
word and in the size of the representation of the obstacles and the cuts. The homotopy
class may also be represented by a path, then the polynomial complexity will depend
on the size of the representation of this path. As a technical notion we introduce one
particular system of cuts, which we call an extremity basis, that proves to be especially
convenient for algorithmic purposes. The considered problem is motivated by robot
motion planning and by theoretical questions arising in shortest path approximations
in higher dimensions.
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1 Introduction.

We consider the problem of constructing the shortest path of a given homotopy class be-
tween two points in a connected component of the complement of semi-algebraic obstacles.
The problem of the shortest path is well known, e. g. see the surveys [SS90, MS95], and
in particular has a motivation that arises from robot motion planning [Can88, Lat91]. It
was considered mainly for the case of polygonal obstacles in the plane, for which case many
algorithms have been developed. For the case of polyhedral obstacles in 3-dimensional Eu-
clidean space it is NP-hard [CR87] in the general case, though admits polytime algorithms
in some particular cases (see the surveys mentioned above). And in any case of polyhedral
obstacles a path which length is e-close to the length of the shortest path, can be found in
time polynomial in é and in the size of the representation of the obstacles that are presumed
to be given by their vertices [Pap85, CSY94].

The case of semi-algebraic obstacles in the plane had been considered in [HKSS94] where
it was shown that a shortest path can be constructed in polytime by an extended version
of real RAM [BSS89] that is able to calculate in polytime integrals of algebraic functions.
Slight development of the construction of [HKSS94] gives an algorithm for a usual RAM (as,
e. g. in [Pap94]) that outputs a path whose length is e-close to the shortest path length and
which time complexity is polynomial in the complexity of representation of obstacles and in
log %

Constructing the shortest path in a given homotopy class was considered for polygonal ob-
stacles in the plane in [HS94], but within a rather restricted setting. Namely, the space
admissible for paths is a boundary-triangulated 2-manifold. Such a manifold is a simplicial
complex in which all vertices are boundary vertices. Homotopy classes are represented by
paths. This particular triangulation permits to construct straightforwardly a covering space
and easily find the shortest path homotopic to the given one. The efforts of [H594] are con-
centrated on other kind of problems related to unifying treatments of various metrics and
improving particular data structures.

Our result. We show that for the case of semi-algebraic obstacles in the plane and for
rather general way of representing classes of homotopy the problem of constructing the
shortest path of a given homotopy class is solvable in time polynomial in the size of all input
data (i. e. in the size of representation of obstacles and of the homotopy class) for bitwise
models of computation, e. g. for a usual RAM, see the theorem at the end of the paper
(section 3.2). A homotopy class may be represented as an arbitrary semi-algebraic path or,
and what is more interesting, as a word in a free group describing the homotopy classes with
the same generality as the classical approaches [ST80]. As such a representation we consider
a set of pairwise disjoint semi-algebraic cuts homeomorphic to rays and emanating from each
component obstacle. This type of representation which is, in a way, dual to the classical
one [ST80], was considered in [GS97]. As a technical notion we introduce one particular
system of cuts, which we call an extremity basis, that proves to be especially convenient for
algorithmic purposes.



D. Grigoriev, A. Slissenko. Shortest Paths in a Homotopy Class... Version of November 27, 1997 2

1.1 Semi-Algebraic Obstacles In the Plane.

A semi-algebraic [BCR87] set S in the plane is a set represented by a disjunctive normal
form formula which atoms are polynomial equations and inequalities:

Voo A fiwi0 (1)
1IN 1<<N,

where f;; € Z[z,y] and w; ; € {<, <, =}.
We treat the set as representing obstacles in a natural way, some precisions being given
below. The set S may consist of many connected components that can be found in poly-
time [Gri88, HRS90, GV92, Ren92|. Zero-dimensional componets, i. e. isolated points, can
hardly be treated as obstacles, so we exclude them from the set in polytime. These points
can be easily described by a formula of Tarski algebra with small number of quantifiers and
containing polynomials of small number of variables.
As we consider the complexity on a qualitative level, namely, polynomial versus non polyno-
mial, we do not need to go into details of descriptions of the sets under consideration. Our
starting set is S of the form (1), and the complexity of its representations is measured by
the following parameters: d, the maximum of degrees of the polynomials f;;, and M, the
least integer such that 2M is greater or equal to the absolute values of the coefficients of f;;.
Related sets such as the closure S, the interior S°, the boundary S”, the complement coS of
S, the set of isolated points of S etc. can be represented by formulas of Tarski algebra which
number of quantifiers and number of variables are bounded by a constant, and which size is
bounded by a polynomial in the size of the formula (1). We need a procedure which, given
such a set, constructs its connected components and a procedure that recognizes whether
two points are in the same connected component. Within the mentioned context such poly-
time procedures are known (see [GHR'90, GV88, HRS94, CGV92], for 2-dimensional case
see also [AMSS]).
To avoid trivialities and assure the existence of the shortest paths we make some polytime
transformations of the initial set S. We suppose that the set is inside some square which
complement is an obstacle. We eliminate isolated points of the set S. Furthermore, we wish
to leave only one connected component for the trajectories. To do it we find the connected
components of the complement of S and append to the obstacles all components of the com-
plement except the one we are interested in and which is determined by the given end points
of the paths under consideration. Thus, we have a set S without isolated points and which
complement is 1-connected. Consider its boundary S¥.
To make the treatment of obstacles technically simpler we slightly transform them. To de-
scribe the transformations and other notions, introduce some notations:

e B(X,r) is an open ball centered at X and of radius r, and B(X,r) is its closure;

e c-neighborhood of a set U is B(U,¢)=4 Uxcr B(X,¢);

e o~ and ot denote respectively the left and right end of an ordered simple path o, in
particular, of a segment.

Now we wish to "slightly inflate” 1-dimensional pieces of S” to make them 2-dimensional
with some interior. For this purpose we use extensions of reals by infinitesimals as in [GV88]
where one can find necessary algorithmic technique. Remind that such an extension of a real
closed field K starts by introducing a formal variable, say £, with the property: 0 < £ < «
for all positive elements o from K. This element ¢ is called infinitesimal over K. It is,
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clearly, transcendental over K. Then we consider the real closure of the field K(£) that will

be denoted by K (). For an element o of K(§) its standard part belonging to K can be
defined, see [GV88], and will be denoted by stx(«) (it is not defined if « is infinitely large
but in our case a will always lie in a ball centered in the origin and with a radius from R,
therefore sty (a) will be always defined). In algorithmic constructions we actually deal with

Q. Q, 6(5), Q(¢) etc. A field K being fixed, we say that ¢ is infinitesimal with respect to
£, and write £ << &, if ¢ is infinitesimal for K ().
Summarize the notations related to infinitesimals:

o ¢ > 0 will be an element infinitesimal relatively to R, and two more infinitesimals
0 <& << & << & will be needed. -
o Ro=y R(¢), Ri=4 Ro(&1) and Ry=4 RBi(&).

Below we consider the formulas defining obstacles, balls etc. over one of the mentioned R,.
We will identify a set in R" defined by a formula of Tarski algebra over R with the (semi-
algebraic) set in R} defined by the same formula over R, if it does not lead to ambiguity.
To ”inflate” the 1-dimensional isolated pieces of the boundary, replace the obstacles, or only
those points of them that do not contain points of S° in its small enough neighborhood, by
their £-neighborhoods. This can be described in Tarski Algebra over the field extended by
€, and thus the appropriate algorithms must be used to find the connected components, see
[GHR*90, GV92, CGV92, HRS94].

Finally, let T" be the closure of the set of obstacles obtained after the transformations de-
scribed above, and A be its boundary (remind that we consider the onstacles over Ry). The
space col' will be called the free space and f:df A U col" will be the space admissible for
trajectories we are going to consider. The trajectories can go anywhere in the free space,
they are forbidden to go through boundaries though allowed to border them alongside. In
the admissible space a shortest path between two points always exists and is semi-algebraic
[HKSS94], and it is not unique in the general case (but it is unique in a given homotopy class,
see below). We will denote the chosen ends of trajectories by s and t (from respectively
?source” and "target”, a usual notation in robot motion planning), and for technical reasons
will assume them to lie in the free space (otherwise replace them by infinitely close ones in
the free space).

To summarize the resulting properties of the situation note that r (assumed to be non
empty) consists of only one connected component and that all the connected components of
the obstacles are closed semi-algebraic sets with non empty 1-connected interior (i. e. such
that any loop in the interior is contractible [ST80]) and without non degenerated boundary
that means, in particular, that from any point of the boundary one can make a small de-
placement into the interior of the component. A connected component of the obstacles will
be called a component obstacle or simply an obstacle.

1.2 The Shortest Path Problem

A path or curve is a continuous piecewise smooth image of a closed segment. A simple path
or a quasi-segment is a path without self-intersections. We consider only paths lying in r
and not intersecting A.

A path o intersects the boundary A at its point X € A if for all small enough ¢ > 0 there
is a closed quasi-segment v C AN B(X,¢) such that (B(X,£)\ v) consists of two connected

=
? 2
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components each containing points of tb. A path intersects the obstacles if it either intersects
the boundary or contains interior points of the obstacles.

A path in T is admissible if it does not intersect the obstacles. By default we consider only
admissible paths between two fixed points s and t in the free space, and when construct-
ing an admissible path by joining admissible quasi-segments by their end points we tacitly
presume verifying the non intersecting obstacles by the path obtained by such a linking.
When speaking about an order of points on a path  between s and ¢ we mean later or
after in the sense of a continous, ‘length increasing’ parametrisation ¢ = {1(¢)}o<i<1 of ¥
such that s = ¢(0), t = (1) (if again to appeal to the motivation from robot motion
planning ¢ can be viewed as a trajectory of a robot with ¢ playing the role of time).

A shortest path between s and t in a homotopy class is a path having the minimum length
among all the paths in this homotopy class.

The problem we consider is to find any shortest path in a given homotopy class.

We consider below only semi-algebraic curves. When speaking about occurrences of points
we will not distinguish points and its occurrences in notations, provided that no ambiguity
would happen. The following notations concerning paths between s and ¢ will de used: for
a path ¢ and occurrences of points X, Y on this path

e x denotes the prefix of ¢ from s to the occurrence of X on this path;

e xy will denote the piece of ¥ between specified occurrences of X and Y on this path,
usually the occurrence of X will be before the occurence of Y.

To estimate the complexity of our algorithms we may consider, without loss of generality, only
paths given by a piecewise simple semi-algebraic representation which will be for briefness
called piecewise representation. As such a representation one may take a list (X, ®y,...,P,,)
constituted of a starting point X and semi-algebraic sets ®;, each such set being a simple
curve with end points X; and Y; satisfying the obvious condition: one of the points { X7, Y]}
is equal to X, the other coincides with one of the end point of ®,, the other end point of &,
coinsides with an end point of ®3 and so on.

One can assume also more efficient mode of piecewise representation of a curve. Namely,
such a curve is represented as a list of systems of algebraic inequalities ¥;, each having the
form

ho=0,hy >0,..., hy >0, where h; € Q(x,y,A), A€ [0,1],

and such that for every A € [0, 1] the system has a unique solution in z, y. In this case A
plays the role of the time via the curve.

1.3 Locally Shortest Paths amidst Semi-Algebraic Obstacles in the
Plane.

An admissible path ¢ between s and t is locally shortest if for all small enough & > 0 it has
minimum length among the paths connecting the same points and lying in B(p,¢). Locally
shortest path can be also described as locally non-contractible. It is intuitively clear that
locally shortest paths have some canonical form [HKSS94]: in the free space it is a rectilinear
segment and if its end meets an obstacle the segment must be locally supporting at the point
of contact with the obstacle. Define this observation more precisely.

Locally supporting topologically means that no small enough extension of the segment be-
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yond the point of contact intersects the boundary. One can also define this property in
Tarski algebra. A rectilinear segment (or a straight line defined by a vector) o is (locally)
supporting to a set U at a point X € U N o if for every small enough & > 0 either to the left
of or to the right of the intersection of the segment o. = [X —e(ot —07), X +e(ct —07)]
with the ball B(X,e?) there are no points of U in this ball B(X,e?). "To the left” and
"to the right” can be easiliy described in algebraic terms (e. g. in terms of the sign of an
appropriate linear function).

A path is locally supporting to a set U at a point X € U if every its locally supporting line
at X is also locally supporting to U at this point.

When speaking about local support without mentioning the set /' we mean by default the
set T (or the boundary A which will be equivalent).

The (tangent) angle function of a smooth piece of a parametrized path is a function of its
parameter, giving for any point of this piece the (oriented) angle between the tangent vector
at this point and some fixed direction. For a junction point of two smooth pieces one can
take as the value of the angle function the corresponding one-side limit (the side is to be
fixed to make the value definite) of this function for any of these pieces.

A quasi-segment is locally convex if its angle function is monotone (not necessarily strictly
monotone). A quasi-segment touching the boundary A will be called locally convexr with
respect to the boundary if it is locally conver and for any two of its close enough points
belonging to A the convex hull of the quasi-segment between these points does not contain
points of the free space. From now on by locally convex we mean it with respect to the
boundary.

We call a quasi-segment of a path monotone (on the path) if for some its small extension (on
the path) its angle function is monotone.

A path is globally convex if it is a part of the boundary of its convex hull. Clearly, when
a quasi-segment of a shortest path touches the obstacles and goes along the boundary, this
piece of boundary must be locally convex, as well as the quasi-segment on the whole.

In the general case a shortest or locally shortest path is not globally convex, even its locally
convex quasi-segment can be not convex because of a too big rotation (imagine a spiral cor-
ridor turning several times around some point). Such a path can change its convexity (i. e.
the type of monotonicity of its angle function), but only via an inflection segment, i. e. a
maximum rectilinear piece of the path such that small enough preceeding and subsequent
pieces of the path are separated by the straight line determined by the segment.

The closure of pieces of the path between two consecutive inflection segments are locally
convex (with respect to the boundary) and monotone on the path.

A path is canonical if it is locally supporting to the obsctacles at all its points (touching I'),
and its intersection with the free space consists of disjoint straight-line open segments, and
its intersection with the obstacles consists of locally convex quasi-segments of the boundary
A.

Note that the property of being locally supporting to the obsctacles in the definition of
canonical path is used only locally, namely, it is essential only for points of linking of the
mentioned quasi-segments, as each of them has this property in its non end points.

Proposition 1 ([HKSS94]) A path is locally shortest iff it is canonical.

As it was remarked in [HKSS94] every shortest path o consists of a polynomial number of
semi-algebraic quasi-segments such that each of them is either an inflection segment of ¢
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locally supporting to A at its both ends, or a semi-algebraic locally convex quasi-segment
monotone on the path which, in its turn, is constituted of pieces of A or of rectilinear
segments between such pieces, the latter being locally supporting to the boundary at both
its ends (imagine going around a circular saw blade as obstacle).

The first and the last segments of the shortest paths under consideration will be treated as
inflection segments.

Let ¢ be a shortest path. Its standard alternating representation (or decomposition) is the
following (finite) sequence D, of quasi-segments: the quasi-segments D,(2k — 1), k > 1, are
the consecutive inflection segments of ; each quasi-segment D, (2k), k > 1, is the monotone
quasi-segment of ¢ constituted by the right end of D,(2k — 1), left end of D,(2k + 1) and
by the piece of ¢ between these ends (this piece may be empty).

The alternating representation of canonical path can be, obviously, found in polytime.

1.4 Graph of Locally Shortest Paths.

Locally convex quasi-segments sufficient to compose all shortest paths of all homotopy classes
can be represented as a graph G, as it was done in [HKSS94] or in a dual form as follows.
As vertices V' of the graph we take s, ¢ and all points that are endpoints of rectilinear
segments that are locally supporting to the obstacles at these endpoints, and which interior
lies in the free space. Denote A°=, A\ V. Two vertices X and Y of V are connected by
an edge if they are either two endpoints of a locally supporting segment mentioned above
or consitute two endpoints of a locally convex connected component of A°. The point
corresponding to a vertex as well as the quasi-segment corresponding to an edge will be
called its realization. We will not distinguish an element of the graph and its realization if
the context permits to identify the meaning.

Thus obtained graph has one shortcoming. Imagine that we have arrived at some vertex X
of this graph following a locally shortest path with the last quasi-segment corresponding to
an edge ezx from some vertex Z. Now we wish to extend the path in all possible admissible
ways by one next quasi-segment represented in the graph. But not all such extensions are
admissible because of a particular linking may loose local convexity. Sure, this property is
verifiable in polytime. But one can make this verification just once and do not think about it
later. Let k be the degree of a vertex X, and Z; X, ..., Z; X be all edges incident to X. Make
k copies of X, denote them Xj,..., X}, and replace the edges Z; X, ..., Z; X respectively by
71 X4, ..., Z1 Xy, thus the edges incident to the former X have been disconnected, but the
realizations of the edges have not changed. Now we connect by zero-edges, i. e. constituted
by segments [X;, X;], only those vertices which give an admissible canonical linking.

The resulting graph will be denoted by G' = Gf,s t = (V, E) and will be called the graph
of canonical quasi-segments or, more briefly, the canonical graph.

As we do not use lengths of the involved edges the graph can de found in polytime by a
usual RAM [HKSS94].

Lemma 1 The graph of canonical quasi-segments can be constructed in time polynomial in
the size of representation of obstacles.

Obviously, every path between s and ¢ in (G is canonical and thus, locally shortest due to
proposition 1. And inversely, every canonical path between s and t is represented in G.
Thus we have
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Lemma 2 A path between s and t is canonical (locally shortest) iff it is a path between
vertices s and t in the graph of canonical paths.

2 Paths in Homotopy Classes

In this section we consider homotopy class representation used in our algorithmic treatment
of homotopy classes.

2.1 Representation of Homotopy Classes.

We speak about paths between s and t that are homotopicin the free space. And to represent
homotopy classes we use ray cuts of the plane [GS97] that is, in a way, dual to the classical
representation [ST80] which is hard to treat algorithmically. (We do not know whether this
type of representation was explicitly mentioned elsewhere although it appears to be quite
convenient for algorithmic purposes.)

Generators. The plane is supposed to be oriented.

As generators of the fundamental group of col’ we take semi-algebraic cuts of the plane by
pairwise disjoint homeomorphic images of rays as described below. Such a ray will be also
called a cut. If not to mention the complexity of representation of cuts we can assume that
each cut has polynomial complexity with respect to the complexity of the obstacles.
Choose in every component obstacle one or more points (using, say [GV88]), and launch
from every point one cut such that all the cuts are pairwise disjoint and go to infinity. (In
fact it suffices to demand that cuts are pairwise non intersecting, but such a generality is
not really needed. Another possible generalizaation is to launch several rays from one point,
though being treatable, seems to be useless.) Attribute to each cut an individual letter. The
set F'! of these letters constitutes a set of generators of a free group. The set of inverses of
letters of F'!' will be denoted by F~! and the their union by F'=, F'U F~1.

For w € F we denote by cut(w) the cut corresponding to w, i. e. cut(a) = cut(a™) = o for
a € ') and by start(w) denote the point from where the cut(w) emanates.

If we choose in every component obstacle exactly one point and launch from it exactly one
cut then we speak about a minimal basis, otherwise we speak about an arbitrary basis.
Now one can define the homotopy type of a path in the plane as follows. Consider the
consecutive intersections of the path with the cuts. An intersection via a non degenerated
quasi-segment is considered as one intersection (such ”pathological” intersection can be easily
avoided by a small displacement of cuts, but we can easily treat the general situation), and
the direction of each intersection in determined by the orientation of the plane. Another
degenerated case is the case of a touch of a cut by the path without intersecting it; in this
case there is no intersection though the touch may constitute a segment. This sequence of
intersections defines the following word QF(;/)) if the ith intersection is with a cut « and
goes in the clockwise direction then the ith letter of the word is o, otherwise a™'. Reduce the
word as an element of the free group to the incontractible (irreducible) one and denote the
resulting word Qp(¢) that can be considered as a representation of the homotopy class of .
If F'is fixed and clear from the context we will omit the subscript F' in the just introduced
notations. The empty word over F' will be denoted here by 1.
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Lemma 3 For any basis F' two paths py and @g with the same ends are homotopic iff the
irreducible words over I corresponding them are equal: Qp(po) = Qr(er).

For every minimal basis F' the mapping Qp is a bijection between homotopy classes and
words over F'.

Lemma 3 is obvious as the free group defined by a minimal basis is isomorphic to the
fundamental group of the plane with deleted obstacles, and groups over larger bases are
epimorphic to the fundamental group (all cuts except one in every component obstacle are
mapped into 1).

Lemma 4 For any piecewise semi-algebraic path given as a piecewise simple representation
@ the word QF(cp), and thus the word Qp(p), can be found in time polynomial in the size of
representation of obstacles and in the sizes of representation of the basis and that of the path.
In particular, the edges of the canonical graph can be labeled by the corresponding words in
polytime.

Proof. Let ¢ be represented by a list (X, ®y,...,®,,) of non degenerated simple semi-
algebraic paths. One can determine in polytime the consecutive end points

X1 = X, Xo,..., X, X;uy1 of the simple paths ®;, i. e. such that the pair X;, X;1; con-
stitutes the end points of ®,, 1 <1 < m, passed in this order if to start from X and to
go along ¢. Indeed, for each ®; find the connected components of its intersection with cuts
and the connected components of the difference of ®; and the set of all cuts. The order
among {X;}; permits to determine the order of the found components on the path and thus
to define the word over F'. Some special attention is demanded by the points X; if they are
on the cuts.

For the second type of representation of curves, with parameter A (mentioned at the end of
the subsection 1.2), it is even easier to construct QF(cp) in polytime.

O

2.2 Extremity Basis

One type of generators proves to be especially efficient to construct shortest paths. To define
it we choose some particular coordinate system (z,y).

Firstly note that there is a direction for y for which every straight lines parallel to the y-axis
has at most one point of A where this line is supporting to A. All such directions can be
described in Tarski algebra, and clearly, this set is not empty, as the number of directions
for which A contains a straight-line segment parallel to y-axis, is finite (even bounded by a
polynomial of Ny, Ny and d, see (1), as the number of connected components of some set
described by a formula in Tarski algebra of bounded complexity, see subsection 1.1), and the
number of other directions with straight lines having two points supporting to the boundary
does not exceed the square of the number of maximal locally convex quasi-segments of the
boundary ("maximal” means that the segment cannot be extended along the boundary
resting locally convex to the boundary). The number of such maximal locally convex quasi-
segments is also bounded by a polynomial (though finiteness suffices).

Thus we can choose a coordinate system (x,y) in the plane in such a way that each straight
line parallel to the y-axis contains at most one point of A where it is supporting to the
boundary.
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Find all such points of the boundary, let they be of,..., a}. Construct points ay,...,a; €
(R} N I'° in the interior of the obstacles that are infinitely close to o}, ..., o} and such that
St R, (o) = o, 1 <1 < k. Take rectilinear cuts starting from «; in the positive or northern
direction of y-axis (to give a clear geometric arguing we abuse the geographic notions for
cardinal points). Such a set of cuts will be called an extremity basis of the fundamental
group. Obviously,

Lemma 5 An extremity basis can be found in time polynomial in the size of representation
of obstacles.

The crucial property of extremity bases is the following one.

Proposition 2 The word W = QF(cp) over an extremity basis F' corresponding to a locally
shortest (or canonical) path ¢ is irreducible.

Proof. Suppose that W is reducible. Take any occurrence of a pair of reducible letters, let it
be aa™!, hence the path enters the cut o from the West. Consider the part of » determining
this occurrence. Denote by [ X', X| the segment of clockwise entering/leaving the cut « (i. e.
© comes into the cut o at X’ goes along up to X and goes out of the cut at X, normally,
X = X') and by [V, Y] the segment of counterclockwise entering/leaving the cut a. Now we
are interested in the part ¢ xy of ¢ between these occurrences X and Y. Take any point 7
among the most eastern points of pxy. This point is on the boundary, otherwise ¢ xy could
be shortened. Moreover, ¢ xy is locally supporting to the boundary at this point because ¢
is canonical. Hence, Z is locally supporting for some vertical straight line. This point can
be described by a system of algebraic equations with coefficients over Ry with finite number
of solutions, and consequently, 7 is defined over Rgy. Thus, it is unique due to our choice of
coordinates. That means that 7 = st (3) for some 3 € F. But the cut 3 which goes to the
north must intersect wxy, and hence append some letter before the mentioned occurrence
of a™!. A contradiction.

O

2.3 Constructing a Path in a Homotopy Class Given by a Word in
the Fundamental Group

If we are given an arbitrary set of cuts it is not so simple to construct in polytime the shortest
path in a given homotopy class represented as a word over this set. Extremity basis is much
simpler to treat (see below section 3). But how to transform efficiently a representation over
one basis into the representation over another basis? A natural way is to construct any path
in the corresponding homotopy class. We show here how to do it in polytime.

Lemma 6 Let a homotopy class be given by a word over an arbitrary basis of cuts, each
being piecewisely represented semi-algebraic curve. A path in this homotopy class be found
in time polynomial in the size of representation of obstacles, in the size of the word and in
the size of representation of the basis.

Proof. Let F' be the alphabet of generators determined by an arbitrary system of cuts. Let
W =w;...w,, w; €F, be an irreducible word over F' determining a homotopy class. We
construct a path ¢ with Q(¢) = W by the procedure described below. Roughly speaking,
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we contract the obstacle components to points, build a path corresponding to W and then
inflate the obstacles back homotopically transforming the just built path. To realize this idea
in polytime, the procedure firstly builds a new, auxiliary system of obstacles representing
this contraction, constructs a path in the homotopy class W by a known polytime procedure,
and then seeks an appropriate homotopy to come back to the initial obstacles.

We take two more infinitesimals & << & << € and consider the plane over the field R;.
The infinitesimal & will be used to "move” the starting ends of cuts into the interior of the
obstacles, and & will be used to build an auxiliary system of obstacles.

For each cut o such that start(a’) is on the boundary A, choose a point X in I'° at a
distance & from A and append to « the segment [X,o/]. It is possible as { << £. After
that replace every cut « by the band B(«) of width & centered at a. More precisely, the
band B(«) is a union of all segments s of length &; with centers on o and having the property:
if the center X of s is start(a) then s is orthogonal to «, otherwise it is orthogonal to a
straight line locally supporting to a at X (the latter line is not unique in a finite number of
points). Denote by &, the segment centered at start(«) that is the "bottom” of B(«), it is
orthogonal to « at start(a). Take the segment o, of length 2 - & parallel to 7, and crossing
B(a) at distance & from start(a). The segment o, lies in I'°. Denote by B/(a) the band

B(«) together with o, and by B the union of B(a) over all cuts a.
The set B is the mentioned auxiliary system of obstacles.

Denote by ¢; the segment oy, if w; = cut(w;),

and the inversed segment [U;t(wi), rut(wi) 1 Wi = cut(w;)7t
Construct the path II = II(W) in the following way. Build a path from s to (i amidst
the obstacles B, append to this path the segment (i, build a path from (; to ¢; amidst
B, append to it the segment (3, and so on up to . Such a path II can be constructed in
polytime using appropriate graphs of canonical quasi-segments.

Now consider the original obstacles I' and original cuts. Going from s to t transform

g

the path II, which in the general case intersects the obstacles, into a semi-algebraic path ¢
which does not intersect them and such that Q(¢) = W. One can imagine that we inflate
the auxiliary obstacles back to the original obstacles and modify Il making it to go along
the boundary of component obstacles in a proper direction. We will use notations for pieces
of curves introduced in subsection 1.2. Speaking about points here we mean occurrences of
points that can be indicated by a reference to the list defining the piecewisely represented
semi-algebraic curve under consideration.

Suppose that ¢z is constructed up to some occurrence of 7 € I, Q(¢z) = Q) =
wy...wp_1, k>1. If k=1 < n then wy is defined, and we denote by S the component
obstacle containing start(wy). Having left Z but before reaching S, or t in the case when
Qpz) = W, the path II may cross some component obstacles without intersecting any
cut. Let S; be the first such an obstacle, see Figure 1. Denote by X; the first point of its
intersection with S;. Then look for the consecutive points of II of its entering and leaving S}
without intersecting other component obstacles. Denote by Y] the last point of leaving 5
among these points. Note that the piece Ilx,y, does not intersect any cut. The two points
X1 and Y] divise the boundary of 57 into two quasi-segments. At least one of them, denote it
by ¢ has (gq) = 1 otherwise W does not define any homotopy class because cut(wy) (or the
point ¢t ) will lie in the domain between two other cuts emanating from 57, and the entrance
in this domain will be blocked by S;. Note that ¢ may intersect also cuts emanating from
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Figure 1: Going around obstacles.

sources not in Sy. But no such a cut intersects Il x,y, and having once entered 5y such a cut
must leave it and all these cuts intersecting Sy are pairwise disjoint.

Replace the piece of Il between X; and Y] by ¢. That will give y,. Clearly, Q(Ilzy,) =1 =
Q(S‘szl)‘

Now consider the case of S, i. e. the case when the first component obstacle intersected
by II after 7 is S. Denote by X the first point of intersection of II; with S and by YV
the last such point which precedes points of intersection of this path with other component
obstacles. Again consider two quasi-segments of the boundary S? determined by X and Y.
One and only one of this quasi-segments has the property: when going from X along this
quasi-segment the path II meets the first intersection of cut(wy) with the boundary S? in
correspondence with wy (that is in the direction of (). Denote this quasi-segment by g¢.
Now extend ¢z by the segment [Izx and then by ¢. This gives ¢y. One can show that
Q(g@y) = Q(Hy) = wi...Wg.

Indeed, the first intersection of Iy with cut(wy) is in the direction wg. Other cuts may
intervene between intersection with cut(wy) only as words equal to 1, otherwise the initial
W would not define any homotopy class.

To estimate the complexity notice that the number of perfomed modifications of the path
does not exceed the number of points of intersection of the path with the obstacles that can
be bounded by a polynomial as required in lemma 6 (e. g. see [GV88]).

O

3 Algorithm for the Shortest Path in a Given Homotopy
Class.

Before describing an algorithm for constructing the shortest path of a given homotopy class
we show that such a path is unique. Moreover, even locally shortest path is unique, and due
to proposition 1 the canonical path is unique.

3.1 Uniqueness of Locally Shortest (Canonical) Path.
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Proposition 3 There is a unique locally shortest (or canonical) path in a homotopy class.
Thus, the unique shortest path of a homotopy class is the unique canonical path in this class.

Proof. Suppose that there are two different homotopic locally shortest paths ¢g and ¢,
between s and t . The both are canonical (Lemma 1) and hence, piecewise semi-algebraic.
Let Z be the last point of their longest common prefix pz=4 (¢;)z. Denote by R the ray
emanating from Z along the one-sided tangent to ¢z at Z in the direction from s to t , see
Figure 2. In a neighborhood of Z the curves ¢y and ¢, lie on the same side of R, the ray

R ()

/
/ .
Z‘% @ oS @

/a:/'} E H AT
A M

o

Figure 2: Uniqueness of locally shortest (canonical) path.

itself not excluded. This observation is implied by the canonicity of the both curves. Indeed,
the fact that one of the paths deviates from R means that there is an obctacle at Z, denote
it by S. Suppose without loss of generality that S is to the right of ¢z and, hence to the
right of R. Then no canonical extension of ¢z may go above R because that would mean
a presence of an obstacle also to the left of R at Z. But then ; intersects obstacles at Z.
Thus, the both curves ¢y and ¢, lie on the same side of R.

Let g be the first curve that we meet (locally at Z) going in the clockwise direction from R
around Z, and ¢ be the second one. Then ¢y must be a rectilinear segment in the free space
in some neighborhood of Z, otherwise the both curves have at Z to the right of them some
obstacle, and thus ¢; intersects the obstacles. Denote such maximal rectilinear segment of
wo by [Z, Zy]. Take (x,y)-coordinates centered at 7 which z-axis goes along [Z, Zy].

Take two infinitesimals & << & << £ and consider the corresponding real closed extensions
of Ry. Choose a cut oy centered at some point infinitely close to Z with y-coordinate equal
to —e; and launch from it the ray parallel to z-axis in the positive direction of this axis, see
Figure 2. Add a4 to the alphabet of cuts.

If Zy #£t then @y goes from Z, either below z-axis or above it. Add to the cuts a cut
oo infinitely close to Zy with y-coordinate equal to —e5 in the first case, and to +&5 in the
second case. If Zy =t add nothing. In any case Q(pz)a; will be a prefix of Q(¢1), where
) is considered over the extended alphabet.

In the case Zy, = t the word Q(yo) contain neither a; nor aj', and, hence, differs from
Qep1).

In the case when g goes from Z, below z-axis the letter ay appears in Q(¢g) just before
aq, and thus, Q(pe) # Q(¢1). Similar in the case when ¢y goes from 7, above a-axis. A
contradiction.

O
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3.2 Algorithm for Canonical Path.

Thus, in order to find the shortest path of a given homotopy class it suffices to find the
canonical path of this class.

We describe an algorithm that constructs such a path when the homotopy class is repre-
sented as the word in an extremity basis. This supposition does not diminish the generality.
Indeed, if the class is represented by a piecewise semi-algebraic path, we can compute its
representation over an extremity basis in polytime (Lemma 4), and an extremity basis itself
can be found in polytime (Lemma 5). If the class is represented as a word over an arbitrary
basis of cuts then one can found in polytime a piecewise semi-algebraic path in this class
(Lemma 6) and again reduce the problem to the case when the class is given as a word over
an extremity basis.

The algorithm ShPthHomClI that constructs the shortest path is given by Figure 3. This
algorithm transforms a word over an extremity basis into the canonical path corresponding
to it, is to gradually build all paths corresponding to prefixes of the word advancing via
the graph of canonical paths. The uniqueness of the canonical path and the irreducibility
of words (see proposition 2) appearing while advancing assures that the number of paths
under treatment will not go beyond the product of the number of vertices of the graph of
canonical paths and the length of the word. Indeed, if two different canonical paths meet at
the same vertex their words must be different otherwise the uniqueness would be violated
(see proposition 3).

In the description of the algorithm the following notations for paths p and ¢ are used:

e p~ and pt are respectively the first and the last vertex (and the corresponding points) of
the path p;

e conc(p,q) is the concatenation of the paths p and ¢ if pt = ¢7;

o Last(Q)Seg(q) is the last edge and the corresponding quasi-segment of the path g¢.
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ShPthHomCI(F, H):

comment H is an irreducible word over an extremity basis F'. The
algorithm uses the graph G = (V, E) of canonical quasi-segments.

The end points s and ¢ of paths are fixed. end_comment;
Initialisation:

forall o € E' compute Qp(0); Paths ={s };

comment Paths is a set of canonical paths under construction
that will finally contain the resulting shortest path if it exists.
end_comment;

whiley Paths is non empty and does not contain a path between
s and t do
WordExtension:
forally p € Paths do
Exty, .= {p};
Paths := Paths \ {p};
while; Ezt, # () do
forall, ¢ € Fxt, do
Exty, = Ext, \ {q};
forall, quasi-segment o # LastSeg(q) of G incident to ¢t do
ify ¢'=4 cone(q, o) is canonical and Q(q’) is a prefix of H
then
ifi Q(p) = Q(¢') then Eat, := Fat, U{q¢'}
else Paths := Paths U {q'}

end_if;
end_if,
end _forall,
end _forall,
end_while;
end _forall,
end_whileg;
if Paths = () then return "no path for H”
else return any path between s and t from the set Paths end_if

Figure 3: Algorithm: Shortest Path in a Homotopy Class.

14
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Lemma 7 Given an extremity basis, for every irreducible word H over this basis the algo-
rithm ShPthHomCl verifies whether H defines a homotopy class and if so, finds the shortest
path in this homotopy class in time polynomial in the size of representation of obstacles and

in the length of H.

Proof. If H defines some homotopy class then the shortest path with Q(¢) = H exists and is
unique due to proposition 3. And it is canonical (proposition 1). All the canonical paths are
represented in (7, and inversely, every path in G is canonical (Lemma 2). Thus, H defines
some homotopy class iff there is a path ¢ in G between s and t with Q(¢) = H. Hence,
the algorithm is correct as it looks for all paths in G starting at s and corresponding to
prefixes of H (it suffices to consider just prefixes of H due to proposition 2).

So it rests to estimate the complexity of the algorithm. The algorithm analyzes all canonical
paths emanating from s and corresponding to prefixes of H. If 2 such paths come to a
same vertex their words must be different due to proposition 3 and lemma 3. Hence the
number of paths neither in the set Paths nor in the set Ext, does not exceed the product
of the number of the vertices of G and the length of H. And the same bound is valid for the
number of possibles sets Ext, as p originates from Paths.

At any step of the algorithm the length of a current prefix either augments or does not
change, if the added edge of (& represents the empty word, see proposition 2 (note that in
line 9 the algorithms verifies that Q(q’) is a prefix of H, and thus, verifies that the augmented
word has no contractions). The latter happens consecutively at most |F| times (where £
is the set of edges of canonical graph, see Figure 3), since otherwise we get a loop in the
canonical path which provides the empty word, hence it is contractible (cf. Lemma 3), and
we can delete the loop, that condradicts proposition 3. Therefore the number of steps of the

algorithm does not exceed |H| - | F]|.
O

We summarize the proved above in the following main result of the paper.

Theorem The problem of constructing the shortest path in a given homotopy class rep-
resented either as a word over a piecewise semi-algebraic basis of cuts or as a piecewise
semi-algebraic path is solvable in time polynomial in the size of representation of obstacles
and in the size of representation of the homotopy class.
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