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FINDING REAL SOLUTIONS OF SYSTEMS
OF ALGEBRAIC INEQUALITIES

IN SUBEXPONENTIAL TIME
UDC 519.5+512.46

N.N. VOROB'EV, JR., AND D. YU. GRIGOR’EV

1. Suppose polynomials f;, . .. »Ji € Z{X1, ..., X,] are given. In this note we describe
an algorithm that determines whether the system of inequalities

(1) f]ZU,...,fIZO, f1+1>0,...,fk>0

has a solution in R", and if s0, then indicates some of them. Let the degrees deg f; be
bounded by d, and suppose that the coefficients of the polynomials f; are bounded by

2M. Then the size of the system (1) can be bounded (cf. [5] and [6]) by the quantity
L =kMdn.

THEOREM. It is possible to construct an algorithm that determines whether the sy8-
tem (1) has a solution in R™, and of so, indicates at least one pownt on each connected
component of the semialgebrasc set in R defined by this system. The ezecution time for
this algorithm can be bounded by a polynomial in M (kd)»" < Llog® L (v.e. it is subezpo-
nential as a function of inpyt size).

Concerning the representation of points, see the lemma below.

Previously a bound of order (Mkd)?" was known for this problem (see, for example,
(1] and [2]). We mention further that in the case deg f; = 1 for 1 <4 < k (the problem
of linear programming), an algorithm of polynomial complexity was obtained in (3.

Below an algorithm of subexponential complexity for the solution of systems of alge-
braic equations over an algebraically closed field (see [5] and [6]) will be used essentially.

2. First an important special case will be considered: the system of equations f; =
- = fi =0, where fio fe € Z[Xy, .. 1 Xn-1]. In (4) it was established that every
connected component of the variety {i==fi = 0} € R™! consisting of points
satisfying the system f; = ... = fi = 0 has nonempty intersection with a closed ball
D € R™ ! of radius r < exp(p(L)) for a suitable polynomial p- Therefore we may
restrict ourselves to the intersection {fi=-=fi = 0} N D,, and locate points on
the components of this compact set. Namely, we adjoin an additional equation to the
system under consideration, containing a new variable Xn, and we obtain a new system

1= =i =X+ +X2-¢? = 0. Since the set of real roots of the last
system coincides with the manifold V; = {f = 0} of real roots of the polynomial f =
i+ +R+XF++ X2 r%)2, we also consider the manifold V.

Let ¢ be transcendental over R. Then we may consider the field R(¢) as a formally
real field (see [7], Chapter XI), taking € to be infinitesimal, i.e. 0 < ¢ < a for every
0 <a€R. Then the field F = R((c)/ *)) O R{e) of Puiseux series, i.e. power series
with rational exponents having bounded denominators, is real closed, and the field F =
FIV=T] = C((eV/*)) is algebraically closed (see [7], Chapter XI).

Then ¢ cannot be a critical value 9] of the polynomial [ as a function F* — F; in
other words, the system f — ¢ = 0f/0X1 = .- =83{/8X, = 0 has no root in F*, since
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all critical values of a polynomial are algebraic over the field generated by its coefficients.
Consequently the variety Ve = {f —& = 0} C F" is a smooth hypersurface by the
implicit function theorem {9]. As Vi C D4, the variety Ve is compact. We denote by
V! C Ve C F™ the variety of zeros of the system

(2) f-e=8f/0Xs=---=0f[0X,=0.
Observe that if the Jacobian J(x) of the system (2) is nonzero at the point z =
(21,...,%) € V/, then z is a 0-dimensional irreducible component of the variety of all

zeros in F'* of the system (2}, by the implicit function theorem.

We denote by K C V. the set of points of V, at which the Gauss-Kronecker curvature
[10) vanishes. In [8] (see also [4]) it is established that for points z € V the condition
z ¢ V!N K holds if and only if J(z) # 0.

We introduce the n X n matrix

M(Xu,..., X»)

(&% &%
- 3% ok

3<jgn 1

.

L\ Y

with entries in Z[X}, ..., Xp]. For a point = € V; such that (8f/8X;)(z) # 0, the point
M(z)z € F™ is a zero of the system

(3) fIMY(@)Y) —e = 8f (M~ 2)Y)/8Ya = - - = Bf (M~ (z)Y)/6Yn

in the variables Y,. .., Y,, where the vector Y equals (Y,...,¥,). If (8f/0X1)(z) #0,
then M{z)K coincides with the set of points of zero curvature on the variety of zeros
in F* of the polynomial f(M~1(z)Y) — ¢ € F[V;,...,Y.]. We introduce the rational
function  ¢1(X) = det(0%f (M~L(X)Y)/8Y:0Y;)2<i, jnlv=mox € QX1,.-., Xn),
where X = (Xy,...,Xs). Then for a point z € V, with (8f/3X1)(z) # O relation
£ € K is satisfied, or in other words M(z)x € M(z)K, if and only if the Jacobian
(g1(z)(OF(M~1{(z)Y)/BY1}(M(z)x) = O for the system (3) at the point M{z)z (see (8]).
Now suppose g1 = g2/ga, where the polynomials g2,93 € Q[X1,..., Xy] are relatively
prime; we write g for (8f/0X1)g,- Then in view of what has been proved, K C {g = 0}.

The set K contains no connected component of the variety V¢, since the curvature
of a compact analytic manifold cannot be equal to zero at each of its points. Hence
d'lm(veﬂ {g = 0}) <n-—-2.

We note that deg{g) < (2dn)3; we write N for (2d)**4n3. The algorithm constructs
a faxqﬂy T of (N + 1)™1 vectors, I' = {y = (Y2,...,Vn)}, Where each v; for 2< i< n
runs independently over the values 0, 1,..., N. We show that there is a ¥ € T for which
the polynomial g is nonzero at all solutions in F™ to the system of equations

(@) f-e=(0f/0X2) - 1(8f/3X1) = - = (3]/0Xn) ~ 1(8/0X,) = 0.

gldeed, we consider the regular mapping ¢: F* — F™ defined by ¢ = (8f/0X1,...,
f/0X,). Then the degree of the Zariski closure, deg p({f — € = g = 0}), is less than
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or equal to deg({f — e =g = 0})-(2d)* < N [11]). Therefore for some Y €T the point

(1,7) € F™ does not lie on the cone of the variety w{{f — e =g =0}); this is the desireg
.

Thus, there is a vector 4 € I" such that in every connected component of the variety
Ve C F™ there are at least two points which are solutions of (4), and (4) has no solutjop
in K.

The algorithm runs over the elements vy € I'; we fix one such y. We construct the
nonsingular n x n matrix

/——’L—ﬁ
i ¥4
8= H = 0 b
2<jsn 0 1
We set f(1) = f(B~1X) e Z[X1,..., X,), and we consider the system (see (2))
(5) M —e=0fM/ox, = ... = af /o x, = 0.

We denote its root variety by V(1) ¢ Fn.
Applying the algorithms of [5] and [6] to the system (5), we decompose the variety
v = U, Vq(” into irreducible components over Q(e). Then, applying the method

of [6], Chapter I, §1, to each component Vq“) for which dim Vq(l) = 0, the algorithm
finds zero-dimensional varieties V(2) ¢ C", irreducible over Q, that are contained in the
variety of zeros of the system f() = 3f(1}/aX, = ... = afjax, =o.

Here the zero-dimensional varieties Vi are presented in the following form. For
each variety Vi the algorithm constructs an irreducible (over Q) polynomial & € Q[2],
such that for every point (¢, . o1 €n) € VP the field Q(&1,..., &) is isomorphic to
Q[2]/(®) = Q[6], where ®(6) = 0 and the primitive element 6 = )7 A;¢; for suitable
natural numbers 1 < \; < deg® < (2d)™. Furthermore, the algorithm finds explicitly

&= ) pO¢,
0<j<deg @
with ﬁl("’) €Q.for1<i<n 0<j<deg®.

For each component V,{?) the algorithm checks whether or not it contains at least one
of the real points (¢,..., &) € V& NR"™. This is equivalent to § = 3 7 A;¢; € R. Thus,
it is sufficient for the algorithm to check whether the polynomial ® has at least one real
zero, which may be accomplished using the Sturm sequence (7). If #(6) =0 and § € R,
then the vector B-1(¢y,...,&,) € R” is a real zero of the polynomial f.

On the basis, e.g., of {12] the algorithm can find a rationa) approximation () € Q
such that |§ — #(5)[ < 2-* for any fixed natural number 3, in a time that is polynomial
in s and the size of the polynomial ®. This completes the description of the algorithm
for finding zeros of f.

We make a few remarks concerning the justification of our algorithm. We recall that
there is a v € T such that in each connected component of the variety V. there is a
zero ¢ = (21,...,z,) € FP\K of the system (4), and here the gradient (grad f)(z) is
proportional to the vector (I1,v). Then (grad f ()(Bz) is proportional to (1,0,...,0),
and consequently the vector (Xt:---,Xn) = Bz € FM\K, satisfies (5), where K; =
BK is the set of points of zero curvature of the variety {f() — ¢ = 0}. The vector
(Xts- -, xn) € VY for an appropriate zero-dimensional component V" ¢ Fn (see (2)

and the remark thereafter). Since every element 0 # x € F is uniquely representable in
the form x = £*(x(® .}, where @ € Q, 0 # x(® & R and the element w is infinitesimal,
on taking into account the fact that Ix1,- - xa)ll < (Nm)n|z)| < (Nn)*r + ), we
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find the representation {x1,...,Xn) = (e“l(x(lo) +wi)y..., g% (xﬁ,,o) + wy)), with ay >
0,...,an > 0. Then the vector

oY,k = lim (6?62 x () R

lies on an appropriate O-dimensional component V2 - C". We call the number
Xf,'l) € R the real part of the element x; € F. Hence, the vector {£1,...,&s) =

B‘l(x(ll),...,xg)) € Vo, and in view of the properties of v € T, in each connected
component of the variety Vo the algorithm finds at least one point of this type, bearing
in mind that each connected component of Vp coincides with the set of real parts of all
points of the corresponding connected component of V.. Thus the following lemma is
proved (the bounds here use (5] and [6]):

LEMMA. a) It is possible to consiruct an algorithm that produces a finite set of real

solutions (£&1,...,En) € R™ for the equation f =0, so that in each connected component
of the variety Vo = {f = 0} C R™ there 15 at least one point of this set. Moreover, for
each point (€1,..., &) the algorithm constructs ezpressions

A7 € Qo)

G= 3
0<j<deg ®
which give a field isomorphism Q{,.. ., &) = Q8] = Q[Z]/(®), where ® is the manimal
polynomial for 6 over the field Q, and further 0 = 5 cicn Aili with naturel number
coefficients 1 < A; < deg ® < (2d)*. The ezecution time Jor the algorithm is bounded by
a polynomial in kMdr* < Ln < Llogl,
b) Furthermore, for every zero (€1, .., &a) and for each natural number s, it 1s possible
to find a rational approzimation (g{s), . {,(f)) € Q" so that & — EES)| < 27%, in time
which ts polynomial in M dr’s.

REMARK. The proof of the lemma in fact also goes through when the initial polyno-
mials f; (see (1)) have coefficients in the ring Z[e], where the role of ¢ in the proof is
played by an element £, > 0 which is infinitesimal with respect to €.

3. We now turn to the consideration of the case of weak inequalities f; 2 0,..., fc 20
in the system (1), which determine a semialgebraic set V' C R™. Just as in the case of
equalities, we may assume that V C D,. We consider the polynomial

g=(fri+e)fate)(fu+e)—e* € Zel[ X1, .., Xal,

and we apply the lemma to it, bearing in mind the last remark.

As a result the algorithm finds points in each connected component of the variety
{g = 0} C F*, and then, as above, the real parts (£1,...,6n) € R” of these points.
Then for each point ({1, .. ., &) the algorithm checks for which 4, 1 < ¢ <k, the equality
filé1,...,€,) = hi(8) = 0 holds, where h; € Q[Z], on the basis of assertion a) of the
lemma (cf. [5] and [6]). If hy(6) # 0, then for any zero §; € C of the polynomial Ay, the
inequality |§—6, | > exp(—p, (L)) holds for a suitable polynomial p; (cf. [12]). Further, the
algorithm finds a rational approximation 8¢} € Q such that [6 — 80)| < exp(~p1(L))/2,
using e.g. [12] (cf. assertion b) of the lemma). Then h;(8) € R has the same sign as
h(09)) € Q. The algorithm computes h;(8(*)) for all 1 < 1 < k for which h;(8) # 0.
If for all 1 < 4 < k either filé1,..., &) =0 or hi(8¢}) > 0O holds, then the point
(€1,...,6,) € V. The set of solutions of (1) required in the theorem coincides with the
set of all points (£3,...,£&,) which satisfy these conditions.
£ earing in mind that V coincides with the set of real parts of the closed (in the

uclu‘igan topology) semialgebraic set V(&) C F" of all solutions of the system of in-
equalities g > 0, f; + ¢ > 0,...,fc + & > 0, and in addition that the boundary of
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We turn finally to the consideration of the system (1). We introduce a new variable 7
and we consider the system f; > 0,..., f; 20, fit120,...,fi > 0,2 f

2 S EEE
Applying the algorithm described in the case of weak j iti i
complete the proof of the theorem.

4. We will call nonempty semialgebraic point set in R™ an
of points satisfying the conditions

{fil = O}ieh: {fia > O}f'zEIzs {ffa < O}isela!
for some partition Liuhul; ={1,... yk}. Then R™ i

REMARK. It is possible to construct an algorithm which enumerates all the
(f1,..., Jx}-cells and indicates at least one point on every connected component of each
cell. The execution time of this algorithm is polynomial in M (kd)"”.
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