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ABSTRACT
We consider the problem of determining multiple steady
states for positive real values in models of biological net-
works. Investigating the potential for these in models of
the mitogen-activated protein kinases (MAPK) network has
consumed considerable effort using special insights into the
structure of corresponding models. Here we apply combi-
nations of symbolic computation methods for mixed equal-
ity/inequality systems, specifically virtual substitution, lazy
real triangularization and cylindrical algebraic decomposi-
tion. We determine multistationarity of an 11-dimensional
MAPK network when numeric values are known for all but
potentially one parameter. More precisely, our considered
model has 11 equations in 11 variables and 19 parameters, 3
of which are of interest for symbolic treatment, and further-
more positivity conditions on all variables and parameters.

1. INTRODUCTION
The occurrence of multiple steady states (multistationar-

ity) has important consequences on the capacity of signaling

.

pathways to process biological signals, even in its elemen-
tary form of two stable steady states (bistability). Bistable
switches can act as memory circuits storing the informa-
tion needed for later stages of processing [26]. The response
of bistable signaling pathways shows hysteresis, namely dy-
namic and static lags between input and output. Because
of hysteresis one can have, at the same time, a sharp binary
response and protection against chatter noise.

Bistability of signaling usually occurs as a result of
activation of upstream signaling proteins by downstream
components [3]. A different mechanism for producing
bistability in signaling pathways was proposed by Marke-
vich et al. [19]. In this mechanism bistability can be
caused by multiple phosphorylation/dephosphorylation cy-
cles that share enzymes. A simple, two-step phosphory-
lation/dephosphorylation cycle is capable of ultrasensitiv-
ity, a form of all or nothing response with no hysteresis
(Goldbeter–Koshland mechanism). In multiple phosphory-
lation/dephosphorylation cycles, enzyme sharing provides
competitive interactions and positive feedback that ulti-
mately leads to bistability.

Algorithmically the task is to find the positive real so-
lutions of a parameterized system of polynomial or ratio-
nal systems, since the dynamics of the network is given by
polynomial systems (arising from mass action kinetics) or
rational functions (arising in signaling networks when some
intermediates of the reaction mechanisms are reduced). Due
to the high computational complexity of this task [13] con-
siderable work has been done to use specific properties of
networks and to investigate the potential of multistationar-
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ity of a biological network out of the network structure. This
only determines whether or not there exist rate constants al-
lowing multiple steady states, instead of coming up with a
semi-algebraic description of the range of parameters yield-
ing this property. These approaches can be traced back to
the origins of Feinberg’s Chemical Reaction Network Theory
(CRNT) whose main result is that networks of deficiency 0
have a unique positive steady state for all rate constants [12,
8]. We refer to [6, 20, 16] for the use of CRNT and other
graph theoretic methods to determine potential existence of
multiple positive steady states, with [17] giving a survey.

Given a bistable mechanism it is also important to com-
pute the bistability domains in parameter space, namely
the parameter values for which there is more than one sta-
ble steady state. The size of bistability domains gives the
spread of the hysteresis and quantifies the robustness of the
switches. The work of Wang and Xia [24] is relevant here:
they used symbolic computation tools, including cylindrical
algebraic decomposition as we do below, to determine the
number of steady states and their stability for several sys-
tems. They reported results up to a 5-dimensional system
using specified parameter values, but their method is exten-
sible to parametric questions. Higher-dimensional systems
were studied using sign conditions on the coefficients of the
characteristic polynomial of the Jacobian. In some cases
these guarantee uniqueness of the steady state [7].

In this paper we use an 11-dimensional model of a
mitogen-activated protein kinases (MAPK) cascade [19] as
a case study to investigate properties of the system using
algorithmic methods towards the goal of semi-algebraic de-
scriptions of parameter regions for which multiple positive
steady states exist.

2. THE MAPK NETWORK
The model of the MAPK cascade we are investigating can

be found in the Biomodels database [18].1 We have renamed
the species names to x1, . . . , x11 and the rate constants to
k1, . . . , k16 to facilitate reading:

ẋ1 = k2x6 + k15x11 − k1x1x4 − k16x1x5
ẋ2 = k3x6 + k5x7 + k10x9 + k13x10−

x2x5(k11 + k12)− k4x2x4
ẋ3 = k6x7 + k8x8 − k7x3x5
ẋ4 = x6(k2 + k3) + x7(k5 + k6)− k1x1x4 − k4x2x4
ẋ5 = k8x8 + k10x9 + k13x10 + k15x11−

x2x5(k11 + k12)− k7x3x5 − k16x1x5
ẋ6 = k1x1x4 − x6(k2 + k3)

ẋ7 = k4x2x4 − x7(k5 + k6)

ẋ8 = k7x3x5 − x8(k8 + k9)

ẋ9 = k9x8 − k10x9 + k11x2x5

˙x10 = k12x2x5 − x10(k13 + k14)

˙x11 = k14x10 − k15x11 + k16x1x5. (1)

The Biomodels database also gives us meaningful values for

1www.ebi.ac.uk/biomodels-main/BIOMD0000000026

the rate constants:

k1 = 0.02, k2 = 1, k3 = 0.01, k4 = 0.032,

k5 = 1, k6 = 15, k7 = 0.045, k8 = 1,

k9 = 0.092, k10 = 1, k11 = 0.01, k12 = 0.01,

k13 = 1, k14 = 0.5, k15 = 0.086, k16 = 0.0011. (2)

Some of these values are measured and some are well-
educated guesses. For the purpose of our study we assume
they are suitable.

We add three linear conservation constraints introducing
three further constant parameters k17, k18, k19:

x5 + x8 + x9 + x10 + x11 = k17

x4 + x6 + x7 = k18

x1 + x2 + x3 + x6 + x7 + x8 + x9 + x10 + x11 = k19. (3)

Computations to produce these in MathWorks SimBiology
use the left-null space of the stoichiometric matrix under
positivity conditions, see for example [21].

Meaningful values for k17, k18, k19 are harder to obtain
than the constants in (2). The following are some realistic
values estimated by ourselves on the basis of our understand-
ing of the biological model:

k17 = 100, k18 = 50, k19 ∈ {200, 500}. (4)

The long-term goal of our research is to treat all three of
these together parametrically, although in the present work
we focus on situations with one free-parameter.

The steady state problem for the MAPK cascade can now
be formulated as a real algebraic problem. That is, we re-
place the left hand sides of all equations in (1) with 0. This
together with the equations in (3) yields an algebraic system
with polynomials in

F ⊂ Z[k1, . . . , k19][x1, . . . , x11].

All entities in our model are strictly positive, which yields
in addition a system

P = {k1, . . . , k19, x1, . . . , x11} ⊂ Z[k1, . . . , k19][x1, . . . , x11]

establishing a side condition on the solutions of F that all
variables xi and parameters ki of P be positive. In terms
of first-order logic our specification of F and P yields a
quantifier-free Tarski formula

ϕ =
∧
f∈F

f = 0 ∧
∧
v∈P

v > 0. (5)

The estimations for the rate constants in (2) formally estab-
lish a substitution rule σ = [0.02/k1, . . . , 0.0011/k16], which
can be applied to F , P , or ϕ in postfix notation.

2.1 Symbolic Determination of Occurrences
of Multiple Steady States

In this section we are going to analyze the system for
multiple positive steady states. As we will not include a
priori information about the stability of the fixed points,
we do not only have to consider (at least) two stable fixed
points but also unstable fixed points, i.e., we investigate the
existence of at least three different roots x ∈ ]0,∞[11 of F
for given choices k ∈ ]0,∞[19 of parameters.

We present two investigations: one using the Redlog pack-
age in Reduce and the other using the Regular Chains Li-
brary in Maple. Both will make use of Cylindrical Algebraic

www.ebi.ac.uk/biomodels-main/BIOMD0000000026


Decomposition (CAD) [1] to solve the problem. The worst-
case time complexity of CAD is doubly exponential.2 Our
approaches admit, in principle, arbitrary numbers of inde-
terminates. However, for the sake of realistic computation
times we must restrict ourselves to one free parameter. Even
then, the number of variables present is too large for con-
temporary CAD implementations. We make progress by
combining CAD with additional symbolic methods. Our
first approach uses virtual substitution techniques and the
second real triangularization. In both cases we have com-
bined the corresponding methods by hand, but automation
is clearly possible.

2.1.1 Real Quantifier Elimination in Redlog
Real Quantifier Elimination (QE) can directly handle

the parametric existence of steady states, taking as input
∃x1 . . .∃x11ϕ, possibly with substitutions for some param-
eters. However, we are not only interested in the existence
but also in the number of solutions. We are going to com-
bine Virtual Substitution (VS) [25] with CAD. The former
smoothly eliminates the majority of the quantifiers while
the latter allows us to count numbers of solutions via de-
composition of the remaining low-dimensional spaces. That
combination of methods requires the solution of several QE
runs with each problem and some combinatorial arguments.
Throughout this subsection we are using Redlog [9].

Parameter-Free Computations.
We consider ϕ500 = ϕσ[100/k17, 50/k18, 500/k19] where

all parameters have been substituted with rational numbers.
The closed formula ϕ̄500 = ∃x1 . . .∃x11ϕ500 states the exis-
tence of a suitable real solution. In a first step, we solve for
i ∈ {1, . . . , 11} the following eleven QE problems using VS:

ϕ
(i)
500 = VS(∃x1 . . .∃xi−1∃xi+1 . . .∃x11ϕ500).

Each ϕ
(i)
500 is a univariate quantifier-free formula describing

all possible real choices for xi for which there exist real
choices for all other variables such that ϕ500 holds. CAD can
easily decompose the corresponding one-dimensional spaces.
It turns out that for each xi there are exactly three zero-

dimensional cells ai, bi, ci ∈ R for which ϕ
(i)
500 holds. We

extract all ai, bi, and ci as real algebraic numbers, i.e., uni-
variate defining polynomials with integer coefficients plus
isolating intervals. By combinatorial arguments it is not
hard to see that the following holds for the set S500 of real
solutions of ϕ500:

3 ≤ |S500| and S500 ⊆
∏11

i=1{ai, bi, ci}.

Notice that at this point we have proven multistationar-
ity for k19 = 500. We can furthermore compute S500 by
plugging the 311 candidates from the Cartesian product into
ϕ500. A straightforward approach requires arithmetic with
real algebraic numbers followed by the determination of the
signs of the results, which is quite inefficient in practice. We
use instead a heuristic approach combining refinements of
the isolating intervals of the real algebraic numbers with in-
terval arithmetic. This excludes 311 − 3 of the candidate

2Traditionally, doubly exponential in the number of vari-
ables. However recent progress on CAD in the presence of
equational constraints [10], such as (1) with 0 for left-hand
side, allows us to conclude it is actually doubly-exponential
the number of variables minus the number of equational con-
straints at different levels of the projection [11].

solutions. The three remaining candidates require no fur-
ther checking since we already know that |S500| ≥ 3. The
overall CPU time is 71.3 seconds for 11 runs of VS plus 11
runs of CAD, followed by 16 hours for checking candidates.3

Our checking procedure is a file-based prototype starting a
Reduce process for every single of the 311 candidates; there
is considerable room for optimization.

For k19 = 200 instead of 500 all eleven univariate CAD
computations yield unique solutions which can be straight-
forwardly combined to one unique solution for the corre-
sponding ϕ200. The overall CPU time here is 66.4 seconds
for 11 runs of VS plus 11 runs of CAD. Machine float ap-
proximations of all our solutions are given in Table 1.

Parametric Analysis for k19.
We now consider ϕk19 = ϕσ[100/k17, 50/k18] leaving k19

as a parameter. Again, we solve for i ∈ {1, . . . , 11} eleven
QE problems using VS:

ϕ
(i)
k19

= VS(∃x1 . . .∃xi−1∃xi+1 . . .∃x11ϕk19).

This time each ϕ
(i)
k19

is a bivariate quantifier-free formula
in k19 and the corresponding xi. This time we construct a

two-dimensional CAD for each ϕ
(i)
k19

. The projection order
is important: we first project xi, then the CAD base phase
decomposes the k19-axis, followed by an extension phase that
decomposes the xi-space over the k19-cells obtained in the
base phase. This is feasible with one limitation: we do not
extend over zero-dimensional k19-cells. In other words, we
accept finitely many blind spots in parameter space, which
we can explicitly read off from the CAD so that in the end
we know exactly what we are missing.

Figure 1 shows our CAD tree for ϕ
(2)
k19

. The first layer next
to the root shows the decomposition of the k19-axis. The
five zero-dimensional (rectangular) cells are the previously
mentioned blind spots, among which the smallest one with
negative value of k19 is not relevant. Those zero-dimensional
cells also establish the limits of the full dimensional (oval)
cells in between. The cylinders over those one-dimensional
k19-cells each contain either one or three zero-dimensional
x2-cells where ϕ

(2)
k19

holds. We have deleted from the tree all

x2-cells where ϕ
(2)
k19

does not hold. We make two observa-
tions, important for a qualitative analysis of our system:

(i) For all positive choices of k19—extending to infinity—
there is at least one positive solution for x2.

(ii) There is a break point around k19 = 409.253 where the
system changes from unique solutions to exactly three
solutions.

Recall that for all floating point numbers given here as ap-
proximations we in fact know exact real algebraic numbers.
For instance, the exact break point is the only real zero in
the interval (409, 410) of an irreducible defining polynomial∑10

i=0 cik
i
19 with integer coefficients ci as in Table 2. (6)

Figure 2 depicts all eleven CAD trees for ψ
(1)
k19

, . . . , ψ
(11)
k19

.
They are quite similar to the one just discussed. Even the
break point from one to three solutions for xi is identical for
all i ∈ {1, . . . , 11} so that we can generalize our observations:

3All QE-related computations have been carried out on a 2.4
GHz Intel Core i7 with 3 GB RAM or cores on a compute
server with similar speed and memory limitations.



Table 1: The unique solution x(200) for k19 = 200 and the three solutions x
(500)
1 , . . . , x

(500)
3 for k19 = 500. We have

actually computed real algebraic numbers, which are pairs of univariate polynomials and isolated intervals.
For convenience we are giving machine float approximations here, which can be made arbitrarily precise.

x(200) = (90.6512, 2.67311, 10.4996, 17.8545, 35.9695, 32.0501, 0.0954536, 15.5631, 2.39331, 0.641001, 45.4331)

x
(500)
1 = (17.6392, 6.97675, 367.57, 36.6772, 5.50874, 12.811, 0.511775, 83.4416, 8.06095, 0.25622, 2.73253)

x
(500)
2 = (122.034, 14.6721, 234.974, 14.5102, 7.16952, 35.064, 0.42579, 69.4223, 7.43877, 0.70128, 15.2681)

x
(500)
3 = (323.761, 9.49621, 37.1013, 6.72938, 13.6295, 43.1428, 0.127807, 20.8381, 3.21139, 0.862856, 61.4581)

Figure 1: The pruned CAD tree for x2. Ellipses and rectangles are full-dimensional and zero-dimensional
cells, respectively. We have removed cells where k19 is negative or where the input formula is false.

(i) For all positive choices of k19—extending to infinity—
there is at least one positive solution for (x1, . . . , x11).

(ii) There is a break point β around k19 = 409.253 where
the system changes its qualitative behavior. We have
exactly given β as a real algebraic number in Equa-
tion (6). For k19 < β there is exactly one positive so-
lution for (x1, . . . , x11). For k19 > β there are at least
3 and at most 311 positive solutions for (x1, . . . , x11).

The overall computation time for our parametric analysis is
4.3 minutes. It is strongly dominated by 2.8 minutes for the

computation of one particular CAD tree, for ϕ
(11)
k19

. It turns
out that the suitable projection order with xi eliminated first
is computationally considerably harder than projecting the
other way round. As a preprocessing step we apply CAD-

based simplification of the ϕ
(i)
k19

with the opposite, faster,
projection order. Here we use Qepcad B, which performs
better than Redlog at simple solution formula construction.

2.1.2 Triangular Decomposition methods with the
Regular Chains Library

We now describe an alternative approach to the solution
using regular chains methods. Regular chains are the tri-
angular decompositions of systems of polynomial equations
(triangular in terms of the variables in each polynomial).
Highly efficient methods for working in complex space have
been developed based on these; see [23] for a survey.

Recent work by Chen et al. [4] proposes adaptations of
these tools to the real analogue: semi-algebraic systems.

They describe two algorithms to decompose any real poly-
nomial system into finitely many regular semi-algebraic sys-
tems. The first does so directly while the second, Lazy Real
Triangularize (LRT) produces the highest dimension solu-
tion component and unevaluated function calls, which if all
evaluated would combine to give the full solution. These
algorithms are implemented in the Regular Chains Library4

in Maple which we use throughout this subsection.
We apply LRT on the quantifier-free formula (5) evaluated

with the parameter estimates for k1, . . . , k18 given at the
start of Section 2, so we have one free parameter as in the
previous section. We need to choose a variable ordering: our
analysis requires that k19 be the indeterminate considered
alone; the remaining variables are placed in lexicographi-
cal order (the in-built heuristics to make the choice could
suggest nothing better). The solutions must hence contain
constraints in k19, constraints in (x1, k19), in (x2, x1, k19)
and so on. We define the main variable of a constraint to
be the highest one present in this ordering.

LRT produces one solution component and 6 unevaluated
function calls in less than 3 seconds. In the evaluated com-
ponent: for each of x2, . . . , x11 there is a single equation
which had this as the main variable. Further, these are all
linear in their main variable meaning they can be easily re-
arranged into the solution formulae in Table 3.

The constraints on (x1, k19) are that x1 > 0 and that a

4www.regularchains.org



Figure 2: All CAD trees for ψ
(1)
k19

, . . . , ψ
(11)
k19

. For positive k19 there are always either one or three positive
solutions for the corresponding xi. The break point from one to three solutions is the same in all trees. In the

second but last row on the left hand side there is the tree for ψ
(1)
k19

, which is shown in more detail in Figure 1.



Table 2: Coefficients ci and dj of polynomials occurring in Equations (6) and (7), respectively.

c10 = 351590934502740290936895033267017158736060313940693076650155371250411

c9 = −213699072852157674283997527746395583273033983170426080574800781989093156

c8 = 25374851641220554774259605635053469432582109883965015804077119110958034090

c7 = 12972493018300022707027639267804259251235991618029852880330004508564391594000

c6 = −8468945963692802414226427249726123493448372439778349029355636316929687020660000

c5 = 2231098270337406450670301663172664333421440833875848621423683265663846533079600000

c4 = −376265008904112258290319173193792052014899485528994925965885895511831873444245100000

c3 = 39262101548790869407057994985320156500968958361396178908180026842806643766783104000000

c2 = −2492623990743029234974354081270296106309603462451517057779877596842448287799337600000000

c1 = 70978850735887473459176997186175978425873267246760023212940616924643171868478080000000000

c0 = −1062871192838985876948077114923898204990434138901495394834749613184670362810368000000000000

d6 = 16838105723097694257603469

d5 = −24078605201553273505077988k19 + 7723967969644977896148686580

d4 = 8176202638735769127032169k219 − 7723411665463544477701499460k19 + 1232154357941338876156606812900

d3 = 1465408757440589841803452380k219 − 798169557586805582842481309800k19 + 83152655240002767729550477640000

d2 = 85462524901276846107251669400k219 − 35266411401427656834572095140000k19 + 2556805354853318332197489636000000

d1 = 1631685649719702672282505500000k219 − 721989571100461862477342320000000k19 + 28843755938318780823218400000000000

d0 = −7013104139459910876520500000000000k19.

polynomial equation of degree 6 be satisfied:

f(x1, k19) =
∑6

i=0 dix
i
1 = 0 (7)

where the coefficients di are univariate polynomials in k19
of maximum degree 2 as given in Table 2.

Finally, the constraints on k19 are that it be positive; it
not be a root of the polynomial in Equation (6); nor two
other polynomials as described in Table 4.

Thus this solution component is valid for all positive val-
ues of k19 excluding three points. As before, we could give
these as exact algebraic numbers but for brevity give float
approximations: 409.253, 16473.337, and 25084.536.

Three of the six unevaluated function calls define the so-
lutions at these points, however evaluating these solutions
is not possible in reasonable time. The other three define
empty solution sets (evaluating to discover this is instan-
taneous). So, as with our previous approach, we proceed
accepting a small number of blind spots.

The output of LRT has quickly given us the structure of
the solution space valid at all but three isolated values of
k19. However, it does not identify where the number of real
solutions change: although the break point identified earlier
has been rediscovered there is no information from which we
can infer its significance; and there is no significance in our
application of the other two isolated points.

To finish the analysis we need to decompose (x1, k19)-
space according to the real roots of f(x1, k19); and also
x1 since the constraint x1 > 0 was specified separately in
the output (the case for this variable only). CAD is ideally
suited for this task. Using the Regular Chains algorithm [5]
in Maple a CAD for f(x1, k19) divides the plane into 135
cells in a few seconds. This CAD decomposes the k19 axis
into 11 cells, i.e. identifying five points which approximate
to: −379.993, −87.776, 0, 409.253, and 25084.536.

On the cell for k19 ∈ ]0, 409.253[, the cylinder above in the

(x1, k19) plane is divided into 11 cells: three of which cover
x1 > 0 (two 2d sectors and a 1d section). This indicates
that f(x1, k19) has a single positive real solution for such
k19. On the two cells for k19 ∈ ]409.253, 25084.536[ and
k19 ∈ ]25084.536,∞[ the cylinders above are divided into
15 cells; seven of which cover x1 > 0. This indicates that
f(x1, k19) has three positive real solutions for such k19.

At the end of this analysis we have rediscovered the break
point where the system moves from a single positive real
solution to three. We also have explicit solutions valid for
all except three isolated k19 values. To obtain a solution
select the k19 value of interest then identify the real roots
of f(x1, k19) (we know in advance how many depending on
the k19 value chosen); then for each x1 solution substitute
recursively into the equations of Table 3; starting from the
bottom and including the new variable solution discovered
from each substitution into the next. The solutions in Table
1 may be easily rediscovered this way.

Repeating the Process for Different Choices of the
Lone Free Parameter/Fixed Parameter Values.

We may repeat the approach described above for differ-
ent choices of free parameter and different choices of fixed
parameter values. For example:

• With k17 set to 95 instead of 100 we find that the
break point between 1 and 3 real positive solutions
moves to k19 = 369.917. With k17 set to 105 it moves
to k19 = 450.077.

• Allowing k17 to be free and fixing k19 = 200 we find
that there is only ever one positive real solution.

• Allowing k17 to be free and fixing k19 = 500 we find
the number of positive real solutions moving from 1 to
3 to 1 breaking at k17 = 85.988 and k17 = 110.869.



Table 3: Triangular solution formulae valid for all positive k19 excluding three isolated points

x11 = − 1

60
x22 +

1

600
(10k19 − 10x1 − 37x3 + 10x4 − 2100)x2 −

9

200
x23 +

1

600
(−27x1 + 27x4 + 27k19 − 4650)x3

− x1 + x4 + k19 − 50

x10 =
1

150
x2(x2 + x3 − x4 − k19 + x1 + 150)

x9 =
1

18200
(69x3 + 182x2)(x2 + x3 − x4 − k19 + x1 + 150)

x8 =
15

364
(x2 + x3 − x4 − k19 + x1 + 150)x3

x7 = 50− 2

101
x4x1 − x4

x6 =
2

101
x4x1

x5 = x2 + x3 − x4 − k19 + x1 + 150

x4 =
2525000

101x2 + 1000x1 + 50500

x3 =
−101x32 − (−101k19 + 1101x1 + 65650)x22 − (1000x21 + (−1000k19 + 200500)x1 − 50500k19 + 5050000)x2 + 150000x1)

101x22 + (1000x1 + 50500)x2

x2 =
n

d
where n = 30625833064790009548991419920x51 + (−43795148662369306906962603840k19

+ 37749979225487731805273686504663200)x41 + (14871210647782462053693235920k219

− 16963336293692750919154910690672400k19 + 6815925407229297763234036009365120000)x31

+ (1538325448222983229930530049200k219 − 862702164104208291031357996000020000k19

+ 279241219028720368578809336249748000000)x21 + (29370341694954648101085099000000k219

− 12995812279808313524592161760000000k19 + 3705960282117523242886769213700000000000)x1

− 126235874510278395777369000000000000k19

d = 232763663752113237974029404420089x51 + (−332853615301041845577671639990228k19

+ 88646303215205075376308147029677220)x41 + (113024761399450186949390623074789k219

− 80843908028331498139954527761762740k19 + 11682465068391769796632986929072776500)x31

+ (11455232309649034305597048791479020k219 − 5547251026060433566640620528023877000k19

+ 619147207587597001268026254404647600000)x21 + (290245997063001550130198026458525000k219

− 141348286758352762323489548674398500000k19

+ 14547288529581382252587071541494600000000)x1

− 1247498501818579946626756931775000000000(k19 − 100)

x1 has at most 6 solutions for a given value of k19, according to Equation (7).

Table 4: Constraints on k19 for solution formulae in Table 3 and Equation (7) to be valid

k19 > 0

polynomial in (6) 6= 0

23197989433419579994929k219 − 89407400615452409453098800k19 − 4822419303419166525491149190000 6= 0

505465566622475867655547880786544637953790406059982726185509k419

− 12725780456964391893178560515183873684222178969868366920505134120k319

+ 1175510330915205241831243213231417517003037315562884193657451445400k219

− 281867359883676159811192082978541193600292804324596911878337972560000k19

− 42434363570215587465668423701563932185051066892741207931879307200000000 6= 0



• Similarly, allowing k18 to be free and fixing k19 = 200
we find there is only ever one positive real solution;
but fixing k19 = 500 instead we find 3 real solutions
between k18 = 51.382 and 58.329 and 1 otherwise.

The results above hint that there is a shape approximat-
ing a narrow paraboloid in (k17, k18, k19)-space within which
bistability may occur; with bistability available for any k17
and k18 value but bounded from below in the k19 coordinate.
We note that these additional experiments all produce re-
sults which, as with the one described in detail, are invalid
at a handful of isolated values of the free parameter.

2.2 Stability of the Fixed Points
We use the three linear conservation constraint equations

(3) to eliminate x1, x7, and x11 from system (1) and sym-

bolically compute the Jacobian J̃ of the obtained reduced
system. We then numerically compute the eigenvalues of J̃
for the instances arising from the substitution of the different
positive fixed points for the variables and the corresponding
parameter values.

We have used the float approximations for the unique so-

lution x(200) with k19 = 200 and the three solutions x
(500)
1 ,

. . . , x
(500)
3 for k19 = 500 in Table 1. For the single positive

fixed point x(200) the Jacobian J̃(x(200)) has eigenvalues with
negative real part only and hence can be shown to be stable.

For k19 = 500 one of the three positive fixed points x
(500)
2

can be shown to be unstable, as J̃(x
(500)
2 ) has one eigen-

value with positive real part; the other seven had negative

real parts. In contrast x
(500)
1 and x

(500)
3 can be shown to be

stable. Hence for k19 = 500 the system is indeed bistable.
A verification of the stability of the fixed points using

exact real algebraic numbers by the well-known Routh–
Hurwitz criterion is possible algorithmically [15], but seems
to be out of range of current methods for this example. No-
tice that also in other studies on multistationarity of sig-
nalling pathways [6, 14] the question of stability has not
been addressed.

2.3 Numerical Homotopy Methods
Finally, we compare our symbolic results with numerical

ones obtained using the homotopy solver Bertini [2]. Bertini
computes complex roots of polynomial systems using meth-
ods from numerical algebraic geometry [22].

For the parameter values as above and k19 = 500 we ob-
tain six solutions, three of which are positive real solutions.
For k19 = 200 we obtain a single positive solution. In both
cases the relevant solutions coincide with the ones obtained
with our symbolic analyses up to the used numeric precision.

However, for larger values of k19 Bertini produces incor-
rect results due to numerical instability. For instance, we
falsely obtain exactly one positive real solution for k19 =
6000 and no positive real solution for k19 = 10000.

Figure 3 shows a Bertini-based grid sampling of parameter
regions, varying k19 between 200 and 1000 and fixing one of
k17 and k18 while varying the other among the default values
(4). While this suffers from the discrete nature of sampling
and potentially unreliable results as discussed, it is never-
theless useful for the generation of hypothesis about the na-
ture of the parameter regions. Figure 3 seems to identify a
region of bistability (in blue) within the parameter space,
as hypothesised at the end of Section 2.1.2. The results of
Bertini indicate holes in this region (the green dots within

the blue). However, computation at these particular points
reveals these to be the result of numerical errors: where an
insufficiently high precision causes what is actually a posi-
tive real solution to appear to have a negative component.
It seems there is scope for fruitful interplay between sym-
bolic and numeric methods here; with numerics postulating
hypotheses for the symbolic methods to check and refine.

3. CONCLUSIONS AND FUTURE WORK
We have shown that the determination of multistationar-

ity of an 11-dimensional MAPK network can be achieved by
combinations of currently available symbolic computation
methods for mixed equality/inequality systems if, for all but
potentially one parameter, numeric values are known. The
aspiration of a semi-algebraic description of the ranges for
all parameters in the conservation laws (3) yielding multi-
stationarity will now be pursued, with the present results
demonstrating that this aspiration may be within reach.

As there are many very relevant systems having dimen-
sions between 10 and 20 it seems to be worth the effort to
enhance and improve the present algorithmic methods, and
in particular their combination, to solve such important ap-
plication problems for symbolic computation.
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[21] S. Schuster and T. Höfer. Determining all extreme
semi-positive conservation relations in chemical
reaction systems: a test criterion for conservativity. J.
Chem. Soc. Faraday T., 87(16):2561–2566, 1991.

[22] A. J. Sommese, J. Verschelde, and C. W. Wampler.
Introduction to numerical algebraic geometry. In
Solving Polynomial Equations: Foundations,
Algorithms, and Applications, pages 301–337.
Springer, 2005.

[23] D. Wang. Elimination Methods. Springer, 2000.

[24] D. Wang and B. Xia. Stability analysis of biological
systems with real solution classification. In Proceedings
of the ISSAC 2005, pages 354–361. ACM, 2005.

[25] V. Weispfenning. Quantifier elimination for real
algebra—the quadratic case and beyond. Appl. Algebr.
Eng. Comm., 8(2):85–101, 1997.

[26] G. Weng, U. S. Bhalla, and R. Iyengar. Complexity in
biological signaling systems. Science, 284(5411):92–6,
1999.


	1 Introduction
	2 The MAPK Network
	2.1 Symbolic Determination of Occurrences of Multiple Steady States
	2.1.1 Real Quantifier Elimination in Redlog
	2.1.2 Triangular Decomposition methods with the Regular Chains Library

	2.2 Stability of the Fixed Points
	2.3 Numerical Homotopy Methods

	3 Conclusions and Future Work
	4 References

