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Abstract. We discuss the symbolic dynamics of biochemical net-
works with separate timescales. We show that symbolic dynamics of
monomolecular reaction networks with separated rate constants can be
described by deterministic, acyclic automata with a number of states
that is inferior to the number of biochemical species. For nonlinear path-
ways, we propose a general approach to approximate their dynamics by
finite state machines working on the metastable states of the network
(long life states where the system has slow dynamics). For networks with
polynomial rate functions we propose to compute metastable states as so-
lutions of the tropical equilibration problem. Tropical equilibrations are
defined by the equality of at least two dominant monomials of opposite
signs in the differential equations of each dynamic variable. In algebraic
geometry, tropical equilibrations are tantamount to tropical prevarieties,
that are finite intersections of tropical hypersurfaces.

1 Introduction

Networks of biochemical reactions are used in computational biology as mod-
els of signaling, metabolism, and gene regulation. For various applications it is
important to understand how the dynamics of these models depend on inter-
nal parameters and environment variables. Traditionally, the dynamics of bio-
chemical networks is studied in the framework of chemical kinetics that can
be either deterministic (ordinary differential equations) or stochastic (continu-
ous time Markov processes). Within this framework, problems such as causality,
reachability, temporal logics, are hard to solve and even to formalize. Concur-
rency models such as Petri nets and process algebra conveniently formalize these
questions that remain nevertheless difficult. The main source of difficulty is the
extensiveness of the set of trajectories that have to be analysed. Discretisation
of the phase space does not solve the problem, because in multi-valued networks
with m levels (Boolean networks correspond to m = 2) the number of the states
is mn and grows exponentially with the number of variables n. An interesting



2

alternative to these approaches is symbolic dynamics which means replacing the
trajectories of the smooth system with a sequence of symbols. In certain cases,
this could lead to relatively simple descriptions. According to the famous con-
jecture of Jacob Palis [11], smooth dynamical systems on compact spaces should
have a finite number of attractors whose basins cover the entire ambient space.
Compactness of ambient space is satisfied by networks of biochemical reactions
because of conservation, or dissipativity. For high dimensional systems with mul-
tiple separated timescales it it reasonable to consider the following property:
trajectories within basins of attraction consists in a succession of fast transitions
between relatively slow regions. The slow regions, generally called metastable
states, can be of several types such as attractive invariant manifolds, Milnor
attractors or saddles. Because of compactness of the ambient space and smooth-
ness of the vector fields defining the dynamics, there should be a finite number
of such metastable states. This phenomenon, called itinerancy received particu-
lar attention in neuroscience [18]. We believe that similar phenomena occur in
molecular regulatory networks. A simple example is the set of bifurcations of
metastable states guiding the orderly progression of the cell cycle. In this paper
we use tropical geometry methods to detect the presence of metastable states
and describe the symbolic dynamics as a finite state automaton. The structure
of the paper is the following. In the second section we compute the symbolic dy-
namics of monomolecular networks with totally separated constants. To this aim
we rely on previous results [4, 12, 13]. In the third section we introduce tropical
equilibrations of nonlinear networks. Tropical equilibrations are good candidates
for metastable states. More precisely, we use minimal branches of tropical equi-
librations as proxys for metastable states. In the forth section we propose an
algorithm to learn finite state automata defined on these states.

2 Monomolecular networks with totally separated
constants

Monomolecular reaction networks are the simplest reactions networks. The struc-
ture of these networks is completely defined by a digraph G = (V,A), in which
vertices i ∈ V, 1 ≤ i ≤ n correspond to chemical species Ai, edges (i, j) ∈ A cor-
respond to reactions Ai → Aj with kinetic constants kji > 0. For each vertex,
Ai, a positive real variable ci (concentration) is defined. The chemical kinetic
dynamics is described by a system of linear differential equations

dci
dt

=
∑
j

kijcj − (
∑
j

kji)ci, (1)

where kji > 0 are kinetic coefficients. In matrix form one has : ċ = Kc. The
solutions of (1) can be expressed in terms of left and right eigenvectors of the
kinetic matrix K:

c(t) = r0(l0, c(0)) +

n−1∑
k=1

rk(lk, c(0)) exp(λkt), (2)

where rk, lk are right and left eigenvectors of K, Krk = λkr
k, lkK = λkl

k.
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The system (1) has a conservation law d
dt (c1+c2+. . .+cn) = 0, and therefore

there is a zero eigenvalue λ0 = 0, l0 = (1, 1, . . . , 1), (l0, c(0)) = c1(0) + c2(0) +
. . . + cn(0). We say that the network constants are totally separated if for all
(i, j) 6= (i′, j′) one of the relations kji � kj′i′ , or kji � kj′i′ is satisfied.

It was shown in [4, 12, 13] that the eigenvalues and the eigenvectors of an
arbitrary monomolecular reaction networks with totally separated constants can
be approximated with good accuracy by the eigenvalues of and the eigenvectors
of a reduced monomolecular networks whose reaction digraph is acyclic (has no
cycles), and deterministic (has no nodes from which leave more than one edge).
Let us denote by Gr = (Vr,Ar) the reduced digraph, and by κi the kinetic
constant of the unique reaction that leaves a node i ∈ Vr. The algorithm to
obtain G from Gr can be found in [4, 12, 13] and will not be repeated here.
Because Gr is deterministic it defines a flow (discrete dynamical system) on
the graph: Φ(i) = j, where j is the unique node following i on the digraph.
Reciprocally, we define Pred(i) = φ−1(i) as the set of predecessors of the node i
in the digraph Gr, namely Pred(i) = {j ∈ Vr|(j, i) ∈ Ar}.

We say that a node is a sink if it has no successors on the graph. For the
sake of simplicity, we suppose that there is only one sink. For each one of the
remaining n− 1 nodes there is one reaction leaving from it. For a network with
totally separated constants we have

κi � κj , or κi � κj for all i, j ∈ [1, n− 1], i 6= j (3)

For totally separated constants the following lemma is useful

Lemma 1. If (3) is satisfied then, at lowest order, we have

κi
−κk + κj

=


1, if i = j and κk < κi
−1, if i = k and κj < κi
0, if κi < min(κk, κj)
±∞, else

(4)

The dynamics of the reduced model is given by

dci
dt

=
∑

j∈Pred(i)

κjcj − κici, (5)

where Pred(i) is the set of predecessors of the node i in the digraph Gr, namely
Pred(i) = {j ∈ Vr|(j, i) ∈ Ar}.

As shown in [4] the eigenvectors of the approximated kinetic matrix satisfy∑
j∈Pred(i)

κjrj = (λ+ κi)ri (6)

κilΦ(i) = (λ+ κi)li, (7)

where λ is the eigenvalue, ri, li, 1 ≤ i ≤ n are the components of the right and
left eigenvectors, respectively.

Eqs.(6) and (7) imply that the right and left eigenvectors can be computed
by recurrence on the graph, in the direct direction and in the reverse direction,
respectively. In order to have non-zero eigenvectors, λ = −κi for some i not a
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sink, therefore the (non-zero) eigenvalues are λk = −κk, 1 ≤ k ≤ n − 1. Taking
into account the separation conditions (3) we get the following

Proposition 1. Let us consider that κk = 0 when k is a sink in the graph Gr.
Then, the eigenvalues of the kinetic matrix with totally separated constants are
λk = −κk, with λk = 0 when k is a sink. The corresponding left eigenvectors are

lkj =

{
1, if Φm(j) = k for some m > 0 and κΦl(j) > κk for all l = 0, . . . ,m− 1
0, otherwise

,

(8)
and the right eigenvectors are

rkj =


1, if j = k
−1, if j = Φm(k) for some m > 0 and κΦm(k) < κk < κΦl(k),

for all l = 1, . . . ,m− 1
0, otherwise.

The full proof of the Proposition 1 can be found in the appendices.
Let us now discuss the symbolic dynamics of the system. For each eigen-

value λk = −κk, κk > 0 we associate a transition time tk = κ−1
k . Without

loss of generality we can consider that t1 � t2 � . . . � tn−1. Any trajectory
of the system is given by (2). At the time tk one exponential term exp(λkt)
will vanish and the result will be a transition c → c − rk(lk, c(0)), provided
that (lk, c(0)) 6= 0. In other works, a trajectory can be described as a discrete
sequence of states c(0), c(0)− r1(l1, c(0)), . . .. Let us consider the following nor-
malization c1(0) + c2(0) + . . .+ cn(0) = 1. Then ci is the probability of presence
in the node i of a particle moving through the reaction network. For monomolec-
ular networks, particles are independent, therefore this simple picture is enough
for understanding the dynamics. Let the index i0 define the initial state of the
system ci0(0) = 1, cj(0) = 0 for j 6= i0. i0 represents the initial position of the
particle. According to the Prop. 1 (lk, c(0)) = lki0 = 1 if the step κk is down-
stream of i0 in the graph Gr and if all steps from i0 to k are faster than κk. In
this case the jump at tk is −rk. A jump −rk has two components different from
zero, −rkk = −1 and −rkj = 1, where j is the first node downstream of k from

which starts a step slower than κk. Thus, the jump −rk corresponds to displac-
ing the particle from k to j. The set of right eigenvectors defines a symbolic flow
on the reaction digraph. A particle starting in i0 first jumps in i1 where i1 is
the first node such that κi1 < κi0 , then continues to i2 where i2 is the first node
such that κi2 < κi1 , and so one and so forth until it gets to the sink. Some nodes
have negligible sojourn time, namely nodes such that κi > κj for all j ∈ Pred(i).
This proves the main result of the section.

By transition graph of a finite state machine we mean the digraph Grs =
(Vs,As), where Vs is the set of states of the machine and (i, j) ∈ As if there are
transitions from the state i to the state j. We have the following theorem:

Theorem 1. The symbolic dynamics of a monomolecular network with totally
separated constants can be described by a deterministic acyclic finite state ma-
chine. The transition graph Grs = (Vs,As) of this machine can be obtained
from the graph Gr = (Vr,Ar) in the following way: Vs = Vr \ {i ∈ Vr|κi >
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κj for all j ∈ Pred(i)}, As = {(i, j)|i, j ∈ Vs and there are i0 = i, i1, . . . , im =
j, such that il ∈ Vr \ Vs, for l = 1, . . . ,m − 1, and (il, il+1) ∈ Ar for l =
0, . . . ,m− 1}.

Remark 1. An example is detailed in Figure 1.

3 Tropical equilibrations of nonlinear networks with
polynomial rate functions

In this section we consider nonlinear biochemical networks described by mass
action kinetics

dxi
dt

=
∑
j

kjSijx
αj , 1 ≤ i ≤ n, (9)

where kj > 0 are kinetic constants, Sij are the entries of the stoichiometric

matrix (uniformly bounded integers, |Sij | < s, s is small), αj = (αj1, . . . , α
j
n) are

multi-indices, and xαj = x
αj1
1 . . . x

αjn
n , where αji are positive integers.

For chemical reaction networks with multiple timescales it is reasonable to
consider that kinetic parameters have different orders of magnitudes. This can
be conveniently formalized by considering that parameters of the kinetic models
(9) can be written as kj = k̄jε

γj (10). The exponents γj are considered to be
integer or rational. For instance, the approximation γj = round(log(kj)/ log(ε))
produces integer exponents, whereas γj = round(d log(kj)/ log(ε))/d produces
rational exponents, where round stands for the closest integer (with half-integers
rounded to even numbers) and d is a strictly positive integer. Kinetic parameters
are fixed. In contrast, species orders vary in the concentration space and have
to be calculated as solutions to the tropical equilibration problem. To this aim,
the network dynamics is first described by a rescaled ODE system

dx̄i
dt

=
∑
j

εµj(a)−ai k̄jSij x̄
αj , (11)

where µj(a) = γj + 〈a, αj〉 (12), and 〈, 〉 stands for the dot product.
The r.h.s. of each equation in (11) is a sum of multivariate monomials in

the concentrations. The orders µj indicate how large are these monomials, in
absolute value. A monomial of order µj dominates another monomial of order
µj′ if µj < µj′ .

The tropical equilibration problem consists in the equality of the orders of
at least two monomials one positive and another negative in the differential
equations of each species. More precisely, we want to find a vector a such that

min
j,Sij>0

(γj + 〈a, αj〉) = min
j,Sij<0

(γj + 〈a, αj〉) (13)

Computing tropical equilibrations from the orders of magnitude of the model
parameters is a NP-hard problem, cf. [17]. However, methods based on the New-
ton polytope [15] or constraint logic programming [16] exploit the sparseness
and redundance of the system to effectively obtain sets of solutions. The equa-
tion(13) is related to the notion of tropical hypersurface. A tropical hypersurface
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l3 = (1, 0, 1, 0, 0, 0, 0)
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Fig. 1. Symbolic dynamics of a monomolecular network with total separation. The
integers γi labelling the reactions represent the orders of the kinetic constants, smaller
orders meaning faster reactions. The model was reduced using the recipe described
in [4, 13] (see appendices). a) full model; b-c) reduced model with active transitions
and corresponding eigenvectors. During a transition the network behaves like a single
step : the concentrations of some species (white) are practically constant, some species
(yellow) are rapid, low concentration, intermediates, one species (red) is gradually
consumed and another (pink) is gradually produced. The net result is the displacement
of a particle one or several steps downstream; d) The transition graph of the finite state
machine representing the symbolic dynamics of the network; e) Trajectory starting
from A3 (at t = 0 the total mass is in A3), undergoing two transitions at t1 and t2.
The simulation has been performed for kinetic constants κi = εγi , with ε = 1/50. On
top, concentration of species (concentrations of A1,A4,A6 are negligible everywhere).
At bottom, orders of concentrations (computed as logε(xi)) with continuous lines if
species is tropically equilibrated, dotted lines if not.
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is the set of vectors a ∈ Rn such that the minimun minj,Sij 6=0(γj + 〈a, αj〉) is
attained for at least two different indices j (with no sign conditions). Tropi-
cal prevarieties are finite intersections of tropical hypersurfaces. Therefore, our
tropical equilibrations are subsets of tropical preverieties. The sign condition
in (13) was imposed because species concentrations are real positive numbers.
Compensation of a sum of positive monomials is not possible for real values of
the variables.

Species timescales. The timescale of a variable xi is given by 1
xi

dxi
dt = 1

x̄i
dx̄i
dt

whose order is νi = min{µj |Sij 6= 0} − ai (14). The order νi indicates how fast
is the variable xi (if νi′ < νi then xi′ is faster than xi) .

Partial tropical equilibrations. It is useful to extend the tropical equilibration
problem to partial equilibrations, that means solving (13) only for a subset
of species. This is justified by the fact that slow species do not need to be
equilibrated. In order to have a self-consistent calculation we compute the species
timescales by (14). A partial equilibration is consistent if νi < ν for all non-
equilibrated species i. ν > 0 is an arbitrarily chosen threshold indicating the
timescale of interest.

Tropical equilibrations, slow invariant manifolds and metastable states. In
dissipative systems, fast variables relax rapidly to some low dimensional attrac-
tive manifold called invariant manifold [3] that carries the slow mode dynamics.
A projection of dynamical equations onto this manifold provides the reduced
dynamics [8]. This simple picture can be complexified to cope with hierarchies
of invariant manifolds and with phenomena such as transverse instability, ex-
citability and itineracy. Firstly, the relaxation towards an attractor can have
several stages, each with its own invariant manifold. During relaxation towards
the attractor, invariant manifolds are usually embedded one into another (there
is a decrease of dimensionality) [2]. Secondly, invariant manifolds can lose local
stability, which allow the trajectories to perform large phase space excursions
before returning in a different place on the same invariant manifold or on a dif-
ferent one [7]. We showed elsewhere that tropical equilibrations can be used to
approximate invariant manifolds for systems of polynomial differential equations
[9, 10, 14]. Indeed, tropical equilibration are defined by the equality of dominant
forces acting on the system. The remaining weak non-compensated forces ensure
the slow dynamics on the invariant manifold. Tropical equilibrations are thus
different from steady states, in that there is a slow dynamics. In this paper we
will use them as proxies for metastable states.

Branches of tropical equilibrations and connectivity graph. For each equation
i, let us define Mi(a) = argmin

j
(µj(a), Sij > 0) = argmin

j
(µj(a), Sij < 0) (15), in

other words Mi denotes the set of monomials having the same minimal order µi.
We call tropically truncated system the system obtained by pruning the system
(11), i.e. by keeping only the dominating monomials.

dx̄i
dt

= εµi−ai(
∑

j∈Mi(a)

k̄jνjix̄
αj ), (16)



8

The tropical truncated system is uniquely determined by the index sets Mi(a),
therefore by the tropical equilibration a. Reciprocally, two tropical equilibra-
tions can have the same index sets Mi(a) and truncated systems. We say that
two tropical equilibrations a1, a2 are equivalent iff Mi(a1) = Mi(a2), for all i.
Equivalence classes of tropical equilibrations are called branches. A branch B
with an index set Mi is minimal if M ′i ⊂ Mi for all i where M ′i is the index
set B′ implies B′ = B or B′ = ∅. Closures of equilibration branches are defined
by a finite set of linear inequalities, which means that they are polyhedral com-
plexes. Minimal branches correspond to maximal dimension faces of the poly-
hedral complex. The incidence relations between the maximal dimension faces
(n− 1 dimensional faces, where n is the number of variables) of the polyhedral
complex define the connectivity graph. More precisely, minimal branches are the
vertices of this graph. Two minimal branches are connected if the corresponding
faces of the polyhedral complex share a n−2 dimensional face. In terms of index
sets, two minimal branches with index sets M and M ′ are connected if there is
an index set M ′′ such that M ′i ⊂M ′′i and Mi ⊂M ′′i for all i.

Tropical equilibrations and monomolecular networks. Eqs.(13) have a simpler
form in the case of monomolecular networks

min
j∈Pred(i)

(γij + aj) = min
j∈Succ(i)

(γji + ai) (17)

where Pred(i) = {j|(j, i) ∈ A}, Succ(i) = {j|(i, j) ∈ A} are the sets of predeces-
sors and successors of the node i in the digraph G.

Let us recall that by min-plus algebra we understand the semi-ring (R ∪
{∞},⊕,⊗) where the two operations are defined as x ⊕ y = min{x, y} and
x ⊗ y = x + y. In other words the addition and the min operation play the
role of min-plus multiplication and addition, respectively. Therefore Eqs.(17) are
linear in the unknowns ai. Computing tropical equilibrations of monomolecular
networks boils down to solving linear equations in min-plus algebra. For linear
tropical systems there are fast algorithms [5, 6].

We have tested the tropical equilibration conditions (17) for the trajectories
of the monomolecular network presented in Figure 1 by checking if the abso-
lute value of the difference between the r.h.s and l.h.s of (17) is smaller than
a threshold. The result is illustrated in Fig. 1e). For this model, the tropical
equilibration solutions are changing along the trajectory. This can been seen by
following the orders of the concentrations along the trajectories. These orders
change by integers at transition points. Furthermore, at transition points some
of the variables that where not previously equilibrated, become equilibrated. The
analysis of the tropical equilibrations finds the transitions previously detected
in Section 2 from the approximated eigenvalues and eigenvectors (t1 and t2 for
this example) but adds some more. For instance, species A1 equilibrates at the
timescale 1/κ1 = 10. This was not taken into account in the description of the
automaton in Figure 1d) because the species A1 is fast and can not accumulate.
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4 Learning a finite state machine from a nonlinear
biochemical network

We are using the algorithm based on constraint solving introduced in [16] to
obtain all rational tropical equilibration solutions a = (a1, a2, . . . , an) within
a box |ai| < b, b > 0 and with denominators smaller than a fixed value d,
ai = pi/q, pi, q are positive integers, q < d. The output of the algorithm is
a matrix containing all the tropical equilibrations within the defined bounds.
A post-processing treatment is applied to this output consisting in computing
truncated systems, index sets, and minimal branches. Tropical equilibrations
minimal branches are stored as matrices A1, A2, . . . , Ab, whose lines are tropical
solutions within the same branch. Here b is the number of minimal branches.

Our method computes numerical approximations of the tropical prevariety.
Given a value of ε, this approximation is better when the denominator bound d is
high. At fixed d, the dependence of the precision on ε follows more intricate rules
dictated by Diophantine approximations. For this reason, we systematically test
that the number b and the truncated systems corresponding to minimal branches
are robust when changing the value of ε.

Trajectories x(t) = (x1(t), . . . , xn(t)) of the smooth dynamical system are
generated with different initial continuous, chosen uniformly and satisfying the
conservation laws, if any. For each time t, we compute the Euclidian distance
di(t) = miny∈Ai ‖y − logε(x(t))‖ , where ‖∗‖ denotes the Euclidean norm and
logε(x) = (log x1/ log(ε), . . . , log xn/ log(ε)). This distance classifies all points of
the trajectory as belonging to a tropical minimal branch. The result is a symbolic
trajectory s1, s2, . . . where the symbols si belong to the set of minimal branches.
In order to include the possibility of transition regions we include an unique
symbol t to represent the situations when the minimal distance is larger than a
fixed threshold. We also store the residence times τ1, τ2, . . . that represent the
time spent in each of the state.

The stochastic automaton is learned as a homogenous, finite states, contin-
uous time Markov process, defined by the lifetime (mean sojourn time) of each
state Ti, 1 ≤ i ≤ b and by the transition probabilities pi,j from a state i to
another state j. We use the following estimators for the lifetimes and for the
transition probabilities:

Ti = (
∑
n

τn1sn=i)/(
∑
n

1sn=i) (18)

pi,j = (
∑
n

1sn=i,sn+1=j)/(
∑
n

1sn=i), i 6= j (19)

As a case study we consider a nonlinear model of dynamic regulation of Trans-
forming Growth Factor beta TGF-β signaling pathway proposed in [1]. This
model has a dynamics defined by n = 18 polynomial differential equations and
25 biochemical reactions. The paper [1] proposes three versions of the mecha-
nism of interaction of TIF1γ (Transcriptional Intermediary Factor 1 γ) with the
Smad-dependent TGF-β signaling. We consider here the version in which TIF1
interacts with the phosphorylated Smad2–Smad4 complexes leading to dissoci-
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ation of the complex and degradation of Smad4. The results are similar for the
other versions of this model. The example was chosen because it is a medium
size model based on polynomial differential equations. The computation of the
tropical equilibrations for this model shows that there are 9 minimal branches
of full equilibrations (in these tropical solutions all variables are equilibrated).
The connectivity graph of these branches and the learned automaton are shown
in Figure 2. The study of this example shows that branches of tropical equilibra-
tion can change on trajectories of the dynamical system. Furthermore, all the
observed transitions between branches are contained in the connectivity graph
resulting from the polyhedral complex of the tropical equilibration branches.

B1 B2 B3

B4 B5 B6

B7 B8 B9

B1 B2 B3

B4 B5 B6

B7 B8 B9

0.96

0.
03

0.42

0.01

0.29

0.16

0.
11

0.1

0
.5

3

0.1

1
.0

1
.0

0.999

0
.0

0
0
41

.0

0
.0

0
50

.2
4

0
.0

0
0
41

.0

0.04

0.999

Fig. 2. TGFβ model. Upper left: Connectivity graph of tropical minimal branches;
upper right: finite state automaton; bottom left: trajectories with jumps and distances
to minimal branches; the closest branch changes with time along the trajectory; bot-
tom right: first three tropical equilibrations minimal branches in various projections
in orders of concentration space. The variables RI, RII, LR are membrane receptors
concentrations (signaling input layers), whereas pS2n, S4n, pS24n are nuclear tran-
scription factors and complexes (effectors). The structure tropical branches shows that
composition of input layers is more flexible (varies on planes) than the concentrations
of effectors (vary on lines).
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The transition probabilities of the automaton are coarse grained properties
of the statistical ensemble of trajectories for different initial conditions. Given a
state and a minimal branch close to it, it will depend on the actual trajectory
to which other branch the system will be close to next. However, when initial
data and the full trajectory are not known, the automaton will provide estimates
of where we go next and with which probability. For the example studied, the
branch B1 is a globally attractive sink: starting from anywhere, the automaton
will reach B1 with probability one. This branch contains the unique stable state
of the initial model. Figure 2 bottom right shows the structure of most probable
branches, the ones in which the systems spends most of his time. The branches
B1, B3 and B2 correspond to different compositions of the membrane and of the
endosome, rich in the receptor RI, rich in the receptor RII and rich in both types
of receptors, respectively. Even if this compositon is changed on wide domains of
orders (planes in the space of orders), the concentrations of effectors are robust
(are more constained than the concentrations of receptors).

5 Conclusion

We have presented a method to coarse grain the dynamics of a smooth biochemi-
cal reaction network to a discrete symbolic dynamics of a finite state automaton.
The coarse graining was obtained by two methods, approximated eigenvectors
for mono-molecular networks and minimal branches of tropical equilibrations for
more general mass action nonlinear networks. The two methods are compatible
one to another, because when applied to monomolecular networks the method
based on tropical geometry detects all the transitions indicated by approximated
eigenvectors. For both methods the automaton has a small number of states, less
than the number of species in the first method and the number of minimal trop-
ical branches in the second method. The coarse grained automaton can be used
for studying statistic properties of biochemical networks such as occurrence and
stability of temporal patterns, recurrence, periodicity and attainability problems.
The coarse graining can be performed in an hierarchical way. For the nonlinear
example studied in the paper we computed only the full tropical equilibrations
that stands for the lowest order in the hierarchy (coarsest model). As discussed in
Section 3 we can also consider partial equilibrations when slow variables are not
equilibrated and thus refine the automaton. Our approach extends the notion of
steady states of a network and propose a simple recipe to characterize and de-
tect metastable states. Most likely metastable states have biological importance
because the network spends most of its time in these states. The itinerancy of
the network, described as the possibility of transitions from one metastable state
to another is paramount to the way neural networks compute, retrieve and use
information [18] and can have similar role in biochemical networks.
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Appendix 1: Proof of Proposition 1. Let us consider that rkk = 1. Taking rjk = 0
for all predecessors j of k and for all other nodes that lead to k by the flow
Φ satisfy Eq.(6)(main body text) with λ = −κk. The same is valid for all the
nodes that do not lead to k and are not accessible from k. Remain the nodes that
are accessible from k. Let j be such a node. Then j = Φm(k) for some m > 0.
Eq.(6)(main body text) implies that

κΦl−1(k)r
k
Φl−1(k) = (−κk + κΦl(k))r

k
Φl(k), for 1 ≤ l ≤ m.

Thus rkΦm(k) = κk
−κk+κΦ(k)

× κΦ(k)

−κk+κΦ2(k)
× . . . × κΦm−1(k)

−κk+κΦm(k)
. Suppose that κk <

κφl(k) for l = 1, . . . ,m− 1 and κφm(k) < κk. Using Lemma1(main body text) it

follows rkΦm(k) = −1. If any of the previous inequality does not hold then at least

one factor in the expression of rkΦm(k) vanishes and the remaining factors are

finite, thus rkΦm(k) = 0. Consider now that lkk = 1. Taking ljk = 0 for all the nodes
j that can be obtained from k and for all other nodes that do not lead to k by
the flow Φ satisfy Eq.(7)(main body text) with λ = −κk. The remaining nodes
are all leading to k. Let j be such a node. Then k = Φm(j) for some m > 0.
Eq.(7) (main body text) implies that

κΦl−1(j)l
k
Φl(j) = (−κk + κΦl−1(j))l

k
Φl−1(j), for 1 ≤ l ≤ m.

Hence lkj =
κj

−κk+κj
× κΦ(j)

−κk+κΦ(j)
× . . .× κΦm−1(j)

−κk+κΦm−1(j)
. Suppose that κΦl(j) > κk,

for all l = 0, . . . ,m− 1. Using Lemma1(main body text) it follows lkj = 1. If one
of these inequalities is not satisfied for a l = 0, . . . ,m−1 then the corresponding
factor in the expression of lkj vanishes and lkj = 0.

The above formulas cover the zero eigenvalue case if we consider that κk = 0
for k being the sink. It follows that r0

k = 1 and r0
j = 0 elsewhere. Furthermore,

l0j = 1 for all j.

Appendix 2: Algorithm for reduction of monomolecular networks with total sep-
aration separation. This algorithm consists of three steps.

I. Constructing of an auxiliary reaction network: pruning.

For each Ai branching node (substrate of several reactions) let us define κi
as the maximal kinetic constant for reactions Ai → Aj : κi = maxj{kji}. For
correspondent j we use the notation j = φ(i): φ(i) = arg maxj{kji}.

An auxiliary reaction network V is the set of reactions obtained by keeping
only Ai → Aφ(i) with kinetic constants κi and discarding the other, slower
reactions. Auxiliary networks have no branching, but they can have cycles and
confluences. The correspondent kinetic equation is

ċi = −κici +
∑
φ(j)=i

κjcj , (20)

If the auxiliary network contains no cycles, the algorithm stops here.

II gluing cycles and restoring cycle exit reactions

In general, the auxiliary network V has several cycles C1, C2, ... with periods
τ1, τ2, ... > 1.
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These cycles will be “glued” into points and all nodes in the cycle Ci, will be
replaced by a single vertex Ai. Also, some of the reactions that were pruned in the
first part of the algorithm are restored with renormalized rate constants. Indeed,
reaction exiting a cycle are needed to render the correct dynamics: without
them, the total mass of the cycle is conserved, with them the mass can also
slowly leave the cycle. Reactions A → B exiting from cycles (A ∈ Ci, B /∈ Ci)
are changed into Ai → B with the rate constant renormalization: let the cycle
Ci be the following sequence of reactions A1 → A2 → ...Aτi → A1, and the
reaction rate constant for Ai → Ai+1 is ki (kτi for Aτi → A1). For the limiting
(slowest) reaction of the cycle Ci we use notation klim i. If A = Aj and k is the
rate reaction for A → B, then the new reaction Ai → B has the rate constant
kklim i/kj . This rate is obtained using quasi-stationary distribution for the cycle.
If kinetic constants are expressed as powers of a small positive parameter ε, i.e.,
if k = εγ , then the order of the constant has to be changed according to the rule
γ → γ + γlim − γj , where γ, γlim i, γj are the orders of the constants k, klim i

and kj , respectively.

The new auxiliary network V1 is computed for the network of glued cycles.
Then we decompose it into cycles, glue them, iterate until a acyclic network is
obtained Vn.

III Restoring cycles

The dynamics of species inside glued cycles is lost after the second part. A full
multi-scale approximation (including relaxation inside cycles) can be obtained
by restoration of cycles. This is done starting from the acyclic auxiliary network
Vn back to V1 through the hierarchy of cycles. Each cycle is restored according
to the following procedure:

For each glued cycle node Ami , node of Vm,

– Recall its nodes Am−1
i1 → Am−1

i2 → ...Am−1
iτi

→ Am−1
i1 ; they form a cycle of

length τi.

– Let us assume that the limiting step in Ami is Am−1
iτi

→ Am−1
i1

– Remove Ami from Vm
– Add τi vertices Am−1

i1 , Am−1
i2 , ...Am−1

iτi
to Vm

– Add to Vm reactions Am−1
i1 → Am−1

i2 → ...Am−1
iτi

(that are the cycle reactions
without the limiting step) with correspondent constants from Vm−1

– If there exists an outgoing reaction Ami → B in Vm then we substitute it
by the reaction Am−1

iτi
→ B with the same constant, i.e. outgoing reactions

Ami → ... are reattached to the beginning of the limiting steps

– If there exists an incoming reaction in the form B → Ami , find its prototype
in Vm−1 and restore it in Vm

– If in the initial Vm there existed a “between-cycles” reaction Ami → Amj
then we find the prototype in Vm−1, A→ B, and substitute the reaction by
Am−1
iτi

→ B with the same constant, as for Ami → Amj (again, the beginning
of the arrow is reattached to the head of the limiting step in Ami )
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Fig. 3. The successive steps of the reduction algorithm, illustrated for the prism model
used in the paper. a) is the initial model; b) is the auxiliary network resulting from
step I, pruning; c) is the result of gluing 3 species cycles and renormalizing the exit
reactions (the constants of orders 3, 7, 10, 8 are renormalized to 3+6−1 = 8,7+6−6 = 7,
10 + 6− 4 = 12, and 8 + 9− 2 = 15, respectively); d) is the auxiliary network after one
more iteration; e) results from gluing and then restoring the 3 species cycles without
the limiting step (constant of order 15); f) results from restoring the single species
cycles without their limiting steps.
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Appendix 3: Description of the TGFb model used in this paper. The model is
described by the following system of differential equations

dx1

dt
= k2x2 − k1x1 − k16x1x11

dx2

dt
= k1x1 − k2x2 + k17k34x6

dx3

dt
= k3x4 − k3x3 + k7x7 + k33k37x18 − k6x3x5

dx4

dt
= k3x3 − k3x4 + k9x8 − k8x4x6

dx5

dt
= k5x6 − k4x5 + k7x7 + 2k11x9 − 2k10x

2
5 − k6x3x5 + k16x1x11

dx6

dt
= k4x5 − k5x6 + k9x8 + 2k13x10 − 2k12x

2
6 − k17k34x6 + k31k36x8 − k8x4x6

dx7

dt
= k6x3x5 − x7(k7 + k14)

dx8

dt
= k14x7 − k9x8 − k31k36x8 + k8x4x6

dx9

dt
= k10x

2
5 − x9(k11 + k15)

dx10

dt
= k15x9 − k13x10 + k12x

2
6

dx11

dt
= k23x14 − k30x11

dx12

dt
= k18 − x12(k20 + k26) + k30x11 + k27x15 − k22k35x12x13

dx13

dt
= k19 − x13(k21 + k28) + k30x11 + k29x16 − k22k35x12x13

dx14

dt
= k22k35x12x13 − x14(k23 + k24 + k25)

dx15

dt
= k26x12 − k27x15

dx16

dt
= k28x13 − k29x16

dx17

dt
= k31k36x8 − k32x17

dx18

dt
= k32x17 − k33k37x18

These variables are as follows:

– Receptors on membrane: x12 = RI, x13 = RII, x14 = LR.
– Receptors in the endosome: x11 = LRe, x15 = RIe, x16 = RIIe.
– Transcription factors and complexes in cytosol: x1 = S2c, x3 = S4c, x5 =

pS2c, x7 = pS24c, x9 = pS22c, x18 = S4ubc.
– Transcription factors and complexes in the nucleus: x2 = S2n, x4 = S4n,
x6 = pS2n, x8 = pS24n, x10 = pS22n, x17 = S4ubn.


