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IntroductionIn this paper, we consider the problem of computing t-sparse shifts for multivariate polynomials.Given a polynomial f 2 F [x1; x2; : : : ; xn] of degree d (where F is a �eld of characteristic 0), considerthe representation of f(x) as a K-linear combination of the power products of ui where ui = xi� bifor some bi 2 K; an extension of F ; for i = 1; : : : ; n; i.e., f = Pj fju�j where �j denotes themulti-index (�j1; �j2; : : : ; �jn); and u�j indicates the power product u�j11 u�j22 : : : u�jnn : Let t be apositive integer � �d+nn �: We say that ~b = (b1; b2; : : : ; bn) is a t-sparse shift for f (or, f is t-sparsein the shifted basis consisting of the power products of the ui) if at most t of the fj in the aboverepresentation are non-zero (the term \basis" refers to the fact that the power products of the uiform a F -basis for the polynomial ring F [x1; x2; : : : ; xn]).The main problem that we address is: given an f and t as above, can we e�ciently compute at-sparse shift for f if one exists? We are particularly interested of in the case polynomials that haverational shifts (each bi 2 F) and the case of polynomials that have �nitely many t-sparse shifts.Recently, there has been much interest in the design of e�cient algorithms for computing sparserepresentations for various classes of functions such as polynomials, rational functions, and algebraicfunctions (Grigoriev-Karpinski 1987, Clausen et al 1988, Ben-Or&Tiwari 1988, Kaltofen-Lakshman1988, Borodin-Tiwari 1990, Grigoriev-Karpinski-Singer 1990,1991,1992, 1993, 1994, Mansour 1992,Lakshman-Saunders 1993, 1994). The problem of �nding sparsifying invertible linear tranforma-tions for polynomials in F [x1; x2; : : : ; xn] was �rst addressed in a recent paper by Grigoriev andKarpinski (Grigoriev-Karpinski 1992) where they provide an algebraic criterion to be satis�ed byany sparsifying linear tranformation for a polynomial in F [x1; x2; : : : ; xn] and an algorithm basedon the algebraic criterion for computing sparsifying linear transformations. However, the algorithmrequires solving systems of polynomial equations and inequalities involving the parameters ai;j ; ci ofthe sparsifying transformations over the algebraic closure of F : While this is possible in principle,it is known to be very hard. For the important special case considered in this paper, we showthat one can compute a system of polynomial equations involving the parameters of the unknowntransformation which is already \solved" in a sense (the parameters are separated) in time thatis polynomially bounded by t. The dependence of the algorithm on d; n is sensitive to how thepolynomial f is presented. We will state the precise complexity result a little later. In this paper,we build on the results of two earlier papers, (Grigoriev-Karpinski 1993, Lakshman-Saunders 1994),and we make use of techniques used to deal with zero-dimensional Gr�obner bases.We assume that we are given a straight line program for computing f: Consequently, we cangenerate straight line programs for some low order partial derivatives of f e�ciently (see Baur andStrassen, 1983). Instead of a straight-line program for f , it is enough if we have black boxes for fand certain low order partial derivatives of f: It is indeed possible to use this approach even if wehave just a black box for computing f: We make some remarks later on as to how to modify ourapproach to work in this situation.The main contributions of this paper are:� su�cient conditions for uniqueness of sparse shifts for multivariate polynomials;2



� tight bounds on the degree of the polynomial being interpolated in terms of the sparsitybound t and a bound M on the size of the coe�cients of the polynomial in the standardrepresentation.� two new e�cient algorithms for computing sparse shifts for a multivariate polynomial.In section 1 we discuss conditions under which a polynomial can have a unique sparse shift. Insection 2, we describe our �rst algorithm for computing sparse shifts. In section 3, we describeour degree bounds and the second algorithm for computing sparse shifts. The �rst algorithmcomputes t-sparse shifts for a multivariate polynomial f with �nitely many t-sparse shifts in allcases except one { it can fail when degxi(f) < t for two or more xi and f still has �nitely manysparse shifts. It performs (dt)O(n) Q-operations if randomization is not allowed and tO(n) Q-operations if randomization is allowed. When there is a unique shift, the algorithm performs(tdn)O(1) Q-operations if randomization is not allowed and (nt)O(1) Q-operations if randomization isallowed. The second algorithm computes t-sparse shifts for a multivariate polynomial f without any�niteness restrictions on the number of t-sparse shifts. It has running time bounded by (nt)O(n2):We conclude with a discussion of open problems and possible applications in section 4.Actually, the algorithms could run when F -operations are admitted, but for the complexityanalysis to make the algorithms more realistic we allow just Q-operations.1. Observations on the Uniqueness of Sparse ShiftsIn (Lakshman-Saunders 1994), the following were shown to be true.Theorem 1 Let f(x) 2 F [x] be of degree d and let t � (d + 1)=2: If there exists an � in somealgebraic extension K of F such that f(x) is t-sparse in the shifted power basis 1; (x��); (x��)2; : : : ;then the shift � is unique. 2Corollary 1 Let f(x) 2 F [x] be of degree d and let t � (d+ 1)=2: If � (in any extension K of F)is a t-sparse shift (hence the unique t-sparse shift) for f(x); then � 2 F : 2The situation is more complicated than this for the multivariate case. The following exampleillustrates one di�culty. Consider the polynomial h(x; y) = xdy+ xd with d > 4: h is 2-sparse withrespect to the shift (0; c) for any c 2 F (h(x; y) = xd(y � c) + (c+ 1)xd). Obvious generalizationsof this example to polynomials in F [x1; x2; : : : ; xn] lead us to the following conclusion. Let h 2F [x1; x2; : : : ; xn] andB = f~b = (b1; b2; : : : ; bn) 2 �Fn such that ~b is a t-sparse shift for hg:Note that if ~b is a t-sparse shift for h, then ~b is a common zero of at least some �d+nn � � t partialderivatives of h: It follows that B is an algebraic set in �Fn and can be of any dimension from �1to n� 1 (as usually we agree that the empty set has the dimension �1).The next two weaker uniqueness results follow from theorem 1. Let h 2 F [x1; x2; : : : ; xn] withdegxi(h) = di and let t < (di + 1)=2: 3



Lemma 1 If ~b = (b1; b2; : : : ; bn) and ~c = (c1; c2; : : : ; cn) are two t-sparse shifts for h, then bi = cifor any 1 � i � n.Proof: For a �xed i consider a mapping � : F [x1; x2; : : : ; xn] 7! F [xi] with �(xj) = aj for i 6= jwhere aj 2 F are chosen to preserve the degree in xi; i.e., degxi(h) = di = deg(�(h)): Both bi andci are t-sparse shifts for �(h) and using theorem 1, we conclude that bi = ci: 2Lemma 2 Let d = min1�i�nfdegxi(h)g: If t < (d+ 1)=2; then h has at most one t-sparse shift.Proof: Apply lemma 1 to each xi: 2Stronger uniqueness results hold for the more general case of sparsifying linear transformationsunder side conditions. 1.1 Su�cient conditions for UniquenessIn this subsection, we prove two di�erent su�cient conditions for the uniqueness of sparsifyingtransformations. Let f = tXi=1 fix�i = TXi=1 �iu�i ; ~u = A~x + ~dwhere ~u = 0BBB@ u1u2: : :un 1CCCA ; A = (ai;j)1�i;j�n; ~x = 0BBB@ x1x2: : :xn 1CCCA ; ~d = 0BBB@ d1d2: : :dn 1CCCA ;ai;j ; di 2 K and A non-singular. Let a1; a2; : : : ; an denote the columns of A with A denoting theset fa1; a2; : : : ; ang: Let d be the degree of f .Theorem 2 If ~d is not in the span of B, for every proper subset B of A, then, t+ T > d:Proof: Let us substitute linear forms in a new variable � for the xi asxi �! ki(� +N)with ki; N 2 K to be chosen in a certain way. Clearly, the linear forms ui become linear forms in� under this substitution. Let us try to choose ki; N is such a way that each of the ui-s becomes ascalar multiple of one and the same linear form in �, di�erent from � +N: The ui are tranformedas follows:0BBBB@ a1;1 a1;2 : : : a1;na2;1 a2;2 : : : a2;n... ... . . . ...an;1 an;2 : : : an;n 1CCCCA0BBBB@ k1(� +N)k2(� +N)...kn(� +N) 1CCCCA+ 0BBBB@ d1d2...dn 1CCCCA = 0BBBB@ r1r2...rn 1CCCCA � +0BBBB@ Nr1 + d1Nr2 + d2...Nrn + dn 1CCCCA4



where ri =Pnj=1 ai;jkj : Let ~r = 0BBB@ r1r2: : :rn 1CCCA ; ~k = 0BBB@ k1k2: : :kn 1CCCA :We want each ri� + (riN + di) to be a scalar multiple of one and the same linear form in � whichmeans we want �~r = N~r + ~d for some non-zero � 2 K: So, we have (��N)~r = ~d: Recalling that~r = A~k; we have ~k = 1=(��N)A�1~d: Let us choose �;N such that �;N 6= 0 and � 6= N and �nd thecorresponding ki by solving the above system of equations. It follows from the hypothesis (that ~d isnot in the span of any proper subset ofA) that no ki is zero. This implies that under the substitutionconsidered, the degree does not decrease, i.e., deg(f) = deg(�(�)) where �(�) = f(xi = ki(�+N)):Now, �(�) has degree d, is t-sparse in the powers of � + N and T -sparse in the powers of � + �.Invoking the univariate theorem, we have t+ T > d: 2For the special case of sparse shifts, we get the following:Corollary 2 Let f =Ptj=1 fjx�j =PTj=1 �ju�j where ui = xi + di. If no di = 0; then t + T > d:Proof: Let A be the identity matrix in the above theorem. 2The second theorem on the number of sparse shifts imposes a di�erent criterion. Let B = A�1 =(bi;j)1�i;j�n: We have ~x = B~u + ~d0 where ~d0 = �B~d: Note thatxi@=@xi(us11 us22 : : : usnn ) = us11 us22 : : : usnn (a1;is1=u1 + a2;is2=u2 + : : :+ an;isn=un)( nXj=1 bi;juj) + �where degu(�) < s1 + s2 + : : :+ sn: Let d be the degree of f:Theorem 3 If for some i; Qnj=1 aj;iQnj=1 bi;j 6= 0; then tT > d=n for n � 0:Assume the contrary. We set up some notation and prove supporting claims and then present theproof of the theorem. Let D = xi@=@xi: There exist �0; �1; : : : ; �t 2 F such that P0�j�t �jDjf = 0(see lemma 4). Let t0 = maxfj : �j 6= 0g � t:Let Sn(d) � Zn denote the set of integer points of the (n�1)-dimensional simplex f(z1; z2; : : : ; zn) :zi � 0; 1 � i � n;P1�i�n zi = dg: Call the set f�1; : : : ; �Tg the support of f: For any two vectorss; w 2 Sn(d); let var(s; w) = P1�i�nmax(si � wi; 0) = �P1�i�n min(si � wi; 0): For any vec-tor v = (v1; v2; : : : ; vn) such that P1�i�n vi = 0; represent v uniquely as v = v(+) + v(�) wherev(+)i = max(vi; 0) and v(�)i = min(vi; 0): We have var(v) =P1�i�n v(+)i = �P1�i�n v(�)i :Let T0 be the number of points in the intersection of the support of f with Sn(d) and denote thepoints in this intersection by a1; a2; : : : ; aT0. Observe that for any b 2 Zn satisfying the conditionsvar(b) = t0; aj + b 2 Sn(d) (see above) the point aj + b belongs to the support of Dt0(uaj) (due5



to the assumption in the statement of the theorem) and does not belong to the support of Dl(uaj)for any l < t0:For each m; 1 � m � n; re-order the ai in non-decreasing order on their m-th coordinates as0 � a1;m � a2;m � : : :� aT0;m � d:Lemma 3 There is anm; 1 � m � n; for which either a1;m � t0; or, for a certain l; 1 � l � T0�1;al+1;m � al;m � 2t0 + 1:Proof: Suppose not; then for every m we have al;m � t0 � 1 + (l � 1)2t0 for each l; 1 � l � T0:Hence, X1�l�T0 al;m � (t0 � 1)T0 + 2t0T0(T0 � 1)=2 = T0(t0T0 � 1) � T0(d=n� 1);the latter inequality follows from the assumption that the theorem is wrong. On the other hand,P1�m�nP1�l�T0 al;m = dT0 since al 2 Sn(d) for 1 � l � T0, we get a contradiction. Hence, thelemma is true. 2Proof: (of theorem 3): Assume that tT � d=n: Fix an m; 1 � m � n satisfying lemma 3.First, consider the case a1;m � t0 (see the beginning of the proof of the theorem). Consider thosepoints among a1; : : : ; aT0 that belong to the (n � 2)-dimensional simplex Sn(d) \ faj;m = a1;mg:Without loss of generality, assume that they are a1; : : : ; aT1 ; T1 � T0: Among these points, choosethe one that is largest in the lexicographic order, without loss of generality, let it be a1: Sincea1;m � t0; we have Pk 6=m a1;k � d� t0: Consider the point �a1 = (a1;1 + t0; a1;2; : : : ; a1;m�1; a1;m �t0; : : : ; a1;n) 2 Sn(d): Clearly, var(a1; �a1) = t0: We will show that for any point aj ; 2 � j � T0;var(aj ; �a1) > t0; thereby showing that �a1 does not belong to the support of Dl(uaj) for all 0 � l � t0and 2 � j � T0 and proving the theorem for the case a1;m � t0: Suppose that var(aj ; �a1) � t0;this means that v = aj � �a1 = v(+) + v(�) with v(+) = (0; : : : ; 0; t0; 0; : : : ; 0) (the t0 appearing inthe m-th position) and aj 2 fa1; : : : ; aT1g. Let aj = (aj;1; : : : ; aj;n): Since aj;1 � a1;1; (as a1 islexicographically the largest among the aj), v(�) = (�t0; 0; : : : ; 0); but then aj = a1; a contradiction!This proves that var(aj ; �a1) > t0:Now, consider the case al+1;m � al;m � 2t0 + 1 for a certain l; 1 � l T0 � 1 (according tolemma 3 we need just a trial of this and of the previous case). Among the points in fa1; : : : ; aT0g\faj;m = al+1;mg; choose the largest in lexicographic order, call it al+1: As before, consider thepoint �al+1 = al+1 + (t0; 0; : : : ; 0;�t0; 0; : : : ; 0) 2 Sn(d) (the �t0 is in position m) and prove thatvar(aj ; �al+1) > t0 for every j, 1 � j � T0 and j 6= l + 1 and complete the proof as in the previouscase. 22. Computing Sparse Multivariate ShiftsWe assume in our discussion that f has a �nite (possibly zero) number of sparse shifts. If thereare in�nitely many t-sparse shifts with respect to one or more xi ( when f is seen as an elementof F [x1; : : : ; xi�1; xi+1; : : : ; xn][xi] with t > degxi(f)) but only �nitely many of them can be com-bined to t-sparse shifts for the polynomial f , then the algorithm of this section can fail. This6



situation is taken care of by the algorithm of next section as the \low degree case". In this sec-tion, we assume that t � degxi(f) for 1 � i � n: As before, let f = Ptj=1 fju�j : Recall that �jdenotes the multi-index (�j1; �j2; : : : ; �jn); and u�j indicates the power product u�j11 u�j22 : : :u�jnn :Consider the ideal I � Q[y1; y2; : : : ; yn] which is the ideal of the points f�1; �2; : : : ; �tg: We shallconstruct a reduced Gr�obner basis for I under any admissible term ordering. For convenience,we choose the lexicographic term ordering with y1 � y2 � : : : � yn: In fact, we can construct atriangular set decomposition of the ideal I instead of a Gr�obner basis for I: For a good descrip-tion of zero-dimensional Gr�obner bases and triangular sets, we refer the reader to (Lazard 1992,Kapur{Lakshman 1992).The Gr�obner basis G for I under the chosen term ordering looks as follows:G(1)1 (y1) = y�11 + g(1)1;�1�1y�1�11 + : : :+ g(1)1;1y1 + g(1)1;0;G(2)1 (y1; y2); G(2)2 (y1; y2); : : : ; G(2)k2 (y1; y2);G(3)1 (y1; y2; y3); G(3)2 (y1; y2; y3); : : : ; G(3)k3 (y1; y2; y3);...G(n)1 (y1; y2; : : : ; yn); G(n)2 (y1; y2; : : : ; yn); : : : ; G(n)kn (y1; y2; : : : ; yn):We recall a few standard terms and facts from the theory of Gr�obner bases. For further details,see (Becker et al 1993).� the head term of a polynomial h, HeadTerm(h) is the largest term (under the term ordering�) appearing in h with a non-zero coe�cient.� a term s is reduced with respect to the Gr�obner basis G if it is not divisible by HeadTerm(g)for any g 2 G:� The number of reduced terms with respect to the Gr�obner basis G is equal to the dimensionof the residue class ring Q[y1; : : : ; yn]=I as a Q-vector space and, in our case, is � t:Suppose h 2 I and h = y�1 + h2y�2 + h3y�3 + : : :+ hLy�Lwhere y�i = y�i;11 y�i;22 : : :y�i;nn and y�i+1 � y�i for 0 � i < L: Let us de�ne f�i for a multi-index�i = (�i;1; �i;2; : : : ; �i;n) with �i;1; �i;2; : : : ; �i;n � 0 as follows:f(0;0;:::;0) = f;f(�i;1;�i;2 ;:::;�i;n) = (x1 � z1)@f(�i;1�1;�i;2;:::;�i;n)=@x1 if �i;1 > 0; else= (x2 � z2)@f(�i;1;�i;2�1;:::;�i;n)=@x2 if �i;2 > 0; else...= (xn � zn)@f(�i;1;�i;2;:::;�i;n�1)=@xn otherwise.Furthermore, we extend the ordering � to the set of polynomials f�i asf�i � f�j i� y�i � y�j :7



Let cf�i = f�i(z1 = b1; : : : ; zn = bn; x1; x2; : : : ; xn) 2 K[x1; : : : ; xn]where (b1; b2; : : : ; bn) is a t-sparse shift for f:Lemma 4 Let h 2 I and h = y�1+h2y�2+h3y�3+: : :+hLy�L : Then the polynomials cf�1 ; cf�2 ; : : : ;df�Lsatisfy the Q-linear relationh1cf�1 + h2cf�2 + h3cf�3 + : : :+ hLdf�L = 0; with h1 = 1:Proof: We have cf�i = tXj=1��ij fj(x� b)�jwhere ��ij = ��i;1j;1 ��i;2j;2 : : :��i;nj;n ;and, (x� b)�j = (x1 � b1)�j;1(x2 � b2)�j;2 : : : (xn � bn)�j;n : Therefore,LXi=1 hicf�i = LXi=1 hi( tXj=1��ij fj(x� b)�j)= tXj=1 LXi=1 hi��ij fj(x� b)�j= tXj=1h(�j)fj(x� b)�j= 0; since h 2 I: 2For polynomials f1; f2; : : : ; fm; f let us de�ne a generalized Wronskian matrix and the !-vectorasWm(f1; f2; : : : ; fm) = 0BBBB@ f1 f2 : : : fmD(f1) D(f2) : : : D(fm)... ... . . . ...Dm�1(f1) Dm�1(f2) : : : Dm�1(fm) 1CCCCA ; !m(f) = 0BBBB@ fD(f)...Dm�1(f) 1CCCCA ;where D is a generic linear combination of @=@xi; i.e., D = Pni=1 li@=@xi; li 2 F : As usual, Didenotes the operator D applied i times. LetWm(f1; f2; : : : ; fm) = det(Wm(f1; f2; : : : ; fm)):Clearly, WL(f�1 ; : : : ; f�L) 2 F [z1; : : : ; zn; x1; : : : ; xn]and WL(cf�1 ; : : : ;df�L) 2 K[x1; : : : ; xn]:8



Lemma 5 If a set of polynomials F = fcf�1 ; cf�2 ; : : : ;df�Lg satis�es the K-linear relationcf�1 + h2cf�2 + h3cf�3 + : : :+ hLdf�L = 0;and no proper subset of F sati�es a K-linear relation, then ~h = (h2 h3 : : : hL)Tr is the uniquesolution to the system of equationsWL�1(cf�2 ; : : : ;df�L)~� = �!L�1(cf�1):Proof: The proof is classical and we give only a brief sketch. By rewriting the linear dependencyas �cf�1 = h2cf�2 + h3cf�3 + : : :+ hLdf�Land applying the operator D successively L� 1 times, it follows thatWL�1(cf�2 ; : : : ;df�L)~h = �!L�1(cf�1):If h is not the only solution, thenWL�1(cf�2 ; : : : ;df�L) is singular, i.e., the WronskianWL�1(cf�2 ; : : : ;df�L)vanishes identically. This implies that the polynomials cf�2 ; : : : ;df�L are K-linearly dependent (Ka-planski 1957). But no proper subset of F is supposed to satify a K-linear relation, hence, h is theonly solution. 2From lemmas 4,5, it follows that if ~b = (b1; b2; : : : ; bn) is a t-sparse shift for f; and if h =y�1+h2y�2+h3y�3+: : :+hLy�L 2 I; thenWL(f�1 ; : : : ; f�L) vanishes identically under the substitutionz1 = b1; z2 = b2; : : : ; zn = bn: A partial converse of lemma 4 is also true and it gives us a way todetermine sparse shifts of f:For a polynomial h = y�1+h2y�2+h3y�3+: : :+hLy�L ; let support(h) denote the list of polynomialsf�1 ; f�2 ; : : : ; f�L and W(h) denote WL(support(h)) where L is the cardinality of support(h):Lemma 6 Let G = fg1; g2; : : : ; grg � Q[y1; y2; : : : ; yi] be a reduced Gr�obner basis for a zero-dimensional ideal J with dim(Q[y1; y2; : : : ; yi]=J) � t; and ~bi = (b1; b2; : : : ; bi) 2 Ki such thatW(g1)zj=bj ; j=1;:::;i =W(g2)zj=bj ; j=1;:::;i = : : :=W(gr)zj=bj ; j=1;:::;i = 0:Then ~bi is a partial t-sparse shift for f , i.e., f = Ptj=1 �j(x � b)�j) where (x � b)�j) denotes(x1 � b1)�j;1(x2 � b2)�j;2 : : :(xi � bi)�j;i and J is the ideal of the points f�1; �2; : : : ; �tg.Proof: Let f = Pkj=1 �j(x � b)�j with �j 6= 0: We will show that k � t: Suppose g1 = g1;1y�1 +g1;2y�2+g1;3y�3+ : : :+g1;Ly�L : Since W(g1)zj=bj ; j=1;:::;i = 0; by lemma 5, g1;1cf�1+g1;2cf�2+g1;3cf�3+: : :+ g1;Ldf�L = 0; i.e., = LXp=1 g1;p( kXj=1��pj �j(x� b)�j)= kXj=1 LXp=1 g1;p��pj �j(x� b)�j9



= kXj=1 g1(�j)�j(x� b)�j= 0:Therefore, g1(�j) = 0 for j = 1; : : : ; k: In a similar fashion, we can show that gp(�j) = 0 for eachgp 2 G: In other words, each �j is a zero of the ideal J: Since dim(Q[y1; y2; : : : ; yi]=J) � t; J canhave at most t distinct zeros. Therefore, k � t: 22.1 The Sparse Shift Algorithm { Case of Finitely Many ShiftsOur goal is to construct the Gr�obner basis G. Given any term s (in y1; : : : ; yn), it is either� reduced with respect to G, or� the head term of some polynomial in G, or� a multiple of some head term in G.A term s is called a simple multiple of the term s0 if s = yjs0 for some yj : Every head term in Gis a simple multiple of some reduced term. The idea is to enumerate f�i in the increasing orderaccording to � and decide, with the help of a Wronskian test, which of the above properties theterm y�i satis�es. The idea of systematic enumeration is borrowed from the well-known FGLMbasis conversion algorithm (Faug�ere et al 1993).� The function Complete basis constructs a reduced Gr�obner basis for the ideal I under the purelexicographic term order with y1 � y2 � : : : � yn: In the process, it also computes the correspondingt-sparse shifts for f . If f has several t-sparse shifts satisfying the assumptions stated earlier,Complete basis constructs reduced Gr�obner bases for the ideal I corresponding to each of the sparseshifts. It returns a set of ordered pairs (~b; G) where ~b is a t-sparse shift for f and G is a reducedGr�obner basis for the corresponding ideal I . It uses the functions Next term and Wronskian test .� The function Next term takes four parameters:� current basis , reduced terms and last shift index are passed in unmodi�ed by Complete basis ,and,� new var is a ag that is set by Next term.Next term returns the smallest term y�( =: s) (according to the ordering �) that is neither inreduced terms nor is a multiple of some known head term in current basis ; it returns null if nosuch y� exists. When such a term exists, if it has a new variable, i.e., the number of variables inthe term is > last shift index , the ag new var is set to true, else new var is set to false.� The function Wronskian test takes �ve parameters: s,reduced terms , list of bis , last shift indexand new var which are all passed in unmodi�ed by Complete basis and it operates in two distinctmodes. 10



� If new var = true, then Wronskian test tries to extend the partial t-sparse shift list of bis =(b1; : : : ; bk) to the next variable, i.e., variable whose index is last shift index + 1 = k + 1. Ifit �nds a possible shift, it returns the pair of values [ true, bis or poly ] where bis or polycontains all the zeros of the content of WL+1(f�; f�1 ; : : : ; f�L)zi=bi ; i=1;:::;k as an element ofK[zk+1][x1; x2; : : : ; xn] where y�1 ; : : : ; y�L 2 reduced terms , and L = Cardinality(reduced terms).If the content is 1, then Wronskian test returns the pair of values [ false, [ ] ] .� If new var = false, then Wronskian test attempts to solve the system of linear equationsWL(cf�1 ; : : : ;df�L)~� = �!L( bf�)where y�1 ; : : : ; y�L 2 reduced terms , and L = Cardinality(reduced terms). If there is a solution� = (g1 g2 : : : gL)Tr; then Wronskian test returns the pair of values [ true, y� + g1y�1 +: : :+ gLy�L ] where y� = s: If there is no solution, then Wronskian test returns the pair ofvalues [ false, [ ] ] .Complete basis( f;current basis , /* set containing a partially constructed Gr�obner basis; */reduced terms , /* set containing terms known to be reduced with respect tocurrent basis ; */list of bis , /* list containing partial shifts; if list of bis = (b1; : : : ; bk),then the bi are possible t-sparse shifts for xi; i = 1; : : : ; k; */last shift index /* index of the last variable for which a shift has been com-puted; last shift index = Cardinality(list of bis) always; */term limit /* bound on the number of terms (t) in the shifted sparserepresentation of f ; */)beginlocalset of GBs , /* (~b; G) are accumulated in this; */new var ,Wr ag ,bis or poly; /* ags and place-holders for return values and return statusof Next term, Wronskian test ; */set of GBs := f g;if Cardinality(reduced terms) � term limit thenif s := Next term( reduced terms , current basis ,last shift index , new var) then[ Wr ag , bis or poly ] := Wronskian test( s, reduced terms ,list of bis , last shift index , new var);if new var thenif Wr ag then 11



for each b 2 bis or poly doset of GBs := set of GBs [ Complete basis(reduced terms ,current basis , [list of bis , b], last shift index+1, term limit);od ;set of GBs := set of GBs [ Complete basis(reduced terms [ s,current basis , list of bis , last shift index , term limit);return set of GBs /* new var is true, and the ag Wr ag is set to truebyWronskian test ; therefore, one or more possible shifts werefound for the last shift index+1-th variable; branch out tocomplete each of the shifts; continue the original branch alsoin search of other shifts. */elseset of GBs := Complete basis(reduced terms [ s,current basis , list of bis , last shift index , term limit)return set of GBs ; � /* No possible shift was found for the last shift index+1-th variable; no Q-linear combination of the term s and allthe lower terms known to be reduced with respect to cur-rent basis belongs to I ; classify s as reduced with respect tocurrent basisand continue.*/elseif Wr ag thenset of GBs := Complete basis(reduced terms , current basis [bis or poly, list of bis , last shift index , term limit)return set of GBs /* new var is false, and the ag Wr ag is set to truebyWronskian test , therefore, a Q-linear combination of theterm s and all the lower terms known to be reduced withrespect to current basis was found to belong to I ; update thecurrent basis and continue. */elseset of GBs := Complete basis(reduced terms [ s,current basis , list of bis , last shift index , term limit)return set of GBs ; � ; /* no Q-linear combination of the term s and all the lowerterms known to be reduced with respect to current basisbelongs to I ; classify s as reduced with respect to cur-rent basisand continue.*/�elsereturn f (list of bis , current basis) g/* Next term failed to return a new term; so, every term iseither known to be reduced with respect to current basis , oris a multiple of some head term in current basis . This meansthat current basis is a zero-dimensional Gr�obner basis; returnthe basis and the corresponding shift. */�else 12



return f g ; /* The basis being built has more than t reduced terms whichmeans that the shift being computed can not be completedto a t-sparse shift. */end.As described earlier, the function Wronskian test returns a pair of values consisting of a ag (todenote what was computed) and either a list of possible shifts or a new element of the Gr�obnerbasis being constructed. It uses two functions, Roots of Content and Lin Sys Solve.� The function Roots of Content takes 2 parameters, an index k; 0 � k � n� 1; and a polyno-mial w 2 K[zk+1][x1; x2; : : : ; xn]. Roots of Content returns a list of all the zeros of the contentof the polynomial w:� The function Lin Sys Solve takes 2 parameters, W (2 Km�m); !(2 Km), and attempts tosolve the m�m system of linear equations W~� = !: If the system has a solution, it returnsa ~g 2 Km such that W~g = !; else it returns a null list. In our case, the system of equationseither has a unique solution or no solution.Wronskian test( s;reduced terms ,list of bis ,last shift index ,new var)beginlocalshift candidates , /* used to accumulate the list of zeroes of the content ofWL+1(f�; f�1 ; : : : ; f�L)zi=bi ; i=1;:::;k as an element of K[zk+1][x1; x2; : : : ; xn]where y�1 ; : : : ; y�L 2 reduced terms , and L = Cardinality(reduced terms).*/list of coe�s , /* used to store the list of coe�cients returned by Lin Sys Solve. */basis element , /* used to store a polynomial y� + g1y�1 + : : :+ gLy�L that will become partof the Gr�obner basis being constructed. */k;k := last shift index ;if new var thenshift candidates := Roots of Content(last shift index + 1,WL+1(f�; f�1 ; : : : ; f�L)zi=bi ; i=1;:::;k);if shift candidates 6= [ ] thenreturn [ true, shift candidates ] 13



elsereturn [ false, [ ] ] �elselist of coe�s := Lin Sys Solve(WL(cf�1 ; : : : ;df�L);�!L( bf�));if list of coe�s 6= [ ] then /* list of coe�s is a list of coe�cients [g1; g2; : : : ; gl] */basis element := y� + g1y�1 + g2y�2 + : : :+ gLy�L ;return [ true, basis element ]elsereturn [ false, [ ] ] ��end.Initially, Complete basis is invoked with the following parameter values: the polynomial f , cur-rent basis set to f g , reduced terms set to f1g, list of bis set to ( ), last shift index set to 0, andterm limit set to t:Correctness of the Algorithm: The algorithm is in one of two states always, new varbeingtrue and new varbeing false.State 1, new var true: In this state, the algorithm is attempting to extend current basisto include a polynomial in F [y1; : : : ; yi+1] (where i = last shift index). Since the Gr�obner basisbeing constructed is a lexicographically ordered basis, and the partial basis current basis is beingbuilt from the smallest head term up, current basis is actually a reduced Gr�obner basis for azero-dimensional ideal J in F [y1; : : : ; yi] with dim(Q[y1; y2; : : : ; yi]=J) � t; and the elements ofcurrent basis satisfy the Wronskian tests with respect to the candidate shift list of bis . By theorem6, list of bis is indeed a partial shift for f and a candidate for a complete shift. There are atmost �nitely many ways in which this partial shift can be extended to variable xi+1 (that isour assumption). Each possible way to extend the shift appears as a root of the content of anappropriate Wronskian, the algorithm tries to �nd the contents of all such Wronskians by exhaustiveenumeration. If the content of a Wronskian has more than one root, each root is a possible wayto continue the shift list of bis and the algorithm branches into as many branches as the roots andalso continues the computations along the parent branch. When the algorithm starts a new branch,it enters state 2.State 2, new var false: In this state, the algorithm already has a candidate shift for x1; : : : ; xiand is attempting to extend current basis to include relevant elements of the Gr�obner basis thatare in F [y1; : : : ; yi] (where i = last shift index). If a polynomial h 2 F [y1; : : : ; yi] belongs to theideal under construction, then by lemmas 4 and 5, h satis�es the Wronskian test. If h is indeedan element of the target Gr�obner basis, then it will be generated by the algorithm because ofthe particular order in which the Wronskian tests are performed (this is one of the key ideas inthe FGLM algorithm; see (Faugere et al) for details). The algorithm enters state 1 when afterit generates a basis element whose head term is a pure power of xi (because Next term now setsnew var to true).In every branch, in either state, after a Wronskian test, either a new reduced term is deducedor a new basis polynomial is generated. The number of basis elements is bounded by term limitand the number of reduced terms is bounded by term limit . If the cardinality of reduced terms14



exceeds term limit , then the ideal J has more than t zeros, i.e., the partial shift list of bis cannotbe extended to xi+1 and the algorithm terminates that branch. Therefore, each branch terminatesafter at most (n+1)t Wronskian tests. When a branch terminates, if the number of reduced termsis � term limit ; then the branch must have terminated because Next term returned the emptylist; this means that every term is known to be either reduced or a head term or a multiple of ahead term with respect to current basis which means that current basis is a reduced Gr�obner basisin Q[x1; : : : ; xn]:If there are in�nitely many t-sparse shifts with respect to one or more xi ( t > degxi(f)) but only�nitely many of them can be combined to t-sparse shifts for the polynomial f , then the algorithm canencounter an identically vanishing Wronskian in state 1 and will fail. An example of a polynomialfor which such a phenomenon happens is (x� 1)2(y� 1)2(z� 1)2+(x� 1)(y� 1)(z� 1)+2: (1; 1; 1)is a 3-sparse shift for this polynomial and it is the only 3-sparse shift for the polynomial. However,with respect to any single variable, there are in�nitely many 3-sparse shifts. This situation is takencare of by the algorithm of the next section as the \low degree case".The function Complete basis returns a set of ordered pairs (~b; G) where ~b is a t-sparse shiftfor f and G is a reduced Gr�obner basis for the corresponding ideal I . From these, it is quitestraightforward to compute the shifted sparse representation f =Pti=1 fiu�i corresponding to thepair (~b; G).� Find the zeros of the ideal (G): We know that the zeros are the multi-indices �i in the aboverepresentation. Since we already have a reduced, lexicographically ordered Gr�obner basis andknow that all the roots are n-tuples of integers, this can be done fast. See (Lazard 1992).� Once we know the shift ~b and the multi-indices �i; we can �nd the coe�cients of f from itsvalues at t selected points by solving a t � t system of linear equations.Complexity Analysis: In the following analysis, our main goal is to get an upper bound on thenumber of Q-operations performed by the sparse shift algorithm. Our emphasis is not so much ongetting the sharpest possible bounds (as that would depend on the intricate details of how each stepis implemented) as on �nding the coarse dependence (polynomial or exponential) of the runningtime (number of Q-operations) on n; t; d. We choose the primitive element methos for computingwith algebraic numbers for convenience and the other models that one �nds in the literature arepolynomially related to this (polynomial in the degree of the extension under consideration).The polynomial f is assumed to have rational number coe�cients. In fact, the algorithmcould run over any �eld of characteristic zero, but in the complexity analysis we assume that thecoe�cients of f are rationals. The t-sparse shifts may be algebraic over Q as we have seen. Weassume that the algebraic numbers that arise in a particular branch of the algorithm are expressed asQ-linear combinations of 1; �; �2; : : : where � is a primitive element of the smallest degree algebraicextension over Q that contains all the algebraic numbers that arise in that branch.The main operation in the algorithm is the Wronskian test in Complete basis . We know that ineach branch generated by Complete basis , there are at most n(t+ 1) Wronskian tests. How manydistinct branches can there be? Notice that branching can take place only when Complete basis is15



in state 1. Branching corresponds to �nding more than one root for the content of a Wronskian.Consider a Wronskian test in state 1 with last shift index = i: The Wronskians are determinantsof matrices of size no more than (t + 1)� (t + 1) and the degree of each entry in zi+1 is no morethan t, therefore, the content of the Wronskian, which is a polynomial in zi+1, has degree O(t2) inzi+1. Hence a worst case bound on the number of branches at a time is O(t2): The main branchin state 1 can branch at most t times and the main branches are the only ones that can branch.The branching stops when last shift index becomes equal to n: Therefore, the number of branchesis bounded by O(t3n): Conclude that there are O(nt3n+1) Wronskian tests in all.Consider any branch generated by Complete basis at a time when last shift index = i. Theentries of the Wronskian are polynomials in zi+1 and x1; : : : ; xn with coe�cients from an algebraicextension of the rationals of degree O(t2i) (the contents of the previous Wronskians whose rootsform the partial shift along the chosen branch are of degree O(t2) in zj , j < i + 1, and if each ofthe contents is irreducible over the earlier extensions, the current extension will have degree O(t2i)over Q). Each arithmetic operation in such an extension costs O(t4i) Q-operations.To compute the content of a Wronskian, we have to compute the Wronskian (a (t+ 1)� (t+ 1)determinant at most). The Wronskian is a polynomial of degree O(dt) in the xi and O(t2) in zi+1:Computing the Wronskian and then its content costs O(t3(dt)2nt4n) = O(d2nt6n+3) Q-operationsif we are to do it deterministically. If we are allowed to use randomization, we can substitute twodi�erent sets of random rational numbers for the xi in the matrix corresponding to the Wronskianand compute the univariate gcd of the determinants of the matrix under the two specializations.With high probability, the gcd will be the content of the Wronskian. The cost of doing this isO(t3:t4:t4n) = O(t4n+7) Q-operations.The last two steps in the sparse shift algorithm are much simpler. Finding the integer roots ofa zero-dimensional lexicographic Gr�obner basis with at most t zeros can be done by �nding all theinteger roots of a univariate polynomial of degree at most t and evaluating n � 1 other univariatepolynomials of degree < t at the roots this polynomial and solving an n � n linear system (see(Lakshman 1990)). The total cost is bounded by O(t3 + nt2 + n3) Q-operations. This has to bedone at most O(nt3n+1) times (once for each branch of Complete basis).Setting up and solving a t � t linear system to compute the coe�cients in the shifted sparserepresentation costs O(t3) Q-operations and this too has to be done at most O(nt3n+1) times, oncefor each branch of Complete basis . Adding up the costs of all the steps, we have:Theorem 4 The algorithm of this section computes all shifted t-sparse representations for f pro-vided degxi(f) � t for each xi: If randomization is not allowed, the algorithm performs (n(dt)n)O(1)Q-operations. If randomization is allowed, the algorithm performs (ntn)O(1) Q-operations. 2For the special case of t � (degxi(f) + 1)=2 for each xi, the polynomial f has at most onet-sparse shift by lemma 2, the algorithm runs much faster. In this case, there is essentially nobranching and all individual shifts are rational. For this case, we have:Theorem 5 If t � (degxi(f) + 1)=2 for each xi, the algorithm of this section computes a shiftedt-sparse representations for f (if it has one) in time polynomial in t: More speci�cally, if random-16



ization is not allowed, the algorithm performs (ntdn)O(1) Q-operations. If randomization is allowed,the algorithm performs (nt)O(1) Q-operations. 2Remark: If we do not have the derivarives of f available, but only a black box that evaluates f ,we can still use ideas close to the ones describes in this section to construct a Gr�obner basis for theideal of points p�1 ; p�2; : : : ; p�t with p�jj denoting the power product p�j;11 p�j;22 : : : p�j;tt where the piare distinct prime integers. In place of f�; one can use f(p�11 + z1; p�22 + z2; : : : ; p�nn + zn):3. Sparse Shift Algorithm { The General CaseIn this section, we deal with the case of �nding t-sparse shifts for a polynomial f 2 F [x1; : : : ; xn](we suppose that F � R) for which degxi(f) < 2t for one or more xi and consequently, there mightbe several (possibly in�nitely many) t-sparse shifts with respect to xi alone. This covers the casethat causes the algorithm in the previous section to fail. We assume that the polynomial f is givento us as a black box or a straight line program. Assuming that we are given a bound M on thesizes of the coe�cients of f in the standard representation (and without knowing anything aboutthe degree of f), we identify three kinds of variables in f :� variables that have very high degree (
((M + t2)1+�)), these appear with a unique t-sparseshift that is either 0, or 1 or -1. We make repeated use of the Ben-Or and Tiwari algorithm(Ben-Or, Tiwari 1988) in conjunction with some bounds proved in this section to identify thehigh degree variables and to �nd the corresponding shifts.� variables that have moderate degree (2t < degree < c(M+ t2)1+� for some constant c), theseappear with a unique, rational shift in any t-sparse representation of f . We make repeated useof the sparse-shift algorithm in (Lakshman-Saunders 1994) to identify the moderate degreevariables.� variables that have low degree (degree < 2t), these may appear with di�erent, algebraic shiftsin di�erent t-sparse representation of f . We make use of the algorithm in (Grigoriev-Karpinski1993) to identify the low degree variables and �nd their sparse shifts.The algorithm used to �nd sparse shifts for the low degree variables (Grigoriev-Karpinski 1993) isvery general and in fact solves the problem of computing sparse shifts completely without makingsuch distinctions as listed here. However, we apply it selectively, to polynomials of low degree (d �2tn), and as a result, the complexity of the algorithm comes down from O(dO(n4)) to O((nt)O(n2))operations. 3.1 Degree Bounds on Shifted Sparse PolynomialsWe establish some bounds on the degrees of f in each xi in terms of t; n;M: These bounds are usedin the main algorithm which unfolds in the rest of the section. The main steps of the algorithmare collected together at the end of the section.Let f = Pdi=0 fixi = Ptj=1 fj(x � b)�j : For a rational number p=q 2 F ; de�ne size(p=q) =17



dlog2(p+1)e+dlog2(q+1)e and for the polynomial f 2 F [x] as above, de�ne size(f) = maxfsize(fi)g:Let size(f) �M for an integer M:Lemma 7 For any � > 0 there exists c such that if f has two sparse representations as above whereb 62 f0; 1;�1g; then d � c(M + t2)1+�.Proof: If d � 3t; the lemma is obvious. If d > 3t; then b is unique and rational (Lakshman-Saunders1994) and we have f =Pdi=0 fixi =Ptj=1 fj(x� b)�j with d = �t > �t�1 > : : : > �1: Rewrite this as~fBtCDd+1 = ~fwhere ~f = (f�1 f�2 : : :f�t); Bt is the t � t diagonal matrix with Bt(j; j) = b�j ; C is a t � (d + 1)matrix with C(i; j) = � �id+1�j�; Dd+1 the (d+ 1)� (d+ 1) diagonal matrix with Bt(j; j) = b�d+j�1;and, ~f = (fd fd�1 : : : f0): Let ~u = (u1 u2 : : : ut) = ~fBt: Let Ct be the t � t submatrix of Cconsisting of the last t columns of C:We know that Ct is non-singular (see (Lakshman-Saunders 1994)) and hence,~u = (ft�1 ft�2 : : : f0)0BBBB@ bt�1 0 : : : 00 bt�2 : : : 0... ... . . . ...0 0 : : : b0 1CCCCA C�1t :Therefore, size(u1) < M + tsize(b) + ct2 log d for some constant c; the ct2 log d term coming fromC�1t : Since fd = u1b�d; we getsize(u1) > size(bd)�M > d(size(b)� 2)�MSince b 62 f0; 1;�1g;we have size(b) � 3 and therefore, d�3t � (d�3t)(size(b)�2) � c0(M+t2 log d)for some constant c0: It follows that d=logd � c0(M + t2) and d = O((M + t2)1+�) for any � > 0: 2Lemma 8 Let g 2 F [x1; x2; : : : ; xn] be a non-zero polynomial that is shifted t-sparse and S =fa1 < a2 < : : : < a2tg � R: Then g cannot vanish everywhere on Sn:Proof: The lemma follows from successive applications of Descartes' rule to each variable x1; x2; : : : ; xn:2 Choose a constant bc and an arbitrarily small � > 0 such that degxi(f) < bc(M + t2)1+� for1 � i � n in lemma 7. Denote this degree bound bc(M + t2)1+� by D.Let 1 � i � n: Fix b to be one of 0;�1;�1 and let Xi = xi�b: For each W = (w1; w2; : : : ; wn) 2Sn�1; consider the univariate polynomial fW (Xi) = f(w1; : : : ; wi�1; xi; wi+1; : : : ; wn): By lemma 8,it follows that there is a W such that deg(fW (Xi)) = degxi(f): Fix such a W:18



Let A1 = f�2; (�2)2; (�2)3; : : : ; (�2)2tg; A2 = f�3; (�3)2; (�3)3; : : : ; (�3)2tg;A3 = f�5; (�5)2; (�5)3; : : : ; (�5)2tg; and, A4 = f�7; (�7)2; (�7)3; : : : ; (�7)2tg: Apply the Ben-Orand Tiwari interpolation algorithm (Ben-Or, Tiwari 1988) to fW (Xi) at the four sets of pointsA1; A2; A3; A4 respectively. If the algorithm succeeds, it returns a t-sparse polynomial in F [Xi] foreach set of evaluation points A1; A2; A3; A4: Let us denote the polynomials returned by the Ben-Orand Tiwari algorithm by g1; g2; g3; g4 2 F [Xi] respectively.Lemma 9 degxi(f) > D if and only if g1 = g2 = g3 = g4 and deg(g1) > D:Proof: (=)) : Since degxi(f) > D; then by lemma 7, we have bi 2 f�1; 0; 1g in any t-sparse shift(b1; b2; : : : ; bn) for f: Therefore, fW (Xi) is t-sparse for any W 2 Sn�1 and since the interpolatingpolynomial produced by the Ben-Or and Tiwari algorithm (Ben-Or, Tiwari 1988) is unique, wehave g1 = g2 = g3 = g4 = fW (Xi): Since we choose a W such that deg(fW (Xi)) = degxi(f); itfollows that deg(g1) > D:((=) : Assume that for a certain W0, the Ben-Or and Tiwari algorithm returns four t-sparsepolynomials in Xi such that g1 = g2 = g3 = g4 and deg(g1) > D: The polynomial fW0(Xi) is shiftedt-sparse and coincides with the t-sparse polynomial g1 at 4t positive points and 4t negative points.Therefore, by theorem 5 in (Lakshman-Saunders 1994), we have fW0(Xi) = g1(Xi): 2If the Ben-Or, Tiwari algorithm fails to return, for each b = 0; 1;�1; and for each W fourt-sparse polynomials in Xi g1 = g2 = g3 = g4 with degXi(g1) > D; then fW (xi) has a non-zerot-sparse shift and degxi(f) < D: Denote the set of all indices i such that degxi(f) > D by IB: Theset IB can be determined by performing ((logd)tn)O(1) arithmetic operations (for each i; for eachb; and for each W 2 Sn�1; we have to perform the Ben-Or and Tiwari algorithm 4 times).Let j 2 f1; 2; : : : ; ng n IB: For each W 2 Sn�1, interpolate fW (xj) as a dense univariate polyno-mial. If for someW0; deg(fW0(xj) > 2t; then we can use the sparse-shift algorithm from (Lakshman-Saunders 1994) to �nd the unique bj 2 F such that fW0(Xj) is t-sparse relative to xj � bj :Lemma 10 Let j 2 f1; 2; : : : ; ngnIB: Then degxj (f) > 2t i� for a certainW0 2 Sn�1; deg(fW0(xj)) >2t: If the latter is true, then there is unique bj 2 F such that fW0(xj) is t-sparse relative to xj � bj :Moreover,in any t-sparse shift (b01; b02; : : : ; b0n) of f , we have b0j = bj :Proof: The existence of W0 follows from lemma 8. Since fW0(xj) is shifted t-sparse, and its degree> 2t; the shift is unique (theorem 1, Lakshman-Saunders, 1994). If (b01; b02; : : : ; b0n) is a t-sparseshift for f , then fW0(xj) is t-sparse with respect to xj � b0j: From the uniqueness of the shift, itfollows that b0j = bj : 2Denote the set of all indices j 2 f1; 2; : : : ; ng n IB such that degxj(f) > 2t by IC : The setIC can be determined by performing (Mtn)O(1) arithmetic operations (for each j and for eachW 2 Sn�1; we have to perform a dense univariate interpolation and the sparse-shift algorithm ofLakshman-Saunders once; since the degree with respect to xj is bounded by D, we have the abovebound.) 19



From lemmas 9, 10, it follows that for every i 2 IB only the powers of xi and for every j 2 IC ;only the powers of xj � bj appear in any t-sparse representation of f . Moreover, any two shiftedt-sparse representations of f contain the same power products of xi and xj�bj : The last statementfollows from lemma 8 by considering suitable fW 's. Consider the representation of f asf = X1�i�t fiX�iIB(x� b)�iICwhere fi 2 F [fxkg]; k 2 f1; 2; : : : ; ngn(IB[IC); X�iIB denotes a power product ofXi; i 2 IB; and (x�b)�iIC : Note that the degrees of the fi in any xk are less than 2t: Therefore, the dense representationsof fi as F -linear combinations of power products of xk for k 2 f1; 2; : : : ; ng n (IB [ IC) have O(tn)terms. We explicitly compute the fi by dense interpolation from their values at O(tn) points. Thevalues of the fi for a particular specialization S taking xk to vk 2 F for k 2 f1; 2; : : : ; ngn (IB[IC)are obtained by constructing S(f) 2 F [IB[IC ] (S(f) denotes the image of f under the substitutionS). For any S, S(f) is obtained by sparse interpolation using the Ben-Or and Tiwari algorithm(since we know the non-zero shifts bi, this can be achieved by direct application of the Ben-Or andTiwari algorithm). The cost of constructing the fi this way is ((logd)tn)O(1) F -operations.Once we have the fi; the problem is to �nd shifts bk for the xk for k 2 f1; 2; : : : ; ng n (IB [ IC)such that the total number of terms in all the fi represented in the power products of xk � bk isat most t: This is done by �nding a shifted t-sparse representation for the polynomial 	(xk ; z) =f1z2t + f2z2t�1 + : : : + ftzt+1 where z is a new unknown. In any t-sparse shift of the abovepolynomial, the shift with respect to z has to be 0 since its degree in z is greater than 2t � 1: To�nd a t-sparse shift for 	; we apply the algorithm from (Grigoriev-Karpinski 1993) which �nds thevariety V of all t-sparse shifts of f , i.e., set of r-tuples (bk1 ; bk2; : : : ; bkr) (r = n � cardinality(IB [IC) and fk1; : : : ; krg = f1; : : : ; ng n (IB [ IC)) such that the total number of terms in all thefi represented in the power products of xk � bk is at most t: The algorithm from (Grigoriev-Karpinski 1993) returns the variety V as a union of its irreducible components [lVl and for eachVl and i; the algorithm returns a set of exponent vectors e1; : : : ; es and a set of rational functionsg1(bkjk 2 f1; : : : ; ng n (IB [ IC)); : : : ; gs(bkjk 2 f1; : : : ; ng n (IB [ IC)) such that fi =Psl=1 glxel forany (bk1 ; bk2; : : : ; bkr) 2 Vl: For this input, the number of operations performed by the algorithm ofGrigoriev and Karpinski is bounded by O((nt)O(n2)) since deg(fi) � 2tn: We now collect the mainsteps of the algorithm together and summarize its asymptotic time complexity in theorem 6:Algorithm to �nd all multivariate sparse shifts� Compute the index set IB of variables of high degree in f: If the Ben-Or and Tiwari algorithmfails to produce t-sparse g1; g2; g3; g4 satisfying lemma 9 for a variable Xi = xi � b; for everyb 2 f0; 1;�1g; then that variable has degree � D:� For each variable xj whose index j is not in IB, construct fW (xj) for all possible W by denseinterpolation assuming that deg(fW (xj)) � D. Denote the interpolant by gW (xj) and performthe sparse shift algorithm of Lakshman-Saunders on gW (xj) whenever deg(gW (xj)) > 2t: Ifeach time, we discover the same shift, note that j 2 IC :� Consider the representation of f asf = X1�i�t fiX�iIB (x� b)�iIC : (1)20
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