COROLLARY 2. If #e@Q[m,..,%,] and #® >0 for any x»<B* , then Hu)>1/y..

Proof. The function f achieves local minima and, in particular, a global minimum at

its critical points. If KeR" is the set of critical points of f, then the set Y=(Kx

()Y <R"' is an algebraic variety, defined by the system 05/ 0= = 0/ mpy =0 , $ = Fyry

The set of points defined by the system af/ax4==n.£=3f/8xﬁ=0,§=?2%% f(x) is an algebraic sub-
variety of the variety V, and by Corollary 1, contains a point m@=(xfé-q xf. )  such that

| x:‘l«ﬂ | > '1/3' ‘
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FACTORIZATION OF POLYNOMIALS OVER A FINITE FIELD
AND THE SOLUTION OF SYSTEMS OF ALGEBRAIC EQUATIONS

D. Yu. Grigor'ev ' UDC 518.5+512.46

An algorithm is constructed for factoring polynomials in several variables over

a finite field Fqiﬁ, which works in polynomial time in the size of the poly-
nomial and q. Previously this result was known in the case of one variable. An
algorithm is given for the solution (over the algebraic closure F of the field F)
of systems of algebraic equations §;=‘-*=§K=O. where Svu,§KgF'£X°“.an3 with
working time of order L“?(W4t)(w+1) , where L is the size of a representative of
the original system, % is the degree of transcendence of the field T over the
prime subfield, q = char(F). Previously the estimate LZW(W+Q was known for

2 = 0.

INTRCDUCTION
In the present paper we give algorithms for solving two problems of computational com~
mutative algebra, the estimate of whose complexity is better in order of growth than those
known previously, In Chapter I an algorithm is described for factoring polynomials in sev-

eral variables into irreducible factors over a finite field, which works in polynomial time.

Translated from Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo
Instituta im. V. A. Steklova AN SSSR, Vol. 137, pp. 20-79, 1984.
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In Chapter II an algorithm is constructed for solving systems of algebraic equations of arbit-

rary degree, working in subexponential time.

The problem of constructing an algorithm for factoring polynomials into factors goes
back all the way to Gauss. Up to now it has’attracted the attention of many mathematicians.
The Kronecker algorithm is widely known [1]. Unfortunately, Kronecker's algorithm, as well
as all other algorithms known until most recently, required exponential time (in the length
of the description of the original polynomial) in general. The first step was made by D. K.
Yaddeev and independently A. I. Skopin at the end of the fifties for factoring polynomials
in one variable over a finite field F==E§ 3 in the literature this algorithm is known as Ber-
lekamp's algorithm [5)}, which he published in the sixties. After this, in the course of near-
ly 20 years there was no essential progress. Only in 1982, Lenstra et al. [20] constructed
a polynomial algorithm for factoring polynomials in one variable over the field of ratiomal
numbers F=@ , which reduced the factoring to the search for a vector of sufficiently small
norm in a given lattice over the ring of integers 4 , with subsequent application of Berle-
kamp's algorithm and Hensel's lemma. Independently, in [15], the reduction of the factoring
of polynomials in several variables over F =Q to the factoring of pelynomials in two vari-
ables was obtained, which was polynomial for a fixed number of Variables, and, in addition,
in [16] a polynomial reduction of the factoring of polynomials in two variables over F==@;
to the factoring of polynomials in one variable was found. Finally, an algorithm of poly-
nomial complexity for factoring polynomials in several variables over a finite field was
first given by the author in [8], and an account of it constitutes Chapter I of the present
paper (cf. Theorem 1.4 of Sec. 3). Afterwards, Chistov constructed an algorithm of poly-
nomial complexity for factoring polynomials in several variables over global fields [8] and

extended this result to fields which are finitely generated over their prime subfields [4].

In Chapter I we consider a polynomial &G.FqE;£X1““,XMJ. Here we assume that
de%XL(§)<:m,i<Jﬂsn. Then f can be represented by the vector of length r® of its coefficients
from the finite field fg% » The bit length of the description of elements of the field
qu' does not exceed iﬂfoaaq . Hence, by the size of the polynomial f in Chapter I we mean
the quantity ’bw8&{£%aQ e In Chapter I an algorithm is described for factoring f into fac-

tors which are irreducible over F@m in polynomial time in the size of f.

Section 1 of Chapter I is preparatory for Sec. 2, although it has independent interest.

A polynomial algorithm is given for finding a minimal vector in a lattice over the ring

Fq%[ﬂ .

In Sec. 2 a polynomial algorithm is constructed for factoring polynomials from

qu[xljx] *

In Sec. 3 the proof of the basic result of Chapter I is completed with the help of re-

duction to the case of two variables (n = 2).

The problem of solving systems of algebraic equations also has a long history. The fun-

damental possibility of solving systems over an algebraically closed field was already estab-
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lished in the 19th century on the basis of elimination theory (cf., e.g., [1]). Many papers
were devoted to this problem, especially in the last two decades in connection with the de~
velopment of programming and the theory of complexity of computations. In a number of papers
(cf., e.g., [14]) an upper bound for the working time was found in which the quantity {2*
appeared, where n is the number of variables, and (d — 1) is the maximal degree of the equa-
tions. Despite the immense progress in algebraic geometry, up to now there has been no suc-
cess in overcoming the considerable difficulties in the path toward lowering the estimate

mentioned.

The first essentially better estimate was established by Lazard in [18] in the case when
the system has a finite number of solutions in projective space (i.e., the variety of all
roots is zero-dimensional). On the other hand, one can consider the algorithm from [8] as
an algorithm for solving systems of algebraic equations in the case when the variety of roots
of the system is a hypersurface, i.e., has codimension one. This algorithm is used repeated-
ly in the present paper. One can even consider the present paper as continuation of [8].

We note that the algorithm from [18] is also based on the factoring of polynomials.

In Chapter II the author's algorithm for solving systems of algebraic equations with
an estimate of complexity which is polynomial in &w3 is described (Theorem 2.4; cf. also
Secs. 2-4 of [9, 10]). Further, Chistov constructed an algorithm with an essentially better
estimate which is polynomial in 4" (cf. Secs. 5-7 of [10]; also [4]).

Let the ground field F=H(T,,... Tyl , where either H=Q or H=Fe, ﬂ,=c)r|m, (H) the
elements T4y T being algebraically independent over H; the element 4 is separable and al-~

gebraic over H(T,..,Ty) , and by ¥= 3 (\{ig’)/\p@)zieH(T‘,_,‘,Tt)[z] we denote its minimal poly-
Osi,<de%z(\(z)

nomial over f‘(Tn.n,Tl) with leading coefficient &cz(@)=1 , where TSZV@EH[nruﬂi] and

d&%(?@5 is the smallest possible. Any element J§&F[X,...,%,] can be represented uniquely

in the form

§= o ) 8 H i«o“. ("
OQLE%Z(\V)';L '(0‘14’7"07-"7!'*14»/ >re’ X° wo

oyy b

where QW,LMUWLW: ge.Fi[T}r.le] and deg(b) is as small as possible, the polynomials

§ are uniquely defined up to a factor from H*. We let dﬂ%Th“qT¢(§) =

R TR EPAC)

By the length of description #(h) if 24.6@, we shall mean its bit length, and ke-ﬁ%

Yoy by

the quantity x,%%zq . By &(f) we denote the maximum length of description of coefficients

from H of the monomials T,,..,Ty in the polynomials akL%.HJ“,B .

Suppose given an input system jo="'=§p1=() of algebraic equations (we assume, without
loss of generality, that §;rn,{xf; are linearly independent). In fact, in Chapter II we
give an algorithm which decomposes an arbitrary projective algebraic variety into irreducible
components, so we can assume that SOPH,SKHEiF[XO,”,Xu] are homogeneous polynomials with re-

spect to A,,...,Ky4 . Throughout Chapter II we assume that

deﬁn,..m,z@) <d4:de%xo,...,xw<§a><‘l: deﬂ T,,...,Tﬁ'.kda: <M U)<M,.
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In Chapter II by the size of the polynomial fj we mean the quantity <A£f>é1&§€(§k).

The projective variety {§°v=v~-=_§K.i=0}clP”(F) of common roots of the system Jo=rr=
§x-4=0 decomposes into components {50:;':3“‘-1}:&,\\”4»(: pw(?) {71, where a component is de-
fined and irreducible over a maximal purely inseparable [6] extension FY7 of the field F
[6]. The algorithm given in Chapter II finds all the components Wy. Any component Wy will
be representable in the following two ways: by means of its generic point [3], and, on the
other hand, by some system of algebraic equations such that the variety of its roots coin-
cides with the component considered; in such a case we shall say that the system defines the

variety.

Section 1 of Chapter II has an auxiliary character; its results are used later in Secs.
3 and 4 for the construction of a transcendence basis in general for fields of rational func-

tions over the ground field F for all components of the variety.

In Sec. 2 we recount a certain modification of Lazard's algorithm [18] for finding all
roots of a system of algebraic equations if there are finitely many of them in projective
space (the original method of Lazard works in appropriate time only for a finite ground field

F). The estimate of the working time (cf. Theorem 2.3) is polynomial in rﬂls'Ma s (&w&1d3>“i

In Sec. 3 we give a method for finding generic points of the components W,. Here we

also introduce the construction of the tree of components which is important for our approach.

In Sec. 4 we describe the construction of a system of equations defining each of the

components Wy, which completes the proof of the basic result of Chapter II {(Theorem 2.4).

Chapter 1
FACTORIZATION OF POLYNOMTALS OVER A FINITE FIELD

1. Finding a Minimal Vector in a Lattice Over _f@[ﬂ

We let F= EﬁU,A==FWDﬂcF’, where t iskalgebraiéally independent over"F; . Consider-
ing A as a polynomial ring, we define the order |a] for aeh as follows:ia!=2¢%1a )
i.e., the degree of the polynomial & with respect to the variable t. The order of a vector

i< T
(&, h)€A”  is defined as follows: H(Fs--r &) = max fag].
Py g

In the present section we consider lattices over the ring A (i.e., finitely generated
free A-modules). We assume that the lattice is defined by some system of generators {not

necessarily free) and each generator is a k-dimensional vector in AK.

A minimal vector of a lattice is defined as a nonzero vector of minimal order in the

lattice. We also assume that the elements of A can be described as polynomials over E} and
the elements of ﬁa as integers from 0 to q — 1. Hence the length of description of a vec-
tor (and consequently of the lattice) is polynomial with respect to log q, the order of the
vector, and k (respectively, the maximum of the orders of generators of the lattice and the

number of all the coefficients).
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THEOREM 1.1. A minimal vector of a lattice can be found in polynomial time.

We note that the theorem is an analog for nonzero characteristic of the basic result
(1.26) of Sec. 1 of [20] and, moreover, it is stronger since, in the case of characteristic

zero, in general one constructs a nonminimal vector.

Proof. We write the generators of the lattice as the rows of a matrix over Fd}l

which we denote by M.

LEMMA 1.1. The matrix M can be reduced by a permutation of the columns followed by ele-

mentary row transformations to trapezoidal form in polynomial time:
YMS = . . | =28

where 0 ==def Ye Fq, ; the product 4H GM*O , S is some permutation matrix, i.e., is ob-

<%
tained from the identity by a permutation of the rows.
Now, assuming that Lemma 1.1 is proved, we complete the proof of the theorem. We find
a vector #==(%,,...] over A such that uB is a minimal vector in the lattice corresponding to

the matrix B. Then wBS™ is a minimal vector of the original lattice.

We now proceed to find the vector u. We let f == 71%@ lﬂql' . Obviously,luBlsl(ﬁ".”;
tolsp . Hence |#byl<p and, consequently, [u,] <y Then |4, %,,+ “wcwl < and
b, <lp , so ]u,lsz! . Arguing in the same way, we get a sequence | Wsl<dp,... [#u| < pyp |

Hence the question of whether it is true that |4B|=p , for any given fgf reduces to
the solution of a linear system over E¢ s in which the unknowns are the coefficients of the
polynomials t,..., Wy . The algorithm gives, successively, yﬂ== 0,4,... up to the value of

7 ’
J for which the system mentioned is solvable (such a yep).

Proof of Lemma 1.1. In what follows we shall use the fact that the rank of a matrix

over * can be calculated in polynomial time (cf. also [12, 21]). Since the order of an
arbitrary minor of the matrix is no greater than the sum of the orders of the elements of
this matrix (we denote this sum by s), substituting for t any s + 1 pairwise distinct ele-
ments of the finite extension th = Wb , where ¢*5 4 , we get that the rank of the origi-
nal matrix is equal to the maximum of the ranks of the s + 1 matrices constructed. The
ranks of the latter matrices are easily calculated by reducing these matrices with coeffi-

cients from ﬁ;x to trapezoidal form.

Based on what was just said, we choose a maximal linearly independent set of columns
of the matrix M and a matrix S which moves them to the beginning. Then MS===(N4,M9). where
M4 consists of the columns mentioned above. We arbitrarily complete the matrix M4 to
a nonsingular mtrix = (PL;Mg) . This can be done, for example, by adding a sequence of
columns with unique nonzero component equal to one, keeping track of the rank of the matrices
obtained.

*Something is missing in the Russian original — Publisher.
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Now we reduce the matrix D to upper-triangular form in polynomial time by row transforma-

tions, i.e., we find a matrix Y with coefficients from A, such that

I

Y)— zw_.. : ¢ and Q=+ delYe Fy .

Since the ring A is Euclidean, such a matrix exists. It is easy to verify that Y is the mat-

rix which had to be constructed in Lemma 1.1.

We rewrite the last equation in the form Y=(J"' and we write 3“==<gu,/aetﬂ) , where
g@jeA(Kh,}sw) . Since 4H cu_—;d,gtl]o{emz one has [¢;|<|dd 3] (Ysi<w) and by some ap-

1€isw
propriate row transformation we can arrange that ]cwéis ieﬁj.(1si£}.sun . Hence, without
loss of generality, we shall assume that, for the matrix €, which must be constructed, one

has icngSMGT ] Usi<js w).

We fix some ‘1$ m<w and we consider the condition that all components of the vector
s 7 » . . ;
(lelgmm,",ﬁnkw) » 0" for some polynomials c;ﬂn,u,cg%w are also polynomials (i.e., belong

to A), and in addition the order fwm= ‘GQ,mi is the smallest possible and the leading co-

efficients of the polynomials cp . are equal to 1. The condition just formulated is equiva-

lent to the following system of equations

, .
mgswcm"" %‘Vé W Dty Asjsw) , vhere %;GA (1< j<w)

The last system in its own right is equivalent with a system of linear equations over Fq s
in which the unknowns are the coefficients of the polynomials ¢%@ ,ﬁi, The determinant det D and
the elements of the matrix JJ™' can be calculated with the help of interpolation, substituting
for t an appropriate number of elements of some finite extension ﬁax (analogously to the

construction of the calculation of the rank given above, cf. also [12, 211]).

From the linear system considered we find all c¢'p,i (msisw) , setting fu,=041,...
successively. Doing this for all 1€m=w , we get a matrix
r s 7
r On Gag oo - G 1
A = T, : J

C T
0 Cow

We show that Y' is the matrix required in Lemma 1.1. First, the elements of Y' are poly~

nomials (i.e., belong to A). Further, according to the condition on fm formulated above,
J== = -1 > _ o 7 ‘o

we have ldet Y| 1s§swlcmm’i quﬁm>4$"§$mym [du‘,ﬂ!_.]dgt_'fjgg . From this it follows that

Y'is the matrix sought, which concludes the proof of Lemma 1.1 and of Theorem 1.1.

The following propositicn is nowhere used in the present paper, but nevertheless it

closely touches on the questions considered in this section and has some independent inter-

est.

Proposition 1.1 [8]. Let K be a field and A = K[t]. Let M = (mij) be some nonsingu-

lar ®* %  matrix (i.e., det M # 0) with coefficients from A. Then for some suitable non-
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zero vector W< A" one has IWM“('f/ﬂ)ldbt M| (to the end of this section, -k%-u,%,)l ==

1, e?’t(ﬂl) ‘)’.
We note that this inequality is sharp.
The proof of the proposition from [8] is effective and is based on the following lemma.
LEMMA 1.2. If the field K is infinite, then for some matrices #'sGl,(A), Ve@l,(K) the

matrix

— WMV'—

is upper triangular and, moreover, o, = g,,c.d. {“‘i}”&‘.’éjs w}  for any 1€ss# , in particu-

lar «, = ¢.c.d.§ iy 1si, j=n} .

2. Factorization of Polynomials in One Variable

into Factors Over the Ring
As in Sec. 1, we assume that F'-.-——“Fq(t), A‘:Fq,[ﬂ and the order |a] for a,eA_ has the

same meaning. Let Oszi;sw a/.;xt‘—= feA[X] . Our goal is to deco'mpose f into irreducible factors
over the field F (or over A, which is equivalent by Gauss' lemma [1]). We defined the order

_— .
Hl Onsmvagx, "'

First we reduce everything to the case when the polynomial f is separable. If this is
not so, then either :f;E 0 or 0 < degx g.o.d/.(f,:f;)< d,chf, In the first case we let f =

@ +§ iV edui . . .
L,E a txt . Ve set § ___&2} a‘;;t’x” . Since d,eh fq“tf/‘}x s (if deg,xf = (O , everything

is trivial), we can assume that we have already decomposed f, over F. Let £,=I]9, , where
1=31%

9<ADX]  and ¢, is irreducible over F for any s. Then ”f=1;1 9,(X*) . We fix s at some time

and we let “P,(XJ=§ 5?)'55)(6‘_ Then either ﬁ?)= 0 for any i, j such that q,.“‘ , and in

this case &pé(X")_—_(iz 6?‘*’t}x"')‘f' , or if not, it is easy to show that ¢, (X¥) is irreducible
. 7 d

over F. Finally, we get that either f is irreducible or we find some proper divisor of f
and we continue to apply the procedure described to the factors of the polynomial f£. If
O<degrx g‘.c.d.(f, §£)< degxf , then we also get some proper divisor of f. Thus, in what fol-

lows, we consider only separable polynomials f.

Let (p)CA be a maximal ideal of the ring A, generated by some irreducible polynomial
PeA . The only requirement on the choice of p is that p be relatively prime with the dis-
criminant R——=RMX(:F,§;)€A in the ring A. Further, considering the polynomial mod (p), we
write it, choosing in A[X] a representative for which the order of all coefficients is less

than |pl -

We show that p can be found in polynomial time. For each s and for any factor 9 of
the separable polynomial 'L"‘r—t=];_1 ¢, , which is irreducible over E'qy , one has the relation
dM} ‘P s , since the splitting field of this polynomial is K, and, consequently, F c

q‘[ﬂ /((p = ﬂi'qs and the degree of the field extension [F [ﬂ/“pj) Fa,] —d""} (PJ (cf. also [11).
Let q,>7v‘b|'f| |R| and q, <21|:H for some s. Then' there exists an irreducible polynomial
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PeA , such that PAR and IPl=s . 1f not, V-1 iv , which leads to a contradiction.
Such a polynomial p can be found, looking at all elements of A of order not greater than s
and verifying whether it is true that PiR and p is irreducible (the latter can be veri-
fied with the help of Berlekamp's algorithm [5]; cf. also below). The upper bound on s shows

that p can be found in polynomial time.

Below we need an algorithm (which is a slight modification of the Berlekamp algorithm
just mentiocned [5]) for factoring a polynomial %GEz,m ] over K= E"‘q,m in time which is
polynomial in q, m, s = deg g (direct application of Berlekamp's algorithm gives time which

is polynomial in ¢"a ).

We consider the ring fﬁ#K[ﬂ/(!}) . We let Wq(cz)= a¥ be the Frobenius automorphism
(V‘;:J}-* #) . Arguing as above at the beginning of this section, without loss of generality

we can assume that g is separable.

Thus, let %—“—@,-7-9’* be the factorization required. Then J -’ié?;&K[ﬂ/(%) Q;géx{? 5,
(here and below, @® denotes the direct sum of rings) by the residue theorem [6], since gi
are relatively prime in pairs in view of the separability of g {si = deg gi). We consider
the subring E={:xeﬂ:l{iq(d)=ocgcﬂ, It is easy to verify that the construction of a basis
of E over Fq, reduces to the solution of a suitable linear system over F@ {it is neces-
sary to describe the decomposition of o in the basis D over F(; with parametric coeffi-
cients, then the direct action of ‘{fq and the equation Wq(a) = o provide a linear system

with respect to the parametric coefficients).

It is well known that the subfield {ote E}"": (;(“)"‘_‘“} is isomorphic with E'q, {1]. Con-
sequently, E=1s€t'&xﬂ% » where the i-th copy of Fa, is contained in F‘l“i . We find this de-
composition of E explicitly. We take any two elements &,_p@E which are linearly indepen-
dent over qu. Considering the elements a + §f consecutively for all 3"%?‘@ , we find
among them a zero divisor. For this, for any fixed y we consider multiplication by o+ Tp
as a linear operator on E and we consider its kernel .EB'C E . TFor some y we have Ep*() s
if %> 1. Then E=EX© (ot +yp) E and we continue to apply the decomposition procedure de-

scribed to both direct summands separately.

Let 5‘5[“9 FE belong to one of the direct summands of the decomposition of E. Then
the polynomial which represents £ in X[t] has a nontrivial divisor in common with the poly-
nomial g if %>1 (for a=A the polynomial g is irreducible}. Repeating this process

recursively, we factor g into irreducible factors in time which is polynomial in g, m, s.

Now, analogously to [20], we factor f mod p over the finite field A/(p), and let the
polynomial 4mea/lg[}(] be such that h; mod p is irreducible over A/(p), (h/!m@dp)f(fmodp}
and the leading coefficient ﬁcx(’h{); 1 . One can find the polynomial h, in time which is
polynomial ing,[pf, w>d«eg-$=deg,x § , based on the mcdified Berlekamp algorithm given above.
For what follows we fix some natural number k {it will be made more precise below in the

description of the algorithm).
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Now we construct a polynomial heA[X_] , such that # Eh1(nwdp),(hmodpk),(§md,px),
d69h=deg,h1 and %x‘n=1 . As in Hensel's lemma (cf., e.g., {5]) we shall seek h in the
form h— X hi p"-1 s, Where %eA[X] » d«e;hﬁdq} h4==€4 for ¥>1 and ”’Lil< ’Pl for any

1€i=sK
i. One can show that a polynomial h, satisfying all these conditions, is unique.
Let § MP———(h'mmiP)(g,, meod p), where aaweA [X]. , such that deg = deg"v,+ deg 9, and
A&ZX g4=£cx§. Then “4=5'—h49»4=PV4 for some V4€AD(] and degv4<deg:f- . We construct re-
cursively for any 4#2% three polynomials %},g},V}eA[X] , which have the following proper-

ties:
1) |11,5|<]P],ngj<“>l, degﬁzf deghy—1,, doggfdcg §1, deg v <deg 7 ;
2 4=( T Wp)( T gp*) = vpt.

1€i.r£j 45,}*}

Let us assume that for all ¥<j the polynomials h’wngt are already constructed.

We let

%(.i-‘i)= Y -%Piﬂ’ 9(}4): Y StPM-

1¢45§-1 154 €1
Then by the inductive hypothesis and 2) we have §- h““”g‘i‘“a Vinq ij . We find hj'gieA (X1
such that property 1) holds for them and, in addition, Y?-_'— ﬁﬁ%%(MP). This can be

done with the help of Euclid's algorithm in the ring of polynomials A/(p)[X], applying it

to k,,% and keeping in mind that the polynomials h; mod p and g, mod p are relatively prime,
since f mod p is separable according to the choice of p. Let 1gﬁjg4+gj%4(modp) for some
suitable ‘w{’,%eA[x] Then V}-‘IEV}-A";'%"' v}_i%hfs hj g, + (v,_,grvwk,<md P), where Vj-fﬂj,E
VHh4+h§(,MP) and Wj|<lpl, d@ghj< deg,h,' ) Since dog,vj_4<deg § by 1) and dg}hj?4<
dgg,h,g,’.-—_—deg # , we deduce from this that for the polynomial h_ Vj—1%‘v}-4 “’"Od'P)i and such
that |¢l<[pl one has degg; < deg - deghy —degg, .

j- . i1 G~ G, 1 -4 i
'I.'hen we get vj_4p9 1—(‘ng,'+g?-k4)l’} ' -(hﬁ“)-r‘adtv:’ )P”-fﬁ;%?'} (modp") . Consequently,
fau‘*’gq’(md,},é) , i.e., §- %‘”gq)s VJ‘P" for some VééAD(] such that daegvj<d,eg5' . For
j = k, the constructed polynomial h = h(k) is the one sought.

Analogously to Proposition 2.5 of [20], there exists a unique (up to multiplication by
an element from A* = F*, i{.e., an invertible element of A) irreducible polynomial MQGEA[XJ
such that ko|§ and (h1%odp){(1%1nodp) . For the proof one can consider the factorization
of f in A[X], reduce it mod p, and choose the unique factor h, from the factorization of f
over A, which mod p is divisible by the irreducible polynomial h mod p. As in 2.5 of [20],
if glf and gﬁEA[X] , then the following three assertions are equivalent:

dr ch m'odp)\(g modp); (i) (hmodp"] g wodpy; ity g .

We reproduce here the proof of the implication (i)==> (i) (the cest is proved more easily).
Since the polynomial f(mod p) is separable, the polynomials (h mod p) and ((f/g) mod p) are
relatively prime. Consequently, A + ﬂ.{f/gE"(Wd'P) for some suitable A4,ﬂ4eAEX]
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Consequently, )\414, + g f/g———-’l'— P‘V,, for some V{GA[X] . Multiplying this equation by the poly-
nomial (14 py +...+ p&* v4“‘4)9 , we get Ak + MyF==g(mod p¥)  for the corresponding Az,JMﬂeA[X] .
The left side of the latter is divisible by h(mod pk) according to the construction of h,
and hence finally we get (hmdp")i(g mod p¥) .

In what follows in this section our goal is the construction of the polynomial h,. For
the arguments we fix an integer {,4sm<deg§ . Analogously to [20], we introduce the follow-

ing lattice L over the ring A:

Li—{ veALXI: deg v < m & chwmod p*)] (v mad pt}.

W d

b .
We identify the polynomial V= L - V;'X eAX] with the vector Vosevns Vapd € A The fol-

Osiem

lowing theorem is the analog of Proposition 2.7 of [20].

THEOREM 1.2. Let O=<feli and for the element { suppose §Pikfﬁ>mlii+(d€§&)!6§ « Then
the polynomial h, divides 4 in the ring A[X].

Proof. We shall follow the proof of 2.7 of [20]. We let §=g.c.d.(ff)cA[X]. Then
P,ch(g). We need only prove that ‘(%Mp)l(gmdp) according to the equivalence proved

above. Hence let us assume the contrary. Then there exist )\qu«,,, weA[X] such that
Adu+ﬁ49=1~PW. {(1.1)
Further, we show that from (1.1) one gets a contradiction.

We let e = deg g, m' = deg b. Obviously, ‘Os esm/<m . We introduce the A-lattice
M={ )\§+/l!6= )\,JMGA[X] ’ 0$deg)\<m’—e, OsdngM,<(de9f)_g g )

Then Mc A+ AX+... + Ax(degf)m’—e—1=_= V . Let M' be the projection of the lattice M to the
direct summand 4 = AYS.+ AX G met  oF the lattice V. Let us assume that some element
l\ﬂ'—+/¢ﬁef‘1 projects to zero in M'. Then deg/()\§+ﬂ€)<c . Since gl(Aquﬂ) and deg g = e,
one has Af+ub=0 . Consequently, u = 0, since dcgw(dtgi)~ex=deg,(ﬂq) and (f/g})/u. Conse-
quently, A = 0.

Consequently, by what was just proved, the elements of the system of generators
. . Vo o
{x's:0i<mbelu{ X :0<i<(degs)-€}  of the lattice M over A project into elements of an

A-basis of the lattice M' which are linearly independent over A. Hence ‘b%AMm't/%A M =
de%fy rm'-2e.

Now we show that under the assumption (1.1) one has the following inclusion:

{VGM:@%V<9+L,}CPKA[X] (1.2)
Let VeM, de%v <e+l; . Then %]\i . Multiplying both sides of (1.1) by the polynomial
¢ +P1.J+'-(pu)')2¥---+(pu)’)K—i)(V/Ct) » we get A h+p,v a(v/%)(nwdlp") for some suitable Ag, €
A[X]. We note that (\k mod/p“)l(vmod, p*), since veM,bel . From this, (hmmip“)k
((V/%) mod p*) - But on the other hand, de%(h mdp")al}, (since loy(h)=1 ) and dE%((V/%) .
modp“)g de%(v/%)<e+f;,—e =0 . Conseqﬁently, (V/(})E pKA[X] and, in particular,
'VEPKA[X] , which proves (1.2).
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We denote by 4,(M') the determinant of the matrix whose columns are the coordinates in
an A-basis of the lattice U of the elements of some A-basis of the lattice M'. Under change
of bases the determinant A (M') can only be multiplied by some invertible element of the ring

A (i.e., an element off; ).

First we estimate the order |Au, (M'“ from above. Considering the basis of M' of which

we spoke previously, we get

1A (M) < 52 Ix“sp Xbl=(m-e)|§|+(dea §)-€)|bl<m] § 1+ (dea H)B].
(012 22, X1l T =G 9t Gy fmls ey
Now, based on (1.2), we estimate ]Aw(ﬂl)l from below. Since A is a Euclidean ring [1],
there exists a triangular basis 63,...;3(&%3)*»@-9—4 of the lattice M' over A, i.e., a basis
such that deg bj = j for e<g<(deq§)+m'—e. According to (1.2), (ﬁx(ee);--‘) %x(ee+t,—1)e—
(p¥). We note that e+l -4 gm’a—(de&a §)-e-{ , since %\g and (h mod p) \((3/%)%10&})) ac-

cording to the assumptions made at the beginning of the proof of the theorem. Consequently,

4

| Bu (M) = ms}ﬁ% e XG> bixlplo ] 51+ (deg 1) b

by the hypothesis of the theorem. This leads to a contradiction with the upper bound estab-

lished above and completes the proof of Theorem 1.2.

To conclude the section we briefly recount the general scheme of the algorithm for fac-
toring a polynomial $eA[R] . TFirst of all we choose PEA relatively prime with the dis-
criminant Res,(¥, §%) (cf. the remark above on the choice of p). Then we decompose f mod p
over the field A/(p) and we choose some IMG-A[X] » such that Uiq md}P)'(&WD&P),(hq ‘MOdP)
is irreducible, f,ﬁdﬂ%%q. We set successively m-—-‘/hhﬂ,.‘.,(de%&)-i. We find the minimal
integer k, satisfying \p\Kfq> (m—vo\eo‘ $)1§1 . Then we construct h according to the pro-
cess of Hensel's lemma, described above. Finally, we determine whether there exists (and
if so we find it) a nonzero vector bel. for which |P|K!4>W"H|+(d€%§)|6|> . This can be done
with the help of Theorem 1.1 of Sec. 1 in polynomial time. Actually, f)ghoP for some
pe A*=‘F;: . In fact, one has HM,\( 1§l . Consequently, W, ”) , and at the step when m =
deg hy, by Theorem 1.2 the algorithm described gives e)=hoj5 » since '(\,.,EL and the poly-
nomial h, has minimal order equal to “%l among all nonzero elements of L again by Theorem

1.2,

3. The Case of Several Variables Over a Finite Field
Let %e‘Fo’% [X,%,.., 0y] , where n2 ,9-= deth (=<t , a=ley(§) - and
dﬂ‘}m(i) <% . First we reduce consideration to the case when f is square-free and

by (§)=1 -

In what follows, the original field F=Fq2 is extended in the course of the work of

the algorithm, so that, as a result, we get a factorization §=m g; over some field F:1 D F .
One can pass to a factorization over F by considering the norm NF‘*/F’ (\-8;) }§ , which is ir-

reducible over F.
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We make the change of variables %(X,m,...,%w)=a,9"_, §(X/a,,‘Mq,...,U,OeF[quq,,..,u,w].
Then &Cx(%>mi . From a factorization of g it is easy to pass to a factorization of f. Hence

we shall assume that [cx(§)=1.

Let D(Uy,...,Uy)=Res, (§,9§/9X) be the discriminant. If D=0 (the polynomial £ can
be calculated on the basis of [21] in time which is polynomial in the size of f), then on
the basis of the construction from [4] we single ocut the repeated factors in the factoriza-
tion of f considered as a polynomial in one variable over the field F(lUy,..., H/H,) . We note
that for this, in the construction of Sec. 1 of [4], point c) for the field F(LLM...)LL,L) was
not used to the full extent, but only for extracting roots of degree q in it, and in the field
F({/L,b...,uzn) we have to extract gq-th roots on the basis of the algorithm for extracting q-th

roots in F.

2 v - I "
Let #£0 . We set S=d'e%u4,.-.,un,$ and consider the set 1¥1Y%,...,Yg] , where Yoy o)

‘jfs are pairwise distinct and belong to the field F or some finite extension F",I o K of it.

Then one can find an element ("Lhm;dn)€ T » such that 9(014 OL )#Q

We replace f(x,u’h---)un) by the polynomial J(X H, C% u‘ o ) Obviously, getting
the factorization of the latter polynomial, we get the factorization of f, and hence, in what
follows, we shall assume that the polynomial f(X)O)...)O) is separable.

(k1)

Let charF=q 32 and 232 )2 We extend the field F=Fg% to the field

H:q,ac-x“ successively (k times) by adjoining the square root of some element which is not
a square, from the current field. We describe the process of seeking such an element u in

the field ¥,. Let M, € F4 s, and /%;’ =My (we find the element y, with the help of the modi-

/’Wr() 5 /4/(32') ., SO

that (/“’()) =My,  and (/445(”)) =-M, ; then we choose some square roots of /4’5 and /A,’ , etc.
)2,

fied Berlekamp algorithmn, cf. Sec. 2), for u, and —u, we arbitrarily choose

In no more than ﬂoq%owz/d F; steps, one of the two elements considered /w( ,&.F'* (F‘1
vhere i=1,2 ; S</eo?zcwui F'4,

2

Now let char F = 2. One can assume that 3[0@1@(?-—". If this is not so, then we imbed
F in the field FR”P::FQD F=F22p-1 with the help of the polynomial ZHZ+1 which is irre-
ducible over F. Then we perform a construction, analogous to the construction above, ''re-

placing 2 by 3," i.e., we assume that 5K>2’Zﬂ/>/ 5K-1 and we extract cube roots, as a result

of which we get the field Fyaps« .

One can now assume that F =Fq{ae,-9~“ or‘F=Fzzyg-3" » respectively; then the splitting
field of the polynomial f(X, 0, ..., 0) due to the choice of k has odd degree over F, if
q:oka:(,F'#g » or degree not divisible by 3, if char F = 2. As above, we choose an element
/WQF‘*\(F'*)Z in the first case and e F'* \(F*)s in the second.

S -~ 25
For any s the polynomial Z? - M or, respectively, z?3 ~ M is irreducible over F be-
cause, as is known [6], the polynomial Zm—a/ is irreducible over an arbitrary field G, if
aé.cip for any prime le/ and a/¢—4~ T 4lm . We let s = kn and let O be a root

of one of the two polynomials considered, respectively.
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Before the theorem we need the following version of Hensel's lemma. We let Ir—(h,...)Ln,)
be a multiindex, where 0& i ,€Z for any o and H,I‘-:U,;’f--- l/(/:vw , the weight ‘Il='if4+...+ LVU ,
K be a field. We introduce a partial ordering relation on the multiindices, by setting

TS T= (s ) 2F € s 1S

HENSEL'S LEMMA. Let feK[X,Uy,...,lb,], the leading coefficient for X in f be equal
to 1, and the polynomial 'fo= ‘S’(X,O,...)O)GK [X] be separable. Let us assume that fo=g’oh’o 4
where ﬁc,h,oel( [X] are polynomials with leading coefficients equal to 1. Then for each

multiindex I with |I}2 1 there exist unique polynomials (}IJ;"T € K [X]: such that ieﬂch <
. . P -
30)5{9,% %I<da? W, and in the ring K[[uq)_“,uﬂh [X:} one has

o+ = =g W) (k5 5k W)=

B= m=ﬁ1 ) =1 llf|=ji~9, I

Proof. The left side of this equation transforms to the form

> ool
b+ (g, h-+h,q +_ 2 YT
%" ° _ﬁ% l%ﬁk?c ‘1 1 I4+IZ=I,I4<LI;¢,<1914 l.')u

Considering, by induction, that we have already found Z 91;"1; , we can, using the
Ilel IsLIs1

Buclidean algorithm (cf. Sec. 2), find hT and gI.

. . ization .= @ @ ()
We note that the lemma extends in an obvious way to a factorization J;=%s %, - %o
into more factors, and here the monomial with multiindex I=(\L4,~ . -;"m) is constructed in

time which is polynomial in |,...}, Q=deq §
1 by §=aeqy

THEOREM 1.3. Let ﬂé?[x,ui,-n,u’n] be irreducible over F = Fg’a’,a“ for q # 2 and
F=F,2¢, if ® is even, or F=Fy2#3*, if ® is odd, for q = 2, and in addition let ky§ =1 and
§,=1(X,0,...,00eF[X] be separable. Moreover, let ioﬁ for some 3€ %‘Q&[X], such that
O{d,e%,g<'l,. Then the polynomial 3 ='§(X,U,,9P%,ﬁ?°‘U‘,,h.h,@’mu)e i [x,i4] is irreducible over the
field F,=P[6], where p=2" for q # 2 and P=3% for q = 2; here BPEF\F* for q # 2 and
o*" e F\F®  for q = 2.

Proof. Let F be the algebraic closure of F. It follows from Hensel's lemma that

f‘jﬂ{é X-X-L(Léh...,u%))) 9=dﬂgxf for some 'X'L(u,h...,un)e-ﬁ [[LL,,,...,LL,;” (11 ¢ S’) .

X (R;Jet us assume that ‘.Sf:_g“) a@) , where 04,0123)(3@7:?4 <Q , since LCX:?:'ZOX‘. =4 and
%(:'9 €F4 [X.'H/] ; further, it is possible to compute that Eﬁ)= ). and -d-(_i§=%(2) s
where (.‘((‘)m_zn(g()(-wxb(uh..;)wn))) G(2)=§/GC4) by the factoriality of the ring F[[u}] [X] '

1

4$b\
since ‘§=4<U<Q(X ‘-X-L(LL)) is the factorization of f into irreducibles in this ring. We let
~ -~ - -
Q)

C(G)__ Z S° A 'txi’ LL:Z‘ e “,dn’

o < ; I PRre) ,
0 <£i¢g, 0oy @y loe Ly, n

(1)— @) X-L u_d4 .

040, 0€ e physon byt

oy
n ?

U
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where '&:["% ‘m",g(f:’dh»--dn e ¥ . Sincef(x, 0,.. O)"‘" _S-(X,O)s%w@,i})%@)(x,@)i? , the coeffi-

cients of the polynomials %(’)(XIO)) 3@()(,0) lie in the splitting field F, of the polynomial
£. By the choice of k, the degree of the composite [REF]  is odd for q # 2 or is not di-
visible by 3 for q = 2 and, consequently, is relatively prime with Pﬁ*{ﬂ‘-m . Since, on
the other hand, o(”()‘\ 0), (f"(x O)e Fy LX] , we get that %(‘)(k O\,q‘é Koet] %],

1}
To the factorlzatlon f X,0,...,0)= 8,( (X C'\‘ (X 0) we apply the process of Hensel's
(4
lemma, and since G Q(, ,...A;D\}zﬂ (X.}D) and C(i’/)\ 0,. .)G;~%(A) f)‘ﬁ,@) , we get as a result the
factorization ‘f = Gm G®  due to the uniqueness condition from Hensel's lemma. Hence, in

fact Eii{“ o 7%222(“’ € [ again by Hensel's lemma.

#
L)OLX LL % S” () X' U* , where @, a,(i)&eﬂ

We let % 0<h 3'9 L HL

°<b~<~94

2 .
We show that there exists at least one coefficient 'gb yogyenesoly  OF 4 oy ol which
yare

is nonzero, such that WZ <o, +...+d, £ R n)b . We assume the contrary and we let G“):.,\/{.{.\x/,“
Q(2)= 2 +\)(/ , where ol%\/ dﬁgfu iy { £ e, oLe? \/z , and in \X/“\ﬁ there only
appear monomials of degree greater than 2nr in Léh L(% . Then j" G“ @) —\/ Y, +\\/ Wﬁl‘i—

W, £

iV + \X« W ) and since ale%f n’é,oli%(\é\/z) Zn'z/ » and in (V, Wz‘*‘\)(/,g\/zﬁ\)% WQ“) there

only appear monomials of degree greater than 2nr, we get that f;% \/2/ s which contradicts

the irreducibility of f. Thus, for definiteness let ,&n Ly # 0 for some U,ely, ... 0l
(%

Uyolypy'
such that Wi ol =oli+...4+d, €217 .

)
/g 1
él\<94>m Xl’b Vadty

W Yoozt ,
bl %JZZ‘;Y a.;gi,mﬂ)’n, Z4 "'Zn, 3 Obkusly,/?v(x,u/f,

We show that a%),da 7& 0 . We consider h(X,l/LJZM.,)Zn) :G?)Q(Z u, Z LL)

avwx"um”’“zf‘--zrf” Ve let W,

6%»99’“ @55 ) (X i) , and moreover a f’b ’l Gﬁ@ﬁ%... Qﬁ“’“{ ) . By what was

0

oby
4 ol
X
proved above, .%’u o, % Q0 ., since in it there appears the monomial /80 S o Z1 me %

0. Since 0 $}{4{~4n'z <p , for different vectors (XM' .. Yn) , such that Xﬁ...-i-‘xw =oly
the corresponding numbers m{z-{-ﬁzxﬂ-%-...-*pﬁ'-{ an are different, so hb o (4 9} 6%2 Qp“"‘);:

uh (G) , where O# ¥, (Z e F [f..] and d/e? N’ }‘prj’"' X+ +JE»W 4X <_$5 4 <ﬁ But the de-
gree [F,: F ] gﬁ » 50 §,(9)#0, and consequently a, =,é 0 . From this, d.e,%w (}\*) 2do>
#t but, on the other hand, %(‘)l T and hence &%%(%(?Q&%M(S)sn% The contradiction ob-

tained completes the proof of the theorem.
The theorem was found jointly with A. L. Chistov (cf. [4]).
We describe the algorithm for factoring f. We consider two cases.
I) t<w. Let §(X,0,...,0) ={;‘I ¥, be the factorization of J(X,O,.--,O) over F and

1et,§(x,%4,.-',%n)=§{"‘&s be the factorization of ‘S(X,Mg,...,un) over F, where LCx@L“
bx@)=t  for all i. Then for some partition I=J,U---UJs one has ‘3‘3 Qx’o’m’o):i,{e}l' ¥, for
. : t
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all _1<} <% . Hence the algorithm in the case considered finds a factorization §(X,0,
,0) = QI ¥, and looks at all subsets ¢7’= I, &1 . Ve let iDI, 9 =\‘PI* and I, =I\T, .

We apply the process of Hensel's lemma (cf. above) to the factorization &(X,O,“.,o)==wl1gi1
up to the construction of monomials for which the degree in each variable does not exceed

r, and then we verify whether f is equal to the product of the two polynomials obtained. As
a result we find a nontrivial factorization of f, if f is reducible, or we establish its ir-

reducibility.

The procedure described requires no more than time which is polynomial in 2.1"1/”; q
(since wfbd/I <1 ), i.e., polynomial in q and in the size of L4(§) » Since in the case

considered 2x<t<L{® .

II) t># . We find a factorization of &(X,{L,GPU,,GPz’M/,...,GP“—qu,) =3 (X, L)  over F, = Flo]
using Sec. 3, in time which is polynomial in L, (\';D , the degree [Fy:F], and q. Let f =
f;l ¥, . We let §, =0+ 2 $i wl , where ¥i,;€Fr [K), § 20, and moreover de%x ‘31,,3 <
de%x V.0 for j>0 , since LC’X? =1 and one can require that lecy(¥;)=! for all i.

We note that §(X,0,...,O)=¥(X,0)=l;\ ¥, (X,O>=E| Fio- Analogously to the way it was estab-
lished in the proof of Theorem 1.3 that the coefficients of the polynomials (}“’(X,O,.,.,O)
G_@(X,O,‘..,O; lie in F, one can show here that ¥, ,e&f [x] for all i.

H

By Hensel's lemma applied to the factorization S(X,O,..,,O)nfa'ilyo, , there exist @, (XUy,...,
'un)EF[[W,._,,,un]_][X] , such that @ (X,0,...,0)=¥js for all i and § = [;“P-z, . We show that
B eF [ Uy,..., Un] for all i. Let §=f;\\i’j be a factorization of f over F, i.e., ‘l’_;,e

FIXU,. 4]  and &)x‘yi =~{ for any j. Applying Theorem 1.3, we get that ‘PQ(X,U’,
ofu, o M,m,e.f’"—‘u,) is irreducible over F,. Hence, for any j there also exists a unique
i, such that ‘1’}()(,11,,9?%,@“& 1[,...,9"5“—'1}4)=‘Y§,(X,%), and, in particular, ‘V}(X,O,...,O)-—‘j’;ﬂo )
Hence by the uniqueness condition in Hensel's lemma, we have ‘l’iﬁv@i i.e., ¥, 1is a poly-

nomial which is irreducible over F.

The algorithm for constructing each ®; ° following the process of Hensel's lemma, con-
cludes its work in the construction of monomials of degree no higher than r in each variable

Wiy--oy Wy . The description of the algorithm for factoring f is concluded.

Finally, we estimate the time for the work of the algorithm in case II). The process
of Hensel's lemma works in polynomial time (in the case considered here of a finite field
F, this follows from the fact that the calculation of the coefficients of the factors re-
quires only a polynomial number of operations). Hence it suffices to estimate the degree
[F}IF] from above as well as the size of the polynomial £. By construction [ﬂ}?}-;ﬂ”g
(5TWQW?£5W%ZW, i.e., it does not exceed some polynomial in the size of the polynomial f
(cf. Introduction). Further, the size of the polynomial f is not greater than a suitable
polynomial in the size of the polynomial f and [F,:F] , since f is obtained from f by gub-
stituting elements 0¥ for Wixy (for ¥>!) and the variable u for u;, and then reducing
similar terms, the latter does not increase the size. Consequently, the algorithm given for

factoring f works in time which is polynomial in q and in the size of the polynomial f.
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This completes the proof of the last basic result of Chapter I.

THEORFM 1.4. One can construct an algorithm which decomposes any polynomial §é& ﬂl& [,
Ayl into factors which are irreducible over the finite field Fq‘% in time which is
polynomial in ’Y/W,&,Qf » where dﬂﬁ(x; (5)<'i/ for i<i<w, , i.e., in time which is polynomial

in q and in the size of the polynomial f.

Chapter II
SOLUTION OF SYSTEMS OF ALGEBRAIC EQUATIONS IN SUBEXPONENTIAL TIME

1. Choice of a Transcendence Basis for All Components

of Highest Dimension

fK-16’F’ [X’h Tt

Suppose given a system )t(,=- "=fk—1 =0 of equations, in which Jju;"‘? p

, T odeq($)
Xn,] are polynomials of degree Ao,.~- , dk-4 s, respectively. We denocte by ‘h" Zo‘aEJL d fi,
(24 0y Z/ZJ the homogeneous polynomial of degree fi with respect to the variables
Zoye Zn The system fo=.=fx.4=0 defines an affine algebralc variety V= {( e A\n(}?)
fo@yh”_’ n=“'=fk-4m)'” } A\ (F) "% . The system _‘fo—-...-fk_,l—()‘ in its own right de-

fines a projective algebraic variety

— Hoee o~ ~ -
Ve )P FNT, b0k o )0} PR,

(Cf., e.g., [3, 7] for the basic concepts and notation from algebraic geometry which are
needed here and later.) As is well known, the affine space A" {E) can be imbedded in the
projective space IPW (E‘) » so that the point (’\74 m) & A\n(-ﬁ-‘) is mapped into the point
(4 A )QP fF') , where the image of A" (F) in PW(E) coincides with the open af-
fine subset ‘)(/Vo 19?4/){19/0 ?£ 0 } . In what follows, we sometimes identify An’(-\?—) with
its image in JPW(?;;) . We note that Y= Vn An’(.ﬁ-’) . We shall call the hyperplane .P‘,;-—{(o
(7 A T P”’} the hyperplane at infinity.

We can uniquely represent the varieties V“:LLe)I WU, ., Vr-j%} WJ as finite unions of
closed subsets which are irreducible over F (components). Then we can assume without loss
of generality that }:I U }/,“ where 1 0 L =@ , and moreover an A\“’( E) =MU; , and the
closure in the Zariski topology aiFWL for any i € | , besides this, ‘\/\/J{\A\n(f) = ¢ for
any }€ ]4 (we shall call the varieties Wj the components at infinity).

Let We ﬂ)m(ﬁ) or Wc An'(.F-') be some irreducible variety. By F(W) we denote the
field of rational functions on W. One can consider any rational function on Pn’ as a ratio
g/h, where %héf' [Zo,..,,Z,L] are homogeneous polynomials of identical degrees and h # 0. 4
rational function on W is the restriction to W of some rational function g/h, under the con-
dition that h does not vanish identically on W. This function is defined on the nonempty
open subset of the variety W, equal to Wn{’\?*'-h,(f\ﬂ # O_} (two rational functions coincide

if and only if they are defined and coincide on some nonempty open subset of the variety W).

The transcendence degree de?tzﬁ‘ (W) is called the dimension dim W of the variety
W; by the dimension m = dim V we mean mg%c d,Lﬂ’l/w We let }f{jeli OLLmW(‘! = } . In the
4
title of this section by components of highest d1mens1on we mean the set of components Wj,

when j runs through 32.
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We also note that the degree d.e% < UL el dk—1 , according to Bezout's inequality
(ef. [7]1). 1In [14] the upper bound dae(gv (’l+nmumd-&\“: is established (it is best for large
k). Hence, in what follows we shall sometimes give estimates for the upper bound in terms

of the degree of the variety deg V. We note that deﬂv 5 e’? \/\/ [7], and, in particular,

card(]) € deg W)-

The goal of the present section is to construct a certain family m=m%m,a\ of col-

lections, each of which consists of m + 1 linear forms 0<§WJ\LLZ-U, 0L g m , such that

}\,(;Le ¥ if F is infinite, or }\,u belongs to some suitable finite extension of F, when ¥

is a finite field and, moreover, the intersection Y 0N {o%sr%obz‘v:---‘ §6 )\ml ZL?O} of

a variety V for which de%.\/_éol/ with the set of common zeros of the linear forms o%sn)\ﬁ .
Zy, 0¢dg M, is empty.

In what follows we shall more than once need the following construction of a set from
N (for arbitrary N) vectors Wy, oo Uy € H}&"'4 , where H =F or Hoa [ is a suitable finite
extension of F, such that card(H)>N , if cazd(F)<oo. Let oy,...dy € H be pairwise dis-
tinct elements. We define the vector L(ubzu,d-”d%?...,ct% ).

LEMMA 2.1. Any (& + 1) vectors from the constructed set Wyg,...,Wy are linearly in-

dependent over H.

We now return to the construction of the family ¥Y{, of collections of linear forms.

We let N =1+ nd and let (i,,,....U (uNo,...uNn)eH“*‘ be vectors, any (n + 1) of which are

Anyeees
linearly independent. For brevity we let LJ =3 usnu’j'b Zi . We show that as WUl one can
take the family of collections (b(}; '

,..ij\, where ;]o,,_..) jym, run through all values such
that 48}, <44 < }jm S N

By induction we shall prove a somewhat stronger assertion. Namely, we show that for
any 0§4 € m one can find 1$3°<J4<...< “\<N such that dLmVn{LJf...=L&£-=o}=W£-“1 (in par-
ticular, for m = & we have Vn {L‘jf‘“‘:L‘Am:o}:‘b)' Suppose this assertion is already
proved for ¢ — 1 (if & = 0 we assume that nothing has yet been proved). We must show that

one can find a linear form Lj, where 1€} ¢N , such that Lj does not vanish identically

on any component of the variety Vn &L= =L‘3L i = 0} . If this is not so, then by Dirich-
let's principle, since d/ec}Vn{L =, "L‘J —O} g[ggv , one can find some component W of the
variety \/n{l.. =...=by, 1‘—-0} and n + 1 different linear forms L‘S yoo-y bisy » vanishingly
identically on W, and then W C {L a0 -~-L5w—-0} = ¢ . The contradiction obtained proves
the existence of the required form Lj. Arranging the indices (}o,.--,;}_g_“} in increasing
order, we get some new indices [o, ‘') I}L , such that d/i,m_\.—/n{(_.éo:. co= Lu: OS =m-£ -1 and

thus our assertion is proved.

Now we prove the following lemma, which we shall use in the subsequent sections.

LEMMA 2.2. Let V = {foz .. = ‘fk—1 = O} be the variety of common zeros in p* (")
of homogeneous polynomials ‘fn; “*7fk_1€F[Yo;--~:Yn,] . Then the following conditions are
equivalent:
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1) Vn{Yuz__.zsz O} =¢
2) the system of equations

HO e Yo e =E (Y,

0" mo’ m-w(’

m o*Ym,w'")Yw\r =0

+ . .
with coefficients from the field FXih.“,tneﬁ s where VM“'>VWV are algebraically indepen-
dent over the field ¥, has only a finite number of solutions in Eﬂvm(g(th“ﬂfm)> and has no

solutions at infinity, i.e., solutions with Y, = 0.

2

Proof. 1)=3»2). The system of eciuations = :"fkﬂ =g, vj- Ly Y= Y m =0 is
equivalent with the system from point 2}. Since ﬁ =:V(??%u WJMW17~<~JY (% {f” P
Y i { Y me}; %ﬁ;=0}, by the theorem on the dimension of an intersection {(cf. [3, /]),
the system of equations from 2) has only a finite number of solutions. The system from
point 2) cannot have solutions with Y, = 0, since, if it did, i(gzgm f \(\{ xw%;d% % ¢
and from this, as is well known, it follows that.i7ﬁ{3;=n“=§;1:4%»¢ ¢ , which contra-

dicts 1).

2)=#1). Let us assume that VN{Yr..=Y =0} £ g and let (0:..20: 5.8 )6
VO{YO=..,=YH;‘O}. Then (O:‘gmﬂ:..,igz&g gw-»rw(wmmj) is a solution of the system from
point 2) with Y, = 0. The lemma is proved.

We note that essentially at the same time we have proved that if the system from point

2) has no solutions with Y, = 0, then it has a finite number of solutions.

CORCLLARY. Under the conditions of the lemma, for any component Wi of highest dimen-
sion m of the variety V the rational functions %%fﬁ;?”vfny/\} form a transcendence basis

of the field of rational functions F(Wj) over F.

Proof. The linear form Y, is not identically equal to zero on Wi, since if it were,
Vn ﬁ;:...:Ym/:O}za\‘%iQ {YFE..:—..\{M_ :0}%;{ by the theorem on the dimension of the intersection
{7]. Hence it suffices to prove that the functions \3//%;7 €3¢ m , are algebraically in-

dependent in f(Wj) Let us assume the contrary, and let there exist an algebraic dependence

relation among W//Y; + Yw/Yo - Then there exists a nonzero homogenecus factor W(Y,,...,
nJ EZP [co unJ which is identically equal to zero on Wj. There exist linear forms 593
“’S"b in o;~--\2n, with coefficients from ﬁ, which are a basis of the space of linear

forms in \;,...7\;@ and such that for the polynomial \W(Sm- »KFCQ, -‘Hy the leading
coefficient fﬂcsgqg =1 . Then we get by the dimension of intersection theorem ¢5£V/f1
{%’z..;—sﬁfo}:\&’éﬂ{Sf...sShf-O} «i‘\g{(sm S)= O}-W 0{54— =9 —»0); NS = O}_Wﬂ{‘(o- =0k which contradicts
the hypothesis of the lemma and proves the corcllary.

Now we estimate the number of elements of the family ¢ . We have uua@@ ‘(W;%1Y??n

iqde?vﬂ) /m+4 3“@*’?\/4”‘/(;% 1)) . » the last number does not exceed (3(n- mmaivqk/ﬂ)}m‘” ,
if 0$mM<HE , and does not exceed (G(JQGV4%“ﬁ”*‘ if Y &m<n. If ve know (cf. Sec. 3

below) that dﬂ?V & dn-m then cawd W7  can be estimated above by a polynomial in
AWMl for o> 4

We sum up the properties of the family & in the form of the following lemma.
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LEMMA 2.3. One can construct a family W=Wlymd , consisting of (m + 1)-tuples of

linear forms in the variables Xmugx such that for any closed set K]c:yn'(?;) » for which

2

A YV £ i wa_eg\/ d , one can find an (m + 1)-tuple (YLYU)Y}J & W , such that ‘Vn
{ﬁgn“=YamO}=ﬂé . Here cazdﬁ?h=(”ﬂ%i?51§ and ' can be constructed in time which is poly-

nomial in cad W .
We note finally that the coefficients of the linear forms of elements of ¥ can be

chosen to be integral if card (F) = 0 or from a small finite field if Chﬁ%(?)\ 0 , so that

the length of description of these coefficients is bounded above by a polynomial in n, ln%

”o(ea V)

2. Case of a Finite Number of Roots of the System

in Projective Space

This case was considered in [17, 18]. In the present section we formulate the results
of these papers with modifications necessary for our further goals. We consider systems of
homogeneous equations and we use the concepts and notation introduced in the preceding sec-
tion. In [17], with the help of homological methods the following theorem is proved (cf.
also [181).

THEOREM 2.1 [17]. Let 3vr-vﬁk-4eF?[Xoa“'vXn] and the system of homogeneous equations

3o=---=@kﬂ4=0 have no roots in P" (F) . Then the ideal (§—O,~- ﬂk_\ ( o H)I’, for
Do g vhere Bdegun giedggs

This estimate is better than the estimate from {14]. We note that it is sharp.

Now let f fkfe FLXO, WJ be homogeneous polynomials of degree % .. Z % [
respectively. We introduce new varlables 1{ . 1LW s, algebraically independent over

F(Xo,- -, Xe) . We set f=X st +X urLEF( [o, )-n] and D_{;L::«‘mm(an)t N, where
8"(:4 . We consider the mapei/ {yﬂ@ @%—"% , which is linear over the field F(’L{o) uy[/)
where ﬁ}cb (respectively, "M, ) is the space of homogeneous polynomials in Xc,...,XH, over
F‘(u'm“;)u/w) of degree D-gz (respectively, D) for 0<€i € K , namely, GL(I’LO,...)!’LK)

=d§%%ktbb§b . An arbitrary element h=(hor-uhQ€§Kb&L"@1mk can be written in the form h

_ ; n+D -3 .
n‘(ho,u'"an’o,soﬁhd,v 4547 9h’k o hkﬁ) where §;= " b) and h}ﬂ"” ) hb,s; are the coefficients

of the polynomial hj, under the condition that some enumeration of the polynomials of degree
:D'—gJ is fixed. One describes the elements of the spaceIQ{/ analogously. In the chosen
coordinate systems the map Ol has matrix A of size (H15D> X ( $Tek

Z 1

the matrix A in the form A = (A', A"), where A' contains (¢$<k-(¥ columns, A" contains S

EH ) . One can represent

columns; moreover, the elements of A' belong to F. The elements of A" are linear forms over
F in the variables u%,.,,gan/ . The following result is found in [18), based on Theorem
2.1.

THEOREM 2.2. 1) The system '§'°=.‘.=§'K_4='-0 has a finite number of solutions in ]Pn(-F'—)

if and only if u}(A)= <W,,;,"D> [we let z:(ﬂ/?’vb> 1.
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2) A1l 2 *7?  nminors of the matrix A together generate a principal ideal, whose gener-

ator R is their greatest common divisor.

3) The homogeneous form R in u@)...}LLn decomposes into a product R~j£€sﬁ4ub ; where

: - (0] (i) o=
L.=2 ¥YU. is a linear form with coefficients from F, besides this <§ Lk e P(R)
TIT{ o w

is a root of the system, and the number of occurrences of forms proportional to Li in the

product is equal to the multiplicity of the corresponding root of the system (4$Lé~fﬂ) .

Thus, R coincides with the u-resultant [1] up to a factor from F if k = n.

Initially as the input of the algorithm given in [18] the system §§“~~:Jk-4 =0 is
given. On the basis of Theorem 2.2, the algorithm establishes whether the system has a finite
number of roots in P“/(§) and if the answer is positive, then as output it lists all the

roots together with their multiplicities.

The algorithm of {18] reduces the matrix A (cf. Sec. 2 of [13]) by elementary row and

column transformations over F to the form

Al 0 *

AOUQO+ A;

0 A 0

7
Aqus+ AS

where A, is a nonsingular upper triangular matrix with coefficients from F, the matrices
Ao;~-A$ are diagonal nonsingular with coefficients from F of sizes 'Aoy..,ﬁs » respec-
tively, the elements of the matrices A; are linear forms over F with respect to the vari-
ables Uy, § > )y (for all 0<i§ s ). Here and below we assume, without loss of generality,
that g A:(HRD)A , since otherwise the algorithm detects that ’L%A < ( n.,th> in the

course of its work and stops.

The algorithm mentioned for reduction of the matrix works in a number of arithmetic
operations over the elements of a field F which is a polynomial in the size of the matrix
A. Consequently, we get a polynomial algorithm for the case of a finite field F. For other
fields it is impossible in general to assert that the algorithm works in time which is pro-

portional in the length of description of the matrix A, so some additional considerations

are necessary.

In the given matrix each minor of maximal order det (n¢€D> is divisible by the prod-

wet def (Aollj, + Ao det\ly, + A) - Consequently, Redlet (AJdebhlyzrAD)-.. -det ( A
ujs+A5>. The number D; of roots, considering their multiplicities, of the original system
is equal to 3T¢s 'S according to point 3) of Theorem 2.2. We fix some pair of indices
O$oi4<oi2,\< Vl/} . The form ReFWo,-'-; u/w] can be represented in the form of a product
‘R=414Rz , where R, is the product of all the linear forms Li (cf. Theorem 2.2), for which

one has §(21=§(£2= 0. Then Rasp [uo,...,udp..e,%dz,»..,%w] and R4 e [ Wo, RPN jum]
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up to an appropriate factor from F, which we can assume equal to 1 without loss of general-

ity (a roof over a variable indicates the absence of this variable).

A
We note that de?ﬂo,--‘ur(fi):% -tg (A ) (we recall that A' is the matrix with coeffi-

cients from F consisting of the first columns of the matrix A). It follows

3
o€ ek "
from this that R coincides (up to a factor from F*) with any nonzero minor of size r of the

matrix A, which contains rg(A') columns of the submatrix A'.

Our goal is to give an algorithm which is polynomial with respect to the length of de-
;...,O,udal,o,...jo)e%?[ud{)11,%) or gives

the answer that the original system has infinitely many solutions (by calculating a poly-

scription of the matrix A, which calculates R (0.,....0 U, 0
AWy Vel gy

nomial, we mean here and later calculating its coefficients). This algorithm works for a
sufficiently broad class of fields F, in particular for finite primitive extensions of purely
transcendental extensions of primitive fields. For convenience of notation we renumber the
variables Uoye-ss LLW so that 1&&47 1Ldz get the indices 0 and 1, respectively. We start
with the case when FZH(Tw"TQ is a purely transcendental extension (£ > 0) -

Now let H, be some finite field such that (#-2)D,< oa*wl(H,\ sq,(n—-() Dy , where q =
char (H,) if q=ckwv(w} > 0 . In this case we extend the field F to the composite of the
fields F and H; and we assume further that H4<: F' . 1In the case of characteristic zero

we let H4’=Z~

Using Lemma 2.1 of Sec. 1, one can construct a family of N=4Kﬂf2)1% +1) vectors
W_y® ) M ary) 011 _ . . : .

4 “YW%-~ﬂﬁ-Dr"ﬂ7 “(m)‘ﬂ)v%r0€H4 , any n 1 of Wﬁ;ﬁ? areijlnearly independent. Now we
show that for some 1€¢i<€N the polynomial Rcubﬂih 12 ~»ﬁﬁi0€pfu@ﬂLD is different from
zero. If this is not so, then by Dirichlet's principle for at least one of the linear forms
l_,wzo%‘ng(jm)uj (cf. Theorem 2.2), for which Eg"-)_-gﬁ"i)zo and for (n — 1) vectors among
-’U'(?“w ,U—(N) {(let them be /9‘{4}’_“ \'q}«{ﬂ-!) )} one has bm(o)oﬂn‘v‘«f)'\ N ’quflif»t ) =0 , A< -1 >
which contradicts the linear independence of the vectors’V“Z...{V(nf”.

The algorithm calculating Ry(Uo,Uy,0,..., 0) considers in turn AW . ;V®  and finds
R.(’l/lo,'(l4)’v',,(£)... ,’U’x_i,) for {$v€ N . TFor some i the polynomial R{U, Uy v )’U;tb_)‘[)iéo .

Then fi4@loﬂlbo}”.)0) coincides with the form of highest degree of the polynomial K(u@ﬂgi

Vi

(2.‘_;UXfK) (up to a factor from H,* or Q* ). 1In E?e case of characteristic zero, by tbe
construction of Lemma 2.1 one can take VV=i § s N™! so the length of description X/UV}”)
is polynomial, and hence the vectors 4fm,...;V(N\ can be substituted into R in polynomial
time (analogously, the same thing is true in the case of nonzero characteristic). Further,
we fix an index i and for brevity we let @}:N??...;thzzﬂutz and we shall calculate the

polynomial R(ﬂi%u1ﬂ&,..w4fhp4).

For this we apply Gauss' algorithm (cf. [14]) over the field Fﬁcuoﬂiﬂ to the matrix
ACH@;Hqﬁ&,“.(Vn_4) . The algorithm is deterﬁined by the sequence of choices of leading
elements. If Aj is the result of performing the i-th step U}O,A;=A(Hmuqﬂn)”.;vﬂ_ﬂ) and
()%CEQLL is the element of the matrix Ai chosen as the leading one at this step, then the
element d;jsi):a%‘_a(iﬁd?,h/a:)‘u?’i» for X%olm,..?o(-; . We denote by Ai‘:"’% the de-
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terminant of the Wv XM  gubmatrix of the matrix A(ﬂoﬂi.’m,-u,’Vn-D , spanned by the rows

with indices b, ...Ly and columns with indices [T o&m
+1) .
LEMMA 2.4 (cf., e.g., [14]). One has G’LXS L pfer 8 ,M Afo- %t for Yad,, . e and

g%ﬁo,--‘,ﬁg ; further, (}V'k;/*g‘ =0 for Y#ol,, ..., . Finally, Q‘E{Lg”ma,} for all
: VB

other pairs ¥ , §
The lemma can be proved by induction on i.

Applying the Gauss algorithm to the matrix A(uo,%ﬂﬁ, N ;/U;H) we choose leading ele-
ments so that at the i-th step Ri should be as small as possible. Then if "L%(A(v[mﬂh) 4y

«Vi~)=T .  one has O%K@/"oﬁlﬂqﬁl) > .}50) {1‘2 14 according to the remark above; we recall
-

that A = (A', A"), where A' is a matrix w1th coefficients from F, the coefficients of the

matrix A" are linear forms in {i,,, _,-_7/1/{/.‘./.‘, . Now if Or-R(ubﬂ/f,,h’U}, oy Vi~¢) s then the al-

gorithm turns to the consideration of the following vector ’U’(‘H) . The time of working

in realizing the Gauss algorithm can be estimated by Lemma 2.4 by a polynomial in
('7—0{ +1)z+1 Mp, , where, we recall, 7, (D“F";) de%rr“ Tﬂi‘f‘éd and ,{,(-5- RS M?, (See In-

troduction).

There is another method for calculating R(uﬁ,,%;l&,,..ﬂfu.i} in Sec. 3 of {9]; it is based

on interpolation [21] and uses the Gauss algorithm only for the case when F is a finite field.

We note that d.eg.r““_’«ne&(A{,LO)’L%Q}}’,W;V’ _1)\0{,@2 and on the basis of Hadamard's inequality
one can deduce that A (R (LLO}UV,,) LTI Vn_.x))é‘l,(Mw @{Oq’d% + &}9,1,),

Now let F=K[y] and Yo = 0 , where (peK[:Z] and @ is irreducible over K, where
K is a pure transcendental extension of transcendence degree % over € or over a finite
field (cf. Introduction). We consider a transcendental extension K<KT and we calculate
the polynomial R(4Y,,U,v;,..., ¥w—1) under the condition that in the matrix A the element T
is substituted for M. We assume that each element of the matrix A is represented as an ele-
ment of K[T] of degree in T less than dxyg,(cp) . Then we sustitute % in reverse for T in
Ritho,W, vpes¥ ) and we reduce it mod 9 . The calculation of R U, Uy 45,..., 1,4} Tequires
time no greater than some polynomial in (v(ds+ d,,v)+’lr){'+14 and the length of description of the
initial data (including ¢ ), i.e., of (MﬁMx)(‘v(iﬁd@)%)w (we recall, cf. Introduction, that
de?n, (q?)<d1,€(q>>e M{ ). We note also that d,eg,r T (R(%w%,%---;%-gvs‘“dv:l‘*dw) and ﬂ(B(ua,lLﬂlq,

V) < UCrd (bet) dogdy+ M dut® log(mm Malandy.,

Thus, we have finished the description of the process of calculating the polynomial

R4 (U, Uy, 0,00, 0) . Now we begin to calculate the linear forms L ~OE §“’u (cf. Theo-
69<n

™

rem 2.2). ' We assume further that the field F=H(T,.,Ty)[4y] is the same as in the Introduc-

tion.

In what follows, all arguments about nonseparability relate to the case qmchaviﬁ‘)>0 .
We fix a pair of indices OSjo’<j4,< . Again, as above, one can assume without loss of gen-
v .7 .
erality that L=0,} =1 . Since (§“’u+g“’u)!}t,(uo,wﬂo,...,o) , we get that Rq(gqfl" o

0,.,00=0 . Considering that R,(U,,U%,,0,...,0) is a homogeneous polynomial of degree no
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greater than D, we get that the element ﬁw/gf) (if ESE# 0 ) has degree over the field
F no greater than D;. Consequently, its degree of nonseparability over F is all the more

no greater than D;. Let 34@<qﬂs 8, - If the characteristic g = 0, then here and below we
set Qﬁ=4 for convenience of notation. Then any element (§§V§:5V‘ is separable over F
(if g“%eo ). We consider further the new system of algebraic equations, obtained by replac-
ing each ccefficient of the original system by its qV power. After this change the degrees
with respect to each 72(15Ls{) if the coefficients of the system are multiplied by q”~$ﬂ4,
For the new system the ratio of any pair of coordinates in the forms Leg will be separable
over F, namely, this ratio coincides with (E“’/E(a)¢ﬂ for the corresponding jook . If
we solve the new system, then in order to flnd a solution of the original system we have to
calculate the elements (E;w‘§§)), starting from the elements (§§V§§5¢“e P91 found, where
8' is a separable element over F, which will be constructed by the algorithm. Besides this,
we show further that [F[@ﬂ: Pl='8, and for the minimal polynomial ®(Z) of the element 6'
over F with leading coefficient €wz(¢)==1 , the degree ‘h%ﬁauns¢ can be bounded above by
a polynomial in 1==(3;"), dz’d , while the polynomial has degree 1 with respect to

T (% Wiy (TyseiisTo)

B FAMTMIIAL 2 ) 7%, where @,

4 (QS}‘%(W) % (T1 > T% ) v
is the smallest possible, and we set(ﬁﬂm,’T€¢ _-1qam{ d%q. (aﬁ),d@qﬂ””,%(%)} (cf. Intro-

d, (we represent P=—

bt T, T] and dogy o (6)

duction). In what follows we write the elements of the f1eld F[6] in the form g(8'), where
_?eP[Z] and da}z(gkdegz(@)

We estimate the degrees with respect to T, +.sTy  of the element (§f7§?5qﬂ=égqﬂ . Since
the polynomial (z_gﬂﬂ)}R1(Z,—L0P“,0) (here the polynomial R; corresponds to the new system),
we can apply Chapter I of [4] to the polynomial R(Z,1,0,...,00sF[§1[Z] and the separable ex-
tension F<F[8’] . Then, keeping in mind that de%w“,,hk‘(z,—‘l,(),“.,0)4“0@%%) and degz}?,‘
(254,0pu,m534 according to Chapter I of [4] and the bounds on dWﬂPAnQ’dW2¢ mentioned above,
one can also estimate ﬁkg%vaexgwﬂ from above by a polynomial in =, d;,d, of the first

degree relative to d,.

Now we decompose_Zqﬂ-Eqﬂ into factors over the field F[8'], applying Chapter I of [4]
to the separable extension of the field F.<f[68] .. The decomposition has the form Z%{~§qﬂ==
(7% - E‘Vl)‘**—v , where Ea,"e rlel ; then ’§°'M¢ FI81 (here and below in similar cases we as-
sume ¢>0 ). Then the extension of the original system corresponding to the linear form Lg,
can be represented by the vector (§?1...,E§w) , where the elements §“7§(” qaé. r[e'] are
given, while 7jj, is such that ¢ §W7 E“’ﬂdq‘ ¢ T[0T (all of this under the condition that
?mqe ¢ ). By what was just said, we shall assume in what follows, without loss of general-
ity (raising the coefficients of the original system to the power g¥, if this is necessary),
that for any linear form (5; u,+ ’mu})[ R,(0,...,0, 3’0 ,O,u 1 0,...,0) the element §i)/§;? is

&4
separable over F (under the condition that § =# 0 ) forany ¢, § I

Further, to solve the system we shall follow the general plan of [18]. First of all
we calculate the polynomial Ry(U,,1,,0,..., 0} with the help of the algorithm given above.
Then we decompose it over F into irreducible factors (cf. Chapter I of [4]1). Let by Uy > Wy
| RetUg,%,,0,...,0) be some factor which is irreducible over F (the algorithm being described
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considers all irreducible factors) different from U; {in this case, 1€ Ei&"%ﬁ’ §f’3ﬁ,}ﬂ1¢ )
gie}#: 0 ). We note that the construction of [4] leads to an upper bound ond"%’n,u.,% (@m
which is polynomial in % , d'q ) 07«4 and in addition of the first degree with respect to d,,
and to an upper bound on the length “%fof description of the coefficients which is poly-
nomial in M+ M,+ %, ,1,dy» and this polynomial has degree 1 with respect to M, + My + 0, -
The procedure given below finds all the forms Le satisfying the condition §¥= 0, To find
all forms, it suffices after this to find the forms satisfying the condition E?’#‘r\{) and to
choose among them the forms for which £y == 0 (or one can add the equation Xy = 0 to the
original system), etc. We set §(Dy==ly(Z-1)=F[2] ; then (},‘(2‘;6’/ §9) — 0 . We let F =

: F[ﬁqj::F'[Z] /('}4(2)) ,. where (}1(@1)_-.—.0 and ‘@4/-7- ¥, @ =9, . The construction of r, @4,1
@:, ®, completes the description of the first step of the procedure. We can assume without
loss of generality that tasd(H)> &= & 3, (otherwise we can extend the finite field H, as

before in similar situations).

Let (s — 1) steps of the procedure be made already. The following s-th step starts with
the addition to the system obtained at the (s — 1)-st step of the equation 8, X, ~ X, ;=10
(throughout the s-th step the polynomial R, corresponds to this new system). Then we cal-
culate the polynomial R,(#, 0;..,0,%,0,..., 0) and we find a factor by o, W) | Ryt 0,050, Uy,
0,..,0}  which is irreducible over the field Fis_1 , constructed at the (s — 1)-st step {cf.
[4]1); the algorithm considers all irreducible factors hg. We let §,~ ¥,(Z,-1) . Then
(}sggf"/ §¥)==0 . Let By (\4[@5]»--—-&_1[2;]/’(%(2)) » where 4. (§)==0 (as 6j, of course, one can

take §‘;’)/ 5% for some € and any Asics ).

We consider the elements @g“,ﬁ 48,..., @;'4 +0s 8, » where {0 =&, (e H are pairwise dis-
tinct (in the case of characteristic zero we take ¢,==4-1 ). At least one of these elements
is a primitive element for Fg over F (cf. [6]). For each of Q;ﬁc,&@é, 1zy,.<d the algorithm
constructs the minimal polynomial over F. For this it is necessary to solve the question
of the linear dependence over F of the powers i, @:_4+ Cpy 85 (@;;4*‘—'&&@5}2, L (@1:*@3*&@3)} . These
powers can be expanded with respect to the basis (9., ¥ @f where {<a< d@gmq PO pe
deg,\gb and the question reduces to the solution of a linear system over F. Moreover, the
degrees with respect to T,,..., T, of solutions of the system, i.e., of the coefficients
of the minimal polynomial, are bounded above by a polynomial (independent of i) in =+, ¢, i»,;
(of degree one with respect to d,) and in tn&x%d;ecﬁwm( L?M)’de'}vq,.,‘,'rj?‘a’} . Moreover, the length of
description of the coefficients of the monomials in Ty..,; T, ¥ can be bounded above by a poly-
nomial in w4, d, (M + M, + {d) of degree 1 with respect to (M,+ M,+{d) . We denote by 8: the
primitive element constructed of the form G§_1+0rx 8, of the field Fg over F, and by AVA

«F[Z]  ite minimal polynomial, QJQ(Q:) = {

Now we prove that the degrees de%ﬂﬂ_,rpc(q?,) (the length of description of the coeffi-
cients {(®,; , respectively) can be bounded above by a polynomials in +,d,, d, of degree
1 with respect to d, (in s, d,, (MM, + {4 of degree 1 with respect to (M+M + {da), re-
spectively), independent of s. We note that by construction @Lf:——-—-—GﬁE ¥, 8, and Q;ﬁ%i?fﬁf,“
for some €, where ¥ <H and O« yy<dé-1, when char (F) = 0, for 47:32:25 . We consider

the auxiliary system of equations obtained from the original one by a nondegenerate linear
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change of variables under which X,—-X, , X4 !)<§<3 mx *——>-=X . Then the roots of the auxili-

ary system are the vectors (%gi g;f)+x, D' 5;;3_‘_) for all 4<p=<J], . One can choose the
S HEH 2

linear substitution so that the length of description of the coefficients of the auxiliary
system are bounded above by UKM&+%QM@ JfG%J) - For the auxiliary system the element @#
%El Yé““;“‘y/g * Eé ﬁck(@/g(& is a root of the polynomial §,(Z,~1,0,...» 6y correspond-
ing to the aux111ary system. Consequently, arguing as above, one can get the upper bound

wanted, independent of s, by the degrees with respect to Ty»---»T¢ and the length of descrip-

tion of the coefficients of the polynomial <Pa

Now we let 8= ,,‘,; ®=0®, . We show that the ratios sought §;J’)/ géﬂ of the original sys-
tem can be expressed in terms of the basis 4:@!;(@6%--. with coefficients from the field F,
and here the degrees with respect to T,...,T, of these coefficients are bounded above by
a polynomial in % 64, dq of degree 1 with respect to d, and the lengths of description of the
coefficients in the monomials in Tj,..., Ty, @w’ 8" are bounded above by a polynomial in (Mﬁ
M,ﬁ() dy ), dy,v of degree 1 with respect to (M + My+t . d/w) . Moreover, the polynomials
of these estimates are independent of p, j. For any s we decompose the polynomial %}(Z)z
®,(Z,0,...,0,-1,0,...,0)  (here § <5 ) over the field F‘°= W[@;] according to Chapter I of
[4]. Then 9 (@ ) =0 for j<s , so (Z—@')‘ ‘}3 . From this it follows [4] that the degrees
d&g%m,%(@) in the expressions of 8j as an element of the field ﬁ'[@] (the length of de-
scription of the coefficients of 6j, respectively) can be bounded above by a polynomial in
v, da.,dq of degree 1 with respect to d, (by a polynomial in M, + Mw— { O{/w), v, dq of degree
1 with respect to (M;+My++% dy) , respectively) and, moreover, these estimates are inde-

pendent of s, j, p-.

Now we show by induction on s that one can express 6j ({sjsgs) in terms of powers of
the element 8g' in time which is polynomial in f"hf’i,,(’tdfa/df,)f’+1 , and, moreover, the polynomial

giving the estimate is independent of s, j, p.

Let the expressions for @i(1<js6~1) , as elements of the field F[@:_1] , be found al-
ready. Since 9:==‘9:—f*75@ﬁ , using the polynomials @, , ¢, (cf. above), we find decom-
positions of the elements 4,@:,(@§)%--- with respect to the basis (QQA)QQf with coefficients
from the field ¥, where 0sa<deg(q>5_1 ), Os.ﬁ<de‘}(95) . Solving a linear system over F, one
can find the decompositions of @5,92~4 with respect to the basis 1,@2,(G:)ﬁ,“ . After this,
substituting into the expressions for &,,...,8s.y in the field F[85.,] the expression found
for 8_, , we get what is required. The expressions constructed for 8j (1sj<w) satisfy the
estimates given above, so the time of construction of all Sj (as elements of the field F[Qq)
is polynimial in Mg,M,,(t dqdq)"” » K, G

s 5] )
Now we somewhat alter the primitive element 0= E‘ﬁ ) (here §-==§. and §, =0

j-°<;sn
for 9c<j° ). Namely, we set ay_—:m:,x{q,é}e} and g"— (@ﬂ E *f“i (?S*J/g,)‘i Then

FLe=F[§].
V.
Remark. We note that if PD w) G’ A§“V§“ﬁ¢] PB§?4/%EUQJ, ie. __(ga /% mﬁ@”

is a primitive element, then 9Q==@ according to our construction of a primitive element,
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since ¢; = 0, while the polynomial %f%=’% coincides with Q%_&x=q>:=qﬂa {cf. the notation
above; the superscript ¢ means that we consider Lg), is irreducible over F, and %{Q)mﬁ@
Moreover, if Ef%#O for any €, i.e., for any root of the original system, then for any fixed
pair of indices §:==0, j: the corresponding polynomial R, = R . Moreover, if (gfd/’§§“)4ﬂ

is a primitive element for any e, whose minimal polynomial over F is @‘®|R(Z,4,0,...,0)
(here R,,¢,= P® correspond to the modified system obtained from the original by raising

its coefficients to the gM-th power; see above), then R = R, for the pair § =0 9§:mm4 and
the product_gf(qﬁw)% = R(Z,~4,0,..., 0) up to a factor from F¥, where ¢ runs through the set

of conjugacy classes over F of roots of the system (e corresponds to £). Finally, according
to the construction given above, to each conjugacy class over F of roots of the original sys-
tem there corresponds a polynomial @ with suitable ¢ and, conversely, to each polynomial
P there corresponds here a conjugacy class of roots (not necessarily unique). The poly-
nomials @ can coincide for different €. The exponents of the degrees %% are equal to

the multiplicities of the linear form Lg¢ in the polynomial R {see Theorem 2.2 above).
This remark is due to A. L. Chistov and is not used here.

We summarize the results of the present section in the following theorem, which is a

modification of the theorem of [18].

THEOREM 2.3. Suppose given a system of homogenecus equations fo=... =% _, =0 , where

e X, X1, d99££== J;, ﬁiﬁQ”>¢i4 (without loss of generality, wsk ), where the field
f=HT,....T)[]; H=—@Q or H is a finite field of characteristic 4>0 3 T,...,T; are al-
gebraically independent over H; n is an algebraic and separable element over H(T,,...,Ts)
with minimal polynomial \Q(Z)G.H(Tm,...”‘i"/g/)_ [z73. P(h)=0 . We let D:JO’ + %%m&_ﬁ%}"ﬂ,’i =
(Dfﬁb) . @Q“1)=d€§m”.;ﬂz)z(%9 ; by d; — 1 we denote the degree with respect to 7h~..,Ti,
of the coefficients of the system (see Introduction), by M, (respectively, M,;) we denote the
maximum of the lengths of description of the coefficients of the monomials in T;) ...... ;tt,b

in the system (respectively, in ¢ ).

An algorithm is constructed which first determines whether the system has a finite num-
ber of solutions and, second, if it does, then it finds all the roots in the following form,
The roots are divided into conjugacy classes over F, and the multiplicities of the roots are
given. For each class the algorithm finds a polynomial dDELH( ]Ea} which is separable
and irreducible over ¥, with leading coeff1c1entlgcz(cb)==4 , let 6“ be a root of the poly-
nomial . TFor each class, in addition the algorithm finds a (¢ }as v such that
E 7*5 0 for any root (E K § \(—Z P" of this class and § for }< ;;0 , and calcu-
1ates the elements (E /§ )%JG»FT{.QHJ for §, ¥ J - (in the case of characteristic q = 0,
we assume \G_i) andciJ { for notational convenience), where 4<q73<3% {we recall that

Dy £ % is the number of all roots of the system, see Theorem 2.2), and here (¥, /% )%9‘1M
/e J, 3 v

F[8”] (wheng>0, 17 >0 ). Further, F[ Jo'H/éJO (g/’gwﬂ f=F] =F[6"] and 0% E\R J(E /;‘)3, '

where X eH (we assume that card H Y :D<11 or we extend H; see above) %) --WC}})J . The

number of conjugate roots in a class (without considering multiplicities) is equal to
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degz . The degrees degT TE(E //g 9%} d£3ﬂ> 72 (the lengths of descrgption
of the coefficients of the monomlals in T}] Tb’ Q @ of the elements (gi//gjo)% 4 and

of the coefficients of the polynomial Cb , respectively) can be bounded above by some poly-
nomial in Z3dz, dq of degree 1 with respect to d, (by a polynomial iniph+W&f£dﬁg'z,dq of
degree 1 with respect to Ch“4'Mz+.LJ) , respectively) and, moreover, these estimates are

independent of j and of the conjugacy class of the roots. The algorithm constructed works

in time which is polynomial in MLMZ; (2 a['zla‘q')'zﬂ, k,g.

3. Direct Method for Finding the Tree of Components

and Generic Points

As in Secs. 1 and 2, let fo)--‘,fk_4€F [xo,-u,xn] be homogeneous polynomials. PFurther,
without loss of generality we assume that dﬂﬂ f = s by replacing each fj by{fxd d fkgs ,
/‘ rL

where d= max { g f. } . Moreover, without loss of generality we assume that {f 0s1 & k-1

0818 k=1
are linearly independent, so K ¢ (d*Jt) N (C{+4) . We assume that the ground field F =
F{(W}, T}, L b] , where either FV“GR or H is a finite field, g = char (F), the elements
‘1, ~,Tk are algebraically 1ndependent over H, the element h is separable over F{CD, \Tkj
and ‘fCT)€f4[T% TZ T] is its minimal polynomial. We shall assume without loss of general-
ity that fL€}1rEynﬂh,b;Xm--~Xm] for 0$i€k-{ . We denote by d, an upper bound on
deaTﬁv-wﬁiCT ) and by M, an upper bound on the length of description of the coefficients
from H of the polynomial < in monomials in T@.HjTg, b . By d, we denote an upper bound on
dg?Th«nﬁz(f&l()sjé:k_i , by M, an upper bound on the length of description of the coefficients
from H of the polynomials fw“vfk—1 in the monomials in T}r,kaq &, XO’_“, Xn (see In-

troduction).

The goal of the present section is the construction of an algorithm for expiicitly find-
ing the irreducible components defined over a maximal purely inseparable extension FI™ of
the field F, of the variety P|¢( §> defined by the system fo=..ﬁ=§k—4 =0 Namely, for
any component the algorithm constructs a generic point of it (see below and alsc [3]), and,
besides this, in Sec. 4 a certain family of equations with coefficients from F will be con-
structed, which gives the component as a set of points in Pﬁ/(ﬁd . For brevity we shall
call a component which is defined and irreducible over F@ﬂb an irreducible component over
F; such a component can be given as the set of points of a system of equations with coeffi-

cients from F. An upper bound on the time that the algorithm takes will be given below in

Theorem 2.4 of Sec. 4.

We proceed to a description of the tree of components, which is constructed by the al-

gorithm in the course of performing it. The tree of components has a root which is ascribed
to projective space. Any vertex v, different from the root, is ascribed to some variety

. h, =
VﬁVC:Ej (F )- which is irreducible over F. By the level m of the vertex v we mean the number

of edges in branches going from the root to the vertex v. The algorithm constructs for any

{$wm £ +1 the linear combination 1, = 2. (m fu’ where & eH (if H is a finite
(m) o o<‘<\<-

field, then it is possible that it must be extended, so that axui(H} > kd® ; see Secs. 1
and 2). Moreover, COd“anOM%) = m for 1$mgn+41 (in particular, VV@'== @ when m =

1788



n + 1) and the family of components of the variety {bfm¥hwfo}cﬁﬁlﬁ) of common roots of

the polynomials I/Lh...)k,m , whichare irreducible over F, coincides with the family of vari-
eties Wy for allvv of level m and of varieties Wy, for all leaves v, of the tree of compon-

ents of levels less than m, such that Wy, is a component of the variety {f;:.u==jk4 = 0}

If v is a vertex of level m which is not a leaf, then hﬁ1+1 does not vanish identical-
ly on Wy. Moreover, for any son w of the vertex v in the tree the variety Wy coincides with
a component of the variety v&rnihm+4==0} . Conversely, any component of the latter vari-
ety coincides with Wy for some son w of the vertex v, except for those components w(i) of
the variety Vv%—n4ﬁtm+4==o} s such that anc\dqﬁ for some leaf v, of level not greater than
m, such that Wy, 1is a component of the variety fﬁ=~-=§K_4==d} . To any component W of
codimension m of the latter variety there corresponds a leaf v, (in general not cne) of level
m, such that VV==MAQ . Conversely, there are two types of leaves of level not greater than
n. For any leaf v; of level m of the first type Wy; is a component of the variety{§;=~.=ﬁ¢fdﬁ
and ‘codimlﬂm =m . If v, is a leaf of level m of the second type, then W, .4 does not
vanish on Wy,, soVVU@ Cﬁ &t —jk_4—-0} s but, on the other hand, MA&n{hm4 C{f ~ﬁk @ and
there does not exist a component of the variety Vh&iﬁ inmﬁ{.z OJ , which is a component

of the variety {§D=...=§K,4=<3}.

First of all we estimate from above the number of vertices in the tree of components.
Namely, we show by induction on m that EZ:dzﬁme— 4™ , where v runs through all vertices
=0 — O : itd ; : -
of level m. If \Vv4\{hww;_} ~(Q&,VMJKJL%JyV (see above) is the decomposition into irre
ducible components over F, where the components Wy are ascribed to the sons w of the vertex

v of level m, then %%.deﬁxyﬁ_szi;deava/ according to Bezout's inequality [7]. Summing

these inequalities over all vertices v of level m, one can get the inequalities required for
vertices of level m + 1. From this it follows that the number of all vertices of the tree
of components is less than (n+~0 QPL+ { , since the depth of the tree is not greater than
n + 1. Thus, it suffices to estimate in what follows the time the algorithm works for the

construction of one vertex of the tree of components.

The algorithm given constructs k%r“ﬂLbW+i , the tree, and the components Wy by induc-
tion on the level m of the Vertex v. We write the first step (m = 1). We let f,=7,
Based on Chapter I of [4], we decompose &,iTJ %%L » where g; are irreducible over F for each
i. We fix some index i. We let V4={3f?0}<3fﬂi(ﬁ) be a hypersurface which is a component
of the hypersurface {fa==0}

Now we construct a generic point of the component W; [3]. Let %L= %;(Xq% N ng’
where 9 e}?[ 0y n] and vi' are as large as possible, when %,>D , and qﬁ = 1 ‘5 when
char (F) = (the analogous remark is valid below in analogous situations). Obviously, gi
is irreducible over F. Let O0€j &n be an index such that (D g;: /3234) #0 and let
30?421 (let us assume >0 ). For convenience of notation let us assume temporarily that
Jo=0 > J, =1 ‘, and, moreover, we assume that a.l#cxc.ivf. We set X4/Xo=f4},...,xn_4/xe=
tn—4; (Xn/x' % =, where t4,...,‘tn_1 are algebré&cally independent over F; we let

¢4 (Z)=§i(4)t4) g ﬂ-hz)/aep( 1) et [Z] where a‘ozao(t{)“'?tnf-{)=£c?(§b(4)tb“' ;bn-hz))eF [th I'H] We have
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dﬁ(90==0 and, moreover, Cb4 is the minimal polynomial for the element 8, over the field
F(fbuey) - We consider the field F(by...,t, )Z]/(P)=F (1,.., 4 [0 -  Then the
expressions given above for ,XJ,/XO supply a generic p01nt of the component W, in the fol-
lowing sense. An isomorphism of fields F'(X4/4Ko, RUNN n, /XO,CKn/X) F(t4 tnﬂﬂ[@](the field
P(X1/&o,.wxw4 Xo,( w/ Xo )q’) here and later in 51m11er situations, is a subfield of the field
o (\M@) , generated by F and the rational functions x4/Xo)u-} mq/XD,LXn/Xov on Wy)
can be lifted uniquely to a field imbedding T: qumy(Mﬁ)C; ﬁrGZTifTE;:B (in fact, the image
of the field Fq.w(VV” under the imbedding 7 is purely inseparable over the field F(h,m,
tmﬂ)f94] )s since the extension F(X4/Xo,“anq/XoJankJ¢%)C Fqﬁ“&%) is purely separable.

Thus, m defines a generic point of the variety W, (see [3]).

Now we can describe the first level of components. It consists of all sons of a root.
The vertices of the first level correspond bijectively to polynomials gi. For uniformity we
now introduce notation which will be used below in the inductive step. Let the polynomial
gi correspond to the vertex v of the first level. Then the component Wy = Wl is ascribed
to it in the tree of components VV {H)@n _..-—HIQV)—-O } » where 1} =, ~q& 3 A ge-
neric p01nt of the component Wy is given by the equatlons X, /K =1, w%/x __t i 3
(X /X)+"' w =0 ; we set, finally, g =P4 (see above).

Now we formulate the inductive hypothesis. Let hh,“,hqn and all the vertices v of
level m (and also vertices of levels less than m) of the tree of components be constructed
already; we assume M&n . Moreover, there is constructed a certain family of homogeneous
polynomials lifgw .oy (‘\7 F[Xo) X _l such that A/ { (‘2 =Y ,._mo} and 1\[!43 @O;le,‘)rv
Moreover, there is glven the fleld FXQ, ,nﬂdlﬁmb where t4, tvv—wv are algebraically in-
dependent over F, the minimal polynomial Ct%r F(t“.u, n.m>[:23 of the element 6y over the
field F(th-nftnﬁnp) with leading coefficient '&Cz@th)zi' Finally, there is constructed
a generic point of the variety Wy, more precisely, there are written expressions (Xé/(

) e I"(t1 JLPu-w)LZ]+ for some fixed j, and any j and suitable q,"jé(d+d{+d4,\f'f’d;%t4 (the
numbers Jo ’92 actually depend on the vertex v, but we shall not state this explicitly in
what follows). Here X‘//X' are considered as rational functions on Wy, and these expres-
sions define a f1e1d 1somorphlsm (after suitable renumbering of the variables Xo,, Jga/xm"v
an Xm“ mﬁ4x)@mmd X/& > % )mmx also by the inductive hypothesis). Under this
isomorphism XL/XJ_*tL {€$v€$n-m . Further, this isomorphism can be lifted uniquely to
a field imbedding F% (&VV) & (T%

n~m) , i.e., to a generic point of the variety Wy.

We also formulate estimates on the parameters of all the elements indicated. The de-
ar) y m { M+ i . m
grees dﬁf}xm...,xn(’%(‘ )‘<d4(‘i+d’1+d2) d'e% Wy < (5"/*’3{1‘*6{7,) d ) degzd?réde% Wy €7 moreover
and d-eﬁT{) '\T :‘t")“.»t?'rl’l'v (q:?v‘);
[X. /X %J are bounded above by some polynomial in (Gi+d4+d@ (here and below

Ae?h LQV@} does not exceed a polynomial in @i+d¢+ciy“{n~m+ﬂ
*

d

ai%vﬂhfh T\ 4

in analogous situations the polynomial does not depend on the original system, the vertex

v, etc.). We denote by X/k\gCV)) the maximal length of description of the coefficients
\ ’ ; z ’ 3

from H of the polynomlals n{mﬁ Then {@y 55@%, £(X / %0 (1(Mf{)P@dﬂL+de“n> for a suit-

able polynomial p.
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Now we proceed to perform the following step of the algorithm for comstructing the tree
of components. We consider the polynomials fay.‘gﬁk_q and for each of them we verify

whether it vanishes identically on the component Wy. Namely, we fix i and we substitute in

v » 4 .. 4
the homogeneocus polynomials f? the expression for (X'/x>%v Géénﬁ@/ where q —bwjt%1@?
As a result we get an element of the field P{tb SN @q} . If this element is equal

to zero (in this case, see Lemma 2.7 below, fj vanishes identically on Wy), then we pass to
consideration of the next polynomial f;+{ ; otherwise, if this element is different from
zero, then v is not a leaf of the first type (see above), i.e., Wy is not a component of the
variety i”)~ -=§g,4;<3} . Now if all f4i vanish identically on Wy, then v is a leaf of the
first type and Wy is a component of the variety {f&=“-=fkn1==0}

(m+f) ¢

I
({27 oz:ék4ga jb

Now we construct k Using Lemma 2.1 of Sec. 1, we choose “1:

((k“4>djn + 1 > vectors ;... J e H* , any k of which are linearly independent. For
any vector k(:(dez.“~ 1 0) we let M a<&§£Q{L . We verify that at least one of the vec-
tors OZ“..\)OLN,’ can be taken as (Eﬁémt?..a%gf:”) » so that g’bmﬂ will not vanish identically
on Wy for any vertex v of level m, which is not a leaf of the first type. In the opposite
case, by Dirichlet's principle there exist at least k vectors among d4v~q‘iN4 {let them
be o, ..oy ), such that hﬁhl,‘,)hﬁdk) vanishes on Wy for some fixed vertex v of level m
(which is not a leaf of the first type), since the number of vertices of level m is not
greater than d™ according to what was proved above. Then all fb,in, % k-1 vanish on Wy,
which contradicts the fact that v is not a leaf of the first type.

The algorithm considers ;Uﬂa for 4&i¢ ﬁ and for each vertex v of level m, which is
not a leaf of the first type, substitutes into the homogeneous polynomials (kﬁiujﬁw the
expressions for (XA/XQ)WW (keeping in mind the renumbering of unknowns made above). As i¢m+4
we take an element Hﬁﬁ) , for which the results of the substitutions for all v are differ-

ent from zero as elements of the field F‘(th;“)tn-m}f qu}

Now we fix a vertex v of level m, which is not a leaf of the first type and we let
-y . . ’ (
Y ~‘-'"-—V‘~/,v N {hmﬂ —’-‘—0} = {\p@=-~.=‘¥ﬁﬂ="¥m+1=0} . Obviously the dimension of each compo-

nent of the variety W is equal ton —m — 1.

We apply the construction of Lemma 2.3 of Sec. 1 to our situation. It gives us a family

¥ of no more than (ndwu4+_4> elements, each of which is an (n — m)-tuple of linear forms

of the form <04<<—;<n SLX ) , where 0£s< w-wm ~1 and either }\55' < H , if Hz@‘, or ‘)\5,‘,
belongs to some suitable extension of the finite field H, 0$S5<€t-m —1 (we assume here

and later in analogous situations, without loss of generality and for convenience of nota-
tion, that this extension coincides with H). Moreover, the length of description of any of
the Asi can be bounded above by some polynomial in n, log {deg W) {(cf. the construction

of Sec. 1 and the remark at the end of Sec. 1). According to Lemma 2.3, at least one of the

(n = m)-tuples of ¥l has the property that \/\/n{Z )\ X“ “Z: }\n ) “02 }é and, con-
0 © -medt )

sequently (cf. the corollary in Sec. 1), this (n — m)-tuple is a common transcendence basis

for all components of the variety W.
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The algorithm considers all elements of the family W/ . We fix an element

(()%<n)\8'uxi> O(«Sén—m—1€m . We add the forms 504Lsn\iuxi} 0gs&n=-m~4 (they are linear-

ly independent by the construction of Sec. 1) to a basis of the space of F-linear forms in
the Variables X;,,~ .- ,XH, and we denote this new basis by Ym..., YH, , in particular, Ys =
0§$n}\ 3 for 0$s€n-m-1_, As a result of taking the current step all sons of the
vertex v will be constructed (under the condition that the fixed element of W satisfies

the condition {oéu&n ob)( = —<Zt-$'n}\n“m" L’=O} = /d and for each son w there will

be constructed homogeneous polynomials Wf‘;r)’\l,fwe F (Yo YH/), N € f30[<m+” )" such that
the corresponding variety W {\P‘(’W) ‘“:\lrr(wy 0" . Besides this the algorithm finds a
generic point for Wy, i.e., the expressions C{ /\1 )‘P’:G_ D(t,}, tn—m M’ . for n-m <& 3 fn,
defining a field isomorphism F(ti» Brome) ] rQW] F’O{/}G) Y e Yo) /Y q)'q-m, . ){\Yw/\{o)cﬂn}.

The variables XQ)...)XW can be expressed as linear forms in Yo,.‘.me and conversely. Sub-
stituting these expressions in '\,V‘Fm and {\Yd Yo >¢:V’j » one can get the polynomials desired
(where the length of description of all these elements can increase no more than polynomial-
ly). TFor convenience we also represent the polynomials ’\V(V sy {&,Y))h/m+1 as polynomials

in Yo)._.)Yn and we preserve the same notation for them.

We shall assume in our arguments that the fixed element of Y satisfies the condition
Wn{Y— =Y, I } ¢7 because otherwise the algorithm detects that this is false in the course

of its work, and goes on to consider another element from Nl

- i
In what follows we shall consider the intersection of the variety W(F'), where F=H{T..,
TL,tn---.tn-m-{)[]z]=F(t4,---,tn—m—b with the linear space W:{Y-v—tLYfO}M“'n:m.A , where 'th...‘t

s n-m=1
are algebraically independent over F (here we consider varieties as subvarieties in

]Pn(?h . Since Wn {Y-— n-m- O} ¢ , one has that W(E—?—’) N T consists of a finite

set of points, lying in an affine subspace {Y %O}CP ( (by Lemma 2.2 of Sec. 1). Hence
g

the zero-dimensional variety WU—T ) n Tl is defined over the field (F )qV .

We substitute T;Y, in the polynomials @r) WN , 11/ for Yi for 1<€isn-m-1 . "The

roots of the system of equations

YO Yo Bt Y- ) =0 o<isN’

Yy em=1 0y A= ) (1)

YO;Yn—m)“'erL)= 0

m+1( ©3 4 03"y n—m-

in projective space JPMH(F‘,) correspond bijectively to the roots of the system defining
the intersection W(‘F"_)n‘ﬁcﬁ)n(ﬁl) We apply Theorem 2.3 of Sec. 2 to (1), where the role
of F of the theorem is played by F', respectively, the role of T4, T,{; is played by TM

,'th..."tn.mJ . If the algorithm of Theorem 2.3 detects that W(F' “W is infinite or
there exists a root of (1) with Y, = 0, then for the fixed element of XU the condition
Wn {Y H-m— = 0} =¢ does not hold (see the remark on Lemma 2.2 of Sec. 1) and the al-
gorithm goes on to the consideration of the next element of M (namely, at this place the
algorithm determines whether the condition \/\/n {Y n-m-1 0} }5 holds).
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We consider some conjugacy class over F' of roots of (1) and the polyncmial dDeF”[Z}
corresponding to this class which is irreducible over F' and lcz(cb} =1 (see Theorem 2.3).
Our next goal is to establish a bijective correspondence between the components of the vari-
ety W and the conjugacy élasses over F' of roots of (1), i.e., in particular, to any son of

the vertex v there corresponds a uniquely determined polynomial <b

First we verify that the elements 24,.‘.72,1,.,4_1 form a transcendence basis over the
field F for the ring Ay=F (Z .., %]/@; 2By Nifd Zio ety By In fact,
the kernel of the homomorphism /\,ﬁ—»[:0 [Y{/‘}m n/\{o}“‘kq' Wﬂ {Y %O’} in the coordi—

nate ring of the affine variety Wn {Y, # O} over F4® (under which Z /Y s )
is the nilradical & (;"\v‘) of the ring /\A\‘— . The components Wi of the variety W correspond
bijectively to minimal prime ideals qu of the ring /\'\J’ {see [3]; also see the proof of
Lemma 2.9 below). The elements 24, Zn-m-1 are algebraically independent over ¥, since
they are algebraically independent in the ring F’“f-werInW'ﬁO}]D/\qr On the other hand,
for any J\a/\qf and any component \f\/wq of the variety W, there ex1sts a polynomial O#P,m
P[Z,;, . 1Zn—-m] (here »1‘.4, . Zn-m are algebraically independent cver F), such that
(,,,,{) in—mw,/\) € I,w* We let qu 'W"P“Is be the product of the polynomials P%ﬁ over
all components Wun of the variety W. Then qu(Z;n.u,Zﬁ_ ;hMg}{(AV) {see [3]). Consequent-
1y, Pv (Z =,Zn~m.4,ﬁ)= for a suitable integral e, i.e., the family {Zh“-; Z’nnm-uz} is

a transcendence basis of the ring f\‘\r over F.

We let S='F[Z4j...,Z,@_m.1}\{ }CAV be a multiplicatively closed subset Keeping in
mind that Eq}hﬂ S :;5 for each w;, we get that the minimal prime ideals of the ring 5! /\"LY’
correspond bijectively to the ideals . I«m and have the form S”*Im {cf., e.g., [3]1). On
the other hand, P(Zh ) erm-OC%"‘ Nar and & /\\fs.r igs a finite-dimensional algebra over
the field ¥ (Z4-.-,Zn-m-4 . Consequently, all prime ideals of the ring S Ay are

simultaneously minimal and maximal.

- B /
LEMMA 2.5, Let ¥ C?,g C ¥ be field extensions and let ;\fvz?" ¢ /\’\1‘“ . Then there

ex1sts a bijective correspondence between the following three sets {we recall that Wa i\/ =

w—m- ”O§ Sﬁ\

a) components W‘p of the variety W which are irreducible over Fi;

b) classes of homomorphisms having the same kernel f/\v, F‘(\h t‘_m%\) of algebras over

the field GI= F(th n—mﬂ-b (here the inclusion & <y S~ /\U' is defined by the correspond-
ences 't—-»Z-&.eS Sh=-m -1 );

c) pairs, the first term of each of which is a conjugacy class over g,-H Uy tw-m-ﬁ)
of roots of (1), and if the polynomial < e F'(Z) corresponds to this class (see Theorem
2.3 of Sec. 2}, the second term is a factor 4:’“,652[21 of the polynomial CID which is ir-
reducible over §3 . |

Proof. TFirst we construct a bijective correspondence between the sets of points a) and
b). Let Wy' be a component of the variety W which is irreducible over F,. It corresponds
to a simultaneously minimal and maximal ideal S I' S-{Av« , Where I%u: Av' is a minimal

ideal (see above). Since & < (5! /\’ /5‘41 } is a finite field extension {analogously to the
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way this was proved above), there exists a field imbedding. (S /\ /3-11 C.. 52, under which

the elements  Z; ,... Zp-mei ,» which are algebraically independent over F; . are mapped

respectively into tb 'tn 1
R

phisms from b), containing the composition of the natural epimorphism 3'1/\’”.—,5'1&1!,/

Thus to the component W;' corresponds the class of homomor-

57" 1, and the field imbedding just comstructed.

Conversely, the kernel of the homomorphism from b) is a maximal ideal g I’uc 5'1 A/'\Y
and to it there corresponds the component Wy'. It is straightforward to verify that the cor-

respondences are well defined and that they are mutually inverse.

Now we construct a bijective correspondence between the sets of points b) and c). Sup-
pose given a pair from point c). The field extension RC [ [_Z]/( ¢|,¢) is finite, from
which it follows that there exists a field imbedding ﬁ[Z]/(ChJCa_SE which is the iden-
tity on S . By Theorem 2.3 of Sec. 2, applied to (1) over the field F', if d)w (@’ )=
and a&l the more d>{ ,)-, then F [9“] F' Z]/ F[:Gn-m/g) \m- ;(Em/g "W’ where (E Enm n/)

mH(F/), is a solution of (1) ( § 750 since Wn {Y- Yn_m_4-0}—¢ see Sec. 2), and tak-
ing the composite of this field with the field &, we get that SZ[Z]/{¢“)=Q‘[9:L]=

Sz[(g“_m/go)t‘}vr'_": ) (‘g n/go)q/v"'] . The extension & [(En_m/to)qv';ﬁ) (EW/ED)“{"”]C 82 [Er»-m/to)' )

En |3 ] is purely inseparable. From this it follows that the imbedding indicated above
v v
Gn—m/g w—rrb )(gn/g )‘L "'] C...S?. can be extended uniquely to an imbedding & : Q) [En_m,/

ED,..., n/go], L, & -

By hypothesis and Theorem 2.3, the vector (Eoz’gn_;w. ..igm) is a root of (1). Conse-
quently, since §a 74 0 according to Lemma 2.2, there exists a unique homomorphism T : g /\/.U——"
Q [En,m/im,,,’gn/‘go] of Q -algebras, under which (JT/(ZL):EL/E‘); n-m sy €$n . Thus, with

the pair from point c) considered, we associate the composition § o9

Conversely, suppose given a homomorphism T: g /\.ur—nﬁ over & . Then the vector of
images {{: b(Zn_m_) ..... T(Zy)) is a root of (1), belonging to some conjugacy class over F!
of roots, to which corresponds a polynomial def’ [Z] . Moreover, for suitable Gwe Se
such that <P ( e/w)= 0 , one has the coincidence of fields (0,]= F’ [T Zpem§

T (Z )vn,] Consequently, wa(le)?O for some factor Cbue.ﬁ. [Z] of the polynomial
CID which is irreducible over %, . Thus, to the class containing T there corresponds the
class of conjugate roots considered as the first term of the pair and the polynomial ¢W as
the second term of the pair. It is straightforward to verify that the correspondences con-
structed are well defined and that they are mutually inverée, which completes the proof of

the lemma.
The remark below is due to A. L. Chistov and is not used here.

Remark. One can apply Lemma 2.5 to an arbitrary variety U (instead of W), given by a
system of equations ¢u= - =¢s=0 , under the condition that WN{Y~- m‘o}¢ and dim U =
n—m— 1. Then the role of (1) is played by the system

?O;vtﬁ tn-m-1Yo)Ym-W )= "55( n—m;-« 0) n.—m\ v, )‘0
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Here in point a) of Lemma 2.5 it is necessary to consider the set of all components Wy' of
highest dimension n —m — 1. The proof is essentially unchanged since $n 1l # @ for any
prime ideal IIL{«C N’U’ » if Aec}t'ap (N’U’/ I,I/L)< h-m-1.

As a consequence (it is necessary to apply Lemma 2.5 to the case when F; = F), we get
the required bijective correspondence between the components Mﬂm of the variety W and the
conjugacy classes over F' of roots of (1). Moreover, from the proof one can get a represen-
tation of a generic point of an arbitrary component \Vﬂﬁ (let the polynomial ﬁb==<ﬁun
correspond to Mhm according to point ¢) of Lemma 2.5 and Cbmr ( G’WD F Namely, accord-
ing to Lemma 2.5, to the component Vv corresponds a homomorphism §~ Aqrvmwpl of
F'-algebras with kernel S I,W1 . Thls gives an imbedding of fields ST AW’ 5‘4qu C. F’
which is the identity on F'. This imbedding can be extended uniquely to an imbedding of
fields 8"Fq7w(V/ ) 7. Then, as in the proof of Lﬁmma fQS, for th%m}mage under the
action of ¢ of the subfield F(Zh rnv”[znr i iw]cgﬂAV §4wa:F$(M4Q one has the

s
’ h
coincidence of fields F [&wJuF’S(Z H.7€(Zn} ] . And, finally, there is an isomor-

phism

o

F‘i (WWDW o;"‘rYn-m%/fn( Y ‘P (Y /Y efw}] (2)

obtained from the preceding isomorphism, in which the imbedding ¢ participates. Under the
isomorphism (2), the elements Yj/Yo are considered as rational functions on VMM& . This iso-

morphism also gives a generic point of the component \¢Mﬂ .

Now we make more precise to which components MAM of the variety W there correspond
sons (we shall denote them by w,;) of the vertex v. For this it is necessary to verify
whether MAJ}C-VLW , for some leaf v; of level no greater than m of the first type {in this
case to the component VV@Q there does not correspond any son of the vertex v). In order
to verlfy this 1nclu51on, the algorlthm substitutes into the polynom1a1s (1V@7)qﬂ
(q/ﬁﬁ )9y (here % (f y =g & W ) the expressions for {7//Y'@ 0€i€n, from (2) (after
replacement of the variables Xo, ;Xn/ by Yélm, Y@ ). The inclusion “Amﬁ:h%a holds if
and only if all N2 + 1 elements of the field F’[@;ﬂ} obtained are equal toizero (see Lemma
2.7 below). If V%N¢\MW for all the v; mentioned, then the son w of the vertex v corres-
ponds to Wy. If v has no sons, then v is a leaf of the second type. Thus, all the vertices

w of level m + 1 are constructed; in Sec. 4 the algorithm constructs for each component Wy

a system of equations defining it. Below by w we denote a son of the vertex v.

4. Construction of a System of Equations Defining a Component

One says that the component Wy is defined over the field g% if the ideal Z&IC

F1[ZQ, n of the affine variety q”n{Y@%O} has a system of generators from the subring
Ty .
Fq [Z{w ~-;Z,¢J (here it is essential that \X/’WSZ/' {Yo =O} ).

LEMMA 2.6. The component Wy is defined over the field quo , Where % fvwwosLQI
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Proof. The assertion of the lemma is equivalent to the fact that the natural homomorph-

ism F'®F,¢~(} (\F‘qv‘. [Zh n] -—*},w, is an isomorphism. There is an isomorphism Fq' {_Y/Yo

Y/Y Zh Z /:J/’WOF - )Zﬂ] Consequently, the assertion of the lemma is equivalent
to the fact that the composite homomorphism Ii: F@ ~9F [Y,i/s/ Y/Y /RX’q;'J(}wﬂ

F‘ [24;“'7 K,])—"F Z’b"'» /},W., -_-_F W 0 {Y 74 0} is an isomorphism. We consider the ring

(ﬁwquyﬁﬂt\g/ S )=Fe F (Y, /Y AU R AR A AR AL
C(W/Yc,)q’ ~ F@ F’[Z /(wa t4, Y n_m)% [Z, /(C.JPW (the first isomorphism in the chain

is induced by raising to the qV-th power). The last ring is the direct sum of fields, since
y
the polynomial Cb/w is separable. Consequently, the ring Fm;“if‘) P(V(Y{/Yoy“;Yw/Yo) has

no nonzero nilpotents.

On the other hand, the nilradical zad (}W)=LQA(P® -7 Q’WQF Z“ Z D). since
an arbitrary element a,e}/,w— can be represented in the form a_Z. ,Ay: where av-ce

o0
Fay {Z’h ]n}w is a finite system of generators of the ideal g/,w« , the polynomials
g €P Zh yp] , and, consequently, aﬁ'eF@ -0 ], (\F‘ [Zd; ~ ]) for some s. From this
it follows thatKefc(Jb)CR(F @Fa;-quY [Y4/Y, Yn/&( ]) , i.e., Ke'z(‘l) 0. . Obviously, the
homomorphism 7 is surjective. The lemma is proved.

For the construction of polynomials oqw,)“‘ 3VNM) » defining the component Wy we formu-

late the following basic property of a generic point. Let CI’V?W<WGI/“
SVRLN

LEMMA 2.7. Let '\P’EF [Yo, Y] be a homogeneous polynomial. Then VY vanishes iden-
tically on the component Wy if and only if ’\‘ICL 4,Y4 /Yo).-., YL/YO)‘_"O in the field

(th i) n—m—d[ 'W'] ) v
Proof. In fact, w%\)(f,%/\{o)... )YW/Yo) 4Y/Ym K-m—{/%)(\(nrm o)a;,(Yn/Yo)‘V) for a

suitable polynomial '\Tfep [Yo,...)Y_n,] . Using the expressions from (2), one can find the
Ay ! 14
value of ’L{.ﬂ 1 Y/ n//Y> in the field F {G'W’] =K T’*i, n_m_) [ ] . The poly-
nomial "-}f vanishes 1dent1cally on the component Wy if and only if 0_\lf '1 Y/ Y/Y) e
(\A/rw) . The latter is equivalent to the fact that 0—\V(4 — /Yo)dn—mﬁ
(Y/( €F SW] according to the isomorphism (2). This completes the proof of the lemma.

The following assertion was actually proved, for example, in [14].

LEMMA 2.8. Let ’L{,CPW(R) be a variety of degree deguéd, , defined over sorne in-
finite or sufficiently large finite field K and %c\/\/c:l?"’ , where W is a projective vari-
ety. Then there exists a homogeneous polynomial g€ K[Xa).‘.)xn] such that deﬁ’(?) $d
and g vanishes identically on U and, moreover, for any absolutely irreducible component

W, of the variety W, which is not an absolutely irreducible component of the variety U,

‘the dimension olim W,‘ng_? 0}) =dum( W) —1

Proof. Let %-——-“«Lj%; be the decomposition into components which are defined and ir-
reducible over K. We prove the assertion of the lemma respectively for each component Uj.

As a result, we get polynomials gi and after this one can set 3’=]§3L » keeping in mind that
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M(’lxﬂ):Z_: dﬂ? (/L{/p) . Hence in what follows, without loss of generality, we shall assume
v
that the variety U is defined and irreducible over K. Then all absolutely irreducible com-

ponents of the variety U have the same dimension.

We choose in each component W;, which is not a component of the variety U, one point

dw4ew4 ~U . From considerations of 'general position' (cf., e.g., [14]) it follows that
there exists a (surjective) projection Gi:Prs>P@™M+1  yith center in a suitable (n -

dim U — r)-dimensional plane Lc P* , defined over the field K, such that i’tm‘?&(’b’v):dlm('lﬂ

and ’J‘(/(ol—’W/q)e.‘JL(%) for all components W,. For convenience of notation we shall assume that

g {X=0}

Since U is defined over K (cf. the proof of Lemma 2.6), the homomorphism _R@K(“\/[XMXD)--';
XW/X,]_*—K [%H{XO%U}] is an isomorphism (here and later, Xj/X, are considered as rational
functions either on U or on mﬁ - To the dominant morphism ﬁ/idv{x"—ﬁ‘m) corresponds
the dual imbedding of rings T{ [Gmﬂ {XD%OH =R[x4/xc,-“7xcumu+4/x°] Cm k-[uf'\ LXO#O}]

Qur next goal is to show that the homomorphism T°: R®KK[qu/xm”-;xplmm)ﬂ/xo]“’E[ﬁ?ﬁ}n{xe%GH
is an isomorphism. Obviously, T is an epimorphism. On the other hand, the homomorphism
K@KK[X4/X°}...,X4-WM+,/XD]~>K®KK[X,/Xa, ~-.,Xn /XOJ is a monomorphism due to the fact that the
tensor product over a field preserves injectiveness {3]. It follows from this that © is also

injective and, consequently, m(u) is defined over K {(see the proof of Lemma 2.6).

—— i Hr (4 “M/ +i
Further, w(u) is a hypersurface in P ons 04 and let %eK [Xg)...,xaum@wﬂl define
7{u). Obviously, deg(%)——-o{eg@(w)édlﬁ(%)éd, [3]. It is straightforward to verify that the poly-

nomial g is the one sought. This completes the proof of the lemma.

COROLLARY. Let %CA“(R) be a variety defined over the field K, all of whose com-

ponents have the same dimension n — m. Let us assume that the linear forms LM" -
L'n,.m+4€ K LX4,---,X:®] have the property that the rational functions LM’“an-m form a
transcendence basis for all components of the variety U. Then the ideal IeK [Y,, s --n,\ﬁ"”,_,mﬂ

of relations on U between L,;,«u,l-ln—m, +1 is principal and has a generator (CID):I , where
de K [V .o -Yppei) is a polynomial of degree 0(5? P sdeg Yl . If U is irreducible

over K, then $ is also irreducible over XK.

Proof. We consider the projection % : A"— A" | defined by the formula (X,...,
Xn}"“‘*({—ww\;hn—mﬂ)' It follows from Lemma 2.8 that the variety w(u) is defined over K. By

the hypothesis of the corollary, any component of the variety m(u) has dimension {(n — m),
A\\w*m«ﬂ

and, consequently, w(u) is a hypersurface in
K [Yﬁann—mM] of degree d@?x(Cb):deg(ﬁ(’u))Sdeg,@i) (see the proof of Lemmas 2.8). If U is

irreducible, then n(u) is also irreducible, and, consequently, <& is irreducible, which

, defined by some polynomial Dbe

completes the proof of the corollary.

We proceed now to the construction of the required family of polynomials ~qf°(""?_ ﬁ.*_ﬂ‘t{fN(M,

w
where N € (3 o[,(m"m) . The polynomials ow;)u‘-)"w‘féw form a basis for the linear space

. J7 over the field F of all homogeneous polynomials ge F'[V ,le of degree ‘}9 o (m+t)

(55 n
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(we recall that qfde? W,w,\< q}’ dm+1 ), such that ﬂ,(Yo, Y) ?(Ya,\’ Y‘V‘) for some polynomial ge
F‘[Yo,...,Yn]) degg:ol/('“+i) and such that g 4,Y1 /Yw...,Yn/Ya) — 0 in the field F [9 ] (the
latter, according to Lemma 2.7, is equivalent to the vanishing of the polynomial g identical-
1y on the variety Wy). To construct Jm?~-~7 ﬁwj the algorithm solves a system of linear
equations with coefficients from F, in which the unknowns are the coefficients of the poly-
nomial g, using the expressions for Cﬁ/ﬁ;)qy from (2). The number N obviously does not ex-

ceed the dimension of the space of all homogeneous polynomials of degree d.("+%

4 (m+iN
not greater than <d ﬁf n')‘< (Sd\ )>

i.e., 1is

According to Lemma 2.8 (we apply it to the different situations K=F)44=VA”3VL=1L U'{SZ}
for arbitrary points .Q‘G.P”’(ﬁ) \ U of the variety W,Mf{_’ll!(’(w;w:’t‘wa):O} » in view of the
fact that da}vww < 0[0“*9 by what was proved above. This completes the description of the

inductive step of the algorithm for constructing the tree of components.

Now we proceed to get the upper bounds on the length of description of the coefficients
of the system of equations constructed defining a component, a generic point, and the time

in which the algorithm works, formulated in Sec. 3.

We need the following commutative diagram of rings:

/\
Zn n]/ (Fgye s nw H[% TL;T Zb )ZHJ/(‘?) im“)
\ .
/ Yﬂ .(DH T4, ’HZ‘ZY4/ ")Vl/%

where I;=JH,U,Z4,...,%W) and the polynomials ﬁi are obtained from hi by substituting T
instead of h. The ratios Yi/Y, are considered as rational functions on Wy. By the action

of the epimorphisms € , Si the elements Z%‘“]Zyv are mapped into \?/&;)...ﬁﬂ,/Y;
respectively. We consider the multiplicatively closed set S=44[T“.”)Tl]\\(4§ <, A{ . Then
the rings in the left column of the diagram are the localizations of the corresponding rings
from the right column with respect to S and S Kézﬁd Kew 5 Consequently, between the
prime ideals which are contained in I<6L€] and Kei,g there exists a bijective correspondence,
preserving the inclusion relation (cf. [3]). Our next goal is to prove that Kezsac A4

is a minimal prime ideal. For this it suffices to show that Kez,gi is a minimal prime

ideal.

We consider another commutative diagram:

/\\ 24, /G’L” y mH«DF‘ 24; n]/ 47 " m+1
lss l 82
[W,, 0 {:{o#o}]@ ROV, ,YH,/YO]
Keeping in mind that the variety M&M,ﬂ{\/?éo} is defined and irreducible over Fq7m> , and,

consequently, g r\CY # 0}] is an integral domain, we get that Kk%'sg is a prime
ideal. ~Analogously, K@zS} and Ker 6, are also prime ideals. Moreover, since Verﬂ
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{Yo % 0 } is a component of the variety {R4:__‘=Rm1=o} ., one has Ket 5':3 < /\3 is a
minimal prime ideal. Since in the last diagram the horizontal arrows give integral purely
inseparable extensions of rings, there exists a bijective correspondence between the prime
ideals of the rings A, and A, and this correspondence preserves the inclusion relation (cf.
[31). Consequently, KG%GiC5 Az (it corresponds to [Ker €3 ) is alsc a minimal prime ideal,

which completes ‘the proof of the following .1emma.
LEMMA 2.9. K,e'cq ,k,e'z,ﬁ;, , and Kez 83 are minimal prime ideals.

This means that Ke'zq is the ideal of some component Uy defined over the field H {the
latter follows from the fact that the field H = HY is perfect) and irreducible over H of the
variety {sﬂ _ﬁq —E, -0} AK%H (H) . We recall that 1t follows from Theorem 2.3 of Sec.

2 that the prlmltlve element constructed earlier, @'W W-m-‘éyw (Y /Y) , Where X: = H s
) ay_ @) 7 ‘
consequently @, =3 Y Y. , where
w ( n-mgjsn d / (Xv)
Now we apply the corollary to Lemma 2.8, setting u=wuy,, K = H in it, and taking as the
linear forms L4>"‘>LL+w—m respectively 'T',,, TL Y4/\/ n-m,-4/Y g(«f It follows from

; )
the qorollary that ¢(T4, TI, Y,,/Yo, . ’n—m-—q/\‘/o;a \) 0 on Uy, where 0#43&‘.-’ rZ4,
Zf:H'l«'"J. is a polynomlal which is irreducible over H and al,egd: d‘?%w’ gteg/ _{7

ﬁ‘T T ZGL)‘A D(+J+A-{)m+, , according to Bezout's inequality (cf., e.g., [71}.
4§Lém+ irey {renliy

; /
We recall (see Introduction) that the polynomial WQF(t4,~~-,tn_M)[Z} =F [Z] can be

represented in the form 1{/-2 —gu)k«’i” . where a%@eH[Tb,.,;&, -t'b“')tn-m%:‘ for all i,

08j<degn )
j, and the degree deg (b) is as small as possible. The polynomials a,d £ are uniquely de-

deg .
)TL'W;"')J%-MW) m:sw J'T'b HsEay et (GLVJ) ’

d ; ; 5
.eﬁT4,,..,T1,'t4,...,‘i:n.m.4( (,g )} . We consider the polynomial <Y (Z)=b¥ (’Q)._.:T&h’m) n_m_szﬁ"')e

fined up to factors from H*. The degrees OLE%IT
o

F'[Zi . The degree with respect to the variables T,{,N.ﬁ"g t,g,‘...ﬂw.%q of any factor
q)w'{qu which is irreducible over F and with leading coefficient "F/CZ( (ﬁ) == { can be
bounded above by some polynomial in <1,‘7 degc,fp d; according to Chapter I of [4]. Consider-
1ng that CP( >=0 » we get that Cbu')”\@,w) = holds for a suitable divisor d%, &

) [Z] of the polynomial ¢(") which is irreducible over F and with leading coefficient
Cz (Cb(z)) =4{ . The elements 't4, w-m-{ are algebraically independent over the field F,
so &P® coincides with the polynomial <Py (constructed previously in Sec. 3;v cf. (2)) up

to a factor from F*, and since ch—(cﬁw):»{‘:cz (Py)=1 ocne has ¢(2)':~.¢¢wf .

Now for each R-m €1 <1 we apply the corollary to Lemma 2.8, again setting U = Uy, K =
H, and as the linear forms Lo4, Ls A+n-m we take T4,.. T2, Ya /YM H:-m-f YO’Y'//VO
It follows from the corollary that Dy (Thyee, T2y YilNos - Yuemet /Yo, Y /Y, =’-O on Uy for some
polynomial O#Cb-é_ H [Z‘h Z,Z-l-n/-mJ which is irreducible over H, such that o{e?q)bs
aleg 'U, £d, (a’+d,+dz— {)m+1 . According to Theorem 2.3 and (2) one has (Y/Y 9% c F‘ [B'W'}
w};ere vi is as small as possible, so (Z% (YL/YO)C" )lq: ( 1 \.\j t4)...;tn.m_,4,Z) in the rlng
F [6 4471 [Z] (analogously to the way this was done above, we represent the elements of the

latter ring in the form
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It follows from this that Cp“‘ola}/db' $d, (d+o{4+d,2- )"”’4’4 . Further, again according to Chap-
Vi

ter I of [4], one can assert that o(,ag,q,“ )th«b n-mmf(Yv/Y )C{/ L can be bounded abovia by a

polynomial in deqdp,,) di, 0169 $H® , and hence by a polynomial in (al+014 + dl )m—-l— , by

virtue of what was proved above.

We turn now to the bounds for the length of description of the coefficients from H of
all the rational functlons constructed and the degree dE%T“ ﬂw(ﬂ& ) According to the
inductive hypothesis, zﬁ?ﬂ@g% A0 J/%Jr QM+M+& @ﬂdfd) ) for a suitable polynomial P, inde-
pendent of m. Then, applying Theorem 2.3 to the system (1), we get that ﬂ@ihv,ﬂqY’/

Y,)9%  can be bounded above by Ma=((M#MpedP((d+d+olg) ™) +(M; + ’/ﬁ+n)wfag{o{+d¢d,))‘){( d+d.4+d22"\”§)$

4+Mfg)P(dﬁdq+d-)m+ﬁ w) for a suitable polynomial P;. The application of Theorem 2.3 of
Sec. 2 and the construction of dﬁw’ and /Y//Y P in Sec. 3 are effected by the algorithm
in time which is polynomial in ((d+ol4+dz)mol4(al+a{ +d )m(u-m))(n.m.,_,f,) M Mdd,.pdﬁd) (],.4.,1,) (q,+4 ) i.e.,
in time which is polynomial in M4M (0[+d4+0{2)mn('c+n)(ay+1)

We recall that then the algorithm in Sec. 4 constructs a basis ,%E‘M;)‘ N ’g”) of all

solutions of some homogeneous linear system with coefficients from the field F (see above
the description of the algorithm). The unknowns in this system are the coefficients of the
polynomial g, so the number of unknowns is less than &) o‘,(Mﬂ))W” . The equations are ob-
tained as a result of substituting the expressions for {\(L/Y 9 in the polynomial g and
setting the coefficients of 't(, s ;tn-m-4, ewf in the expression obtained equal to zero.
By what was proved above, the degree of the rational function C}(’! Y,,/YD, . 'n/Y 6"7@4)
n—m—) [ 9’ ] with respect to t4,---, w-m-{ can be bounded above by a polynomial in (OL+0[4+
z)m'H . Thus, the number of equations of the linear system considered can be bounded
above by a polynomial in (d+d1+ 2)(m+u(rv—%) . The degrees with respect to n)...)Tg, of the mat-
rix of coefficients of this system are bounded above by a polynomial in (d+d,1+d2) m+1
The lengths of description of the coefficients from H of this system can be bounded, accord-
ing to what was proved above, by Mspi((d+d4+"[9)m+4 n-m)  for a suitable polynomial P,, inde-

pendent of m.

From this, according to Cramer's rule, it follows that deg,n ( ) is less than a poly-
nomial in (o{+d +a()m+4) (»=m)  for any O0¢ <S¢ <N . The lengths of descr1pt1on ,f/w(/w))\
M Ps((d+d1+cl )Mﬂ)m' ) £ (M +Mz+2,)p( 0[+d4+a[z) ()™ ”’l) for a suitable polynomlal P;. The al-
gorithm solves the system in time which is polynomial in M (d+d+d£) ot (cf. [211).

At the end of its work the algorithm returns from the coordinates {Yi} introduced earli-

er to the original coordinates {Xi}. For this we need the following lemma.

LEMMA 2.10. Let Wy be a variety, irreducible over the field F, and let the isomorphism
(2) define a generic point of it (cf. Sec. 3). Further, let ’uo). R A~ be linear forms

in Xa,...,Xn with coefficients from F, where U, does not vanish identically on Wy. Then
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a) if u4/uo,--.,%s/uo are algebraically dependent on Wy for some s, then there exists
a homogeneous polynomial 0#7{6? [Zo,w-,zsl such that o{e:g/&cf o{eﬁ W,, and }’5(%0,__,)%5>z

0 on Wy;

b) if {%4/%07 n_m_4/u} is some transcendence basis for the variety Wy over E‘M‘, then
[ j -1,
the element (U“n,- /L[ is separable over the field F{Ui/Uym,Ui s /u/a) » where g dz%ww

4@ D{f@% W!W’ when 4>0 or q/}t:/f if char (F) =

Proof. a) We can assume without loss of generality that ﬂo,,n.)us are lipearly inde-
pendent on Wy over F because, if not, a) is trivial. According to the proof of the corollary
to Lemma 2.8, and according to Lemma 2.6, there exists a homogeneous polynomial 0#7545
FW-‘){Z‘;,H-) Zs]  such that decﬂ;(?ﬁ} Sdeg \/‘/‘W and X (Uy,-..,Ug) =0 on Wy. Then the polynomial

¥ ,
7C=/Yﬂ satisfies the requirements of peint a).

b) We consider a polynomial 0#xXeFi{Z;. .., 2 notm 1 such that )((ﬁf/uwm?un_m/uﬁ)zﬁ
on Wy and de«f}}(@ aVVdeg\,\jw , which exists according to point a). Then the exponents of the

variable Zn-m in this polynomial cannot be divisible by Q/M‘H {when cy)O }, from which the

assertion of point b) follows.

The algorithm, for each component Wy, finds some transcendence basis of it of the form

XM /Xdo >

cally onW,. After this the algorithm constructs by induction on s a family of rational func-

X;is/xjo' First of ail, the algorithm chooses some X‘;o net vanishing identi-

tions YLXL/XJM'”;st/XJ-o} , algebraically independent of Wy over F. Let a family, consisting
of s such functions, be constructed already. The algorithm considers X&H /XQO,X{;{’Q’/X&,,
successively, and verifies, for each of these fun‘ctions, its algebraic dependence with
{Xj,;/xjov y /Xdo} on Wy. If XJ:;/ ; ; /X' X‘ﬁ-:-'o/xjc are algebraically dependent on
Ww,vthen there exists a polynomial 0#}56 F’q"[Zh Zs+4] such that d,eg;)f%{za v\/w' and

7(@ (XJ,,/XJO, Y JS/XJG, Jsﬂ/xdo is equal to zero on Wy, according to Lemma 2.10a). Consequently,
the polynomial 7507 , if 1t exists, can be found with the help of substituting in 75‘3' the
expressions for (XJ/XJO/ from the generic point {2), setting the coefficients from H of

. . J 2 .
the monomials in T;,...,TL’ ’Z,td,“*;tn-m-»i, QW.' in the expressions cobtained equal to zero, and
then solving the system of homogeneous linear equations obtained over H. The unknowne in

this system are the coefficients from H of the monomials in Tb‘..,T,g)%,24,..1.,25.1,{ of the

polynomial ﬂf‘p (we use Lemma 2.7 here).

Now we renumber the indices so that J—»L »0€L g f~m=1 . It follows from Lemma 2.10b)
/

that thqere exists a primitive element 6y, such that F [9 ] F(X,,/ n—m—1/Xor )(d’ A(OP
( n,/x > To get 6w the algorithm constructs, analogously to Sec. 2, a sequence of elements
Q,g; r'n) (Xn m/xo)cﬁ) 6(n~m+4) .. If 8( J is already constructed, then we consider ch*h
de? \/\/W-yrf of the elements of the form 9(‘) d !,'H/Xt) where 04 j(dm'H and {dj} are pair-
wise different elements of the field H. For each of them the algorithm finds the minimal
polynomial over the field F X4/X°,..., n~m~1/x° s based on what was just said. As 9,%;;"
one can take any of the elements of the form 9,:;4»0},;()(”5/)(0)‘}"‘ » whose minimal polynomial has

highest degree. Finally, we set @’sz ng;)

Now we turn to getting an estimate for the procedure of returning to the coordinates

{Xi} described. In order to estimate dieg,r““_’,u()ﬁv), it is first necessary to solve a sys-
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tem of linear equations in which the unknowns are the coefficients from F of the monomials
in Zb"w Zs+{ of the polynomial ;qu. Then d%hhﬂﬁ%%i is bounded above by a polynomial

in (d+d1+dﬂmm’m+0 , analogously to the way the degree d%T TLDK ) was estimated above.
. 4%

The working time of the procedure described is bounded above by a polynomial in the sizes
of the matrix of the linear system over H, which is solved in constructing ;{qﬁ and of the

minimal polynomials. The number of unknowns in these systems is less than a polynomial in
. v - "o .

.degzu"-;ZSﬂ (}K‘i) ) d@g«,r T‘C(%%) , i.e., a polynomial in (d+d4+d,v)m’(“'"‘”)((’+4) . The number
. 1)0-.!

of equations in these systems is not greater than a polynomial in

(d'bgzu jff"“(% (d‘eirr 'T’ (}/ ) n,-[ e?t,” ) n’m-ﬂ‘q Tl( /
XJ°) ))Z m(deﬂtb Yem T2 CE')

Thus, the working time of the procedure described for returning from the coordinates {Yi} to

the coordinates {Xi} is bounded by a polynomial in (d+d,+ mt-m+)@+) and M,.
it e’ 3

In conclusion, at the very end of its work, the algorithm chooses all components which
coincide, corresponding to leaves of the first type of the tree of components. For this,
for each pair of components obtained, it substitutes the expressions from (2) for a generic
point of one of these components into the system of equations constructed defining the other
component, and conversely. By Lemma 2.7, the components coincide if and only if the results

of all these substitutions are equal to zero.

Now we summarize the results of the recursive application of the algorithm described
in the course of Secs. 3 and 4 in the following theorem, using the notation introduced at

 the beginning of Sec. 3.

THEOREM 2.4. An algorithm is constructed which finds all the components which are de-
. n o—
. . . q-o® - =
fined and irreducible over F% of the variety {{(Xm " )-n.._{hq(xm“vxﬂ)_O}C;P (M)
(we assume without loss of generality that Catd(H)>l¢d 2 ). Namely, for any components
Wy of dimension dunV%v=ﬂt-nL the algorithm gives a generic point of it, i.e., an isomorph-

ism of fields

A 1
F(tb...’-tw_m)[eqr]’-\'—F‘(X“M/on,n-,x"’n_rr{x'o)(Xo/xjo)ﬂ)""(xn/xjo)a' )

for suitable 0‘;0 n ,0(J4< <Jn S $H , where X; /X are considered as rational functions
on Wy and t—»XJ /X , under this isomorphism (moreover glegdy(d+dprdy*d™, when g >0 and
q3==4: , when char F = 0). The elements t4r tn-np are algebraically independent over

F and qu,(ev)=o, where Cb,l,e_ F'(t,,,...Jtn_m)[Z] is some separable polynomial which is irre-
ducible over F(ty,..., Vy-p) with leading coefficient Leo( H and degz(cb,‘r)éo(e% Wy € d

Moreover, the algorlthm constructs a famlly of homogeneous polynomials 1y ,..1y€n€,

F[Xo, X ] N < @Aﬁ' such that VV {Whl = ‘0} The degrees de%T et t@i%»

de%n,..{l’z}h, ;t(x"/xa‘) are bounded above by some polynomial in (d+d1+d,“)m' ; the degrees

de%,]-.hm.-u/( I;ff‘”) are bounded by a polynomial in (d+d.,+d,)mm’m‘“)‘ and degxor”xm(aq,?'))s(d.‘,dﬁ_
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Aﬂ)md_m’d4 for any i, j. The lengths of description fz(d),v), (Xj/on)afvj’),fa( {J'W)) of the coeffi-
cients from H of the corresponding elements do not exceed (M4+Wk+£)9ud+d¢dﬁéw“ﬁ for a suit-
able polynomial P. Finally, the algorithm works (in finding Wy, under the condition that all
components corresponding to vertices of level less than m have already been constructed) in
time which is polynomial.ijl'M4Ph@i+dT+dgmn@*nJ (g +1 } . Thus, the total working time of

the algorithm for finding all components can be bounded above by a polynomial in WuW&&i+dﬁ.

dz)nﬁ(mz)(qﬁ 1).
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