
COROLLARY 2. If ~g~[m~ .... ,m~] and ~(~)>0 for any ~el ~ , then $(~0>41~. 

Proof. The function f achieves local minima and, in particular, a global minimum at 

its critical points. If Kc~ is the set of critical points of f, then the set V=(Kx 

~(K)) ~*~ is an algebraic variety, defined by the system ~/~----,,,=~=0,~-~i 

The set of points defined by the system ~/a~ ..... ~/a~=0,~=m{~ ~(~) is an algebraic sub- 
~ 

variety of the variety V, and by Corollary i, contains a point ~r (~,..., ~i) such that 

~+, 1 ~ 4 / r  �9 
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FACTORIZATION OF POLYNOMIALS OVER A FINITE FIELD 

AND THE SOLUTION OF SYSTEMS OF ALGEBRAIC EQUATIONS 

D. Yu. Grigor'ev UDC 518.5+512.46 

An algorithm is constructed for factoring polynomials in several variables over 

a finite field ~ ~ which works in polynomial time in the size of the poly- 

nomial and q. Previously this result was known in the case of one variable. An 

algorithm is given for the solution (over the algebraic closure F of the field F) 

of systems of algebraic equations Io ..... IK=0, where ~o,-.,~Ke~ [~o,~-.,~] with 

working time of order (~+i) , where L is the size of a representative of 

the original system, ~ is the degree of transcendence of the field F over the 

prime subfield, q = char(F). Previously the estimate L'~(~+0 was known for 
~=0. 

INTRODUCTION 

In the present paper we give algorithms for solving two problems of computational com- 

mutative algebra, the estimate of whose complexity is better in order of growth than those 

known previously, In Chapter I an algorithm is described for factoring polynomials in sev- 

eral variables into irreducible factors over a finite field, which works in polynomial time. 

Translated from Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo 
Instituta im. V. A. Steklova AN SSSR, Vol. 137, pp. 20-79, 1984. 
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In Chapter II an algorithm is constructed for solving systems of algebraic equations of arbit- 

rary degree, working in subexponential time. 

The problem of constructing an algorithm for factoring polynomials into factors goes 

back all the way to Gauss. Up to now it has attracted the attention of many mathematicians. 

The Kronecker algorithm is widely known [i]. Unfortunately, Kronecker's algorithm, as well 

as all other algorithms known until most recently, required exponential time (in the length 

of the description of the original polynomial) in general. The first step was made by D. K. 

Faddeev and independently A. I. Skopin at the end of the fifties for factoring polynomials 

in one variable over a finite field F=% ; in the literature this algorithm is known as Ber- 

lekamp's algorithm [5], which he published in the sixties. After this, in the course of near- 

ly 20 years there was no essential progress. Only in 1982, Lenstra et ai. [20] constructed 

a polynomial algorithm for factoring polynomials in one variable over the field of rational 

numbers F-~ , which reduced the factoring to the search for a vector of sufficiently small 

norm in a given lattice over the ring of integers ~ , with subsequent application of Berle- 

kamp's algorithm and Hensel's lemma. Independently, in [15], the reduction of the factoring 

of polynomials in several variables over F =~ to the factoring of polynomials in two vari- 

ables was obtained, which was polynomial for a fixed number of Variables, and, in addition, 

in [16] a polynomial reduction of the factoring of polynomials in two variables over F =~ 

to the factoring of polynomials in one variable was found. Finally, an algorithm of poly- 

nomial complexity for factoring polynomials in several variables over a finite field was 

first given by the author in [8], and an account of it constitutes Chapter I of the present 

paper (cf. Theorem 1.4 of Sec. 3). Afterwards, Chistov constructed an algorithm of poly- 

nomia! complexity for factoring polynomials in several variables over global fields [8] and 

extended this result to fields which are finitely generated over their prime subfields [4]. 

In Chapter I we consider a polynomial ~6~ [~i~-.~]. Here we ass1~ne that 

le~x~Q{)<Z,{~. Then f can be represented by the vector of length r n of its coefficients 

from the finite field ~5~ . The bit length of the description of elements of the field 

~ does not exceed ~ ~z~ . Hence, by the size of the polynomial f in Chapter I we mean 

the quantity ~ ~a ~ ," In Chapter I an algorithm is described for factoring f into fac- 

tors which are irreducible over ~%~ in polynomial time in the size of f. 

Section 1 of Chapter I is preparatory for Sec. 2, although it has independent interest. 

A polynomial algorithm is given for finding a minimal vector in a lattice over the ring 

In Sec. 2 a polynomial algorithm is constructed for factoring polynomials from 

[ x , , x ]  . 

In Sec. 3 the proof of the basic result of Chapter I is completed with the help of re- 

duction to the case of two variables (n = 2). 

The problem of solving systems of algebraic equations also has a long history. The fun- 

damental possibility of solving systems over an algebraically closed field was already estab- 
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lished in the 19th century on the basis of elimination theory (cf., e.g., [I]). Many papers 

were devoted to this problem, especially in the last two decades in connection with the de- 

velopment of programming and the theory of complexity of computations. In a number of papers 

(cf., e.g., [14]) an upper bound for the working time was found in which the quantity ~a ~ 

appeared, where n is the number of variables, and (d - I) is the maximal degree of the equa- 

tions. Despite the immense progress in algebraic geometry, up to now there has been no suc- 

cess in overcoming the considerable difficulties in the path toward lowering the estimate 

mentioned. 

The first essentially better estimate was established by Lazard in [18] in the case when 

the system has a finite number of solutions in projective space (i.e., the variety of all 

roots is zero-dimensional). On the other hand, one can consider the algorithm from [8] as 

an algorithm for solving systems of algebraic equations in the case when the variety of roots 

of the system is a hypersurface, i.e., has codimension one. This algorithm is used repeated- 

ly in the present paper. One can even consider the present paper as continuation of [8]. 

We note that the algorithm from [18] is also based on the factoring of polynomials. 

In Chapter II the author's algorithm for solving systems of algebraic equations with 

an estimate of complexity which is polynomial in ~ is described (Theorem 2.4; cf. also 

Secs. 2-4 of [9, i0]). Further, Chistov constructed an algorithm with an essentially better 

estimate which is polynomial in ~ (cf. Secs. 5-7 of [i0]; also [4]). 

Let the ground field F=HiTI,...,T~)[Z] , where either H=~ or H~F~, ~=dm~CH ) the 

elements ~...,T~ being algebraically independent over H; the element ~ is separable and al- 

gebraic over H~TI,..,T~) , and by @=~ (@?y~))Z~H~T~,...,T~[Z] we denote its minimal poly- 

nomial over H QT,,..., ~r~) with leading coefficient ~Ozi~)= ~ , where 9~il~[z)~H[~,.1.,~] and 

le~(~b is the smallest possible. Any element ~EF[~0,..~X,] can be represented uniquely 

in the form 

where ~,~o,...,~, ~ e H [Ti,...,T~] and deg(b) is as small as possible, the polynomials 

$~,~o, .,~7~ are uniquely defined up to a factor from H*. We let ~e~Ti,...,T ~ ~) = 

By the length of description s if kE~ we shall mean its bit length, and ~e.~q~ 
the quantity ~ ~ By ~(f) we denote the maximum length of description of coefficients 

from H of the monomials TI,...,T~ in the polynomials ~s . 

Suppose given an input system ~ ..... ~<_i = ~ of algebraic equations (we assume, without 

loss of generality, that ~0,.,~ are linearly independent). In fact, in Chapter II we 

give an algorithm which decomposes an arbitrary projective algebraic variety into irreducible 

components, so we can assume that ~o,..,~=le~[~o,...,~] are homogeneous polynomials with re- 

spect to ~0,...,~ Throughout Chapter II we assume that 
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In Chapter II by the size of the polynomial fi we mean the quantity qi~i~ [<~). 

The projective variety {~o="'=~K~=0}C P~) of common roots of the system ~a ..... 

K_i=0 decomposes into components i~0 ..... ~K-~ =~ ~ C ~q~) [7]~ where a component is de- 

fined and irreducible over a maximal purely inseparable [6] extension ~ %'~ of the field F 

[6]. The algorithm given in Chapter II finds all the components W~. Any component W& will 

be representable in the following two ways: by means of its generic point [3], and, on the 

other hand~ by some system of algebraic equations such that the variety of its roots coin- 

cides with the component considered; in such a case we shall say that the system defines the 

variety. 

Section 1 of Chapter II has an auxiliary character; its results are used later in $ecs. 

3 and 4 for the construction of a transcendence basis in general for fields of rational func- 

tions over the ground field F for all components of the variety. 

In Sec. 2 we recount a certain modification of Lazard's algorithm [18] for finding all 

roots of a system of algebraic equations if there are finitely many of them in projective 

space (the original method of Lazard works in appropriate time only for a finite ground field 

F). The estimate of the working time (cf. Theorem 2.3) is polynomial in ~i ~ Mz , <~i~z) ~+[ 

In Sec. 3 we give a method for finding generic points of the components W~. Here we 

also introduce the construction of the tree of components which is important for our approach. 

In Sec. 4 we describe the construction of a system of equations defining each of the 

components W~, which completes the proof of the basic result of Chapter II (Theorem 2.4). 

Chapter I 

FACTORIZATION OF POLYNOMIALS OVER A FINITE FIELD 

.i. Findin~ ' a Minimal Vector in a Lattice Over ~ [~] 

We let ~--- ~(~), A==~[~]c~ , where t is algebraically independent over ~ . Consider- 

ing A as a polynomial ring, we define the order }a I for ~ as follows: ~s 

i.e., the degree of the polynomial �9 with respect to the variable t~ The order of a vector 

(~ .... ~K)EA K is defined as follows: I(~,...~K)I: ~S~ l&~I. 

In the present section we consider lattices over the ring A (i.e., finitely generated 

free A-modules). We assume that the lattice is defined by some system of generators (not 

necessarily free) and each generator is a k-dimensional vector in A k. 

A minimal vector of a lattice is defined as a nonzero vector of minimal order in the 

lattice. We also assume that the elements of A can be described as polynomials over ~r and 

the elements of ~ as integers from 0 to q - I. Hence the length of description of a vec- 

tor (and consequently of the lattice) is polynomial with respect to log q, the order of the 

vector, and k (respectively, the maximum of the orders of generators of the lattice and the 

number of all the coefficients). 
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THEOREM i.i. A minimal vector of a lattice can be found in polynomial time. 

We note that the theorem is an analog for nonzero characteristic of thebasic result 

(1.26) of Sec. i of [20] and, moreover, it is stronger since, in the case of characteristic 

zero, in general one constructs a nonminimal vector. 

Proof. We write the generators of the lattice as the rows of a matrix over ~3, 

which we denote by M. 

LEMMA i.i. The matrix M can be reduced by a permutation of the columns followed by ele- 

mentary row transformations to trapezoidal form in polynomial time: 

&'~ = B YM~ ---- 0 .~,,. 

%7 

where 0=4=~tY~[.~ ; the product [I ~=/=0 , S is some permutation matrix, i.e., is ob- 

tained from the identity by a permutation of the rows. 

Now, assuming that Lemma i.i is proved, we complete the proof of the theorem. We find 

a vector W:(~ I .... } over A Euch that uB is a minimal vector in the lattice corresponding to 

the matrix B. Then ~B~ -~ is a minimal vector of the original lattice. 

We now proceed to find the vector u. We let 2 = ~..~ I ~ r  " Obviously, }uBI~I(&,, .... ' 

~i~)I~ Hence I~1,4~,tt1~ ] and, consequently, [ % 1 ~  Then ]~,~* U~I<.~ and 

, so ]~[<.%p Arguing in the same way, we get a sequence l~l-<~y .... ,l.1+#l-<#y . 

Hence the question of whether it is true that ]B]~]~-} ~ , for any given ~y reduces to 

the solution of a linear system over ~+ , in which the unknowns are the coefficients of the 

polynomials 1&~,..., ~ The algorithm gives, successively, 2~ 0,I,... up to the value of 

 ;for which the system mentioned is solvable (such a ]~Y ). 

Proof of Lemma i.i. In what follows we shall use the fact that the rank of a matrix 

over * can be calculated in polynomial time (cf. also [12, 21]). Since the order of an 

arbitrary minor of the matrix is no greater than the sum of the orders of the elements of 

this matrix (we denote this sum by s), substituting for t any s + i pairwise distinct ele- 

ments of the finite extension ~ -~ ~ , where ~> ~ , we get that the rank of the origi- 

nal matrix is equal to the maximum of the ranks of the s + 1 matrices constructed. The 

ranks of the latter matrices are easily calculated by reducing these matrices with coeffi- 

cients from ~qM to trapezoidal form. 

Based on what was just said, we choose a maximal linearly independent set of columns 

of the matrix M and a matrix S which moves them to the beginning. Then ~ = (~4,~), where 

~4 consists of the columns mentioned above. We arbitrarily complete the matrix ~ to 

a nonsingular mtrix ~= (~, ~3) " This can be done, for example, by adding a sequence of 

columns with unique nonzero component equal to one, keeping track of the rank of the matrices 

obtained. 

�9 Something is missing in the Russian original - Publisher. 
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Now we reduce the matrix D to upper-triangular form in polynomial time by row transforma- 

tions, i.e~ we find a matrix Y with coefficients from A, such that 

Since the ring k is Euclidean, such a matrix exists. 

rix which had to be constructed in Lemma 1.1. 

. 

It is easy to verify that Y is the mat- 

We rewrite the last equation in the form ~=O~ -I and we write ~ = ( ~ / ~ )  , where 

Since 4~/]s G~---~~ one has 10i~l~i~l (~i~) and by some ap- 

propriate row transformation we can arrange that I ~$ I ~ 16##I (I~} ~W) . Hence, without 

loss of generality, we shall assume that, for the matrix C, which must be constructed, one 

has 

We fix some t ~  ~ and we consider the condition that all components of the vector 
�9 f ~ Y t (~...,~G~...,~.~) x for some polynomials 0~,~,...,~,~ are also polynomials (i.e., belong 

f 
to A), and in addition the order f~= 16m, ml is the smallest possible and the leading co- 

efficients of the polynomials Cm,m are equal to i. The condition just formulated is equiva- 

lent to the following system of equations 

6'- ~ ~)% ( ~ )  where %~A ( ~ )  

The last system in its own right is equivalent with a system of linear equations over ~ , 

in which the unknowns are the coefficients of the polynomials o~,~, ~}, Thedeterminant det D and 

the elements of the matrix ~-~ can be calculated with the help of interpolation~ substituting 

for t an appropriate number of elements of some finite extension ~ (analogously to the 

construction of the calculation of the rank given above, cf. also [12, 21]). 

From the linear system considered we find all C~m,i ( ~ )  , setting ]~,=0,4~... 

successively. Doing this for all ~ ~ ~ , we get a matrix 

( ... 

\ 0 C ~  , 

We show that Y' is the matrix required in Lemma i.i. First, the elements of Y' are poly- 

nomials (i.e., belong to A). Further, according to the condition on ~ formulated above, 

we have 0=I~YI=I~ ~ Ic~l-l~l>~ ~-I~l=l~fI~0~ . From this it follows that 

Y'is the matrix sought, which concludes the proof of Lem~a l.i and of Theorem i.i. 

The following proposition is nowhere used in the present paper, but nevertheless it 

closely touches on the questions considered in this section and has some independent inter- 

est. 

Proposition i.i [8]. Let K be a field and A = Kit]. Let M = (mij) be some nonsingu- 

iar n~ ~ matrix (i.e., det M ~ 0) with coefficients from A. Then for some suitable non- 
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LEMMA 1.2. 

matrix 

zero vector m~A ~ one has I~I~(41,)I~ ~I (to the end of this section, I(~ ..... ~)I ~--- 

We note that this inequality is sharp. 

The proof of the proposition from [8] is effective and is based on the following lerama. 

If the field K is infinite, then for some matrices ~%~(A), V%~hw(~) the 

is upper triangular and, moreover, ~= ~.c.a.{~i~:%~&~ ~"} for any ~ , in particu- 

2. Factorization of Polynomials in One Variable 

into Factors Over the Ring 

As in Sac. I, we assume that ~=F4(~) , A=~[~] and the order ~I for ~A has the 

same meaning. Let 0~ ~X~----SeA[X] Our goal is to decompose f into irreducible factors 

over the field F (or over A, which is equivalent by Gauss' lemma [i]). We defined the order 

F i r s t  we reduce  e v e r y t h i n g  t o  t h e  case when t h e  p o l y n o m i a l  f i s  s e p a r a b l e .  I f  t h i s  i s  

n o t  so,  t h e n  e i t h e r  6 ' - - O  or  0 < &gx . Zn t h e  f i r s t  case we l e t  f : 

S~' ~ X  ~ We set #~ ~- G =:$~ ~ . Since ~X S, < ~ X  ~ (if ~X ~ : 0 , everything 
%J ~,} - 

is trivial), we can assume that we have already decomposed fz over F. Let ~ : ~  , where 

~:~A[X] and ~ is irreducible over F for any s. Then #:r~9:(X ~) . We fix s at some time 

and we let %(X)~- )~}X ~. Then either {{ = 0 for any i, j such that ~j , and in 

this case %(X~)~-( .~.~ ~J~)~}X%)~ , or if not, it is easy to show that 9~ (X ~) is irreducible 

over F. Finally, we get that either f is irreducible or we find some proper divisor of f 

and we continue to apply the procedure described to the factors of the polynomial f. If 

0<4~x9.~.~.(s i~} , then we also get some proper divisor of f. Thus, in what fol- 

lows, we consider only separable polynomials f. 

Let (p) cA be a maximal ideal of the ring A, generated by some irreducible polynomial 

pea . The only requirement on the choice of p is that p be relatively prime with the dis- 

criminant K= ~x(~,~)eA in the ring A. Further, considering the polynomial mod (p), we 

write it, choosing in A[X] a representative for which the order of all coefficients is less 

th= �9 

We show that p can be found in polynomial time. For each s and for any factor ~ of 

the separable polynomial ~-~-~-----~ , which is irreducible over ~ , one has the relation 

~ q~l~ , since the splitting field of this polynomial is ~ and, consequently, ~ 

~i[~]/(~)~ ~@i and the degree of the field extension [~[~]/(~):~]=~ ~ (of. also [i]). 

Let ~>~%%1~I> I~I and ~-~<~% IEI for some s. Then there exists an irreducible polynomial 
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~ , s u c h  that ~ ~ a n d  )P]~Z �9 I f  n o t ,  ( ~ t ~ )  1~ , w h i c h  l e a d s  t o  a c o n t r a d i c t i o n .  

Such a polynomial p can be found, looking at all elements of A of order not greater than s 

and verifying whether it is true that P~ ~ and p is irreducfble (the latter can be veri- 

fied with the help of Berlekamp's algorithm [5]; cf. also below). The upper bound on s shows 

that p can be found in polynomial time. 

Below we need an algorithm (which is a slight modification of the Berlekamp algorithm 

just mentioned [5]) for factoring a polynomial ~F~] over ~=~ in time which is 

polynomial in q, m, s = deg g (direct application of Ber!ekampJs algorithm gives time which 

is polynomial in ~ a )o 

We consider the ring ~-----K[~/(~) �9 We let ~(~)= ~ be the Frobenius automorphism 

(~: ~-~) . Arguing as above at the beginning of this section, without loss of generality 

we can assume that g is separable. 

Thus let ~=~.-.~ be the factorization required. Then ~-~ ~ ~]/(~)==~ g$~ 

(here and below, @ denotes the direct sum of rings) by the residue theorem [6], since gi 

are relatively prime in pairs in view of the separability of g (si = deg gi)o We consider 

the subring ~-I~e~:~9(~)=~r It is easy to verify that the construction of a basis 

of E over ~ reduces to the solution of a suitable linear system over ~@ (it is neces- 

sary to describe the decomposition of ~ in the basis D over ~ with parametric coeffi- 

cients, then the direct action of ~ and the equation ~;(=)= ~ provide a linear system 

with respect to the parametric coefficients). 

It is well known that the subfield {~:~(~)~-~} is isomorphic with ~ [I]. Con- 

sequently, ~= ~ ~ , where the i-th copy of ~ is contained in ~ We find this de- 

composition of E explicitly. We take any two elements ~,~E which are linearly indepen ~ 

dent over ~ . Considering the elements ~ + ~ consecutively for all ~ , we find 

among them a zero divisor. For this, for any fixed y we consider multiplication by ~*~# 

as a linear operator on E and we consider its kernel Er ~ ~ For some y we have ~r=~=0 , 

if ~> ~. Then E ~  @ (~+~) ~ and we continue to apply the decomposition procedure de- 

scribed to both direct summands separately. 

Let ~ ~ belong to one of the direct summands of the decomposition of E. Then 

the polynomial which represents ~ in K[t] has a nontrivial divisor in common with the poly - 

nomial g if ~>i (for ~-----~ the polynomial g is irreducible). Repeating this process 

recursively, we factor g into irreducible factors in time which is polynomial in q~ m, s. 

Now, analogously to [20], we factor f mod p over the finite field A/(p), and let the 

polynomial ~[X] be such that h~ rood p is irreducible over A/(p), (~g~)l(~0~,~) 

and the leading coefficient ~x(~)~--- ~ One can find the polynomial h~ in time which is 

polynomial in ~,I[l, ~>~$~-~ ~ , based on the medified Berlekamp algorithm given above. 

For what follows we fix some natural number k (it will be made more precise below in the 

description of the algorithm). 
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Now we construct a polynomial ~A[~J , such that 

~6~=~9~4 and 40 x~=4 . As in Hensel's lemma (cf., 

form ~---~--4~K~,p i'-' , where %~A[X], ~<~-----6a for ~>~ and ]~iI<l~I 

i. One can show that a polynomial h, satisfying all these conditions, is unique. 

Let ~ ~=(~o~p)(~ n4~ p), where ~A ~]. , such that ~ ~ = ~ +  ~ ~ and 

i~-~x~. Then ~=$-~4-----~v4 for some v~A[X] and ~v~<~ . We construct re- 

cursively for any ~>~$ three polynomials ~,~v[~[X] , which have the following proper- 

ties: 

e.g., [5]) we shall seekhin the 

for any 

Let us assume that for all ~< ~ the polynomials ~,~,V~ 

We let 

are already constructed. 

~ 7 1  ' ~_~ �9 

Then by the inductive hypothesis and 2) we have ~- ~')~(~)--V~_ I p~-1 We find ~,~$~A IX] 

such that property i) holds for them and, in addition, u This can be 

done with the help of Euclid's algorithm in the ring of polynomials A/(p)[X], applying it 

to ~I,~ and keeping in mind that the polynomials h I mod p and gl mod p are relatively prime, 

since f mod p is separable according to the choice of p. Let ~-----~ +~$~(~+0~) for some 

suitable ~,~[X]. Then Y~---V}_~,V}_I~I~I+(V~_~-V~4)~I(~0~p), where v~_~ 

V~_4~4+~$(~p) and l~l<IpI, ~9~<~. Since ~vj_~<~ ~ by i) and ~4< 

~'~i ~--~ , we deduce from this that for the polynomial %~,v~,~$_~_4 (H~0~p) and such 

that (~l<Ipl one has i~ ~ < ~ ~-~=~4. 

Then we get v~_~-~--(~,+~%)P ~-f --(~(}'I)+~(~~ . Consequently, 

~__~(})~'(~) , i.e., ~-~(~)-~- vj~ ~ for some v}~J[X] such that ~V~<&~# For 

j = k, the constructed polynomial h = h (k) is the one sought. 

Analogously to Proposition 2.5 of [20], there exists a unique (up to multiplication by 

an element from A* = F*, i.e., an invertible element of A) irreducible polynomial ~0~A[~ 

such that k01~ and (km~p)I(~om~p) For the proof one can consider the factorization 

of f in A[X], reduce it mod p, and choose the unique factor h0 from the factorization of f 

over A, which mod p is divisible by the irreducible polynomial h mod p. As in 2.5 of [20], 

if @I~ and ~A[X] , then the following three assertions are equivalent: 

We reproduce here the proof of the implication (~)~> (~iJ (the cent is proved more easily). 

Since the polynomial f(mod p) is separable, the polynomials (h mod p) and ((f/g) mod p) are 

relatively prime. Consequently, ~ +~4~/~(t~o~p ) for some suitable ~4,~4e~[X] 

1 7 7 0  



Consequently, ~4~ ,~4#/~=~'- p V~ for some ~A[X]. Multiplying this equation by the poly- 

nomial(~§ ~-4)~ , we get ~ * ~ ( ~ p ~ )  for the corresponding ~&,~eA[x]. 

The left side of the latter is divisible by h(mod pk) according to the construction of h) 

and hence finally we get (~pK)l(#~p~). 

In what follows in this section our goal is the construction of the polynomial h0. For 

the arguments we fix an integer ~ <  4~ Analogously to [20], we introduce the follow- 

ing lattice L over the ring A: 

We identify the polynomial V= ~ " v~ X%A[Xl with the vector (V 0 .... ,V~)~ A ~*~ The fol- 

lowing theorem is the analog of Proposition 2.7 of [20]. 

THEOREM 1.2. Let O=/={~g and for the element ~ suppose l p l ~ > ~ l ~ l * ( ~ ) I ~ l  . Then 

the polynomial h 0 divides ~ in the ring A[X]. 

Proof. We shall follow the proof of 2.7 of [20]. We let ~=~c.d,.(~,~),~.A,[A'(J. Then 

~x(~). We need only prove that (~ww~p)l(~w~) according to the equivalence proved 

above. Hence let us assume the contrary. Then there exist 14,~, ~A[X] such that 

Further, we show that from (I.i) one gets a contradiction. 

We let e = deg g, m' = deg b. Obviously, 0 ~ ~-< ~[~ We introduce the A-lattice 

M={ ),~,~. L#~A [X], o.~<~ce, o~i~#<(~_ ~ 1. 
Then M=A. AX+... + AX (~)~;~-~= V Let M' be the projection of the lattice M "to the 

direct summand r =AX~...§ ~)*~C~-~ of the lattice V. Let us assume that some element 

~+jw~M projects to zero in M'. Then ~e~(~+~)<~ . 

one has %~+7~=0 . Consequently, p = 0, since ~r 

quently, X = 0. 

(i.i) 

Since ~[(~+~) and deg g = e, 

-----g~(~/~) and (f/g)/D. Conse- 

Consequently, by what was just proved, the elements of the system of generators 

{Xk$:0~<~6elU{~L~:0~(d~#)-61 of the lattice M over A project into elements of an 

M ~ A-basis of the lattice M' which are linearly independent over A. Hence ~A M =~ = 
~ § 

Now we show that under the assumption (I.i) one has the following inclusion: 

{ v e M : ~ v < e + ~ t } c p K A [ x ]  (i.2) 

Let veM, ~e~v<e+~ Then ~IV. Multiplying both sides of (i.I) by the polynomial 

( l+p~*(pw)~-. .+(,p~)K-')(v/~,)  , we get X~k+#.v.(v/~)i~&p K) for some suitable kat~ae 

A[X]. We note thati~B%0~p~)J(VW%0~pK)) since v~M, bEL From this, (kf~0gp~)l 

[~v/~) ~Ip~). But on the other hand, a#qg ipD-h (since ~CX ~)= 4 ) and ~((V/%) 

~PK)~e~(v/~)<e+tl-e-~, Consequently, qv/q)~e~A[)~] and, in particular, 

v~pKA[X] , which proves (1.2). 
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We denote by Au(M') the determinant of the matrix whose columns are the coordinates in 

an A-basis of the lattice U of the elements of some A-basis of the lattice M'. Under change 

of bases the determinant Au(M' ) can only be multiplied by some invertible element of the ring 

A (i.e., an element of ~r ). 

First we estimate the order I~(M')I from above. Considering the basis of M' of which 

we spoke previously, we get 

I-x  l § 

Now, based on (1.2), we estimate IA~(, )I from below. Since A is a Euclidean ring [i] 

there exists a triangular basis 6e~...,~(~e~)+m'-e-~ of the lattice M' over A, i.e., a basis 

such that deg bj = j for e~i<~e~)+~%5~. According to (1.2), ~6e),-..,~cX~e+~-~) e 

(pk). We note that e~[4-1 ~'+(~e~)-e-~ , since ~I~ and (h mod p) l[(~/q)m0~p) ac- 

cording to the assumptions made at the beginning of the proof of the theorem. Consequently, 

by the hypothesis of the theorem. This leads to a contradiction with the upper bound estab- 

lished above and completes the proof of Theorem 1.2. 

To conclude the section we briefly recount the general scheme of the algorithm for fac- 

toring apolynomial ~ [ ~  First of all we choose p~A relatively prime with the dis- 

criminant ~s ~x) (cf. the remark above on the choice of p). Then we decompose f mod p 

over the field A/(p) and we choose some s , such that [~,-~Ip)l(~o~p)~ik~.mIp) 
is irreducible, ~=A~ 4. We set successively ~%=~41[,~4,...~)-~. We find the minimal 

integer k, satisfying ~IK~I> i~+~e~)l~ Then we construct h according to the pro- 

cess of Hensel's lemma, described above. Finally, we determine whether there exists (and 

if so we find it) a nonzero vector ~s for which IpIK~I>~I~I+[~s This can be done 

with the help of Theorem i.i of Sec. 1 in polynomial time. Actually, 5--~ for some 

96~*=[$ . In fact, one has I~oI~I~I Consequently, s , and at the step when m = 

deg h0, by Theorem 1.2 the algorithm described gives 5 =k0p , since ~o65 and the poly- 

nomial h 0 has minimal order equal to I~oI among all nonzero elements of L again by Theorem 

1.2. 

3. The Case of Several Variables Over a Finite Field 

Let ~6~ [X,~i,..i,~] , where ~Z , ~= Ar ([) < z , ~=~ZQ~) , and 

~I~) ~ ~ First we reduce consideration to the case when f is square-free and 

In what follows, the original field F=~ is extended in the course of the work of 

the algorithm, so that, as a result, we get a factorization [ =~ ~L over some field F, ~ F . 

One can pass to a factorization over F by considering the norm NF,/F(~[)I~ , which is ir- 

reducible over F. 
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We make the change of variables ~ ( .X ,~%l , . . . ,~ )=o~ -i~ ~ ()(./o,~ t~,...,~.)E.F [)(, J~,i , . . .~].  
Then ~X(~)=~ . From a factorization of g it is easy to pass to a factorization of f~ Hence 

we shall assume that ~Cx(~)= [. 

Let ~(~i,_.~[~)=Res• be the discriminant. If ~)=--0 (the polynomial ~) can 

be calculated on the basis of [21] in time which is polynomial in the size of f), then on 

the basis of the construction from [4] we single out the repeated factors in the factoriza- 

tion of f considered as a polynomial in one variable over the field F(~...~ ~p) We note 

that for this, in the construction of Sac. 1 of [4], point c) for the field ~4>...)~) was 

not used to the full extent, but only for extracting roots of degree q in it, and in the field 

~(~6...~) we have to extract q-th roots on the basis of the algorithm for extracting q-th 

roots in F. 

Let ~ ~ 0 We set ~=~L~r,,~ ~ and consider the set !={~o, ~$I ~ . . . .  ~ , where ~o~. "" 

~$ are pairwise distinct and belong to the field F or some finite extension ~4 D ~ of it, 

Then one can find an element (~4~...~>~ ~ , such that ~(~4r,.)~> ~0. 

We replace f(X,[~...~) by the polynomial #(X)~-~4y..~-o~m). Obviously, getting 

the factorization of the latter polynomial, we get the factorization of f, and hence, in what 

follows, we shall assume that the polynomial f (X~0~..~O) is separable. 

Let c~=~#~ and ~>~Z~ > Z (k-#) We extend the field ~ = ~  to the field 

~o~'% k successively (k times) by adjoining the square root of some element which is not 

a square, from the current field. We describe the process of seeking such an element P in 

the field F1. Let /~4 ~ ~d , and /~ =~4 (we find the element ~2 with the help of the modi- 

we arbitrarily choose ~2 ~ ), fled Berlekamp algorithmn, cf. Sec. 2), for p~ and -p= / ~ /~ so 

that t,l~ ) -- and ,,/,-~ / =-/~ ; then we choose some square roots of J~ and~,~ ) ,etc. 

In no more than %0~m~6 ~4 steps, one of the two elements considered /~Us z , 

Now let char F = 2. One can assume that 51Cx~-a~-'l. If this is not so, then we imbed 

F in the field ~%Zg=~=~Zg-~ with the help of the polynomial ~z+Z+~ which is irre- 

ducible over F. Then we perform a construction, analogous to the construction above, "re- 

placing 2 by 3," i.e., we assume that ~k>p~%,~>/ 5k-~ and we extract cube roots, as a result 

of which we get the field ~.~ . 

One can now assume that ~ =S~.~ ~ or F= ~%z#.$~ , respectively; then the splitting 

field of the polynomial f(X, 0, .... 0) due to the choice of k has odd degree over F, if 

~ = o ~ ~  , or degree not divisible by 3, if char F = 2. As above, we choose an element 

/&~*\(~-~)Z in the first case and ~ *  \(~)~ in the second. 

For any s the polynomial Z~s-2~ �9 or, respectively, ~s-/~ is irreducible over F be- 

cause, as is known [6], the polynomial ~-6u is irreducible over an arbitrary field G, if 

~ ~P for any prime pl~ and ~-%~& if ~+I~- We let s = kn and let @ be a root 

of one of the two polynomials considered, respectively. 
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Before the theorem we need the following version of Hensel's lemma. We let i=(~4~....)~m) 

bee multiindex, where 0 ~ ~Z for any~ and ~Z=~<... ~m , the weight ~ ,  
K be a field. We introduce a partial ordering relation on the multiindices, by setting 

i f  

HENSELIS LEMMA. Let fr ] , the leading coefficient for X in f be equal 

to i, and the polynomial fo = #(X,~..~O)s [~] be separable. Let us assume that ~o=~o~ ' 

where .~o,~oe ~ [X] are polynomials with leading coefficients equal to i. Then for each 

multiindex I with l~i ~ ~ there exist unique polynomials I[,~[ ~ ~ [X], such that le~ I < 

~o ~e~<~e~o and in the ring ~[[~4,...,~i~][X ] one has 

Proof. 

~=# f~l= A i - .~=4 I~I=A, ~ " 

The left side of this equation transforms to the form 

Z l  + 
I,+i~,:i>Id I$~<I 

Considering, by induction, that we have already found ~ 9L~Im , we can, using the 

Euclidean algorithm (cf. Sec. 2), find hi and gl. 

We note that the lemma extends in an obvious way to a factorization ~o----~ ) ~m),--~0 (~) 

into more factors, and here the monomial with multiindex I=/L4~---)~m) is constructed in 

time which is polynomial in ~4...~m,~=i~ 

THEOREM 1.3. Let Is ,~] be irreducible over F= F~z ~ for q # 2 and 
, 

F=~gm< if ~ is even, or F=~zm5 <, if ~ is odd, for q = 2, and in addition let ~Z[~)={ and 

{o=~(X,0~...,0)EF[~] be separable. Moreover, let ~ol~ for some ~'~-~[X]~ such that 

~e~<~.. Then the polynomial ~ =~(X,~b,@P~@~t~v,-.,@~-~)e ~i [Z,~] is irreducible over the 

field FI=F[0], where p=g v" for q ~ 2 and p=5 K for q = 2; here @@IF\F ~ for q # 2 and 

0~s F\F ~ for q = 2. 

Proof. Let F be the algebraic closure of F. It follows from Hensel's lemma that 

~,<~$ )<-XL(~4)...~))~=~X~ for some X~(~4,...~)~ [[[~4~...;L~m] ] [~4~% ~). 

Let us assume that ~= (4~ ~) , where O<de~X~@(~)=~ < ~ , since s215163 X # = 4 and 

9(~)~(~h ~] ; further, it is possible to compute that ~7)=~(~) and ~i=~(z) , Ix 
where ~{J)mn LX-X-~(~.b..[)~iIr (:) by the factoriality of the ring ~ [ [~ ] ]  Ix] 

since ~= ~ (X-XL(~)) is the factorization of f into irreducibles in this ring. We let 
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where ~. ' ,~- e ~ Since f ( X ,  0 , ,  0 ) =  ~(~,0)=~(,)(~.,0)~[~)(~,0)i ~ the c o e f f i -  

c i e n t s  of the polynomials ~9)(X,0), 9(a)(X,O) lie in the splitting field F 0 of the polynomial 
�9 Ft~ By the choice of k, the degree of the composite L,0[:F] is odd for q ~ 2 or is not di- 

visible by 3 for q = 2 and, consequently, is relatively prime with ~ --[F{'F] . Since, on 

the other hand, ~,(t)(,)~O)~(~(?')(X,O)~ ',C 1 [i] .' we get that ~(O,(.~0,,,~'~ <~(,)[,O)e ~ [)<]- 

X To the factorization #(~0~-.,~0)=~(4)(X~0) ~(~)(X,0) we apply the process of Hensel's 

• ane since ~ LAIvj...) i=~ (X,O~ and C(%~(Y O G~-Q r (X.0) , we get as a result the 

factorization f = C~ ({) C~ (z)" due to the uniqueness condition from Hensel's lemma. Hence, in 

fact ~ (q ~(z) L~d~r"~~ ~ ~d~r" ~m6 ~ again by Hensel s lemma. 

We show that there exists at least one coefficient -~ ~,e4~...:~ or -G~4p.., ru which 

is nonzero such that FbY <~4+.,.+ ~ ~< ~ ~u~ We assume the contrary and we let ~({)~ ~ 

~(z)~-V~ + ~/~ , where ~6~ V4=~4:..~V{ ~< tb~ ~ff V~ ~< Yb% , and in ~/~ there only 

appear monomials of degree greater than 2st in ~ , , , 1  ~'m Then ~=~(J ~(~} =V~V~+(V4~+ 

~4Vg +~/ W~ ) 2 and since ~#~<t~Z~(V4~g) ~< ~, and in [V4~/g+~/~L+~/4~') there 

only appear monomials of degree greater than 2nr, we get that ~=V~g , which contradicts 

the irreducibility of f. Thus, for definiteness let ~({] . @r~ 0 for some "v2~4;,..)o~tb , 

such that ~< ~=o~+.,.+&m ~<Z~' 

We show that ~b(, ~) # 0 We consider ~(X~Z~s ~g)=~4)<X:~{~)...)~)%~ ~ ~i~) 

h, Z Zq' "Z i r  ' We let ~oZ ~- ~ "u~ ' "" ~ -. , ~ ~4+...*f~=&~ ,~4r"7~ Obviously, ~(X,~ ,4 ;  

:,t 
,. , ( X , ~ )  , and moreover 6Lg)d=~b;&o(4~e~@<. . . ]e  ) By what was 

proved above, . g~,&o ~ 0 , since in it there appears the monomial ~(,Ib)e4:..,~m *Z: j'''z~ ~m # 

O. Since 0 %<~xK~}zY <~ , for different vectors (~.., ~r , such that ~4+...+~'~ =~ , 

the corresponding numbers 9~+~ ~ +--- ~rv are different, so ~(~6)~ @ 9~).,, @pm-~)=_ 

, .< #-k 
gree [~,: F ] =~ , so ~,(@)~aO, and consequently 0b(~) ~ 0 From this, ~ ~0) >~to > 

~ but, on the other hand, ~(O I ~ and hence ~e~(%O:~de~)~,. The contradiction ob- 

tained completes the proof of the theorem. 

The theorem was found jointly with A. L. Chistov (Cfo [4]). 

We describe the algorithm for factoring f. We consider two cases. 

I) %<~. Let ~[~,0~...~0) =~s ~ be the factorization of ~(X,O,...~O) over F and 

let ~(X~I,"-~)=~{'"~ be the factorization of ~(~,~,..o,ii~) over F, where ~[~0= 

~X~0 =~ for all i. Then for some partition I=I4U,..UI~ one has ~ qX,O,...~O)= ~ ~ for 
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all . | ~ j  <~. Hence the algorithm in the case considered finds a factorization ~ (X~0, 

�9 .. ,0)=~i@~ and looks at all subsets ~-I I ~I . We let ~lin ~ = ~i i and Yi=I\l~ . 

We apply the process of Hensel's lemana (cf. above) to the factorization ~<)[,0,...,0)=@i ~ 

up to the construction of monomials for which the degree in each variable does not exceed 

r, and then we verify whether f is equal to the product of the two polynomials obtained. As 

a result we find a nontrivial factorization of f, if f is reducible, or we establish its ir- 

reducibility. 

The procedure described requires no more than time which is polynomial in Z. �9 , q 

(.since G/~%0t][ <~ ), i.e., polynomial in q and in the size of t~[~) , since in the case 

considered g ~ L , ~  . 

II) ~>~ . We find a factorization of 

using Sec. 3, in time which is polynomial in 

~ �9 We let ~ =~,0 + i]~ ~,~ ~i , where 

,jill. o t l - I  , - -  
t(X, l J,,@ ~,0 ~,...,@,1" tJ,) -- ~ (,X, t~1,) over F, = F[8,] 

L~i~) , the degree [[~:~], and q. Let f = 

@~,i e F4 [)~] , i ~0 , and moreover ~X @~,i ~ 

de~x ~r for ~>0 , since [6 x ~ = i and one can require that ~X~)-~ for all i. 

We note that ~[X,0,..-,0)=~,0)=~ ~(~i0)=~ ~t,0. Analogously to the way it was estab- 

lished in the proof of Theorem 1.3 that the coefficients of the polynomials-~(D(~O,...,0), 

G-~i7(%,O~.~.~ lie in F, one can show here that ~4,0eF IX] for all i. 

By Hensel's lemma applied to the factorization ~i~,O,...i~-~@L, 0, , there exist ~(%,~i,..., 

~)e~[[~,...,~]][X] , ~such that q~(X~0 .... 70)=~,0 for all i and ~ ~ ~q~ We show that 

eP~EF [~,~,...,41~] for all i. Let ~=~HJi be a factorization of f over F, i.e., ~i~ 

F [X,~,...,~] and "~,X~i ~ t  for any j. Applying Theorem 1.3, we get that ~i~X,~, 

0~ ~,0 ~' ~,-.-,~ 7) is irreducible over Fl. Hence, for any j there also exists a uniqu<. 

i, such that t~i~,~,@~,@#~,...i@ ~)=~,~), and, in particular, t~(%,0,...,0)=@s . 

Hence by the uniqueness condition in Hensel's lemma, we have tlSl =iq~% i.e., q)~ is a poly- 

nomial which is irreducible over F. 

The algorithm for constructing each qO~ ~ following the process of Hensel's lemma, con- 

cludes its work in the construction of monomials of degree no higher than r in each variable 

~1,-",  ~ �9 The description of the algorithm for factoring f is concluded. 

Finally, we estimate the time for the work of the algorithm in case II). The process 

of Hensel's lemma works in polynomial time (in the case considered here of a finite field 

F, this follows from the fact that the calculation of the coefficients of the factors re- 

quires only a polynomial number of operations). Hence it suffices to estimate the degree 

[~:P] from above as well as the size of the polynomial f. By construction [~:F]-~ 

~6%~)~<6~, i.e., it does not exceed some polynomial in the size of the polynomial f 

(cf. Introduction). Further, the size of the polynomial f is not greater than a suitable 

polynomial in the size of the polynomial f and [~:.~] , since f is obtained from f by sub- 

stituting elements @8' ~ for ~+i (for ~>I ) and the variable u for u~, and then reducing 

similar terms, the latter does not increase the size. Consequently, the algorithm given for 

factoring f works in time which is polynomial in q and in the size of the polynomial f. 
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This completes the proof of the last basic result of Chapter I. 

THEOREM 1.4. One can construct an algorithm which decomposes any polynomial ~ tE ~ae [Xi, 

...,X~] into factors which are irreducible over the finite field ~ar in time which is 

polynomial in �9 ~a~0r , where X~(~) <~ for i4~<~. , i.e., in time which is polynomial 

in q and in the size of the polynomial f. 

Chapter II 

SOLUTION OF SYSTEMS OF ALGEBRAIC EQUATIONS IN SUBEXPONENTIAL TIME 

I. Choice of a Transcendence Basis for All Components 

of Highest Dimension 

Suppose given a system ~o .... =~k-1 = 0 of equations, in which ~o,-.'~-1~-~[X~"" ~ 

Xw] are polynomials of degree ~o,-", ~k-4 , respectively. We de:ote by TL= s {L " 

(~o~...,Z~/~) the homogeneous polynomial of degree fi with respect to the variables 

~0~...~. The system ~o = .... ik.~=0 defines an affine algebraic variety V={~...~vv)6l ~(~): 

~o~,-.-,~)='..=~k-4~ 4;'" ;) The system L=...=~K_~--O in i t s  own :right de- 
fines a projective algebraic variety 

a> " -  
. . . . .  _ . . .  

(Cf., e.g., [3, 7] for the basic concepts and notation from algebraic geometry which are 

needed here and later.) As is well known, the affine space ~(~) can be imbedded in the 
f, projective space ~ (P) , so that the point (qY~c..l~m)~ A~'r is mapped into the point 

(~:q}~l...'q~l~P"~(~) , where the image of ~"~(~I in ~m(~) coincides with the open af- 

fine subset i(qY0:~-.:q~m) fq~o # 0 I In what follows, we sometimes identify ~(~) with 

its image in ~'~(~) , We note that V=~(~ ~0"~) . We shall call the hyperplane P~=I(o: 

~4: ...:~Y~ E~} the hyperplane at infinity. 

We can uniquely represent the varieties V=.~l ~J~L , V=j~_~ W~ as finite unions of 

closed subsets which are irreducible over F (components). Then we can assume without loss 

of generality that ~=~O ~4~ where ~---~ , and moreover ~/Ln A~(~)= 56 L , and the 

closure in the Zariski topology ~=~a/g for any L~ i , besides this, ~/~ (I ~(F)= ~ for 

any } e ~4 (we shall call the varieties Wj the components at infinity). 

Let ~/c~w(~) or ~/C~rL(~) be some irreducible variety. By F(W) we denote the 

field of rational functions on W. One can consider any rational function on ~ as a ratio 

g/h, where ~,~ [~o,...;~,] are homogeneous polynomials of identical degrees and h .~ 0. A 

rational function on W is the restriction to W of some rational function g/h, under the con - 

dition that h does not vanish identically on W. This function is defined on the nonempty 

open subset of the variety W, equ~l to WN{q>:~(q~)#0} (two rational functions coincide 

if and only if they are defined and coincide on some nonempty open subset of the variety W)~ 

The transcendence degree ~e~z~ ~ (W) is called the dimension dim W of the variety 

W; by the dimension m = dim V we mean w~zz ~L~ . We J~ ~/i let ~=lJe]: ~m~/~ =~v~} In the 

title of this section by components of highest dimension we mean the set of components Wj, 

when j runs through 3=- 
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We also note that the degree ~e~o'... "~k-1 ' according to Bezout's inequality 

(cf. [7]). In [14] the upper bound ~[~6 0+~+m~ ~ is established (it is best for large 

k). Hence, in what follows we shall sometimes give estimates for the upper bound in terms 

of the degree of the variety deg V. We note that ~---~e~ ~/i [7], and, in particular, 

The goal of the present section is to construct a certain family ~=~j~,o~ of col- 

lections, each of which consists of m + 1 linear forms 0,<~,~ ~, 0 ~< s $ wp ~ such that 

~%~ ~ ~ if F is infinite, or ~Z~ belongs to some suitable finite extension of F, when F 

is a finite field and, moreover, the intersection ~ (~ $ ~ ~0~ZL = 0 ~ 4 ~  ~=0 1 of 
~ o . ~ . ~  .- -= " 

a variety V for which ~ ~<~ with the set of common zeros of the linear forms 0 . ~ ,  

Z~ 0 ~Z ~< ~V, is empty. 

In what follows we shall more than once need the following construction of a set from 

N (for arbitrary N) vectors ~4,---~N e ~s , where H = F or H~ ~ is a suitable finite 

extension of F, such that 0~%~[~)>~ , if O0y~(~)<oo. Let d4,,..&N e H be pairwise dis- 
s 

tinct elements. We define the vector ~L=~4~%~oL~...~o~ ) �9 

LEMMA 2.1. Any (s + i) vectors from the constructed set ~4~...,~N are linearly in- 

dependent over H. 

We now return to the construction of the family ~/ of collections of linear forms. 

We let N = 1 + nd and let (~4o,...~4~)~...~ (~N0~,.,s ~+~ be vectors, any (n + i) of which are 

linearly independent. For brevity we let 5]---'0~.~m~{~s Z ~ We show that as ]F~v one can 

take the family Of collections ~h~o~i.,~m ~, where ~o~...) ~ run through all values such 

that 4~<~o<~4...< ~m ~< N 

By induction we shall prove a somewhat stronger assertion. Namely, we show that for 

any 0 ~ 6 ~ one can find ~<io<i4 <''" < i% 4 ~ such that ~,~a{[,i~ .... Ub~0}=~-~-i (in par- 

ticular, for m = s we have V~{~io~- .... ~,--0}=~). Suppose this assertion is already 

proved for s - 1 (if 9, = 0 we assume that nothing has yet been proved). We must show that 

one can find a linear form Lj, where r i 4 N , such that Lj does not vanish identically 

on any component of the variety ~O[~.i~...=~iZ_4 = 0 } If this is not so, then by Dirich- 

let's principle, since ~e~?(%i~i:,..=~ is , one can find some component W of the 

variety ~l~ir. .... h$~_~:O} and n + 1 different linear forms ~5o~'"~LSm , vanishingly 

identically on W, and then %4 C ~.~$o='''--'Lsm=o} = ~  The contradiction obtained proves 

the existence of the required form Lj. Arranging the indices ~0~"'~ig-~ } in increasing 

order, we get some new indices bo, "'' )b6 , such that ~m~o{~ .... ~]6=01 =D~-~-i and 

thus our assertion is proved. 

Now we prove the following lemma, which we shall use in the subsequent sections. 

LEMMA 2.2. Let ~ ~- {~0= . . . = #k-4 = Ol be the variety of common zeros in ~(~) 

of homogeneous polynomials ~o~ ...~#K_1s Then the following conditions are 

equivalent : 
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o} 
2) the system of equations 

V %,%, = =0 

with coefficients from the field ~<%4,..'~ %m~ , where +v,i<.. ) #'~-m are algebraically indepen- 

dent over the field F, has only a finite number of solutions in ]~!#-~(~'(%4...~)) and has no 

solutions at infinity, i.e., solutions with Y0 = 0. 

Proof. i):-~2). The system of equations 7o ~, o=~k_~=O~ ~I-+~Y~ = ..... ~.~%-~ ..... 
equivalent with the system from point 2>. Since ~ =V~<%- .F~) )n t~ . . .=u  ={r .... ~_< 

'#C e~ ~'o:O], by the theorem on the dimension of an intersection (cf. [3, 7]), 

the system of equations from 2) has only a finite number of solutions. The system from 

point 2) cannot have solutions with Y0 = O, since, if it did, \/(~4~ % ~  <'" ~u~)(~{~o ..... Y,~=0} ~, 
and from this, as is well known, it follows that ~/l' / " ~ , [~ . . . .  =<=0] ~ r which contra- 

dicts I). 

2)=91). Let us assume that V(~{~,0=o.=~ =0} ~ and let {0: ...: 0" ~+4~o�9 

A { ~0=.-.=Y,~0}. Then (0: ~,~+,I 1 " ~ t ~  ~-~'~ --- , ~ ( ~ ~ ~ )  is a solution of the system from 

point 2) with Y0 = 0. The lemma is proved. 

We note that essentially at the same time we have proved that if the system from point 

2) has no solutions with Y0 = 0, then it has a finite number of solutions. 

COROLLARY. Under the conditions of the lemma, for any component Wj of highest dimen- 

sion m of the variety V the rational functions ~4 /)~o,.-.~m~/~j0 form a transcende:nce basis 

of the field of rational functions F(Wj) over F. 

Proof~ The linear form Y0 is not identically equal to zero on Wj, since if it were, 

~q {~=,..=Y~=0}=\~{~ .... =v =0],~ by the theorem on the dimension of the intersection 

[7]. Hence it suffices to prove that the functions Yi/yo ~ J ~<j ~< rrL ~ are algebraically in- 

dependent in F(Wj). Let us assume the contrary, and let there exist an algebraic dependence 

relation among ~4/~'" Ym//Yo Then there exists a nonzero homogeneous factor V<Y0~,.,~ 

Y~v~ ~ [Yo~---Yrm] which is identically equal to zero on Wj. There exist linear forms 5o~ 

,,,~5~ in ~o~,--~ with coefficients from 9, which are a basis of the space of linear 

forms in L~ ~r~ and such that for the polynomial ~4< o~..,~r~)=q~(~o~. ,"(~u> the leading 

coefficient ~6$1~4 =~ Then we get by the dimension of intersection theorem ~7~2~N 

[s 0]=~ N {s O] A{'~f~(s 4 AI,~4=,,,=Sr~FO } n[~=O]=.~;A {u163 which contradicts 

the hypothesis of the lemma and proves the corollary. 

I/m0 Now we estimate the. number of elements of the family ~gv~ . We have c~) = ~ -~, ~< 

[~V+4) +{ <(3~(d~@V+~, m.+.0) ~*+4 , the last number does not exceed ($(~.m t/+{ ~+~ 

~V '~+* if ~!.<w~<~. If we know (cf. Seo. 3 if 04rrL<~ , and does not exceed (6 (~e +~); 

below) that ~ <  ~,~-r~ then r )7~u can be estimated above by a polynomial in 

~(~-m) (~+~ for -O~> 

We sum up the properties of the family ~ in the form of the following lemma. 
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LEMMA 2.3. One can construct a family ~=~,~ , consisting of (m + l)-tuples of 

linear forms in the variables ~o~.,.~X~ such that for any closed set V~(~} , for which 

~\~ ~ ~ ~e~V ~ ~ , one can find an (m + l)-tuple (~o~...~y~) ~. , such that V~ 

{hr ~ Here ~e~ ~,~-k ~.q ~ ~ and ~ can be constructed in time which is poly- 

nomial in r163 

We note finally that the coefficients of the linear forms of elements of ~2Q, can be 

chosen to be integral if card (F) = 0 or from a small finite field if ~.~.~r~)> 0 , so that 

the length of description of these coefficients is bounded above by a polynomial in n, ~o~ 

2. Case of a Finite Number of Roots of the System 

in Pro~ective Space 

This case was considered in [17, 18]. In the present section we formulate the results 

of these papers with modifications necessary for our further goals. We consider systems of 

homogeneous equations and we use the concepts and notation introduced in the preceding sec- 

tion. In [17], with the help of homological methods the following theorem is proved (cf. 

also [18]). 

THEOREM 2.1 [17]. Let @.~...~_~ [Xo,,,.~X~] and the system of homogeneous equations 

~o=.,.=~_~=0 have no roots in ,~ (~ Then the ideal (~o~..,~_~l~(X0~...,~! I~, for 

])= ~+ n ($~-4)~ where ~--~-. ~ ~' 

This estimate is better than the estimate from [14]. We note that it is sharp. 

Now let ~o~.o.~k_i ~ ~[~o~,o.~X~] be homogeneous polynomials of degree ~I0>i ~l o ~ k-~ , 

respectively. We introduce new variables ~o~" ~ " ~ ~J~ ' algebraically independent over 
, , 

- ~ ~-~ ~ , (X0,...~$~) We set ~=XoUo+.,.+~e~(~0r ~![X0,. ~k'~] and ])-~,<.~mZl~{~_~,n)L ~) o where 

~' =@ We consider the map@~:~o@...@~-'~ which is linear over the field ~(~0~--.~,~) 
K 

where ~ (respectively, ~ ) is the space of homogeneous polynomials in Xo~-..~X~ over 

~(J~o~--;,~m) of degree ])-~ (respectively, D) for 0 4~4 ~ , namely, O~{~-o,...~) 

= ~ ~ ~ An arbitrary element l~=(~o~,..~l~'~O~o @. ~d~k be written in the form h 0,< ~,~k ~ �9 .. can 

~=(~0,~,...~0,So~,~._i~i,~Q...~k,~,..~e~where ~=~+~-~) and ~,~...)~,S~ are the coefficients 

of the polynomial hi, under the condition that some enumeration of the polynomials of degree 

])-~ is fixed. One describes the elements of the space ~ analogously. In the chosen 

, } One can coordinate systems the map ~u has matrix A of size <~+ID) x <0,<L,<~$~ represent 

~ , A" the matrix A in the form A = (A', A"), where A' contains 0,~'~4k-~ columns contains $~ 

columns; moreover, the elements of A' belong to F. The elements of A" are linear forms over 

F in the variables ~o~-.-~J~ The following result is found in [18], based on Theorem 

2.1. 

THEOREM 2.2. i) The system ~o=...=~_~-O has a finite number of solutions in P~F) 

if and only if ~A)= ~)[we let ~,~-~'~)) ]. 
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2) All ~ ~ ~ minors of the matrix A together generate a principal ideal, whose gener.- 

ator R is their greatest common divisor~ 

= ]~ ~i, where 3) The homogeneous form R in ~o~--- ~+ decomposes into a product ~ 4~I 

r_  i s  a l i n e a r  form w i t h   oefficients from besides t h i s  
0 ~  ~ ' 

is a root of the system, and the number of occurrences of forms proportional to Li in the 

product is equal to the multiplicity of the corresponding root of the system (~$g.$~) . 

Thus, R coincides with the u-resultant [i] up to a factor from F if k = no 

Initially as the input of the algorithm given in [18] the system ~o = .... ~k-~, = 0 is 

given. On the basis of Theorem 2.2, the algorithm establishes whether the system has a finite 

number of roots in Pm~) and if the answer is positive, then as output it lists all the 

roots together with their multiplicities. 

The algorithm of [18] reduces the matrix A (cf. Sec. 2 of [13]) by elementary row and 

column transformations over F to the form 

0 0 

where A0 is a nonsingular upper triangular matrix with coefficients from F, the matrices 

~o~.~ are diagonal nonsingular with coefficients from F of sizes ~o~..-~ , respec- 
! 

tively, the elements of the matrices A~ are linear forms over F with respect to the vari~ 

ables J~ J > ~,~ (for all 0~<"~ ~< $ ). Here and below we assume, without loss of generality, 

, +f) that ~A=(~+s since otherwise the algorithm detects that ~A < (~ ~ in the 

course of its work and stops. 

The algorithm mentioned for reduction of the matrix works in a number of aritP~etic 

operations over the elements of a field F which is a polynomial in the size of the matrix 

A. Consequently, we get a polynomial algorithm for the case of a finite field Fo For other 

fields it is impossible in general to assert that the algorithm works in time which is pro- 

portional in the length of description of the matrix A, so some additional considerations 

are necessary. 

In the given matrix each minor of maximal order det (B~])> is divisible by the prod- 

uct ~r + AoT. ,I ~ .. ~8~(A$~i$ + As )I , Consequently, ' "~ZC A, . 
~}s+ffg). The number DI of roots, considering their multiplicities, of the original system 

is equal to o~,~$N$ according to point 3) of Theorem 2.2. We fix some pair of indices 

04r ~ The form Re~[~o,...~ ~t~] can be represented in the form of a product 

~=R~Z , where R= is the product of all the linear forms Li (cf. Theorem 2.2), for which 

one has ~(~) - ~(~ -- 0. Then ~ ~ ~ [~o~...~ol~r.o)J~zr..~JJv~] and ~ ~ ~ [~o~ ~] 
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up to an appropriate factor from F, which we can assume equal to i without loss of general- 

ity (a roof over a variable indicates the absence of this variable). 

We note that ~e~0~,..~)=~ -~@~) (we recall that A' is the matrix with coeffi- 

cients from F consisting of the first ~ 6~ columns of the matrix A). It follows 
0~6k-~ 

from this that R coincides (up to a factor from F*) with any nonzero minor of size r of the 

matrix A, which contains rg(A') columns of the submatrix A'. 

Our goal is to give an algorithm which is polynomial with respect to the length of de- 

scription of the matrix A, which calculates ~4(0~...~0,~0~...~0/$[d~>0~...~0)~[~J~] ~ or gives 

the answer that the original system has infinitely many solutions (by calculating a poly- 

nomial, we mean here and later calculating its coefficients). This algorithm works for a 

sufficiently broad class of fields F, in particular for finite primitive extensions of purely 

transcendental extensions of primitive fields. For convenience of notation we renumber the 

variables ~o~-.~ ~ so that ~ ~o~ get the indices 0 and i, respectively. We start 

with the case when ~=~(~"'7J$) is a purely transcendental extension (~ >/ 0) . 

Now let H I be some finite field such that (~-%)D~< r ~<~(~-~) ~I ' where q = 

char (H~) if ~=c~vj(~! > 0 In this case we extend the field F to the composite of the 

fields F and H I and we assume further that ~ C ~ In the case of characteristic zero 

we let ~=~. 

Using Lemma 2.1 of Sec. i, one can construct a family of ~=((~-%)])I + ~ ) vectors 

~9:(~$...3~)~...~(~):(~(~!..~ ~)E~ -I , any n-i of which are linearly independent. Now we 

show that for some ~6 ~$ ~ the polynomial ~(~0~l)~ ..-~m~l~)c~(J~o~) is different from 

zero. If this is not so, then by Dirichlet's principle for at least one of the linear forms 

~=0~ ~(,z)j~. (el. Theorem 2.2) for which ~o=~ =0 and for (n - i) vectors among 

q f ~ .  q ~  1 0 , 4 4 ~ . < ~ - ~  , q~(~, . ,~ q~(N) ( l e t  them be 4 f ( q , , ,  q y ( ~ - O  ) one has  ~ ( 0 ~ 0 ~  4~ , , )  ~_~ 

which  c o n t r a d i c t s  t h e  l i n e a r  i n d e p e n d e n c e  o f  t h e  v e c t o r s  q ~ ( ~ . . , , ~ r ( ~ - t )  

The algorithm calculating R4(~o,~4~0~---, 0) considers in turn q~(O...~ ~(~) and finds 

(~,~6~(~... ,~-~O' ) for ~ v ~< N For some i the polynomial R(~,~6~f~L ~ ., .~r(~).~_~ ) .~ O- 

Then ~q(~0~h0/...~ 0) coincides with the form of highest degree of the polynomial ~ (~0~ 

~" "~ ~)  (up t o  a f a c t o r  from Hz* or  ) .  In  t h e  c a s e  of  c h a r a c t e r i s t i c  z e r o ,  by t h e  

c o n s t r u c t i o n  of  Lemma 2 .1  one can t a k e  Ifj(~t=~ t , ~ r  t h e  l e n g t h  o f  d e s c r i p t i o n  Z~q~j(~)) 

i s  p o l y n o m i a l ,  and hence  t h e  v e c t o r s  q ~ )  .~q~N~ can be s u b s t i t u t e d  i n t o  R in  p o l y n o m i a l  

t ime  ( a n a l o g o u s l y ,  t h e  same t h i n g  i s  t r u e  in  t h e  e a s e  o f  nonz e ro  c h a r a c t e r i s t i c ) .  F u r t h e r ,  

we fix an index i and for brevity we let ~=qF~k~..~%_~-~_~ and we shall calculate the 

polynomial ~ ~o~ If~,... ,q}>~-4) " 

For this we apply Gauss' algorithm (cf. [14]) over the field ~ (~o~) to the matrix 

A(J~o,~[6~F~,...~F~_q~ The algorithm is determined by the sequence of choices of leading 

elements. If Ai is the result of performing the i-th step (~)0, Ao=~o,~4~... ~F~_~) and 

0~k~ ~ is the element of the matrix Ai chosen as the leading one at this. step, then the 

element y,$ ~, ~(,~ ~ /~(~) ~+9=~[;~ ~%~v~,9i/ ~L,gL for ~o~o~...~s We denote by /k~":~ the de- 
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terminant of the 

with indices g~,..~~v and columns with indices i4<..~: 

LEMM~.2.4 ( c f . ,  e . g . ,  [ 1 4 ] ) .  One h a s  ~ ( $  = ~ ' ~ o , . . . , ~ / ~  d o , . . . ) ~  L 

~5o, . . , ,~~ ; further, gL [~§ - - ' 0  for ~d0,... c/b Finally, - 

other pairs ~ , (~~ 

~ submatrix of the matrix A(~o~6~V~.~.,,~qV~_I) , spanned by the rows 

for ~':/: 4-~) r .. ~oL[, and 

g! !+~ )= ~b(J]~ for all 

The lemma can be proved by induction on i. 

Applying the Gauss algorithm to the matrix ~(~,~4~ ~. ~ ~-I), we choose leading ele- 

ments so that at the i-th step ~i should be as small as possible. Then if ~5~(A(~4~) 

...,qF~_~)=~ , one has 0/=!~'~o~)"V~,...]~_~I=~6o<",~.-4 according to the r e m a r k  above; we recall 

that A = (A', A"), where A' is a matrix with coefficients from F, the coefficients of the 

matrix A" are linear forms in /~{,0~,...)~,r Now if ~=~(~4)~__ ~..)~_{],then the al- 

gorithm turns to the consideration of the following vector ~(~+0 The time of working 

in realizing the Gauss algorithm can be estimated by Lem~na 2.4 by a polynomial in 

(%~+~)7~+~ ~$ , where, we recall,Z---s ~T~)...TZ{~II~<~ ~ and ~(~) ~< MZ (see In- 

troduction). 

There is another method for calculating ~(~o~,~4~,...~_,) in Sec. 3 of [ 9 ] ;  it is based 

on interpolation [21] and uses the Gauss algorithm only for the case when F is a finite field. 

We note that ~T~..-,T$ ~ (~o~6qf4j...~-~)~%~ and on the basis of Hadamardls inequality 

one can deduce that ~(~(~o~4) ~..:~_~))~%(~+~% . ~%). 

Now let ,~=~[~] and h0(~)= 0 , where ~0~[Z] and ~ is irreducible over K, where 

K is a pure transcendental extension of transcendence degree Z over ~ or over a finite 

field (cf. Introduction). We consider a transcendental extension ~c~(T) and we calculate 

the polynomial ]~(~0,I$i ' %r~ ..... If~_~ ) under the condition that in the matrix A the element T 

is substituted for ~. We assume that each element of the matrix A is represented as an ele- 

ment of K[T] of degree in T less than ~(<p} Then we sustitute ~ in reverse for T in 

]~(~o,~,~,..,,v~_,) and we reduce it rood ~ . The calculation of ]~(~,~,~...~ ~f~_~) requires 

time no greater than some polynomial in (%(~,~)+~)~*I and the length of description of the 

initial data (including ~ ), i.e., of (~4.~)@(~+~)+~)~ (we recall, cf. Introduction, that 

d~T ' ..... %(@)<4~,4r ~ ) We note also that ~ .... ,~(~(~%~...~%_~)) �9 <~(<+~3 and ~(~(~0)%~v~),.. ~ 

Thus, we have finished the description of the process of calculating the polynomial 

~{li0,1~0z..., 0) Now we begin to calculate the linear forms h~-~-0<.$.<n ~ ~(?)~$ (cf. Theo- 

rem 2.2). We assume further that the field P~H(T~ .... ,Tt)[%] is the same as in the Introduc- 

tion. 

In what follows, all arguments about nonseparability relate to the case ~c~a~(~)~ 0 o 

We fix a pair of indices 0.<~<~:_< n Again, as above, one can assume without loss of gen- 

�9 F . [  /' ~ . (6 )~ )  (~:) �9 ~-(~)  ( 8 )  erality that ~#J0, ~4 = I Since , ,s o ~+ ~4 ~d)l ~(~0,~,0,..., 0) , we get that ~I," ~ , 

0, .... 0)-----0 Considering that R~(~0~I~#,0~ .... 0) is a homogeneous polynomial of degree no 
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greater than Dl, we get that the element ~e)/~cs~ (if ~) ~0 ~a =#= 0 ) has degree over the field 

F no greater than D I. Consequently, its degree of nonseparability over F is all the more 

no greater than D I. Let ~./~<~ ~ If the characteristic q = O, then here and below we 

i#~,~/~))~t ~ set ~=4 for convenience of notation. Then any element (~ .~0 is separable over F 

(if ~10~=u ). We consider further the new system of algebraic equations, obtained by replac- 

ing each coefficient of the original system by its q~ power. After this change the degrees 

with respect to each T{(~<,{,<{) if the coefficients of the system are multiplied by @J~.<~ . 

For the new system the ratio of any pair of coordinates in the forms Le will be separable 

over F, namely, this ratio coincides with (~e)/~(e))~ for the corresponding }0,}4 If }~ I.o 
we solve the new system, then in order to find a solution of the original system we have to 

calculate the elements (~}i / }0 ) ' starting from the elements (~l~}0J~ e ~ [@I] found, where 

0' is a separable element over F, whichwillbe constructed by the algorithm. Besides this, 

we show further that [~[@~: ~]-~ ~ and for the minimal polynomial ~)(Z) of the element 0' 

over F with leading coefficient s ~ , the degree i~T~ ..... T~ ~ can be bounded above by 

a polynomial in %=(~), ~,~ , while the polynomial has degree i with respect to 

d~ (we represent (P=~ (~ 0,~(T~,..,,T~) ~] Z ~ where ~,~[T4,...,T~] and ~% ..... ~(~) 
~, o~.<,t,.1~ ~) .~T~ ..... T~) 

is the smallest possible, and we set /~Tm, ..... Tee = ~a~{ ~.,~, ..... V (~ ,$ ) ,~ ,7~ ..... % ( ~ ) }  ( c f .  Intro- 

duction). In what follows we write the elements of the field F[e] in the form g(e'), where 

�9 ~ . ~  [Z] and ~ . z ( ~ ) < ~ , ~ z ( r  

( ~-(~.)~ ~-(6), ~.'~ - ~,~ 
We estimate the degrees with respect to q~ .... ,Tt~ of the element s4 I~0 ) = ~ ' ~  Since 

the polynomial (Z-~)I~4(Z,-~,0 ..... 0 ) (here the polynomial El corresponds to the new system), 

we can apply Chapter I of [4] to the polynomial ~(Z,-#,0 ..... 0)e~[@~[Z] and the separable ex- 

tension ~c ~[@rj Then, keeping in mind that ~e~ ..... ~(Z,-~,0 ..... 0) ~ %(~*~) and ~e~z~ ~ 

{Z,-4,0,...,0)_<$~ according to Chapter I of [4] and the bounds on ~,...,Tq),~e~ ~) mentioned above, 

one can also estimate ~v ...... % (~,"i from above by a polynomial in ~,$4,~ of the first 

degree relative to d~. 

Now we decompose Z~$-~ ~ into factors over the field F[e'], applying Chapter I of [4] 

to the separable extension of the field ~.~[@~] �9 The decomposition has the form Zr ~= 

(Zr ~)~-~ , where ~%~ ~[~ ; then ~ ~[~ (here and below in similar cases we as- 

sume ~r ). Then the extension of the original system corresponding to the linear form Ls, 
� 9  , ~)/~ ~,q,'~.~, ~.(~,~ i~) ) where the elements ( ~i " ~  ) ~ ~[@~] are can be represented by the vector ( ~ , .  ~ , 

given, while #~05~ is such that ( ~!e)/$~ ~-~e'~)%v~~ [@ ] (all of this under the condition that 

~ 0 ) By What was just said, we shall assume in what follows without loss of general- 
h=k �9 

ity (raising the coefficients of the original system to the power qD, if this is necessary), 

that for any linear form (~e)~.~ ~+ ~ ~i'~"a~" ~i ]~(0,.o.,0, ~.,~j0,,.,,~'" 0,~$,0~...~0)the element ~i) I ~)~ is 

separable over }' (under the condition that ~!aJ=~= 0 ) for any ~ , }~ j,~, 

Further, to solve the system we shall follow the general plan of [18]. First of all 

we calculate the polynomial 1~4(~,t~,0, .... 0) with the help of the algorithm given above. 

Then we decompose it over F into irreducible factors (cf. Chapter I of [4]). Let ~,~(i~t~#.', 

i~4~tb~,it,~,0,.,., 0) be some factor which is irreducible over F (the algorithm being described 
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considers all irreducible factors) different from U I (in this case, if~( ~(6~- ~<~ v 4 

~<e)=r 0 ). We note that the construction of [4] leads to an upper bound on <~%~-.~T~ {~t} ..0 

which is polynomial in ~ , 4~ , ~% and in addition of the first degree with respect to d2, 

and to an upper bound on the length ~(~i) of description of the coefficients which is poly- 

nomial in M~* M~. {~ ,~&;~ and this polynomial has degree 1 with respect to M~ + M~ * f~ 

The procedure given below finds all the forms LE satisfying the condition ~).~ O. To find 

all forms, it suffices after this to find the forms satisfying the-condition .~=~0 andto 

choose among them the forms for which ~<~s)--~-- 0 (or one can add the equation X a = 0 to the 

original system), etc. We set ~-I(Z}==~,(Z,-I)~ ~[V] ; then. ~ =~ /oo - 0 . We let ~ 

�9 ,P[@~]==P[Z]/(~(Z)) ,~ where ~(@~)=0 and @f==~, (~=~ The construction of ~,, @~, 

@~, q~ completes the description of the first step of the procedure. We can assume without 

loss of generality that e&tg(H)> d~= ~ ~I (otherwise we can extend the finite field H, as 

before in similar situations). 

Let (s - i) steps of the procedure be made already. The following s-th step starts with 

the addition to the system obtained at the (s - l)-st step of the equation @~_~ X~- X~_ I = 0 

(throughout the s-th step the polynomial R~ corresponds to this new system). Then we cal- 

culate the polynomial ~(~, O; .... 0,'~0 .... , OJ and we find a factor ~(~,~)I ]~t(~,O,.~ ~, 

O~ .... O} which is irreducible over the field ~'~-~ , constructed at the (s - l)-st step (cf. 

[4]); the algorithm considers all irreducible factors hs~ We let ~= ~(Z,-J) . Then 

~ /~~ )=-0 Let _ , ~= ~ (g) ~ 5 == ~_~[@~]=~ ,[2]/(~6(Z}) where ~(#~} 0 (as 8i, o f  course, one can 

take ~) ~?~ ~ / for some E and any ~{,~ ). 

We consider the elements 0; ~ ' ~ ~_,.+ ~@~ .... ~ @~_~+6~@~ , where 0 =6~: .... 6~ are pairwise dis- 

tinct (in the case of characteristic zero we take 0~= ~-~ ). At least one of these elements 

is a primitive element for Fs over F (cf. [6]). For each of @>~.~%.~@~, 4~..<s the algorithm 

constructs the minimal polynomial over F. For this it is necessary to solve the question 
~f 

of the linear dependence over F of the powers i, ~_~.cr~@~, (05.~,~@~}~ .... (~W@~)J These 

powers can be expanded with respect to the basis <@~_~ }= @$ 'where ~ ~x< dr (P~_~ , Oe~ < 

~'~ and the question reduces to the solution of a linear syste~n over F. Moreover, the 

degrees with respect to T~...~ T~ of solutions of the system, i.e., of the coefficients 

of the minimal polynomial, are bounded above by a polynomial (independent of i) in ~, ~'z~ ~ 

(of degree one with respect to d=) and in m(~aid,e~ % ..... r (~4},~e~,,...!~(~l ~ . Moreover, the length of 

description of the coefficients of the monomials in ?~ .... ,~g, ~ can be bounded above by a poiy- 
f nomial in ~g~(N~+ M~+ ~i of degree i with respect to {N~+ M~+~%} We denote by @'~ the 

[ 
primitive element constructed of the form ~_~+0p~@~ of the field Fs over F, and by ~{Z} 

~[Z] its minimal polynomial, ~(@~)= 0 

Now we prove that the degrees ~ ..... ~(~) (the length of description of the coeffi- 

cients 6((~) , respectively) can be bounded above by a polynomials in %, i%, ~ of degree 

1 with respect to d 2 (in $,iI, (M~,M~ + {d~) of degree i with respect to (M~+M~+ ~4.~ re- 

spectively), independent of s. We note that by construction @~L_~+~. ~ ~ @~ and ~--g~ ~ __~-(~/~s~/~ 

for some e, where ~ E~ and 0~F~$-~ , when char (F) = 0, for 4.<~$ We consider 

the auxiliary system of equations obtained from the original one by a nondegenerate linear 
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change of variables under which Xo--~o , ~e ~ ~ X~--~ Then the roots of the auxili- 

ary system are the vectors (~q) s ~ ~ ~r ~, ~ & . ~  o~ .... ) for all 4~]~ ~ One can choose the 

linear substitution so that the length of description of the coefficients of the auxiliary 

system are bounded above by J(~%.t~0%i~+{0~$) o For the auxiliary system the element @~* 
~ > / ~  ~ 

~ ~m =~ ~I~0 +~<~ ~ ~. is a root of the polynomial ~(Z~-~ 0, 0 ) correspond- 

ing to the auxiliary system. Consequently, arguing as above, one can get the upper bound 

wanted, independent of s, by the degrees with respect to ~,...,Tr and the length of descrip- 

tion of the coefficients of the polynomial ~ 

Now we let @i____@~ ~=~ . We show that the ratios sought ~2~/ ~) ~0 of the original sys- 

tem can be expressed in terms of the basis 4,@~,(@),... with coefficients from the field F, 

and here the degrees with respect to ~,...,T6 of these coefficients are bounded above by 

a polynomial in % 4~,~ of degree 1 with respect to d 2 and the lengths of description of the 

coefficients in the monomials in ~,,..~ T~, @, are bounded above by a polynomial in (M~+ 

M~+~ ~| ~,~ of degree 1 with respect to ( ~ . ~  ~)  Moreover, the polynomials 

of these estimates are independent of P, j. For any s we decompose the polynomial ~$(Z)----- 

~(Z, 0 .... ,0,'4,0~ .... 0) (here } ~ ) over the field ~= ~[@~] according to Chapter I of 

[4]. Then ~}(@~) = 0 for ~ , so (Z-@~)I ~ From this it follows [4] that the degrees 

~+~,...,~c(@}) in the expressions of 8j as an element of the field ~[@~] (the length of de- 

scription of the coefficients of ej, respectively) can be bounded above by a polynomial in 

�9 ,d~ of degree 1 with respect to d 2 (by a polynomial in (M~. Mz+ 6 ~%~ ~, ~ of degree 

1 with respect to (N~. N~+ ~ &~) , respectively) and, moreover, these estimates are inde- 

pendent of s, j, P. 

Now we show by induction on s that one can express 0j (4 < - ~< 3) in terms of powers of 

the element ks' in time which is polynomial in M~M~(~I~) ~*~ , and, moreover, the polynomial 

giving the estimate is independent of s, j, p. 

Let the expressions for @~ (I.<$<~-4) , as elements of the field ~[@~-I] , be found al- 
F f ready. Since @6= %~-It~ ~ , using the polynomials %_,, ~ (cf. above), we find decom- 

positions of the elements 4, @~,(@~)~ .... with respect to the basis (~_i)=@~ with coefficients 

from the field F, where 0-<~<d~<q)~_ I) , 0<~fl<Iz~(9~) Solving a linear system over F, one 
! -f)~ can find the decompositions of @~, @~_~ with respect to the basis I,@~,(B~ .... After this, 

substituting into the expressions for @I ..... @~-I in the field ~[@~-i] the expression found 

for @'~_~ , we get what is required. The expressions constructed for %j (I<,~,<~) satisfy the 

estimates given above, so the time of construction of all 8j (as elements of the field ~[@r]) 

is polynimial in ~,~,(~ ~) ~+~ , K, 

Now we somewhat alter the primitive element 8= ~ ~k(~; '~:r) (here ~i= ~k and 0 

for ~<~o )" Namely, we set ~-~- m a~ i~*J~} and @r~({~5~* ~(~ Then 

Remark. We note that if ~[(~cs9 l~r ~ i~cs)/~},r (~) ~ a .~(~) --c~.,~ '~'~ sf~,i/~g),...,~/~:, j ~,~g.~/~: ) ] ~ i.e., ==~g.~/gf. )~ 

is a primitive element, then 8r=~ according to our construction of a primitive element, 
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since c z = 0, while the polynomial ~$+)=~+ coincides with ~_g=~=~+) (cf+ the notation 

above; the superscript s means that we consider Lg), is irreducible over F, and ~(~)=~ 0 

Moreover, if (~)" a ~~ ~ for any g, i.e., for any root of the original system, then for any fixed 
.! 

pair of indices ~+=0, ~ the corresponding polynomial R z = R . Moreover, if (~{~/ ~a))~ 

is a primitive element for any g, whose minimal polynomial over F is ~I ~+(Z,M~0~ .... 0) 

(here ~~(~) correspond to the modified system obtained from the original by raising 
,[ 

its coefficients to the qD-th power; see above), then R = R 1 for the pair ~0 ,~=~ and 

the product ~(~))~:~(Z~-4,0 .... ~ 0) up to a factor from F*, where ~ runs through the set 

of conjugacy classes over F of roots of the system (e corresponds to ~). Finally, according 

to the construction given above, to each conjugacy class over F of roots of the original sys- 

tem there corresponds a polynomial ~r with suitable g and, conversely, to each polynomial 

~{~J there corresponds here a conjugacy class of roots (not necessarily unique). The po!y- 

nomials ~(~ can coincide for different g. The exponents of the degrees 4~ are equal to 

the multiplicities of the linear form Lg in the polynomial R (see Theorem 2.2 above). 

This remark is due to A. L. Chistov and is not used here. 

We summarize the results of the present section in the following theorem, which is a 

modification of the theorem of [18]. 

THEOREM 2.3. Suppose given a system of homogeneous equations ~ .... -~_~ = 0 , where 

~[~o,...~], ~ =  ~, $(>]~...~[(q (without loss of generality, ~K ), where the field 

IP= ~(~ ..... T~)[~]; ~ or H is a finite field of characteristic ~0 ; T~,+++,~r are al- 

gebraically independent over H; U is an algebraic and separable element over ~(~+ ..... T~ ) 

with minimal polynomial ~)6~(T4,. '"~/w)[Z] , ~<~ = 0 We let ~)=-~o ~ + ~;~ ..~.~_t~)<~-~(),% = 

Qlg+pt~) , (~4_~>=ie~To..)T$~Z(~ ~ ; by d 2 -- i we denote the degree with respect to ~)+..+~ 

of the coefficients of the system (see Introduction), by Mm (respectively, M~) we denote the 

maximum of the lengths of description of the coefficients of the monomials in T4~ ...... ~]v+~ 

in the system (respectively, in ~ ). 

An algorithm is constructed which first determines whether the system has a finite num- 

ber of solutions and, second, if it does, then it finds all the roots in the following form+ 

The roots are divided into conjugacy classes over F, and the multiplicities of the roots are 

given. For each class the algorithm finds a polynomial ~(~+..~Ts which is separable 

and irreducible over F, with leading coefficient ~Cz(C~ ) =~ , let e" be a root of the poly+ 

nomial C~. For each class, in addition the algorithm finds a 0~ jo~ ~ such that 

~io~0 for any root ~o~.+.:~P~ of this class and ~ =0 for $< ~o , and calcu- 

lates the elements <$~/~o~Je F [ @~] for ~oSJ~ �9 (in the case of characteristic q = 0, 

we assume ~=O and~ = ~ for notational convenience), where ~$~i~]D 4 (we recall that 

3~ ~ ~ is the number of all roots of the system; see Theorem 2.2), and here ~/~j~-~ 

where ~i~ (we assume that C++~+~])+~< or we extend H; see above), ++: jPP~++j + The 

number of conjugate roots in a class (without considering multiplicities) is equal to 
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~e~Z + The degrees i~,...)T$C~/~o) ~v~ ' ~,...,TZ+ (the lengths of description 

@~ of the elements <~/~o) ~ and of the coefficients of the monomials in T4~...~T~, ~ 

of the coefficients of the polynomial q~ , respectively) can be bounded above by some poly- 

nomial in ~Z, ~4 of degree 1 with respect to da (by a polynomial in{M~M~Z~)~ z> ~ of 
degree 1 with respect to ~4+ ~+g~) , respectively) and, moreover, these estimates are 

independent of j and of the conjugacy class of the roots. The algorithm constructed works 

in time which is polynomial in ~4 ~ C~ I~4) ~+4, ~> ~. 

3. Direct Method for Finding the Tree of Components 

and Generic Points 

As in Secs. 1 and 2, let ~0)..-)~k_~ F [Xa,.~.~Xr~] be homogeneous polynomials. Further~ 

without loss of generality we assume that ~ ~L=~ , by replacing each fl by.{~l.~ ~ }0~ij~m' 

where ~=-0,~L,<~_~{cL~ ~[I . Moreover, without loss of generality we assume that {~L~0~k-,; 

are linearly independent, so k ~< (~) $ (~+{) ~ We assume that the ground field F = 

~... T/~) [_ ~ ] , where either ~.----~ or H is a finite field, q = char (F), the elements 

T I,-..~T 6 are algebraically independent over H, the element h is separable over ~(T~,...>~$1 

and '~T)~H [~,.-.~s is its minimal polynomial. We shall assume without loss of general- 

ity that ~L~H[~f.-,~gj~o).--)<~] for O~<~<~-~ �9 We denote by d I an upper bound on 

~e@q~, T (~) and by M~, an upper bound on the length of description of the coefficients �9 -., s 
from H of the polynomial ~ in monomials in ,~...,~Z~ ~ . By d 2 we denote an upper bound on 

~T~,...,Ts 0~<~<k-{ , by M 2 an upper bound on the length of description of the coefficients 

from H of the polynomials ~o~..-~k-~ in the monomials in ~ ..j~/~) ~ ~o~ "'~ ~ X ~ (see In- 

troduction). 

The goal of the present section is the construction of an algorithm for explicitly find- 

ing the irreducible components defined over a maximal purely inseparable extension F ~>-~ of 

the field F, of the variety ~ ~ C~) defined by the system 7o=...=~-~ = 0 Namely, for 

any component the algorithm constructs a generic point of it (see below and also [3]), and, 

besides this, in Sec. 4 a certain family of equations with coefficients from F will be con- 

structed, which gives the component as a set of points in ~m (~-) For brevity we shall 

call a component which is defined and irreducible over ~-~ an irreducible component over 

F; such a component can be given as the set of points of a system of equations with coeffi- 

cients from F. An upper bound on the time that the algorithm takes will be given below in 

Theorem 2.4 of Sec. 4. 

We proceed to a description of the tree of components, which is constructed by the al- 

gorithm in the course of performing it. The tree of components has a root which is ascribed 

to projective space. Any vertex v, different from the root, is ascribed to some variety 

I~ ~(~) . which is irreducible over F. By the level m of the vertex v we mean the number 

of edges in branches going from the root to the vertex v. The algorithm constructs for any 

'I ~< ~ ~< ~ + 4 the linear combination ~ = ~. ~6~; "~I ~, where ~5~ e H (if H is a finite 

field, then it "is possible that it must be extended, so that ~IC~ > kr ; see Secs. 1 

and 2). Moreover, ~01~p~[~/~t ) =_ ~p for ~<~u~< ~+~ (in particular, ~/q% = ~ when m = 
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n + i) and the family of components of the variety {~f=...=Im=O~c~[{) of common roots of 

the polynomials ~4)...)~ , whichare irreducible over F, coincides with the family of vari- 

eties Wv for all v of level m and of varieties Wvl for all leaves v I of the tree of compon- 

ents of levels less than m, such that Wvl is a component of the variety ~#o=,..=~k_~ = O} 

If v is a vertex of level m which is not a leaf, then ~,t+4 does not vanish identical- 

ly on Wv. Moreover, for any son w of the vertex v in the tree the variety Ww coincides with 

a component of the variety ~Tqr~m+ ~ = O} Conversely, any component of the latter vari- 

ety coincides with Ww for some son w of the vertex v, except for those components W (i) of 

the variety ~/N ~ = 0  1 , such that ~I(Dc\~q~ for some leaf v I of level not greater than 

m, such that Wvl is a component of the variety {#o = .... ~_~=0} To any component W of 

codimension m of the latter variety there corresponds a leaf v I (in general not one) of level 

m, such that ~=~/~ Conversely, there are two types of leaves of level not greater than 

n. For any leaf v I of level m of the first type Wvl is a component of the variety {~o = .... ~_~=OJ 

and 60~/~ = ~ If v 2 is a leaf of level m of the second type, then ~+~ does not 

vanish on Wv2, so~F~ ~ ~o ..... ~_~=0} , but, on the other hand, ~%~{I%m§ = .... ~ and 

there does not exist a component of the variety ~IFz <~ {~+4 = 0 ~ , which is a component 

of the variety {#o ..... #k-~=O! �9 

First of all we estimate from above the number of vertices in the tree of components~ 

Namely, we show by induction on m that ~i~F e~ ~qf $ ~m~ , where v runs through all vertices 

of level m. If WqrN{~+~-0} =~ I?/~)~)~W(~) ) (see above) is the decomposition into irre- 

ducible components over F, where the components Ww are ascribed to the sons w of the vertex 

v of level m, then ~i~/f~< ~le~/~F according to Bezout's inequality [7] S~nming 

these inequalities over all vertices v of level m, one can get the inequalities required for 

vertices of level m + i. From this it follows that the number of all vertices of the tree 

of components is less than ~+4) i~+ ~ , since the depth of the tree is not greater than 

n + i. Thus, it suffices to estimate in what follows the time the algorithm works for the 

construction of one vertex of the tree of components. 

The algorithm given constructs ~)... ~ ~ , the tree, and the components Wv by induc- 

tion on the level m of the vertex v. We write the first step (m = i). We let *~=='~o 

Based on Chapter I of [4], we decompose ~o =]~ 9~ ~ , where gi are irreducible over F for each 

i. We fix some index i. We let ~={~L=O}c ~s be a hypersurface which is a component 

of the hypersurface {#o = 0 

Now we construct s generic point of the component W i [3]o Let ~= ~(~0 ~-~ 

where ~e~[7o,o..)~ and ~i' are as large as possible, when ~>0 , and ~ = { ~ when 

char (F) = 0 (the analogous remark is valid below in analogous situations). Obviously, gi 

is irreducible over F. Let O~ <~<~ be an index such that (~% / ~ ) ~ 0  and let 

~o ~ ~ (let us assume ~ > 0 ). For convenience of notation let us assume temporarily that 

~'o =0 ' ~i~ =~ , and, moreover, we assume that ~[~C~. 9~{. We set ~4/~o=~4~...~_~/~o = 

~g_~ (~/~o)~ ~ = %~ , where ~4~ .... ~-~ are algebraically independent over F; we let 

~4 (Z)=~(~4~i"~-,~)~o~<~4~'"~-~)[~J' where ~lo=~lo(~...~m.~)=~C~(~L(~6...~_~))~ ['~'"~'~n-.~" We have 
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~b4(0~l=O and, moreover, c~4 is the minimal polynomial for the element O~ over the field 

~(~...~_~) We consider the field ~(~4r.,,~_~l[~]/'(~D~)= ~ (~)...~_~) [0~] Then the 

expressions given above for X~/X o supply a generic point of the component W~ in the fol- 

lowing sense. An isomorphism of fields ~(Xd/Xo~ .... )X~_~/Xo,~XUX~)~{)~--~(~4r.)~.D[O~](the field 

~(X4/X0~...~X~_~/Xo, (Xm/Xo)~) here and later in similar situations, is a subfield of the field 

~-oo (~/4) , generated by F and the rational functions X4/Xo~...~X~t_~/Xo~(X~/Xo)a$ "~ on w~) 

can be lifted uniquely to a field imbedding~7~:F ~-~ (~/~I~ ~%~... $~_~) (in fact, the image 

of the field V~-~(V$+) under the imbedding ~ is purely inseparable over the field ~(~ .... 
~-<)[~] ), since the extension ~(~4/Xo,+..~)(~-4/X~/Xola/{)c ~r is purely separable. 

Thus, ~ defines a generic point of the variety W l (see [3]). 

Now we can describe the first level of components. It consists of all sons of a root. 

The vertices of the first level correspond bijectively to polynomials gi. For uniformity we 

now introduce notation which will be used below in the inductive step. Let the polynomial 

gi correspond to the vertex v of the first level. Then the component Wv = Wl is ascribed 

�9 r ,@y) =~/N(qr ) where r = = = o A ge- to it in the tree of components ~f=L~ ~ = . . . .  0 ' ~o .... ~N-~ 

neric point of the component Wv is given by the equations X4/~o =t4,.+, X~_r % m-4 ' 

(Xrt/Xo~@~-'-@~tT-~4 ; we set, finally, c~qr=CJD 4 (see above). 

Now we formulate the inductive hypothesis. Let ~q~...~ ~ and all the vertices v of 

level m (and also vertices of levels less than m) of the tree of components be constructed 

already; we assume ~r~<[b . Moreover, there is constructed a certain family of homogeneous 

t / i  , ,(~O _.,(~) " ,  such t h a t  ,%~= polynomials ~;, . . . ; tpN 67[X~,.+.>)<m] . . . .  =V~ , -o  and ~ ~< ( 3 ~ )  rv 
Moreover, there is given the f i e ld  ~(~, ~ + D [ ~ ] ,  where t ,  ~+  + are a lgebraical ly  in- 

dependent over F, the minimal polynomial O ~ ( t ~ . . , , * ' ~ - ~ L ~ ]  of the element Ov over the 

f i e ld  ~'(t;4~...~l~_~ with leading coef f ic ient  .~cZ(~r)=~. F ina l ly ,  there is constructed 

a generic point of the variety Wv, more precisely, there are written expressions ( X ~ / .  
X;~+vi~(~< ..... ~ll,-m,)[Z] ' for some fixed j ,  and any j and suitable ~+i~<(d+d+§ (the 

, t o !  " . " , ~! 
numbers ~ ~ actually depend on the vertex v, but we shall not state this explicitly in 

what follows). Here X~/Xi~ are considered as rational functions on Wv, and these expres- 

sions define a field isomorphism (after suitable renumbering of the variables X0,.-~X~b),~(~/~o,..~ 
+, 

dX t# # ~ + ~+ O Under x+., ...,(• i~_m~ l~ I also by the inductive hypothesis), this 

isomorphism X~/~--~$7~ ~ ~< ~ pb-~ . Further, this isomorphism can be lifted uniquely to 

a field imbedding ~/-~(~)C~ ~' ~,4,,,.~,+~m) , i.e., to a generic point of the variety Wv. 

We also formulate estimates on the parameters Of all the elements indicated. The de- 

grees O~Xor,., {a'r(~rl~ ~q~F "< ' ~+4+ m X+t~'+ , ]~<c~+(d+~4+~{+)+d+e+ (++,~++d~,) 4 ~++l~+++W+~<+m,  + moreover 

~e~,~r.)Ts 5 does not exceed a polynomial in (~+~+~~+~) mild ~T~t,.+~T~,~r.,~ (q~%~), 

~T~,,ff,s are bounded above by some polynomial in (~{+d~+d~) ~ (here and below 

in analogous situations the polynomial does not depend on the original system, the vertex 

% f~,r(~) ) the maximal length of description of the coefficients 
v, etc.). We denote by I +i ]<~Ix!{ j ' for  a s u i t -  

able  polynomial p. 
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Now we proceed to perform the following step of the algorithm for �9 the tree 

of components. We consider the polynomials T0~-.-~K-~ and for each of them we verify 

whether it vanishes identically on the component Wv. Namely, we fix i and we substitute in 
�9 ~ . .  )1 t 

the homogeneous polynomials TS the expression for (Xi/Xo) ~ ,0~6~ where @~= ~'~0.-~7., C~gj 
�9 v o-.<i<~ ~, 

As a result we get an element of the field ~(~4),~ + " - ~ - ~ } [  e~r] If this element is equal 

to zero (in this case, see Lemma 2.7 below, fi vanishes identically on Wv), then we pass to 

consideration of the next polynomial J~L+~ ; otherwise, if this element is different from 

zero, then v is not a leaf of the first type (see above), i.e., Wv is not a component of the 

variety ~,0 = ..=~K_{ = 0 } Now if all fi vanish identically on Wv, then v is a leaf of the 

first type and Wv is a component of the variety [~o-"" =~N-I = 0} 

Now we construct ~i = 7.~ i~ ~ Using Lemma 2 1 of Sec. I, we choose N{= Kr odL.<k-~ ~. 
((k-Y) a m + "~ } vectors ~-s ~ H K , any k of which are linearly independent. For 

{ " , any vector "i= i(? )~(~-:)) we let i C~)= ~-~~ , 0,<~,<K_~ ~ We verify that at least one of the vec- 

tors oZ~ .... ~o~N~ can be taken as ~--0 ~" "'~',K-~ "/ , so that ~m+~ will not vanish identically 

on Wv for any vertex v of level m, which is not a leaf of the first type. In the opposite 

case, by Dirichlet's principle there exist at least k vectors among ~4~,,,)o~, (let them 

be o~4~..7~o~ K ), such that ~[a~)~ IC~K) vanishes on Wv for some fixed vertex v of level m 

(which is not a leaf of the first type), since the number of vertices of level m is not 

greater than d m according to what was proved above. Then all #o~ ~ # k.-4 vanish on Wv, 

which contradicts the fact that v is not a leaf of the first type. 

The algorithm considers I b ~) for ~ ~4~'~ and for each vertex v of level m, which is 

not a leaf of the first type, substitutes into the homogeneous polynomials CF>Q~[))~ ~ the 

expressions for (X~/~0)~ ~/ (keeping in mind the renumbering of unknowns made above). As ~i%+~ 

we take an element ~C~) , for which the results of the substitutions for all v are differ- 

ent from zero as elements of the field ~i~i..)~_~[ 

Now we fix a vertex v of level m, which is not a leaf of the first type and we let 

~/-~'~J~r F~ C~I,~I+~ =0} = {~f0-~-..=.l~,~=rt,m+~--O). Obviously the dimension of each compo- 

nent of the variety W is equal to n - m - i. 

We apply the construction of Lemma 2.3 of Sec. 1 to our situation. It gives us a family 

of no more than (~+~+~) elements, each of which is an (n - m)-tuple of linear forms \~-FFb 

(~ ~$LXL) where 065~ ~-~r~-~ and either ~ ~ ~ ~ ~ or of the form ~0666~ ' , if = , ~$~ 

belongs to some suitable extension of the finite field H, 0~ $ 6 ~-F~- ~ (we assume here 

and later in analogous situations, without loss of generality and for convenience of nota- 

tion, that this extension coincides with H). Moreover, the length of description of any of 

the ~S~ can be bounded above by some polynomial in n, log (deg W) (cf. the construction 

of Sec. 1 and the remark at the end of Sec. i). According to Lemma 2.3, at least one of the 

(n - m)-tuples of ~ has the property that ~/~ ~ m ~0L~='"~6~h<~\~-~b=Oj=~ and, con- 
LO~4~ 

sequently (cf. the corollary in Sec. i), this (n - m)-tuple is a common transcendence basis 

for all components of the variety W. 
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The algorithm considers all elements of the family ~ . We fix an element 

(~ ~sLX~) ~ We add the forms I~.~ ~-~t} 0~$~-~-~ (they are linear- 

ly independent by the construction of Sec. i) to a basis of the space of F-linear forms in 

the variables ~o~...~X~ and we denote this new basis by Yo,-"~ ~ , in particular, Ys = 

~gX~ for 0 ~S~ ~-,~- i As a result of taking the current step all sons of the 

vertex v will be constructed (under the condition that the fixed element of ~ satisfies 

the condition { m ~o ~:= =n ~ ~l~g=O} = ~ and for each son w there will 

be constructed homogeneous polynomials ~(~r) ~.~ ~ L~o,... ~m), ~ 4 ($~(~+4~)'~ such that 
~ ~" " ~  N 

the corresponding variety ~ =_~l~( ~u')- -l~, (%v - 0 i " Besides this the algorithm finds a 

L o . . . . .  ~ - - ' '  ~' ~ ( t4 , . . . , t~m_~[O~] .  for ~ - ~ b 4  ~ ~ ~ ,  generic point for Ww, i . e . ,  t h e  expressions C~/~0)~ ] ~  ' " 

defining a field isomorphism ~[ ""~i' ,$~m--{)[@'~r]-~ ~C~/~,-" ~m--r 'C%o~/%) ~' ~:~'~, (~/~ ~r 
The variables ~o~...?X m can be expressed as linear forms in Yo,...,Y~ and conversely. Sub- 

stituting these expressions in ~ and Q~/~o) ~#i , one can get the polynomials desired 

(where the length of description of all these elements can increase no more than polynomial- 

ly). For convenience we also represent the polynomials ~o ~'"~/N~ ~+~ as polynomials 

in Yo~...~Y~ and we preserve the same notation for them. 

We shall assume in our arguments that the fixed element of ~ satisfies the condition 

W~{Y~',~r,-~FOI=~> because otherwise the algorithm detects that this is false in the course 

of its work, and goes on to consider another element from 
! 

In what follows we shall consider the intersection of the variety W(F'), where ~=H(~...~ 

Ti~...,~-m-l[~=~(~4,,,.~-~-~ with the linear space ~={L-$~Yo--oI46~z~-4 , where ~-"~-~-i 

are algebraically independent over F (here we consider varieties as subvarieties in 

~CF -~) ). since ~{~...=Y~_~_~=o}=~ , one has that ~/(~t)~ ~ consists of a finite 

set of points, lying in an affine subspace {~0}CP~(~ (by Lemma 2.2 of Sec. I). Hence 

the zero-dimensional variety ~ L~ t) ~ ~ is defined over the field (~)~-~ 

~,~ q4f~)...~N~ ~ for Yi for ~ 4 ~ 4~-,%-~ The We substitute TiY0 in the polynomials 

roots of the system of equations 

,e <t u ..,% L '" - - (1) 
(yo,%,... o 

in projective space ~m+~(~f) correspond bijectively to the roots of the system defining 

the intersection W(~)~c~(~r) - We apply Theorem 2.3 of Sec. 2 to (i), where the role 

of F of the theorem is played by F', respectively, the role of ~)...~T~ is played by ~,...~ 

~,~...~-~-~ If the algorithm of Theorem 2.3 detects that ~(~)~ ~ is infinite or 

there exists a root of (I) with Y0 = 0, then for the fixed element of ~ the condition 

~N{~o=...=~_m_ 4 =0} =~ does not hold (see the remark on Lemma 2.2 of See. i) and the al- 

gorithm goes on to the consideration of the next element of ~ (namely, at this place the 

algorithm determines whether the condition ~Ns =0} =~ holds). 
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We consider some eonjugacy class over F' of roots of (i) and the polynomial ~f[Z] 

corresponding to this class which is irreducible over F ~ and ~r =,{ (see Theorem 2.3)~ 

Our next goal is to establish a bijective correspondence between the components of the vari- 

ety W and the conjugacy classes over F' of roots of (i), i.eo, in particular, to any son of 

the vertex v there corresponds a uniquely determined polynomial ~D 

First we verify that the elements ~4,.--~-r~-i form a transcendence basis over the 

field F for the ring A~= ~ [~4~- Z ] /{~'r(431~J, .bZ~).: ~'- 
the kernel of the homomorphism A~ F [Y~/~o," ~ /7 ] '~r 40~] in the coordi- 

�9 - ~  ~I o j-, L [ o ~  j j _  . , 

rate ring of the affine variety Wn {Yo~ O} over ~-~ (under which ~C*Yi/~, j $~4~ ) 

is the nilradical ~(AV) of the ring A v . The components w: of the variety W correspond 

bijectively to minimal prime ideals ~s of the ring ~V (see [3]; also see the proof of 

Lemma 2.9 below). The elements ~4~.../~-~-~ are algebraically independent over F, since 

they are algebraically independent in the ring ~[~i~fa~f~0}]DA~/IW~. On the other hand, 

for any ~A? and any component ~/9f~ of the variety W, there exists a polynomial 0#~16#~ 

~[24~'''~2~'~] (here ~4~,.,, ~-~ are algebraically independent over F), such that 

~f4(~4~..,~Z~_~_4~) ~ ~f~ �9 We let ~ = ~  be the product of the polynomials ~Q over 

all components WI~ of the variety W. Then ?v(Z4~..,,Z~_i_~>~(Av) (see [3]). Consequent- 

ly, ? (Z4)-..~Z~-~-4~k)=O for a suitable integral e, i.e., the family {~4~,--~ ~'~-~-4 is 

a transcendence basis of the ring A~ over F. 

We let ~=~LZ41...,Z~_~\{0}cA~ be a multiplicative!y closed subset, Keeping in 

mind that [n&'~ ~-~ for each w~, we get that the minimal prime ideals of the ring ~-~ A v 

correspond bijectively to the ideals, ~9~ and have the form 5-~,1~ (cf., e.g., [3]). On 

the other hand, ~ ~ ~ ~=~ ~.-.~_~C~ A~ and A~ is a finite-dimensional algebra over 

the field ~ [~4~...,~-4 Consequently, all prime ideals of the ring ~-~ are 

simultaneously minimal and maximal. 

LEMMA 2.5. Let ~c~4 c ? be field extensions and let "~q=~4@g AV Then there 

exists a bijective correspondence between the following three sets (we recall that \~ ~0 = 

a) components W'~ of the variety W which are irreducible over FI; 

b) classes of homomorphisms having the same kernel 5~AI~F~h~ of algebras over 

the field ~=~(t6.,,~. m (here the inclusion ~C_~ % -4 A~ is defined by the correspond- 

ences %--~Z~, 44L4 ~-~- J ); 

C) pairs, the first term of each of which is a conjugacy class over ~I=~{~4~.o~m-~-{> 

of roots of (i), and if the polynomial ~D~ ~r[~) corresponds to this class (see Theorem 

2.3 of Sec. 2), the second term is a factor ~D~[Z] of the polynomial @ which is ir- 

reducible over ~ . 

Proof. First we construct a bijective correspondence between the sets of points a) and 

b). Let Wu' be a component of the variety W which is irreducible over Fz. It corresponds 

to a simultaneously minimal and maximal ideal S ~TI' ~-fA? i I ~C D A~. , where !~cA~ is a minimal 

ideal (see above). Since ~ C(~ 4 A~/~I~ is a finite field extension (analogously to the 
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way this was proved above), there exists a field imbedding(~ A~/SI~)r ,~der wh• 

the elements ~4 ,',.~ ~-~-4 , which are algebraically independent over ~4 are mapped 

respectively into ~,...,~_~_~ Thus to the component W u' corresponds the class of homomor- 

phisms from b), containing the composition of the natural epimorphism ~'~A~ �9 $-~A~/ 

S-~ I~ and the field imbedding just constructed. 

Conversely, the kernel of the homomorphism from b) is a maximal ideal ~-~ ~ ~-4 

and to it there corresponds the component Wu' It is straightforward to verify that the cor- 

respondences are well defined and that they are mutually inverse. 

Now we construct a bijective correspondence between the sets of points b) and c). Sup- 

pose given a pair from point c). The field extension ~C~ [Z]/C~) is finite, from 

which it follows that there exists a field imbedding ~ [Z]/C~)C~ which is the iden- 

tity on ~. By Theorem 2.3 of Sec. 2, applied to (i) over the field F', if ~ (~)= 0 

and all the more +(eL)=0 ~ then ~1[~r~]=~1[~(~)=~l[C~K.m/~o)~.-~(~/~o)~m , where (~o: ~-~'"~I~ 

~"t+4~tl' is a solution of (i) ( ~o~0 since W(~{~0= .... Y~_,t_4=01=~ see See. 2), and tak- 
I 

ing the composite of this field with the field ~'6, we get that ~[~]/C~)=~[.~E]= 

/~_] is purely inseparable. From this it follows that the imbedding indicated above 

~_,, o ,...> o). ] ~ can be extended uniquely to an imbedding ~: ~ [~_,~ 

~y hypothes is  and Theorem 2 . ~ ,  the  v e c t o r  (~;o:~_~...:~) is  a roo t  of  ( 1 } .  Conse- 

q u e n t l y ,  since ~o ~ 0 according to Lemma 2.2, there exists a unique homomorphism ~ : ~-:I~___~ 

~[~_~/~o,,..~/~o ] of ~ -algebras, under which 5~)~-~/~o1 �89 Thus, with 

the pair from point c) considered, we associate the composition 6"o~ 

Conversely, suppose given a homomorphism ~:~-dAIF--~ over ~ . Then the vector of 

images (I l~(~_~:..,: c~ C~m~ ) is a root of (i), belonging to some conjugacy class over F' 

of roots, to which corresponds a polynomial ~b~ ~f[~] Moreover, for suitable ~ 

such that ~( @~I = 0 , one has the coincidence of fields F([@~] = ~ [~ (~_~-~, 

""~ C~) ~vm] . Consequently, qb~(@~m~=0 for some factor ~D~ ~ [~] of the polynomial 

which is irreducible over ~ . Thus, to the class containing �9 there corresponds the 

class of conjugate roots considered as the first term of the pair and the polynomial d~ as 

the second term of the pair. It is straightforward to verify that the correspondences con- 

structed are well defined and that they are mutually inverse, which completes the proof of 

the lemma. 

The remark below is due to A. L. Chistov and is not used here. 

Remark. One can apply Lemma 2.5 to an arbitrary variety U (instead of W), given by a 

system of equations ~i ..... ~ =0 , under the condition that ~N{Y~-.=Y~.~_F~= ~ and dim U = 

n- m-- i. Then the role of (i) is played by the system 
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Here in point a) of Lemma 2.5 it is necessary to consider the set of all components Wu' of 

highest dimension n - m - i. The proof is essentially unchanged since S ~ [2 ~ ~ for any 

prime ideal ~C A~ if ~ t ~  (A~T/ 

As a consequence (it is necessary to apply Lemma 2.5 to the case when F~ = F), we get 

the required bijective correspondence between the components ~/~fl of the variety W and the 

conjugacy classes over F' of roots of (I). Moreover, from the proof one can get a represen- 

tation of a generic point of an arbitrary component V/~s (let the polynomial ~=~D~6 

) correspond to V~I according to point c) of Lemma 2.5 and ~r< ( ~IF0 =0 " Namely, accord- 

ing to Lemma 2.5, to the component ~If~ corresponds a homomorphism B-~A~s P'-~' of 

F'-algebras with kernel ~-~ !~ This gives an imbedding of fields B "~ Aqr/8 -~ n~1 ~ 

which is the identity on F'. This imbedding can be extended uniquely to an imbedding of 

fields 6~:~ ~ C_~P ~. Then, as in ~he proof of Lemma 2~ for the image under ~he 

a c : i o n  of  of the  ubfield �9 . ~_~... one has the 

coincidence of fields ~ [01~i]=~ [ (~_~)~ ~ , ,  ff(~{~ ] And, finally, there is isomor- 

phism 

(2) 

obtained from the preceding isomorphism, in which the imbedding o participates. Under the 

isomorphism (2), the elements Yj/Y0 are considered as rational functions on ~J%~ . This iso- 

morphism also gives a generic point of the component ~q ~ 

Now we make more precise to which components W~q of the variety W there correspond 

sons (we shall denote them by wz) of the vertex v. For this it is necessary to verify 

whether ~4C~/~ , for some leaf vz of level no greater than m of the first type (in this 

case to the component ~f~ there does not correspond any son of the vertex v). In order 

to verify this inclusion, the algorithm substitutes into the polynomials ('~/o~))~ . . . ~ 

Ng (here ~ )  ~,~+~ ~ ) the expressions for (~/~o)~/~ 0 ~ ,  from (2) (after 

replacement of the variables Xo~...~X m by Yo,..~ ). The inclusion ~/Ig~C~ holds if 

and only if all N 2 + 1 elements of the field L qf~j obtained are equal to zero (see Lemma 

2.7 below). If ~/~/~ for all the v I mentioned, then the son w of the vertex v corres- 

ponds to Ww. If v has no sons, then v is a leaf of the second type. Thus, all the vertices 

w of level m + 1 are constructed; in Sec. 4 the algorithm constructs for each component Ww 

a system of equations defining it. Below by w we denote a son of the vertex v. 

4. Construction of a System of Equations Defining a Componen! 

One says that the component Ww is defined, over the field ~-9 if the ideal "$~C 

~[~a}...~' of the affine variety ~/~{~0} has a system of generators from the subring 

~9 g{~.--~$] (here it is essential that ~/~ ~o=0} ). 

LEMMA 2.6. The component Ww is defined over the field ~-9 , where ~ =~_~&~%~ . 

1795 



Proof. The assertion of the lemma is equivalent to the fact that the natural homomorph- 

ism ~(~q~f(l~[~4r..~l)--~ is an isomorphism. There is an isomorphism ~-~t~/Yo �9 )'") 

�9 / Y o ] -  ~q; N ~  ] Consequently, the assertion of the lemma is equivalent k...,<l 
" - '  

to the fact that the composite homomorphism ~:~%~-~ [ '~ /~, , . : . ,  ~'~ 

, . . . - ,  
~ ~--- ~ | [~ =F(~4,...)~_~r . ~). (the first isomorphism in the chain 

is induced by raising to the qv-th power). The last ring is the direct sum of fields, since 
9 

the polynomial ~ is separable. Consequently, the ring ~F~-~ has 

no nonzero nilpotents. 

On the other hand, the nilradical Z~i(~f)=~ax/(~| (~97(~-9[~4,.-.~m])), since 

an arbitrary element ~%~ can be represented in the form 6b=~L~b~ " where 6b~ 

~ [~4s is a finite system of generators of the ideal 7q~F , the polynomials 

~Ls ] , and, consequently, 6L~@m#-~(]~,N~-9-[~, ~m]) for some s. From this 
~.. -- -~ ~ ~ "''~ 

it follows that~e~5)C~(~ [~4A,...)~o] ) , i.e., ~6~(~)=0 . Obviously, the 

homomorphism ~ is surjective. The lemma is proved. 

re' For the construction of polynomials ~/?~,).-. ~ , defining the component Ww we formu- 

late the following basic property of a generic point. Let @9= ~ ~,~ 
r ~-~4~,< �9 ~ 

LEM~ 2.7. Let A] be a homogeneous polynomial. Then ~/ vanishes iden- 

tically on the component Ww if and only if ~/~ (4)Y4/~o)'")~/~0) =0 in the field 

[ 0% ]. 

suitable polynomial ~e~ [Yo,...~Y m ] Using the expressions from (2), one can find the 

~v Ym/Y0) in the field ~'[0~] =.~ (~4~...}%~_,$_~) [ 0~] The poly- value of q~ (~Y4/Yo~...) 

nomial %{ vanishes identically on the component Ww if and only if O=~f(4/{~/Yor~ e 
~ (~/r . The latter is equivalent to the fact that 0=~/4~/~,~ ~Y~.~.J~,~{~.~) , 
~,/L,,aY, mlr,,t'l --  (" ~ " -  o.'". m-.+-., _, ~.r+-,,., .i ; ' " .  
k~/~o)t)e, L~ according to the isomorphism (2). This completes the proof of the lemma. 

The following assertion was actually proved, for example, in [14]. 

LEMMA 2.8. Let ~CP~(~) be a variety of degree ~ ~  , defined over some in- 

finite or sufficiently large finite field K and ~cWc~ m , where W is a projective vari- 

ety. Then there exists a homogeneous polynomial ~k[Xo~...~X~] such that ~(~)~<a 

and g vanishes identically on U and, moreover, for any absolutely irreducible component 

W, of tl~e variety W, which is not an absolutely irreducible component of the variety U, 
. the dimension a~(~/4 fl i ~ = O } ) = ~ O A / 4 )  -- i 

Proof. Let ~='~;~ be the decomposition into components which are defined and ir- 

reducible over K. We prove the assertion of the lemma respectively for each component Ui. 

As a result, we get polynomials gi and after this one can set ~=,~$, keeping in mind that 
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~(~.)=_~- ~ ['~2~,'~) . Hence in what follows, without loss of generality, we shall assume 

that the variety U is defined and irreducible over K. Then all absolutely irreducible com- 

ponents of the variety U have the same dimension~ 

We choose in each component W~, which is not a component of the variety U, one point 

~f4~/4 \r~ From considerations of "general position" (cf., e.go~ [14]) it follows that 

there exists a (surjective) projection ~:~--~(%)+~) with center in a suitable (n - 

dim U - r)-dimensional plane ~Q ~ , defined over the field K, such that ~ t ~ = ~ )  

and ~u(~qAF~>~-~) for a!Icomponents Wlo For convenience of notation we shall assume that 

~u(X0:--.:X~o:.-.:X~+~. Moreover, without loss of generality we shall assume that 

 • 
Since U is defined over K (cf. the proof of Lemma 2.6), the homomorphism ~| 

is an isomorphism <here and later, are considered as rotional 

functions either on U or on ~----~))o To the dominant morphism ~u:45~---~) corresponds 

the dual imbedding of rings ~ [~)~ {~o~ O}]=~[X4/~oF"~.+4/X~ ~ ~[~ f~70}] 
- ~ ~ 

Our next goal is to show that the homomorphism ~: N@~i[XJXo~..vXi~/Xo]-'~i[~(~/a{~o~ol] 
is an isomorphism. Obviously, ~ is an epimorphism. On the other hand, the homomorphism 

K|174 ...~X~/Xo] is a monomorphism due to the fact that the 

tensor product over a field preserves injectiveness [3]~ It follows from this that ~ is also 

injective and, consequently, v(u) is defined over K (see the proof of Lemma 2.6)~ 

Further, ~(u) is a hypersurface in P~(%)+~ and let ~Ek [~0)...~i~)+~] define 

~(u). Obviously, i~~(~))4~)4~ [3]. It is straightforward to verify that the poly- 

nomial g is the one sought. This completes the proof of the lemmao 

COROLLARY. Let ~cAmQ~l be a variety defined over the field K, all of whose com- 

ponents have the same dimension n - m. Let us assume that the linear forms ~{~ .... 

5~+46 K [X6...,Xm] have the property that the rational functions h~...~_~ form a 

transcendence basis for all components of the variety U. Then the ideal [C~ [74~ ~ ..o~k~_~+4] 

of relations on U between is principal and has a ~enerator (~)= [ ~ where 

~D'~ < [~4~ ..... Y~-~,4] is a polynomial of degree i~ ~ ~ ~ If U is irreducible 

over K, then ~ is also irreducible over K. 

Proof. We consider the projection 6~:~--~A ~-~§ , defined by the formula (X4j,~,~ 

X~--~(u~,.,~_.++4)- It follows from Lemma 2.8 that the variety ~(u) is defined over K. 

the hypothesis of the corollary, any component of the variety ~(u) has dimension (n - m), 

and, consequently, ~(u) is a hypersurface in ,~m~+i ~ defined by some polynomial d~ 

[~4~,,,~Y~_~t.~] of degree ~(~)=i~(~(~))41~(~) (see the proof of Lemma 2.8). If U is 

irreducible, then ~(u) is also irreducible, and, consequently, ~ is irreducible, which 

completes the proof of the corollary. 

By 

We proceed now to the construction of the required family of polynomials ~qfo(a~ I) .... ~/$*~), 

where N ~< ~5~_(~+~) ~ The polynomials ~0~%r~'---)~f~ ~y form a basis for the linear space 

�9 f over the field F of all homogeneous polynomials q~ ~[Yo~...~fI~] of degree ~ ~(~+4) 
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(we recall that r ~/~f~ ~ ~ * ~  ), such that ~(~o,...~):~(~...,~ 9) for some polynomial ~ 
f ! 

~[~o,...~m]21~=~(~+~) and suchthat ~(4,Y~/~o~...~m/yo) 0 in the field ~ [@~ff] (the 

latter, according to Lemma 2.7, �9 is equivalent to the vanishing of the polynomial g identical- 

ly on the variety Ww). To construct ~$~).-.~I~ ~r) the algorithm solves a system of linear 

equations with coefficients'from F, in which the unknowns are the coefficients of the poly- 

nomial g, using the expressions for (Y~/~)~ from (2). The number N obviously does not ex- 

ceed the dimension of the space of all homogeneous polynomials of degree ~(m+4) , i.e., is 

not greater than (~i* ~ ) < (~ (~+0) ~ 

According to Lemma 2.8 (we apply it to the different situations ~=~ ~=~=~ U { ~I 

for arbitrary points ~l~m(~) \ ~ of the variety Wq~F={~..._-~NOF)=0 } , in view of the 

fact that ~e~/qg $ ~(~+I) by what was proved above. This contpletes the description of the 

inductive step of the algorithm for constructing the tree of components. 

Now we proceed to get the upper bounds on the length of description of the coefficients 

of the system of equations constructed defining a component, a generic point, and the time 

in which the algorithm works, formulated in Sec. 3. 

We need the following commutative diagram of rings: 

~ A~ 

~r ~ ' / "  . . .  

where ~=~ (~,~4,.--,~m~ and the polynomials ~i are obtained from hi by substituting T 
instead of h. The ratios Yi/Y0 are considered as rational functions on Ww. By the action 

of the epimorphisms ~4 ' ~ the elements ~'"~n are mapped into ~/~o~ .-.~'~ /~0 

respectively. We consider the multiplicatively closed set ~=~[TI~...)~s \(~i C_~ A~ Then 

the rings in the left column of the diagram are the localizations of the corresponding rings 

from the right column with respect to S and ~-I~e~=~%~. Consequently, between the 

prime ideals which are contained in k~ and ~r ~ there exists a bijective correspondence, 

preserving the inclusion relation (cf. [3]). Our next goal is to prove that ~%~c A~ 

is a minimal prime ideal. For this it suffices to show that ~e%~m is a minimal prime 

ideal. 

We consider another commutative diagram: 

Keeping in mind that the variety ~r ~ is defined and irreducible over ~-~ , and, 
consequently, ~'~'~[~N{y o ~ 01] is an integral domain, we get that ~ @'3 is a prime 

ideal. Analogously, ~6~Z and ~%~ are also prime ideals. Moreover, since W~ff~ 
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f~o  ~ 0 } i s  a component of t he  v a r i e t y  ~ = - . - = ~ m ~ = O t  ' '  one has ~ ~ c A 5 i s  a 

minimal  pr ime i d e a l .  S ince  in  t he  l a s t  d iagram the  h o r i z o n t a l  arrows g ive  i n t e g r a l  p u r e l y  

i n s e p a r a b l e  e x t e n s i o n s  of  r i n g s ,  t h e r e  e x i s t s  a b i j e c t i v e  c o r r e s p o n d e n c e  between t he  pr ime 

i d e a l s  of t he  r i n g s  A= and A 3, and t h i s  c o r r e s p o n d e n c e  p r e s e r v e s  the  i n c l u s i o n  r e l a t i o n  (o f .  

[3]). Consequently, Ke~6~ c A~ (it corresponds to K.er 6~3 ) is also a minimal prime ideal, 

which completes the proof of the following lemma. 

LEMMA 2.9. ~4 '~6~6~ , and ~e.z ~3 are minimal prime ideals. 

This means that ~ is the ideal of some component Uw defined over the field H (the 

latter follows from the fact that the field H = Hq is perfect) and irreducible over H of the 

variety i~=~ .... --~m~4=OIc~ ~+g+4 (H) We recall that it follows from Theorem 2.3 of Sec. 

2 that the primitive element constructed earlier, ~ar=a~a.~a(ya/y0)  , where ~ ~ H , 

c o n s e q u e n t l y  @.$_(@~) a 9  $ ) (~(aA) , where ~.~ =- ( r b )  C ~ �9 

Now we apply the corollary to Lemma 2.8, setting u=u w, K = H in it, and taking as the 

/ It follows from linear forms ~4~...~Z+m_~ respectively T4,...,Tg~/~,0~...~m_,,_4/~ o ~w 

the corollary that ~(T4,...,~$~4/ o~--.~ ~_m_i/~(o ^U)~ ~U~r on Uw, where O#r [Z41... ' 

~'m]" is a polynomial which is irreducible over H and ~ b 4 d ~ @ , ~ 4  d . V ,  e. 

a Cg~a, ga+a,d~-{} _ according to Bezout's inequality (cf [7]) {/[.~+~e~g,,...~TgaT,~,,...,Z~ ~1 ,, , , ' . ,  e . g . ,  . 

We r e c a l l  ( s ee  I n t r o d u c t i o n )  t h a t  t he  po lynomia l  vfF({4,...,~g_me~)[7 ] = ~ ' [ ~ ]  can be 

r e p r e s e n t e d  in  t he  form ~ = ~ < a e S e ~ b . J ~ '  0 where gg.j.~.~[T4,...7,& ' *{r. . ,~m_~_t] f o r  a l l  i ,  

j ,  and the  deg ree  deg (b) i s  as smal l  as p o s s i b l e .  The po lynomia l s  a~i: ~ a re  u n i q u e l y  de- 

The degrees de ( ~ r ) = ~  ~ea �9 0~.- , f i n e d  up to  f a c t o r s  from H*. ~T4""~T&%9""?~e~ "~a { drr'lr"~Ts ~'m-~ ( ~a ) 

~T~,...,~Z{~,...,+~_,,_,( ~. )} We c o n s i d e r  t he  po lynomia l  q~UJ(.Z)=diaac'(T4r..~TZ,~4,.../c~.~.,,ZgT) ~ 

~ " [ ~ ]  . The deg ree  w i th  r e s p e c t  to  the  v a r i a b l e s  T4,...tT t 4g4,...,~.~-m.- ~ of any f a c t o r  

~"{~['! which is irreducible over F and with leading coefficient ZC=(~))= ~ can be 

bounded above by some polynomial in ~. ~ ,  ~ according to Chapter I of [4]. Consider- 

ing that ~U)(@~)=O , we get that ~(~)[ ~) = 0 holds for a suitable divisor ~.z 

~ [~ ] of the polynomial ~[~) which is irreducible over F and with leading coefficient 

~C~(~ = ~ The elements ~ 4 , ' " ~ - ~ - ~  are algebraically independent over the field F, 

so dp{~) coincides with the polynomial ~ (constructed previously in Sec. 3; ef. (2)) up 

to a factor from F*, and since ~E (~('~)=s ~r162 one has qb@)_~. 

Now for each g-~b4~4~ we apply the corollary to Lemma 2.8, again setting U = Uw, K = 

H, and as the linear forms ~4~..~.)~ ~-+~-m/ we take %~.,.,Tz~Y~/Yo,.,.,y~.~_~/yo,ys o. 
It follows from the corollary that qb~(T~p..,TglY~/Yo~ ...~(~.~.~/~/=~ Y;/~=0 on Uw for some 

polynomial 0r ~ [~4,...~s which is irreducible over H, such that o[e~D;g 

~ i~0-~c{~(~+~+d~_{)~+~ . According to Theorem 2.3 and (2) one has(Y~/~o)~.~ f [0~] $i 

~here ~_ ~ is as small as possible, so (~'t 'Or~/~o)as ) in the ring 

~[~ 4~] [ ~] (analogously to the way this was done above, we represent the elements of the 

latter ring in the form 
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i" e$) 

It follows from this that ~L~r247 Further, again according to Chap- 

ter I of [4], one can assert that ~T~r_~T~)...#~_~_~(y~/~o)~g can be bounded above by a 

polynomial in ~e~D~)~{4~ ~e~ ~(~) , and hence by a polynomial in (~+~d + ~Z)"~+~ , by 

virtue of what was proved above. 

We turn now to the bounds for the length of description of the coefficients from H of 

all the rational functions constructed and the degree i~T4,.,.aTbi~Yd(~). According to the 

inductive hypothesis, ~ ( ~  ~~)~+~)P((~+~I~I for a suitable polynomial P, inde- 

pendent of m. Then, applying Theorem 2.3 to the system (i), we get that ~(~D~)~Y~/ 

yol~J can be bounded above by ~3=((~4+~+~(~+~4+~)~)+(~ + ~+~I~+~((~+~4+~I~+~ 

(~#~+~p((~+~+~(m.4~) for a suitable polynomial PI- The application of Theorem 2.3 of 

Sec. 2 and the construction of ~# and (Y;/Y01~ J in Sec. 3 are effected by the algorithm 

in time which is polynomial in _ ~ 4 _ ~ 

in time which is polynomial in ~I~+~4+~+~)(~+~). 

We recall that then the algorithm in See. 4 constructs a basis q~)...p V~ ) of all 

solutions of some homogeneous linear system with coefficients from the field F (see above 

the description of the algorithm). The unknowns in this system are the coefficients of the 

polynomial g, so the number of unknowns is less than (~(~+~))m+~ The equations are ob- 

tained as a result of substituting the expressions for (~/~o)~Y ~ in the polynomial g and 

setting the coefficients of ~6'"" )~-4~ ~/~ in the expression obtained equal to zero. 

By what was proved above, the degree of the rational function ~4/~o~...~ ~/~o)~ ~6"'~ 

~-4) [ @~f] with respect to ~r..,• can be bounded above by a polynomial in ~+~4+ 

~)~+~ Thus, the number of equations of the linear system considered can be bounded 

above by a polynomial in (~+~+~0~+~)fm-~) . The degrees with respect to ~,.,bT~ of the mat- 

rix of coefficients of this system are bounded above by a polynomial in (~+~4+~) ~+~ 

The lengths of description of the coefficients from H of this system can be bounded, accord- 

ing to what was proved above, by ~((~+~4+~ ~§ for a suitable polynomial P=, inde- 

pendent of m. 

From this, according to Cramer's rule, it follows that ~,..~Z~ is less than a poly- 

nomial in (~+~+~(~§ for any 0~j~ �9 The lengths of description ~fi0~ 

~,~((~+~4§ ~ (~4+~+~)pC{~+i4+~z)(~§ ~} for a suitable polynomial P~. The al- 

gorithm solves the system in time which is polynomial in ~3(~+~.~ ~ (cf. [21]). 

At the end of its work the algorithm returns from the coordinates {Yi} introduced earli- 

er to the original coordinates {Xi}. For this we need the following lemma. 

LEMMA 2.10. Let Ww be a variety, irreducible over the field F, and let the isomorphism 

(2) define a generic point of it (cf. Sec. 3). Further, let ~o)---~-~ be linear forms 

in ~o,...)Xm with coefficients from F, where U0 does not vanish identically on Ww. Then 
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a) if ~4/~,...,~/~0 are algebraically dependent on Ww for some s, then there exists 

a homogeneous polynomial 0~/~[~o,..;~] such that ~/~e~l~/%~ and ~(~,o..~J~S)~- 

0 on Ww; 

b) if {~/~o~...~_~_~/~ol is some transcendence basis for the variety Ww over F, then 

over ~'~ t '  the element (~.m_.l'~,l ~" is separable.=~# the field ~(~j/~,,..~ , where ~ ~ .  

( ~  ~.~ ~'~f when ~)0 or ~ if char (F) = O. 

Proof. a) We can assume without loss of generality that ~,...~ are linearly inde- 

pendent on Ww over F because, if not, a) is trivial. According to the proof of the corollary 

to Lemma 2.8, and according to Lemma 2~ there exists a homogeneous polynomial 0 ~  

~-~[~or") ~s] such that ~e~(~) ~ V ( ~  and ~(~o~..~ =0 on Ww~ Then the polynomial 

~=~# satisfies the requirements of point a)o 

b) We consider a polynomial 0~[~,.~.~ ~_~ ] such that ~(~#/~.~.~/~=)=0 

on Ww and ~e~%~ ~ v ~  , which exists according to point a). Then the exponents of the 

variable Zn-m in this polynomial cannot be divisible by ~+~ (when ~ > 0 ), from which the 

assertion of point b) follows. .' 

The algorithm, for each component Ww, finds some transcendence basis of it of the form 

X~/Xio>o..~X~s/Xi0. First of all, the algorithm chooses some ~o not vanishing identi- 

cally onWw~ After this the algorithm constructs by induction on s a family of rational func- 

tions {%il/~r..)~s/~ol , algebraically independent of Ww over F. Let a family, consisting 

of s such functions, be constructed already. The algorithm considers ~$~/~io~i~r 

successively, and verifies, for each of these functions, its algebraic dependence with 

{%~/~jo~...~.~5/~o } on Ww. If ~j~/~..,~s/~o~ ~is+~/~ are algebraically dependent on 

Ww, then there exists a polynomial 0~-9[~%~.o,~S+~, such that ~r and 

is equal to zero on Ww, according to Lemma 2.10a)o Consequently, 

the polynomial ~@ , if it exists, can be found with the help of substituting in ~ the 

expressions for (X~/~o)~ v from the generic point (2), setting the coefficients from H of 

the monomials in t4,...,~, ~, ~4, ~ / . . .~_ j~  @~.. in the expressions obtained equal to zero, and 

then solving the system of homogeneous linear equations obtained over H. The unknowns in 

this system are the coefficients from H of the monomials in ~4~..,~Ts of the 

polynomial ~ (we use Lemma 2.7 here). 

Now we renumber the indices so that ~g--~[ , 0~ ~ ~ ~-~-~ It follows from Lena 2o10b) 

that there exists a primitive element 8w, such that ~ [@~]V~(X~/~o~...~_~/~o~ (~e~/~= ""~ 

(~ml~o)~#~ To get 6w the algorithm constructs, analogously to Sec. 2, a sequence of elements 

~ ~(X~/~-- 0~ _(~t-m.+4) If ~(L) is already constructed, then we consider ~ > 

~[~ ~ 0~ ~+~" and {dj} are pair- ~ + ~ of the elements of the form ~+~(~[+{/~ where 

wise different elements of the field H~ For each of them the algorithm finds the minimal 

polynomial over the field ~(~/~o~...~/~ ) based on what was just said. As ~+~I 

one can take any of the elements of the form @t~+~(~/~o~, whose minimal polynomial has 

highest degree. Finally, we set @~= @~) 

Now we turn to getting an estimate for the procedure of returning to the coordinates 

{Xi} described. In order to estimate d~r..~T$~, it is first necessary to solve a sys- 
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tem of linear equations in which the unknowns are the coefficients from F of the monomials 

in ~6""~ ~S+~ of the polynomial ~. Then ~r.~$~ is bounded above by a polynomial 

in (i+~4+i~l ~-~§ , analogously to the way the degree g~,'",?&[%~i ) was estimated above. 

The working time of the procedure described is bounded above by a polynomial in the sizes 

matrix of the linear system over H, which is solved in constructing ~9 and of the of the 

minimal polynomials. The number of unknowns in these systems is less than a polynomial in 

d~,..i~S+t(/~)~'~ d~Tl~...,~s i.e., a polynomial in (~+d~+d~l~(~-~)~§ The number 

of equations in these systems is not greater than a polynomial in 

v , ~ ] ~ + r l , - m , , , I  ~ '"~ "~ ,- '_L ~ t l . - ~ + ~  - ~r ' "  ,c 

Thus, the working time of the procedure described for returning from the coordinates {Yi} to 

the coordinates {Xi} is bounded by a polynomial in -~(~+~+~(~-~)~) and M 3. 

In conclusion, at the very end of its work, the algorithm chooses all components which 

coincide, corresponding to leaves of the first type of the tree of components. For this, 

for each pair of components obtained, it substitutes the expressions from (2) for a generic 

point of one of these components into the system of equations constructed defining the other 

component, and conversely. By Lemma 2.7, the components coincide if and only if the results 

of all these substitutions are equal to zero. 

Now we summarize the results of the recursive application of the algorithm described 

in the course of Sets. 3 and 4 in the following theorem, using the notation introduced at 

the beginning of Sec. 3. 

THEOREM 2.4. An algorithm is constructed which finds all the components which are de- 
f 

fined and irreducible over ~-~ of the variety [~(~o)..,~X~) ..... ~_~(~o,...~)=OIc~'iF) 

(we assume without loss of generality that r ). Namely, for any components 

Wv of dimension ~g~W~=~-wu the algorithm gives a generic point of it, i.e., an isomorph- 

ism of fields 9~ 

(x,./xio; ' ) 

for suitable 0g~o~<~u ,0~<i~<...<i~_~<~ , where X~/Xio are considered as rational functions 

on Wv and ~-~Xi~/X~, , under this isomorphism (moreover ~<~[~+~1+~"zc["~ when ~> 0 and 

~J=~ , when char F = 0). The elements ~4~."~ ~m-,~ are algebraically independent over 

F and ~r~-0, where c~"~r..~_,~)[~ ] is some separable polynomial which is irre- 

ducible over ~(i~,...,~m_~ with leading coefficient s and ~e~(~D1r)~<~e@ ~<~ ~. 

Moreover, the algorithm constructs a family of homogeneous polynomials ~f~),...q~ 

F[Xor.,,X~],~<~m),~ such that ~/%~--~=...=~)=0}. The degrees ~ ; , (~), 

d~T4, '~,*4r ,%(~ are bounded above by some polynomial in (~+d~+dr "~ ; the degrees 

~TI>..,T6~ ~/~(?)) are bounded by a polynomial in [~[+~+~r~{~-,~+~ and ~Xo~..X,(~I,,<(~+~i+ 
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iz]md~d4 f o r  any i ,  j .  The l eng ths  of  d e s c r i p t i o n  ~(~),~[Xi/Xjo]~f~),~(~ [q)) of  the  c o e f f i -  

c i e n t s  from H of  t h e  cor respond ing  e lements  do not  exceed (MCMg+g) P~d+dt+d~) fo r  a s u i t -  

able polynomial P. Finally, the algorithm works (in finding Wv, under the condition that all 

components corresponding to vertices of level less than m have already been constructed) in 

time which is polynomial in ~(~+~+~m~+~ ~+~) Thus, the total working time of 

the algorithm for finding all components can be bounded above by a polynomial in ~4~Id+d4+ 
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