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The report contains some new bounds on computational complexity
of gtraight-line computations ~ a known model of computing ([?:} ,[2) ).
This model well simulates usual computation procedures with branching
and cycling instructions depending only on the size of the initial
data. This model is also convenient for studying complexity properties
of parallel computations - ™width" is the minimal number of proces-
gors on which the given computation can be reslized with the minimal
time equal to the "depth". Many well known procedures for algebraic
calculations {(e.g. multiplication of polynomisls, matrices) can be
described as straight-line computations. From the technical viewpoint
the model under consideration permits to apply for achieving of bounds

of computational complexity with its help different algebraic appara-
tus ([3], [4]).

In the present report we'll consider a problem of computation of a
get of bilinear forms over noncommutative indeterminates {CD L} ’{yd}
considered earlier in literature ([1] ,[5] ’ [6] ). Straight-line computa~
tions will use 4 iwo-argumeni arithmetic operations and one-argument
operations of multiplications by elements of some field F (further
we'll mean it as the main field). We fix the following measure of
complexity. By multiplicative complexity (or simply complexity) of a
straight-line computation we'll mean a number of two-argument multi-
plications and divisions in it ([3],[4],[6) ). The complexity of a
glven set S is defined as usuvally as the minimal complexity of
gtraight-line computations which compute S. Using the results of
[5] ,[6}, we can bound ourselves (without increasing the bounds of
complexity) only by straight-line computations of the following kind
(bilinear chain): at the first stage - computation of some linear
formsz'bdi}gmi’, ELBLK L at the second s:t;ag:e - erxecu‘s?on‘of N
two-argunent miltiplicatisns of the kind (L{AikET{) (L) jx Y
(1$ K< N) ; at the last stage - computation of some linear combi-

nations of bilinear formg achieved at the second stage (N - is the
complexity of the bilinear chain).
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The complexity of a set of bilinear forms is equal to the rang of
a gt of its matrices of coefficients (the rang of a get of matrices
is defined ss the minimal number of matrices of rang 1 linear cover
of which containg the given set of matrices). Analogously can be de=-
fined the rang of tensor [6}, the rang of an algebrae as the rang of
its gtructure teunsor and the rang of a group G over g field F
as the rang of its group algebra FI&) ([6]). The rang of one matrix

in the above~mentioned definition is equal to its usual rang.

In this report the following results are presented: the explicit
formula for the rang of a pair of matrices over an algebraically-
cloged field (theorem 1) and some its corollaries; the new upper
bound on the multiplicative complexity over a finite field of the po-
lynomial multiplication (theorem 2); the explicit form of the group
of all rang-unchanging linear nonpeculiar transformations of the gpace
of tensors of any given dimension {theorem 3); two effective methods
of constructing of some tensors of rang non less that critical -~ such
number that "almost every" iensor is of rang equal to this number
(lemma 4.1 and theorem 4); some bounds on the critical rang (state-—
ment 4.2).

1. For any pair /\,B of the square matrices we define the relation
B4A<= 14 (AB) =249 (A)

Lemma 1.1, The relation B£L A is equivalent to the existence of
such a matrix C that

1)B=AC;

2) C is of the simple spectrum;

3) Ker C2KerB2Ker A

We define the relative rang of the matrix B relatively to the
matrix A as follows:

bg (B/A): mU’lCi{A DQ(B“C)
Lemma 1.2, Por every pair ASB of the square matrices

rg(A,B)=2q(A)+2q(B/A)

(The proof of these two lemmas in the particular case when the mat-
rix A is a unit one can be found in [7]). We asggume further in this
item that the main field | is algebraically-closed.

Corollary 1.3. For the fixed in,n (m<n)the rang of a pair of Mxh
matrices is equal to ﬂnLn{l1,an} everywhere outside some Zarisski-
closed set of the dimension less than 2N,
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If the square matrices UsD ave nonpeculiar then 2.4 (AsB):ZQ
(CAD,CBD.So it's sufficient to find the rang of a pair of the matrices
in the canonical Weierstrass—Kronecker form ({8], ch.12). According
to the Kronecker's theorem every pair }X,ES of mx N matriceg (over
an algebraically=-closed field) by the mentioned transformation can
be reduced fo the following quasidiagonal form:

0 Lg.

[

A% the table all the possible kinds of the blocks are presented
{(the matrices in any pair of the corresponding in A and B blocks
are of the sagme dimensions).

Singular blocks AX(A+1)of the xina L : Lg= ".1 O’La_ "oy
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0 7]
1. 2
Singular blocks(B+1)X8 of the kina K :Kg=| ! ,Ké: ‘ %
1 AT
Regular blocks $X S of the kind A : [ = 1. H=| A .'4
- ‘b , u "
1 ‘A

Regular square blocks of the kind 0O : H03E .
Theorem 1, Let a pair A,,B of the matrices over an algebraically-
cloged field in its canonical Welergtragss-Kronecker form contains:

a) € blocks of the kind L :(La1’ L‘a1),,,,,(Lae : L'ae);
b) K vlocks of the kind K :(Kp >K]81>s""(K8K’ Ké );

¢) for every.)k dﬁblocks each of1the kind A and of the Kzil:i.mensssion
non less than 2x2 (may be A=oo) and let d:majj A d)\, and all the
regular blocks in both A and B form the square P X p matrices.
Then

. K
7/«gI(A,]3)~-S_’.,M(n.aLLJrﬂ)+X(}:1 (8A~+1)+p+d

The lemmas 1.1 and 1.2 are used in the proof of the theorem.
Corollary 1.4. For m X h(m<n)matrices over an algebraically-
closed field

max, o 24 (AB)=min {m+[n/2],2m}

(here and further {Ct] - ig entier of T, f:ﬂ:—[—ﬂi] Y.

2. In the second item the new upper bound on the multiplicative
complexity over the finite field F of the polynomial multiplication
is proved.

The achieved upper bound has the form N- (h) where q is the
characteristic of the field [ and the function % (n) grows
(about N ) slowly than any fixed iteration of logarithm. It's better
{in the sense of the multiplicative complexity) than earlier known
upper bounds [9}—- [12] (in [12] the bound c»n'egn«B%Bgn is present-
ed).

The multiplicative complexity over the field F of the multiplica-
tion of two polynomials both of degree N (we denote this number by
L%F (Pﬂ)) is equal to the rang (or multiplicative complexity) over
the field F of the following set of bilinear forms:

zZ = 5:_ :CL K- OSKQ'ZH} over the noncommutative
{ K DéLsK-Lén % ’
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indeterminates ;{IL ,{ d . 5

et FY( S)be the field consisting of q elements, Zy,, be the
cyclic group of the order 11 .

Temma 2.1. For every n

1, (204 (P 0429, (Z,,):
n 2n-1
bgﬂq)(m ))éy,gp(q)(Pnﬂs L%F(q)(F(q )

In the more general form these inequalities were proved in the
recently published [1 3].

Lemma 2.2. Let z:qm..'{ . Then there is the following decomposition
at the direct sum:

FiQi(Zy)> L. @ F (gL
where KL |M for every L (certainly, S K:=7 )»

Let's define the fiumction %q(n) in thé following mamner. e
define %q(g)zgq(g)z %q(Lf)"f =2, 1¢ m>4 ig equal to[(q )/2]“‘7
for some integer O , then we define (}q(m);gqeqq(S).Ifm>4 and
for gome integer S the following inequalities are fulfiled:

[( qg)/g }<m§ RqSM)/Q],then we define %q(m): 3q<[(q5)/2]+1 )

Theorem 2, For every Il

Y/%F(q)(Pn_1 )4 n:g(n)

We use the induction on N . Let for h < S(524)the inequality is
true. We set ‘th&-'? and using in succegsion the first inequality
from the lemma 2.1, the lemma 2.2 and the inequality ’Zgwl of) <
(2 (a)+ 29 Cﬂ) for any algebras (L, o%’ ({GJ), the second inequa-
1ity from the lemma 2.1, the induction conjecture, again lemma 2.2
and the monotony about N of the function %q(n) , we obtain a
chain of inegualities:

Y«
Lﬂ;(q) (p[(t—ﬂ/z}" Y/%F(q)<

L 29 Pe -8 LKL gqKD= 2 ()

Let N>4 and{(q 8_1>/2}< né{(qs)/2}. Using in succession the
monotony about N of the function ’Z,(é F(q)<pn), the inequality proved,
the definition of the function q(n and its monotony about N , we
obtain a chain of inequalities completing the proof of the theorem:

Z,)< ZngF(q)(F(in))é
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e P B P75 4 ()%
([6%)/2741)- 44 ([(q® /2] +1)% n- g4 (n)

Let's remark th/at the function (ﬂ) ig inverse to some funciion
from the class ‘(g"\ Cg of Grzegorczyk's hierarchy ([14]).

3. The following two kinds of transformations of the tensorproduct
gpace U1®..,® UKof the vector spaces Uj"“’UK doegn't change the
rang of the tensors:

1) a nonpeculiar linear transformation in any componentUL('isi,é K);

2) if for some L, d the mapping fUL—?U is an igomorphism of
the vector spaces, then the rang is unchanged under the following
transformation:

-1

U@ QU8 QU8 BU > L& &f (u(j)@m@f‘(u@@-"@u,(

Theorem 3. The group of all nonpeculiar linear transformations of
the space [J,®-+-®@l) , mapping the tensors of the rang 1 to the fen-
sors of the rang 1, coincides with the group generated by the trans-
formations of the kinds 1), 2).

4. Henceforth we assume that the main field F of the characte-
ristic q ig algebraically-closed, and let Fq he the primitive
field of the characteristic ( (q ig prime or equal to zero).

Lemma 4.7, There exigt such primitive-recursive functions

29=2q(Ngyees i), A=l (g3 ), M= M (Nyyeeea D)
that the rang of any tensor from the space Fn’l @...@Fnh’ ig equal
to Zq(ﬂh...,nK)(the critical rang) everywhere on some nonempty
Zarisski-open set, and the coefficients of any tensor which rang is
less than T satisfy some algebraic equation with the coefficients
from F , of degree less than d and with the sum of the modules
of the coefficients (in the case when q=0 ) less than M .

The functions M_O[ can be found in the class E/)e of Grzegorczyk's
hierarchy. _

Theorem 4. 1) Let My,:e, M€ Fq (S:hf""ﬂ’abe some elements of the
degrees dz'l,"';dzsovez‘ Fq y and let Mysecey ¢ be the coefficients
(in any orc‘%er) of some ‘censoxl‘ Te ?ni @:--@fqu . Thenzgf (f}}Zq‘g

2) Let ;11:1,...,.11@4(?:%4(}1@(3«}-1))d +1, .., Mg be the cosfficients
(in anylorder) of the integer tensorT%@W(g),,,@@hK . Then
'C%@('C );a:’z,o(the numbe rs Zq, M.d are taken from the lemma 4.1).
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The idea of constructing tensors of the rang non less the critical
in the theorem 4 is like the idea of Strassen [4} for constructing
the polynomials whick are hard to compute, but our idea (in applying
to the problem under comsideration) gives some more strong lower
bound {the critical rang), using uwnfortunately very fast-growing
functions M,d.

In conclusion we bound the value of the critical rang.

Statement 4.2, For every Mg,---s My

/ ~{1e—1N& .
Apeeee o St 0 (KCME Tg Ny, g, )< [m/ﬂmaac{nz,ng} Mye e oM
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