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Abstract

For a tropical univariate polynomial f we define its tropical Hilbert
function as the dimension of a tropical linear prevariety of solutions of
the tropical Macaulay matrix of the polynomial up to a (growing) de-
gree. We show that the tropical Hilbert function equals (for sufficiently
large degrees) a sum of a linear function and a periodic function with an
integer period. The leading coefficient of the linear function coincides
with the tropical entropy of f . Also we establish sharp bounds on the
tropical entropy.
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Introduction

One can find the basic concepts of tropical algebra in [9].
Consider a tropical univariate polynomial f := min0≤i≤n{iX + ai} where

ai ∈ Z, 0 ≤ i ≤ n. We call z := (z1, z2, . . .), zj ∈ R, j ≥ 1 a tropical recurrent
sequence satisfying the vector a⃗ := (a0, . . . , an) [4] if for any j ≥ 1 the following
tropical (linear) polynomial is satisfied:

min
0≤i≤n

{zj+i + ai}, (1)

i. e. the minimum in (1) is attained at least for two different values among
0 ≤ i ≤ n.
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When one considers classical recurrent sequences (x1, x2, . . .) satisfying re-
lations

∑
0≤i≤n aixi+j = 0 similar to (1), the first n values x1, . . . , xn determine

the rest of the sequences uniquely. This is not the case for tropical recurrent
sequences.

Denote by D(k) ⊂ Rk a tropical linear prevariety [9] of all the sequences
(z1, . . . , zk) satisfying (1) for 1 ≤ j ≤ k − n. Therefore, D(k) is a polyhedral
complex [9]. The function d(k) := da⃗(k) := dim(D(k)) we call the tropical
Hilbert function of the tropical polynomial f (or equivalently, of the vector a⃗
of its coefficients). Obviously, d(k) ≤ d(k+ 1) ≤ d(k) + 1. It is observed in [4]
that d(k + t) ≤ d(k) + d(t). Therefore, due to Fekete’s subadditivity lemma
[11] there exists the limit

H := Ha⃗ = lim
k→∞

d(k)/k (2)

which is called [4] the tropical entropy of the tropical polynomial f or of the
vector a⃗. Evidently, 0 ≤ H ≤ 1.

We mention that in [3], [4] it is proved that H = 0 iff each point (i, ai) ∈
R2, 0 ≤ i ≤ n is a vertex of the Newton polygon. (The Newton polygon of f
is the convex hull of the rays {(i, x ≥ ai)}, 0 ≤ i ≤ n.)

The main result of the paper is the following.

Theorem 0.1 (see Corollary 5.5 in section 5.) For any vector a⃗ as above,
the tropical Hilbert function da⃗(k) is quasi-linear with slope Ha⃗, i.e. for suffi-
ciently large k we have

da⃗(k) = Ha⃗k + r(k)

for r(k) periodic function with integer period.

Moreover, for the period of r(k) and for the minimal k for which the above
equation in Theorem 0.1 holds, are given explicit bounds in Corollary 5.5 in
terms of n = deg(f) and the amplitude of a⃗.

To prove Theorem 0.1 we describe a directed graph G := Ga⃗ and relate
its paths to tropical recurrent sequences. More precisely, we provide a recur-
sive construction, which allows one to produce a tropical recursive sequence
corresponding to a path in G. Vice versa, to each tropical recurrent sequence
corresponds a path in G. Thus, all tropical recurrent sequences corresponding
to a path T of a length k in G form a polyhedron QT ⊂ Rk+n. We define the
notion of an augmenting edge of G (section 3.2), and denote by d(T ) the num-
ber of augmenting edges in T . Also we introduce a certain integer n(T ) ≤ n
depending just on the first vertex of T . The following theorem (see Theo-
rem 3.5 in section 3 for more details) relates the tropical recurrent sequences
with paths in G.
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Theorem 0.2 i) dim(QT ) = d(T ) + n(T ).
ii) The set D(k + n) of all tropical recurrent sequences satisfying a⃗ of a

length k + n coincides with ∪TQT , where T ranges over all paths in G of the
length k ≥ 0.

iii) The tropical Hilbert function da⃗(k + n) = maxT{d(T ) + n(T )}.

We can use Theorem 0.2 to compute tropical Hilbert functions explicitly -
we carry this out in several examples (see Examples 5.6, 5.7, 5.8). Moreover,
based on Theorem 0.2, Theorem 0.1 one can design an algorithm for computing
the tropical Hilbert function of an arbitrary vector a⃗.

Theorem 0.2 allows one to express the tropical entropy explicitly in terms
of G. For a path T in G by l(T ) denote its length.

Corollary 0.3 (see Corollary 4.3 in section 4). The tropical entropy Ha⃗

equals the maximum of d(T )/l(T ) over all simple cycles T in G. In particular,
Ha⃗ is a rational number.

Finally, we prove (invoking repeatedly Corollary 0.3) the following result
separating a positive tropical entropy from zero (see Theorem 7.1 in section 7).

Theorem 0.4 If Ha⃗ > 0 then Ha⃗ ≥ 1/4 (and the bound is sharp).

Also we show the sharp upper bound Ha⃗ ≤ 1 − 2/(n + 1) in case when
Newton polygon of a⃗ has a single bounded edge. We conjecture that the latter
bound holds for an arbitrary vector a⃗.

It would be interesting to clarify, whether one can extend the results of
the paper to vectors (a0, . . . , an) with ai ∈ R ∪ {∞}. As a first exploration of
this generality we study (in section 6) tropical recurrent sequences satisfying a
tropical boolean vector a⃗ = (a0, . . . , an) where a0 = an = 0 and ai ∈ {0,∞}, 0 ≤
i ≤ n. We establish similar results to Theorem 0.2, Corollary 0.3, Theorem 0.1
for a tropical boolean vector a⃗. It is not clear whether tropical recurrent
sequences for vectors a⃗ over R∪ {∞} correspond to paths in some graph, and
that it is not clear whether to expect da⃗(k) to be quasi-linear (though the
entropy Ha⃗ is still well-defined).

Another problem is to improve the bound on the period in the function
r(k) and the bound on the minimal k starting with which the tropical Hilbert
function coincides with Hk + r(k) (cf. Corollary 5.5).

In classical commutative algebra the Hilbert function of a polynomial g =∑
I gIX

I ∈ F [X1, . . . , Xm] is defined as the growth function of the quotient
ring F [X1, . . . , Xm]/(g) in the filtration with respect to degree. For a given
degree e this function coincides with the dimension of the space of solutions
of a linear system ∑

I

gIYI+J = 0 (3)
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for all vectors J := (j1, . . . , jm) ∈ Zm, 0 ≤ j1, . . . , jm such that for every vector
I = (i1, . . . , im) from the support of g we have i1+ j1+ · · ·+ im+ jm ≤ e. Note
that a linear system (3) forms the rows of Macaulay matrix.

Note that we define the tropical Hilbert function as the dimension of the
space D(k) of tropical recurrent sequences. We mention that multidimen-
sional tropical recurrent sequences appear also as the solutions of the tropical
Macaulay matrix [4] (generalizing tropical equations (1)). Macaulay matrix
emerges in a tropical version of the weak Hilbert Nullstellensatz (see [2], [3],
[6], [7], [8], [1]).

Recall that in classical commutative algebra the Hilbert function of an ideal
in F [X1, . . . , Xm] is a polynomial (for sufficiently large degrees). In its turn, the
degree of this polynomial is less than m (in particular, in case m = 1 Hilbert
polynomial is a constant). One can directly generalize the definition of a trop-
ical Hilbert function to m-variate tropical polynomials based on the tropical
Macaulay matrix for m-variate polynomials. This function grows asymptoti-
cally as H ·km where H is defined similarly to (3) (cf. [4]). In case of dimension
m = 1 which we study in the present paper, the tropical Hilbert function d(k)
coincides with the linear function Hk up to a periodic function (for sufficiently
large k).

In [8] tropical ideals in the semiring of tropical polynomials are introduced,
they have some features similar to classical ideals: in particular, it is proved
that Hilbert function of a tropical homogeneous ideal is eventually a polyno-
mial, and the degree of this polynomial is less than the number of variables m.
In particular, for the tropicalization of a polynomial homogeneous ideal I its
Hilbert function coincides with Hilbert function of I. In contrast, our version
of a tropical Hilbert function grows faster than a constant when H > 0.

1 Bounds on connected coordinates

Let a⃗ := (a0, . . . , an) ∈ Zn+1 be a vector, define its amplitude as

M := max
0≤i≤n

{ai} − min
0≤i≤n

{ai}. (4)

Definition 1.1 Consider a tropical recurrent sequence z :=
(z0, z1, . . .), zj ∈ R satisfying vector a⃗. We call a coordinate zj0 (or,
more precisely, j0) connected if there exists 0 ≤ t0 ≤ min{n, j0} such that
zj0 + at0 = min0≤t≤n{zt+j0−t0 + at}. In other words, one can’t diminish the
value of zj0 without changing all other zj, j ̸= j0 and keeping the property
of being a tropical recurrent sequence satisfying a⃗. Otherwise, we call zj0
disconnected. We say that connected coordinates j0 < j1 are neighbouring if
any intermediate coordinate j0 < j < j1 is disconnected.
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Lemma 1.2 Let a⃗ ∈ Zn+1 be a vector with amplitude M , and let z be a
tropical recurrent sequence satisfying a⃗. Let j0 < j1 be a pair of neighbouring
connected coordinates. Then

i) j1 − j0 ≤ n;
ii) |zj0 − zj1| ≤ 2M .

Proof. To prove i) suppose the contrary. Then the minimum
min0≤t≤n{zj0+t+at} is attained only for t = 0 which contradicts the assimption
that z satisfies a⃗.

To prove ii) suppose the contrary. First, assume that zj1 ≥ zj0 , hence
zj1 − zj0 > 2M . There exists 0 ≤ t1 ≤ n such that

zj1 + at1 = min
0≤t≤n

{zj1+t−t1 + at}. (5)

If j1 − t1 ≤ j0 then zj0 + aj0−j1+t1 < zj1 − 2M + aj0−j1+t1 ≤ zj1 −M + at1 . and
we get a contradiction with (5), thus j1 − t1 > j0.

We claim that the minimum min0≤t≤n{zj0+t+at} is attained only for t = 0.
Indeed, for any connected j2 ≤ j0 + n we have

zj2 + aj2−j0 ≥ zj1 + ak1 − aj2−j1+t1 + aj2−j0 > zj0 + a0,

where the first inequality is due to (5), while the second inequality follows
from zj1 − zj0 > 2M and from (4). This proves the claim. We come to a
contradiction with that z satisfies a⃗, which completes the proof of ii) in case
zj1 ≥ zj0 .

The case zj1 ≤ zj0 is handled in a similar way. The lemma is proved. 2

Corollary 1.3 Let z be a tropical recurrent sequence satisfying a vector
a⃗ ∈ Zn+1 of amplitude M , and let j be a connected coordinate. Then

i) zs ≤ zj + 2M |s− j| for any connected coordinate s:
ii) zs ≥ zj − 2M ·max{|s− j|, n} for any coordinate s:
iii) if zs+n > mins0≤t<s+n{zt} + 2Mn for some s0 ≥ s, s0 ≥ 0 then the

coordinate s+ n is disconnected.

Proof. i) follows immediately from Lemma 1.2 ii).
ii) follows from i) when a coordinate s is connected, moreover, in this case

zs ≥ zj − 2M |s− j|. (6)

For a disconnected coordinate s one can assume w.l.o.g. that s > j. Take
the maximal connected coordinate s0 < s. Lemma 1.2 i) implies that s−s0 < n.
The minimum min0≤t≤n{zt+s−n+at} is attained for some connected coordinate
t0 + s− n ≤ s0. Therefore, when t0 + s− n ≥ j, we obtain

zs + an ≥ zt0+s−n + at0 ≥ zj − 2M(t0 + s− n− j) + at0
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due to (6) which proves ii) in this case.
When k0 + s− n < j, we obtain

zs + an ≥ zt0+s−n + at0 ≥ zj − 2M(j − t0 − s+ n) + at0 ≥ zj − 2M(n− 1) + at0

again due to (6). This completes the proof of ii).
iii) follows from ii). 2

Lemma 1.4 Let a vector a⃗ ∈ Zn fulfill (4) and a sequence (z0, . . . , zn) ∈
Zn+1 satisfy a⃗. Denote mL := min0≤i<n{zi}, sL := min{0 ≤ i < n : i =
mL}, mR := min1≤i≤n{zi}, sR := min{1 ≤ i ≤ n : i = mR}. Then
|mL −mR| ≤ M, sL ≤ sR.

Proof. It suffices to consider a case when either mL = z0 or mR = zn,
(otherwise, mL = mR, sR = sL). If mL = z0 then z0 + a0 ≥ zt + at =
min0≤i≤n{zi+ai} holds for a suitable 1 ≤ t ≤ n. HencemL = z0 ≥ zt+at−a0 ≥
mR − M . If mR = zn, we obtain the inequality mR ≥ mL − M is a similar
way. Otherwise, if mR = zj, 1 ≤ j < n then mL = z0 ≤ zj = mR. 2

2 Construction of a graph of tropical recur-

rent sequences

We are producing by recursion a tropical recurrent sequence satisfying vector
a⃗ = (a0, . . . , an), and assume that a finite fragment (a prefix) of the sequence
is already produced. Possibilities of choices of continuations of the fragment
depend only on the last n entries (a suffix) of the fragment. That is why we
consider only the last n entries and denote them by (y1, . . . , yn) ∈ Rn. We will
view (y1, . . . , yn) also as the coordinates in Rn. More precisely, if the minimum
in min1≤i≤n{yi + ai−1} is attained

• once, then a contituation yn+1 ∈ R is determined uniquely;
• at least twice, then yn+1 ranges over an infinite interval bounded from

below.
In this section we construct a directed finite graph G := Ga⃗ and for each

vertex v of G a polyhedron Pv ⊂ Rn. If (y1, . . . , yn) ∈ Pv, and yn+1 is a
possible continuation (i.e. the sequence (y1, . . . , yn, yn+1) satisfies vector a⃗)
then (y2, . . . , yn, yn+1) ∈ Pw for a suitable vertex w of G such that (v, w) is an
edge of G. The converse is also valid: if (y1, . . . , yn) ∈ Pv and (v, w) is an edge
of G then there exists a continuation yn+1 such that (y1, . . . , yn, yn+1) satisfies
vector a⃗ and (y2, . . . , yn, yn+1) ∈ Pw. Observe that the construction of vertices
of G (Definition 2.1) depends only on n,M , while the construction of its edges
(Definitions 2.9, 2.11, 2.13) depends also on a⃗.

In section 3 we show that the tropical recurrent sequences satisfying a⃗ are
encoded by paths in G (and vice versa).
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2.1 Vertices of graph Ga⃗

Definition 2.1 We define a vertex v of the graph G and a corresponding
polyhedron P := Pv ⊂ Rn. Each polyhedron P is determined by the following
data. We fix a subset ∅ ≠ B := Bv ⊂ {1, . . . , n}, an element s := sv ∈ B, for
each pair 1 ≤ r < l ≤ n, r, l ∈ B integers m(r, l) := mv(r, l) and indicators
e(r, l) := ev(r, l) ∈ {0, 1} such that P is described by the following system of
linear inequalities:

ys ≤ yj, 1 ≤ j ≤ n, (7)

m(s, q) ≥ −nM, m(p, s) ≤ (n+ s− p)M, 1 ≤ p < s < q ≤ n, (8)

|m(r, l)| ≤ 2nM, 1 ≤ r < l ≤ n, p, q, r, l ∈ B, (9)

yr = yl +m(r, l), 1 ≤ r < l ≤ n, r, l ∈ B if e(r, l) = 0, (10)

yr − 1 < yl +m(r, l) < yr, 1 ≤ r < l ≤ n, r, l ∈ B if e(r, l) = 1, (11)

yj − ys > jM, 1 ≤ j ≤ n, j /∈ B. (12)

For definiteness, we take s ∈ B to be the minimal possible satisfying (7).
Varying B, s,m(r, l), e(r, l) we obtain all vertices of the graph G.
Coordinates yr of Rn for r ∈ B we call bounded on P , while the coordinates

yj for j /∈ B we call unbounded.

Remark 2.2 i) The graph G consists of just the vertices v for which the
polyhedron Pv is nonempty.

ii) We define an equivalence relation on B setting r, l ∈ B to belong to the
same equivalence class iff e(r, l) = 0 (i.e. the difference yr − yl is an integer).
When it is not an equivalence relation, the polyhedron P is empty.

iii) Informally, the difference (repectively, the ceiling function of the dif-
ference) of each pair of bounded coordinates is given in (10) (respectively, in
(11)), while for unbounded coordinates just lower bounds (12) via the minimal
coordinate, which is always a bounded one, are given.
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Remark 2.3 Note that the inequlities (9) follow from the inequalities (7),
(8), (10), (11). We keep (9) to have some apriori bound on m(k, l). Indeed,
assume that r < s < l, e(r, s) = e(s, l) = 1 (all other cases of orders between
r, s, l and the values of e one can study in a similar manner). Then (11) imply
that |yr − yl| < max{m(r, s)+ 1,−m(s, l)} taking into account that ys ≤ yr, yl.
Therefore, m(r, l) ≤ max{m(r, s) + 1,−m(s, l)}.

Below we repeatedly make use of the following statements describing the
set of solutions of a system of inequalities of the form (10), (11).

Lemma 2.4 Let a system of inequalities

xr − xl = m(r, l), 1 ≤ r < l ≤ n, e(r, l) = 0, (13)

m(r, l)− 1 < xr − xl < m(r, l), 1 ≤ r < l ≤ n, e(r, l) = 1, (14)

in variables x1, . . . , xn be consistent, where m(r, l) ∈ Z, e(r, l) ∈ {0, 1}, 1 ≤ r <
l ≤ n. W.l.o.g. one can assume that x1 = 0 replacing xl by xl−x1, 1 ≤ l ≤ n.
We agree that m(l, l) = e(l, l) = 0. Denote

x̂l := xl +m(1, l), 1 ≤ l ≤ n. (15)

Clearly, 0 ≤ x̂l < 1, 1 ≤ l ≤ n. We claim that the system (13), (14) determines
uniquely an order

0 = x̂1 ≤ x̂π(2) ≤ · · · ≤ x̂π(n) < 1 (16)

for a suitable permutation π ∈ Sym(n− 1). The set of solutions of the system
(13), (14) is a polytope (open in its linear hull) isomorphic to the polytope (in
Rn endowed with the coordinates x̂1, . . . , x̂n) given by the system (16). The
isomorphism is assured by (15).

Vice versa, given x1, . . . , xn and integers m(1, l), 1 ≤ l ≤ n such that (16) is
satisfied for (15), one can find uniquely integers m(r, l) ∈ Z, e(r, l) ∈ {0, 1}, 1 ≤
r < l ≤ n for which (13), (14) hold. The integers m(r, l), e(r, l), 1 ≤ r < l ≤ n
are determined just by the integers m(1, l), 1 ≤ l ≤ n and by the order (16).

In particular, (16) together with (15) allows one to find 1 ≤ s ≤ n such
that xs ≤ xi, 1 ≤ i ≤ n holds for any solution of (13), (14). Moreover, the set
of such s is determined just by the integers m(1, l), 1 ≤ l ≤ n and by the order
(16).

Proof. First note that the partition of the set {1, . . . , n} into classes such
that r < l belong to the same class iff e(r, l) = 0, provides an equivalence
relation.
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It holds −1 < x̂l − x̂r < 1, 1 ≤ r ≤ l ≤ n. If e(r, l) = 0 then (because of
(15)) we have

x̂l − x̂r = −m(r, l)−m(1, l) +m(1, r) ∈ Z, (17)

hence x̂l = x̂r.
For e(r, l) = 1 we get x̂l ̸= x̂r. On the other hand, due to (14), (15) it holds

m̂(r, l) := m(r, l)−m(1, l) +m(1, r)− 1 < x̂l − x̂r < m̂(r, l) + 1. (18)

We deduce that either m̂(r, l) = −1 or m̂(r, l) = 0. In the former case it holds
x̂l < x̂r, in the latter case it holds x̂l > x̂r. This assures a required permutation
π satisfying (16). Obviously, π is independent from the particular values of
x̂l, 2 ≤ l ≤ n, but rather depends only on the order between them.

For any tuple x̂l, 2 ≤ l ≤ n satisfying (16), it holds x̂l = x̂r when e(r, l) = 0
(see (17)), while it holds (18) when e(r, l) = 1. Therefore, xl, 1 ≤ l ≤ n defined
by (15), satisfy (13), (14) (with x1 = 0). 2

Corollary 2.5 For any point (x1, . . . , xn−1) ∈ Rn−1 satisfying the system
(13), (14) (more precisely, its subsystem for 1 ≤ r < l < n), the set of points
xn ∈ R such that the point (x1, . . . , xn) satisfies (13), (14), consists of either

i) a single point when e(r, n) = 0 for some 1 ≤ r < n or
ii) an open nonempty finite interval when e(r, n) = 1 for all 1 ≤ r < n.

Note that the system (10), (11) is similar to the system (13), (14).

2.2 An edge of the graph G in case of a unique contin-
uation of a prefix of a tropical recurrent sequence

Now we describe when G has an edge from a vertex v to a vertex w. Denote
the coordinates of Rn such that the polyhedron under construction Pw ⊂ Rn

by x1, . . . , xn. The polyhedron Pw relates to Pv informally as follows. For any
point (y1, . . . , yn) ∈ Pv there exists a point (y2, . . . , yn, xn) ∈ Pw, and xn fulfills
the conditions described below in Definitions 2.9, 2.11, 2.13 (see Theorem 3.1
below). A value of xn is either unique or varies in an open interval. Formally,
in Definitions 2.6, 2.9, 2.11, 2.13 we describe linear inequalities determining
Pw.

In the following definition we provide a part of equalities and inequalities
of the forms (10), (11) describing Pw and complete the description in Defini-
tions 2.9, 2.11, 2.13.

Definition 2.6 Denote the coordinates of Rn for which Pw ⊂ Rn by
x1, . . . , xn. First, we impose that a coordinate xr−1, 2 ≤ r ≤ n is bounded
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on Pw iff the coordinate yr is bounded on Pv, in other words Bw ⊃ (B \
{1}) − 1 The status of boundness of the coordinate xn is specified in Defini-
tions 2.9, 2.11, 2.13, i.e. whether n ∈ Bw.

The description of Pw contains inequalities (cf. (10), (11))

xr−1 = xl−1 +m(r, l), 2 ≤ r < l ≤ n, r, l ∈ B if e(r, l) = 0, (19)

xr−1 − 1 < xl−1 +m(r, l) < xr−1, 2 ≤ r < l ≤ n, r, l ∈ B if e(r, l) = 1. (20)

Thus, we put mw(r−1, l−1) := m(r, l), ew(r−1, l−1) := e(r, l), 2 ≤ r < l ≤ n.
In addition, the description of Pw contains inequalities (cf. (9))

|mw(r − 1, l − 1)| ≤ 2nM. (21)

In Definitions 2.9, 2.11, 2.13 we impose equalities and inequalities of the
forms (10), (11) which involve the coordinate xn, and also inequalities of the
forms (7), (12) for Pw.

Lemma 2.7 For points (y1, . . . , yn) ∈ Pv the minimum

min
1≤r≤n

{yr + ar−1} (22)

is attained on a suitable subset of the bounded coordinates r ∈ B that do not
depend on a choice of point (y1, . . . , yn) ∈ Pv.

Proof. Due to (12) the minimum in (22) is attained only on bounded

coordinates yr. Let two points (y
(1)
1 , . . . , y

(1)
n ), (y

(2)
1 , . . . , y

(2)
n ) ∈ Pv. Assume

that for a pair of bounded coordinates yr, yt an inequality holds y
(1)
r + ar−1 ≤

y
(1)
t + at−1. Then y

(2)
r + ar−1 ≤ y

(2)
t + at−1 because of inequalities (10), (11),

taking into the account that ar−1, at−1 are integers (cf. also Lemma 2.4). 2

Definition 2.8 Denote by S := Sv(⊂ B) the set of r, 1 ≤ r ≤ n on which
the minimum in (22) is attained.

In particular, all the elements from S belong to the same class (see Re-
mark 2.2). First consider the case when S consists of a single element t.

Definition 2.9 Let the set S = {t} be a singleton. We define a unique
edge in G outgoing from the vertex v (to a suitable vertex w) and describe a
system of equations and inequalities defining a polyhedron Pw. Recall that the
description of Pw contains inequalities (19), (20), (21). Declare the coordinate
xn to be bounded, this determines Bw := ((B \ {1})− 1) ∪ {n}.
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Apply Lemma 2.4 to the system (10), (11). We obtain a sequence of the
form (16) between ŷi, 1 ≤ i ≤ n, i ∈ B. Denote xn := yt + at−1 − an, then
x̂n = xn − at−1 + an + m(1, t) = ŷt (see Lemma 2.4). Extend the obtained
sequence by x̂n. Again applying Lemma 2.4 to the extended sequence, we get
a system of the form (13), (14) in the variables yi, 1 ≤ i ≤ n, i ∈ B, xn.
Remove from this system equations and inequalities containing y1 (provided
that 1 ∈ B) and replace yi, 2 ≤ i ≤ n, i ∈ B by xi−1, respectively. Thus, we
obtain a system which extends the system (19), (20) (and playing the role of
(10), (11) for Pw)

xr = xl +mw(k, l), 1 ≤ r < l ≤ n, r, l ∈ Bw if ew(r, l) = 0, (23)

xr − 1 < xl +mw(r, l) < xr, 1 ≤ r < l ≤ n, r, l ∈ Bw if ew(r, l) = 1. (24)

Due to Lemma 2.4 mw(r, l), ew(r, l) for 1 ≤ r < l < n coincide with the
corresponding integers already constructed in Definition 2.6.

Applying Lemma 2.4 to the system (23), (24) we find the minimal possible
1 ≤ sw ≤ n, sw ∈ Bw such that xsw ≤ xi, i ∈ Bw. The system (23), (24)
together with the following inequalities (playing the role of (7), (8), (9), (12),
respectively, for Pw):

xsw ≤ xi, 1 ≤ i ≤ n, (25)

mw(sw, q) ≥ −nM, mw(p, sw) ≤ (n+ sw − p)M, (26)

|mw(r, l)| ≤ 2nM, 1 ≤ p < sw < q ≤ n, 1 ≤ r < l ≤ n, p, q, r, l ∈ Bw, (27)

xj − xsw > jM, 1 ≤ j ≤ n, j /∈ Bw (28)

describe Pw.

Remark 2.10 Only in case Bv = {1} the system (23), (24) is void, in this
case Bw = {n}, sw = n, and Pw is described by inequalities (28) with sw = n
and (25) (being a consequence of (28)).

2.3 Edges of G in case of non-uniqueness of continua-
tions of a prefix of a tropical recurrent sequence

Now we study the case when the set S (see Definition 2.8) consists of more
than one element. Take a minimal t > 1 such that t ∈ S. There can be several
edges in the graph G outgoing from the vertex v.
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Definition 2.11 First define a single edge from the vertex v to a vertex
w such that the coordinate xn is unbounded in Pw, in other words we put
Bw := (B \ {1}) − 1. Again recall that the description of Pw contains the
inequalities (19), (20), (21).

Applying Lemma 2.4 to the system (19), (20) one can find the minimal
possible 1 ≤ s′ < n, s′ ∈ Bw such that xs′ ≤ xi, 1 ≤ i < n, i ∈ Bw. We
put sw := s′ (cf. (7)). The description of Pw consists of the inequalities (19),
(20), (21) together with the following inequalities (playing the role of (7), (8),
(12), respectively, for Pw):

xsw ≤ xi, 1 ≤ i ≤ n, (29)

m(sw, q) ≥ −nM, m(p, sw) ≤ (n+ sw − p)M (30)

for 1 ≤ p < sw < q ≤ n, p, q ∈ Bw,

xn − xs′ > nM, (31)

xj − xsw > jM, 1 ≤ j ≤ n, j /∈ Bw. (32)

Remark 2.12 We distinguish (31) among the latter inequalities of the
form (32) (when j = n) for the sake of easier references below.

The constructed vertex w is the unique one to which there is an edge in the
graph G from the vertex v such that the coordinate xn is unbounded. Still we
assume that |S| ≥ 2, t ∈ S with a minimal possible t > 1. Now we construct
vertices w with a bounded coordinate xn to which there are edges from v.

Definition 2.13 We declare the coordinate xn to be bounded, i.e. Bw :=
((B \ {1}) − 1) ∪ {n}. Recall that the description of Pw already contains the
equalities and inequalities (19), (20), (21). As in Definition 2.11 applying
Lemma 2.4 to the system (19), (20) one can find the minimal possible 1 ≤
s′ < n such that xs′ ≤ xl, 1 ≤ l < n, l ∈ Bw.

We choose all possible integers mw(l, n), 0 ≤ ew(l, n) ≤ 1, 1 ≤ l < n, l ∈
Bw for which it holds

mw(t− 1, n) ≤ an − at−1 − ew(t− 1, n), (33)

mw(s
′, n) ≥ −nM, (34)

|mw(l, n)| ≤ 2nM, 1 ≤ l < n, l ∈ Bw. (35)
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The description of Pw contains inequalities (35) playing the role of (9) (a
part of them are inequalities (21)) and the following inequalities playing the
role of (10), (11) (a part of them are inequalities (19), (20)):

xr − xl = mw(r, l), 1 ≤ r < l ≤ n, r, l ∈ Bw, ew(r, l) = 0, (36)

mw(r, l)− 1 < xr − xl < mw(r, l), 1 ≤ r < l ≤ n, r, l ∈ Bw, ew(r, l) = 1. (37)

Applying Lemma 2.4 to the system (36), (37) one can find the minimal
possible 1 ≤ sw ≤ n, sw ∈ Bw such that xsw ≤ xl, 1 ≤ l ≤ n, l ∈ Bw. The
description of Pw contains the following inequalities (playing the role of (7),
(8), (12), respectively):

xsw ≤ xi, 1 ≤ i ≤ n, (38)

mw(sw, q) ≥ −nM, mw(p, sw) ≤ (n+ sw − p)M, (39)

for 1 ≤ p < sw < q ≤ n, p, q ∈ Sw,

xj − xsw > jM, 1 ≤ j ≤ n, j /∈ Bw. (40)

Thus, the description of Pw consists of the inequalities (36) - (40) for all
possible choices of integers mw(l, n), 0 ≤ ew(l, n) ≤ 1, 1 ≤ l < n, l ∈ Bw

satisfying (33), (34), (35), provided that Pw is not empty.

Remark 2.14 In Definition 2.13 it holds either sw = s′ or sw = n (the
latter holds iff xn < xs′).

This completes the description of all the edges outgoing from the vertex v
in the graph G.

3 Description of tropical recurrent sequences

via paths in the graph

3.1 Producing a short tropical recurrent sequence along
an edge of the graph

In this subsection for any point (y1, . . . , yn) ∈ Pv we prove the following claim.
If a sequence (y1, . . . , yn, x) ∈ Rn+1 satisfies the vector a⃗ then for exactly
one of the edges (v, w) of the graph G it holds that (y2, . . . , yn, x) ∈ Pw.
Conversely, for every edge (v, w) of G constructed according to one of Defi-
nitions 2.9, 2.11, 2.13 there exists a point (y2, . . . , yn, xn) ∈ Pw such that the
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point (y1, . . . , yn, xn) ∈ Rn+1 satisfies the vector a⃗ (for more precise statements
see Theorem 3.1).

We assume that a point (y1, . . . , yn, xn) ∈ Rn+1 satisfies the vector a⃗. De-
note xi := yi+1, 1 ≤ i ≤ n− 1 (see Definition 2.6). According to Definition 2.6
a coordinate yi+1, 1 ≤ i < n is bounded on Pv (i.e. i + 1 ∈ B) iff the coordi-
nate xi is bounded on Pw (i.e. i ∈ Bw). Then the bounded coordinates among
x1, . . . , xn−1 fulfill the inequalities (19), (20), (21) introduced in Definition 2.6.

Consider the case of a singleton S = {t}. Then xn = yt+at−1−an. We claim
that (y2, . . . , yn, xn) ∈ Pw where the edge (v, w) of G is constructed according
to Definition 2.9. Recall that Bw = ((B \ {1}) − 1) ∪ {n} in this case. The
inequalities (25), (23), (24) are fulfilled by the construction in Definition 2.9.

Now we verify (26). First assume that 1 ≤ sw < n. Since s ≤ sw + 1
due to Lemma 1.4, the inequalities (26) for 1 ≤ p < q < n follow from (8)
taking into account that ys ≤ ysw+1 = xsw . It holds xn = yt + at−1 − an ≤
xsw + asw − an ≤ xsw +M , hence mw(sw, n) ≥ −M (taking into account the
inequalities (23), (24)), which justifies (26) in case 1 ≤ sw < n. Now assume
that sw = n. Lemma 1.4 implies that xn ≥ ys −M , and (26) follows from (8).

Now we verify the inequalities (28). Recall that j + 1 /∈ B, 1 ≤ j < n iff
j /∈ Bw. The inequality yj+1− ys > (j+1)M, j+1 /∈ B (see (12)) implies that
xj − xsw > jM since xsw ≤ ys + M (due to Lemma 1.4). This justifies the
inequalities (28). Thus, the point (x1, . . . , xn) belongs to the polyhedron Pw

for an edge (v, w) of G constructed according to Definition 2.9. This proves
the claim in case S = {t}.

Now we study the case when |S| ≥ 2 and the inequality (31) is true.
We claim that in this case (x1, . . . , xn) ∈ Pw where the edge (v, w) of G is
constructed according to Definition 2.11. Recall that in this case Bw = (B \
{1})−1, and 2 ≤ t ≤ n is the minimal element of S\{1}. The inequalities (29)
are fulfilled according to the construction in Definition 2.11. The inequalities
(30) follow from (8) taking into account that s ≤ sw+1 due to Lemma 1.4 and
that ys ≤ ysw+1 = xsw (cf. the similar argument in the case |S| = 1 above).
The inequalities (32) for 1 ≤ j < n are justified as above in case |S| = 1.
The inequality (32) for j = n coincides with (31). Thus, the point (x1, . . . , xn)
belongs to the polyhedron Pw for an edge (v, w) construced in Definition 2.11.
This proves the claim when |S| ≥ 2 and (31) holds.

Now we assume that |S| ≥ 2 and (34) hold (in other words, (31) is not
true). We claim that (x1, . . . , xn) belongs to the polyhedron Pw where the
edge (v, w) of G is constructed according to Definition 2.13. Recall that in
this case we have Bw = ((B \ {1}) − 1) ∪ {n}. For the minimal element
2 ≤ t ≤ n of S \ {1} it holds xn ≥ xt−1 + at−1 − an. The inequalities (36), (37)
for suitable mw(r, n), ew(r, n), 1 ≤ r < n, r ∈ Bw are fulfilled according to the
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construction in Lemma 2.4 which we apply to x1, . . . , xn. Then the inequality
xn ≥ xt−1 + at−1 − an implies (33).

We verify the inequalities (39) (for mw(r, l) constructed in Definition 2.13
invoking Lemma 2.4). Observe that it holds either sw = s′ or sw = n (see
Remark 2.14). First assume that sw = s′. The equalities (39) for q < n follow
from the inequalities (8) taking into account that s ≤ s′+1 = sw +1 and that
ys ≤ ys′+1 = xs′ = xsw (cf. the similar argument in the consideration of the
case |S| = 1 above). The inequality (39) for q = n follows from (34) (taking
into account the inequalities (36), (37)). Now assume that sw = n. Lemma 1.4
implies that xn ≥ ys −M , and therefore the inequalities (39) follow from (8)
(cf. the similar argument in the consideration of the case |S| = 1 above). So,
the inequalities (39) are justified.

The inequalities (40) we verify as in the consideration of the case |S| = 1
above. The inequalities (35) follow from the inequalities (39) (see the Re-
mark 2.3). Thus, the point (x1, . . . , xn) belongs to a polyhedron Pw for an
appropriate edge (v, w) of G constructed in Definition 2.13. This completes
the proof of the claim.

Conversely, assume that for a point (x1, . . . , xn) ∈ Pv it holds
(x1, . . . , xn) := (y2, . . . , yn, xn) ∈ Pw for an edge (v, w) of G constructed ac-
cording to one of Definitions 2.9, 2.11, 2.13. First, we study the case

i) there exists t ∈ S, 2 ≤ t ≤ n. If S = {t} then xn = xt−1 + at−1 − an
(see Definition 2.9). Otherwise, if |S| ≥ 2 then xn ≥ xt−1 + at−1 − an (see (31)
in case of Definition 2.11 and (33) in case of Definition 2.13). Therefore, the
point (y1, . . . , yn, xn) ∈ Rn+1 satisfies the vector a⃗.

Observe that if the edge (v, w) is constructed according to Definition 2.11
then the values of the coordinate xn vary in an open infinite interval bounded
from below (see (31)). If the edge (v, w) is constructed according to Defini-
tion 2.13, and the description of Pw contains an equality xl − xn = mw(l, n)
of the form (36) for some 1 ≤ l ≤ n − 1 then the value of the coordinate xn

is unique. Otherwise, if ew(l, n) = 1, 1 ≤ l < n, l ∈ Bw, the values of the
coordinate xn vary in an open finite interval due to Corollary 2.5.

ii) Now assume that S = {1}, then the point (x1, . . . , xn) ∈ Pw for an
edge (v, w) constructed according to Definition 2.9. If e(1, l0) = 0 for some
2 ≤ l0 ≤ n, l0 ∈ B, i.e. the description of Pv contains an equality y1 =
yl0 +m(1, l0) of the form (10), then the description of Pw contains the equality
xn + an − a0 = xl0−1 + m(1, l0) (see (23)). Hence in this case for any point
(y2, . . . , yn, xn) ∈ Pw the point (y1, . . . , yn, xn) ∈ Rn+1 satisfies the vector a⃗ (in
fact, (y2, . . . , yn, xn) ∈ Pw implies that xn = yl0 + a0 − an +m(1, l0)).

Otherwise, if e(1, l) = 1, 2 ≤ l ≤ n, l ∈ B then the values of the coordi-
nate xn such that (y2, . . . , yn, xn) ∈ Pw vary in an open interval (in this case
ew(r, n) = 1, 1 ≤ r < n, r ∈ Bw, see (24)). Observe that the latter interval is fi-
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nite iff (24) is not void, i.e. e(1, l) = 1 for some 2 ≤ l ≤ n, l ∈ B, in other words
B \ {1} ≠ ∅. If B = {1} then this interval is infinite bounded from above (see
(28) and Remark 2.10). In this case only the point (y1, . . . , yn, xn = yn+a0−an)
satisfies the vector a⃗.

Summarizing, we have proved the following theorem.

Theorem 3.1 Let a point (y1, . . . , yn) ∈ Pv.
If a point (y1, . . . , yn, xn) ∈ Rn+1 satisfies the vector a⃗ then

(y2, . . . , yn, xn) ∈ Pw holds for exactly one edge (v, w) of the graph G con-
structed according to Definitions 2.9, 2.11, 2.13.

Conversely, let (y2, . . . , yn, xn) ∈ Pw for an edge (v, w) of G constructed
according to one of Definitions 2.9, 2.11, 2.13.

i) In case when there exists t ∈ S, 2 ≤ t ≤ n (see subsection 2.2) the point
(y1, . . . , yn, xn) ∈ Rn+1 satisfies the vector a⃗. In case of an edge constructed
according to

• Definition 2.9, the value of xn is unique;
• Definition 2.11, the values of xn vary in an open infinite interval bounded

from below;
• Definition 2.13, the values of xn depending on the edge (v, w), can be

either unique or vary in an open finite interval.

ii) If S = {1} then only for the value xn = y1 + a0 − an the point
(y1, . . . , yn, xn) ∈ Rn+1 satisfies the vector a⃗.

3.2 The polyhedron of tropical recurrent sequences pro-
duced along a path of the graph

We consider paths in the graph G and describe how they correspond to the
tropical recurrent sequences satisfying the vector a⃗. Take an arbitrary vertex
v0 as the first vertex in a path and any sequence y(0) := (y

(0)
1 , . . . , y

(0)
n ) ∈ Pv0 .

As in subsection 2.2 consider a subset S. If |S| = 1 then there is a unique
edge (v0, w0) in G outgoing from v0. In this case one applies Definition 2.9

and obtains a unique y
(0)
n+1 := x

(0)
n ∈ R such that (y

(0)
2 , . . . , y

(0)
n+1) ∈ Pw0 and

(y
(0)
1 , . . . , y

(0)
n+1) satisfies vector a⃗ (see Theorem 3.1).

Otherwise, if |S| > 1 then there are several edges outgoing from v0. For
each edge (v0, v1) one applies either Definition 2.11 or Definition 2.13, re-

spectively, and produces y
(0)
n+1 := x

(0)
n ∈ R such that (y

(0)
2 , . . . , y

(0)
n+1) ∈ Pv1 and

(y
(0)
1 , . . . , y

(0)
n+1) satisfies vector a⃗ (see Theorem 3.1). Recall (see Theorem 3.1 i))

that for certain edges (v0, v1) the value y
(0)
n+1 is unique, while for other edges

y
(0)
n+1 runs over an open interval.

An edge (v0, v1) for which the value y
(0)
n+1 is unique we call rigid, otherwise

if the values run over an open interval we call an edge augmenting. Due to
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Theorem 3.1 i) the property of an edge to be rigid or augmenting does not
depend on a point y(0). Note that in case of S being a singleton, the edge is
rigid, while an edge constructed according to Definition 2.11, is augmenting
(cf. also Theorem 3.1 ii)).

So far, we have produced a short tropical recurrent sequence (y
(0)
1 , . . . , y

(0)
n+1)

corresponding to an edge of G. We treat this as a base of recursion.
Suppose that we have produced by recursion a tropical recurrent sequence
(y

(0)
1 , . . . , y

(0)
n+k) satisfying the vector a⃗ corresponding to a path T of the length

k in G (the length of a path is defined as the number of its edges). Let v be

the last vertex of T . Then we apply to v and to the suffix (y
(0)
k+1, . . . , y

(0)
n+k) of

the produced sequence one of Definitions 2.9, 2.11, 2.13 as above in the base
of recursion, choosing an edge (v, w) of G and producing y

(0)
n+k+1. Thereby, we

get a tropical recurrent sequence (y
(0)
1 , . . . , y

(0)
n+k+1) satisfying the vector a⃗ and

corresponding to the path Tw obtained by extending T by an edge (v, w). This
completes the recursive step.

Summarizing, we have established in this subsection the following proposi-
tion.

Proposition 3.2 For any path in the graph G any produced (by the described
recursive process) sequence along this path is a tropical recurrent sequence sat-
isfying vector a⃗.

Denote by QT ⊂ Rk+n a polyhedron of all the tropical recurrent sequences
which are produced along the path T as described above (see Proposition 3.2).
Thus, any produced tropical recurrent sequence satisfies the vector a⃗. The
polyhedron QT is presented by the systems of linear equations and linear in-
equalities produced in Definitions 2.9, 2.11, 2.13, respectively, applied to the
edges of the path T (see Theorem 3.1). Observe that when S ̸= {1} Theo-
rem 3.1 i) implies that for the inequalities describing QT just the inequalities
describing Pv and Pw suffice, while when S = {1} one has to add to the latter
inequalities also the equality xn = y1 + a0 − an (see Theorem 3.1 ii)).

Observe that for a rigid edge (v, w) the polyhedron QTw ⊂ Rk+n+1 is
homeomorphic to QT , and the homeomorphism is provided by the projec-
tion along the last coordinate. For an augmenting edge (v, w) the polyhedron
QTw is homeomorphic to the cylinder QT ×R. In particular, in the latter case
dim(QTw) = dim(QT ) + 1. Summarizing, we have established the following
proposition.

Proposition 3.3 Let T be a finite path of the graph G with an ending vertex
v, and Tw be an extension of T by an edge (v, w). If the edge (v, w) is rigid
then the polyhedron QTw of all the finite tropical recurrent sequences produced
along Tw (see Proposition 3.2) is homeomorphic to the polyhedron QT , while
if (v, w) is augmenting then QTw is homeomorphic to the cylinder QT × R.
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3.3 Completeness of the construction of tropical recur-
rent sequences

Now, conversely to Proposition 3.2, we claim that every tropical recurrent
sequence y := (y1, y2, . . .) satisfying the vector a⃗ emerges along an appropriate
path of the graph G (see subsection 3.2).

Proposition 3.4 i) The union of the polyhedra Pv over all the vertices v of
the graph G coincides with Rn.

ii) For any tropical recurrent sequence y := (y1, y2, . . .) satisfying the vector
a⃗ and a vertex v of G such that (y1, . . . , yn) ∈ Pv there exists a unique path T of
G starting with v such that y is produced along T as described in subsection 3.2
(see Proposition 3.2).

Proof. We prove ii) by recursion. For the base of recursion assume that
ys0 := min1≤j≤n{yj} holds for the minimal possible 1 ≤ s0 ≤ n. We construct
a vertex v0 of G such that (y1, . . . , yn) ∈ Pv0 as follows. Put Bv0 := {1 ≤ j ≤
n : yj −ys0 ≤ jM} (cf. (12)). Applying Lemma 2.4 to the set {yl : l ∈ Bv0},
one produces integers mv0(r, l), ev0(r, l); 1 ≤ r < l ≤ n; r, l ∈ Bv0 . Then
the inequalities similar to (7) - (12) describe the polyhedron Pv0 such that
(y1, . . . , yn) ∈ Pv0 . In particular, this proves i).

For the recursive step suppose that a path T of G of a length k is al-
ready constructed such that the sequence (y1, . . . , yn+k) is produced along T
as in subsection 3.2 (see Proposition 3.2). Let v be the last vertex of T , then
y(k) := (yk+1, . . . , yk+n) ∈ Pv. Apply Theorem 3.1 to y(k), this provides a
unique edge (v, w) of G such that (yk+2, . . . , yk+n+1) ∈ Pw, thus the sequence
(y1, . . . , yn+k+1) is produced along the extended path Tw. This completes the
proof (by recursion) of ii). 2

Observe that one could choose, perhaps, another initial vertex v′ of G
such that (y1, . . . , yn) ∈ Pv′ (the latter inclusion is the only property of v′

we require). In fact, one could declare (in an arbitrary way) any coordinate
yj, 1 ≤ j ≤ n either bounded on Pv′ (i.e. j ∈ Bv′) or unbounded (i.e. j /∈ Bv′)
if it fulfills the inequalities either jM < yj − ys0 , ⌊yj − ys0⌋ ≤ (n + s0 − j)M
when 1 ≤ j < s0 or jM < yj − ys0 ≤ nM when s0 < j ≤ n (cf. (8), (12)).
Observe that if yj − ys0 ≤ jM then yj should be bounded on Pv′ , i.e. j ∈ Bv′

(cf. (12)), while if either yj − ys0 ≥ (n + s0 − j)M when 1 ≤ j < s0 or
yj − ys0 > nM when s0 < j ≤ n, then yj should be unbounded on Pv′ , i.e.
j /∈ Bv′ (cf. (8)).

After choosing an initial vertex v0, the rest of a path T in G is constructed
uniquely (see Theorem 3.1 and subsection 3.2). Therefore, each tropical re-
current sequence satisfying the vector a⃗ corresponds to just a finite number of
paths in G as in subsection 3.2 (see Proposition 3.2). Moreover, this number
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does not exceed the number of vertices in G. Thus, the tropical prevariety of
all the tropical recurrent sequences of a length n + k satisfying the vector a⃗
has the same dimension as the union of polyhedra QT over all the paths T of
the length k in G.

For a path T in the graph G denote by d(T ) the number of augmenting
edges in T . By n(T ) ≤ n denote the number of (equivalence) classes of the
coordinates in the first vertex of T (see Remark 2.2). Thus, we have established
the following theorem taking into account Propositions 3.2, 3.3, 3.4.

Theorem 3.5 For any vector a⃗ := (a0, . . . , an) ∈ Zn+1 the constructed
finite directed graph G := Ga satisfies the following properties. For a path T
of a length k in G denote by QT ⊂ Rk+n the polyhedron of all the tropical
recurrent sequences satisfying the vector a⃗ and being produced along the path
T in G. Then dim(QT ) = d(T ) + n(T ). Moreover, the union of polyhedra QT

over all the paths T of the length k coincides with the tropical prevariety of all
the tropical recurrent sequences of the length k + n satisfying the vector a⃗.

4 Calculating the entropy via the graph of

tropical recurrent sequences

In this section we study the tropical Hilbert function d(k) := da⃗(k) (see the
Introduction). Due to Theorem 3.5 d(k) equals the maximum of n(T ) + d(T )
over all the paths T of the length k − n in the graph G.

We call a simple cycle in G optimal if the quotient of the number of aug-
menting edges in the cycle to the length of the cycle is the maximal among
the simple cycles. This maximal quotient we denote by H := Ha⃗. Later we
show that H equals the entropy H := Ha⃗ (Corollary 4.3). Clearly, H equals
the maximum of the same quotient over all the cycles in G (not necessary,
simple).

First, we prove a lower bound on the tropical Hilbert function d(k).

Lemma 4.1 d(k) ≥ H(k − n).

Proof. Take an optimal simple cycle U in G. Denote the length of U by
L and the number of augmenting edges in U by m, then H = m/L. Assign
to each augmenting edge of U the number 1 − H and to each rigid edge the
number −H. Then the sum of all these numbers equals 0. Due to the lemma
about leaders [10] there exists a vertex u of U such that the sum of the assigned
numbers along any subpath of U starting with u, is non-negative.

Consider a path T of a length k− n starting with the vertex previous to u
in U and following the cycle U (i. e. T can wind the cycle U several times).
According to Theorem 3.5 dim(QT ) ≥ H(k − n). 2
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Denote by V the number of vertices in G. Now we proceed to an upper
bound on the tropical Hilbert function.

Lemma 4.2 d(k) ≤ Hk + (1−H)(V + n).

Proof. Consider a path T of a length L in G. Take a vertex v1 of G which
occurs in T at least twice (provided that it does exist). Then the subpath of
T between these two occurrings constitues a cycle of a length L1. Remove this
cycle from T , and continue removing cycles from the resulting paths, while
it is possible. Let L2, L3, . . . , Lq be the lengths of the consecutively removed
cycles. Then

d(T ) ≤ H(L1 + · · ·+ Lq) + (L− L1 − · · · − Lq) ≤ H(L1 + · · ·+ Lq) + V

(cf. Theorem 3.5). Therefore, d(k) ≤ H(k−n)+ (1−H)V +n taking into the
account that L− L1 − · · · − Lq ≤ V . 2

Lemmata 4.1, 4.2 imply the following corollary (see (2)).

Corollary 4.3 H = H.

Remark 4.4 The entropy H is a rational number.

5 Quasi-linearity of the tropical Hilbert func-

tion

Lemma 5.1 Any path T of a length k − n greater than V 2(V + n) + V in
the graph G such that n(T ) + d(T ) = d(k), contains a vertex from an optimal
simple cycle.

Proof. First consider the case when H = 0. Then any simple cycle in G
is optimal, and the statement of the lemma is true even with a better bound
k − n > V . Thus, from now on in the proof of the lemma we assume that
H > 0.

Recall that according to Theorem 3.5 it holds that dim(QT ) = n(T )+d(T ).
Slightly modifying the construction from the proof of Lemma 4.2, take the
first repetition of some vertex v in T (provided that it is possible). Then the
subpath of T between these two occurrences of v constitutes a simple cycle of a
length L1 in T . Remove this simple cycle from T and continue removing simple
cycles from the resulting paths in a similar way, while it is possible. Denote by
L2, L3, . . . , Lq the lengths of the consecutively removed simple cycles. Denote
by B the denominator of H (cf. Remark 4.4), obviously B ≤ V (see section 4).
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Assume the contrary to the claim of the lemma. Then

d(T ) ≤ H(L1+ · · ·+Lq)−q/B+(k−n−L1−· · ·−Lq) ≤ H(k−n)−q/B+V.

The first inequality follows from the statement that the amount of augmenting
edges in the cycle with the length Li, 1 ≤ i ≤ q is not greater than H ·Li− 1

B
.

Making use of Lemma 4.1 we obtain an inequality q/B ≤ V + n, hence q ≤
V (V + n). The path T consists of q simple cycles and a path without cycles.
Each simple cycle has length not more than V as well as the path without
cycles. Therefore, k − n ≤ V 2(V + n) + V since L1, . . . , Lq ≤ V . 2

Denote by R the least common multiple of the lengths of all the optimal
simple cycles.

Lemma 5.2 For any k > (V 2+1)(V +n) we have d(k+R) ≥ d(k)+HR.

Proof. Take a path T of the length k−n in G such that n(T )+d(T ) = d(k)
(cf. Theorem 3.5). Due to Lemma 5.1 T contains a vertex v which belongs to
an optimal simple cycle C of a length c. Glue in the path T at the vertex v the
number R/c of copies of the cycle C, the resulting path of the length k−n+R
denote by T1. In other words, in T1 one follows first T till the vertex v, then
there are R/c windings of the cycle C (finishing at v), finally after that one
again follows path T (starting at v). Clearly, d(T1) = d(T ) + (R/c)Hc. 2

Lemma 5.3 If for some k > (V 2 + 1)(V + n) we have

d(k + iR) = d(k) +HiR, 0 ≤ i ≤ V ((1−H)V + n+ 1)

then d(k + jr) = d(k) +HjR for any j ≥ 0.

Proof. Due to Lemma 5.2 it holds d(k+ jR) ≥ d(k)+HjR. Suppose that

d(k + jR) > d(k) +HjR (41)

for some j > V ((1−H)V + n+1), and take the minimal such j. There exists
a path T of the length k + jR − n in G for which n(T ) + d(T ) = d(k + jR).
For 0 ≤ i ≤ V ((1−H)V +n+1) denote by Ti the beginning of T of the length
k + iR − n. One can represent the path T = TiTi as a concatenation of two
paths.

There exists a subsequence 0 ≤ i0 < i1 < · · · < i(1−H)V+n+1 ≤ V ((1 −
H)V +n+1) such that each path Til , 0 ≤ l ≤ (1−H)V +n+1 ends with the
same vertex v of G. Assume that there exists 0 ≤ l ≤ (1−H)V + n for which
it holds that

d(Til+1
) ≤ d(Til) +H(il+1 − il)R. (42)
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Then we consider a concatenation T := TilTil+1
being a path of the length

k + jR− n− (il+1 − il)R in G. We obtain

d(T ) = d(T ) + d(Til)− d(Til+1
) > d(k) +HjR−H(il+1 − il)R

due to (41), (42), and we get a contradiction with the choice of the minimal j
(see (41)).

Thus, for every 0 ≤ l ≤ (1−H)V + n we have

d(Til+1
) ≥ d(Til) +H(il+1 − il)R + 1.

Summing up these inequalities for 0 ≤ l ≤ (1−H)V + n we conclude that

d(Ti(1−H)V +n+1
)− d(Ti0) ≥ H(i(1−H)V+n+1 − i0)R + (1−H)V + n+ 1

which contradicts to Lemmata 4.1, 4.2. 2

Note that V < (O(Mn))n (see Definition 2.1) and R < exp(V ). Lem-
mata 4.1, 4.2, 5.2, 5.3 entail the following theorem.

Theorem 5.4 For k > (V 2+1)(V +n)+V ((1−H)V +n+1)2 the tropical
Hilbert function da⃗(k) of the integer vector a⃗ = (a0, . . . , an) with an amplitude
M (4) fulfils the following equality:

da⃗(k +R) = da⃗(k) +HR.

for some integer R < exp((O(Mn))n) where H := Ha⃗ is the tropical entropy
of the vector a⃗.

We call a function (from the natural numbers to themselves) quasi-linear if
it is a sum of a linear function and a periodic function with an integer period.

Corollary 5.5 The tropical Hilbert function

d(k) = Hk + r(k)

is quasi-linear for k > (Mn)O(n) where r(k) is a periodic function with an
integer period less than exp((O(Mn))n).

Now we illustrate the constructions in sections 2 - 5 for three vectors a⃗ ∈ Z3,
thus n = 2 (we use notations from sections 2 - 5). In each example we construct
a graph G := Ga⃗ whose vertices v are in a bijective correspondence with
polygons Pv ⊂ R2. Denote by (y, x) coordinates in R2.
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Example 5.6 First, we consider a vector a⃗ := (0, 0, 0). Therefore, M = 0.
The graph G contains three vertices v, we list their corresponding polygons

Pv ⊂ R2:

Pv∞ = {x− y > 0}, Pv0 = {x− y = 0}, Pv−∞ = {x− y < 0}.

Note that Bv∞ = Sv∞ = {1}, Bv0 = Sv0 = {1, 2}, Bv−∞ = Sv−∞ = {2} (see
Definitions 2.1, 2.8).

The edges of G are the following:

(v∞, v−∞), (v0, v0), (v0, v∞), (v−∞, v0).

The edges (v∞, v−∞), (v−∞, v0) are constructed according to Definition 2.9, the
edge (v0, v0) is constructed according to Definition 2.13, and the edge (v0, v∞) is
constructed according to Definition 2.11. The only augmenting edge is (v0, v∞).

An optimal cycle is v−∞, v0, v∞. It contains a single augmenting edge, hence
the entropy H = 1/3 (see Corollary 4.3, also [4]).

Consider a path

T = (v−∞, v0, v∞) · · · (v−∞, v0, v∞)︸ ︷︷ ︸
p

of the length 3p − 1 in G. For any reals z0 < z1, . . . , zp+1 take the point
(u1, . . . , u3p+1) such that u3l−1 = u3l = z0, 1 ≤ l ≤ p, u3j−2 = zj, 1 ≤ j ≤ p+ 1.
Then (u1, . . . , u3p+1) belongs to the polyhedron QT ⊂ R3p+1 (see Theorem 3.5).
Vice versa, one can check that any point of QT has this form. Therefore,
dimQT = p + 2. One can verify that for every 1 ≤ q ≤ 3p − 1 the maximum
maxT ′{dimQT ′}, where T ′ ranges over all paths in G of the length q, is attained
at the prefix of T of the length q. Hence, the tropical Hilbert function d(k) =
⌊(k − 1)/3⌋+ 2, k ≥ 2 (cf. Theorem 3.5, Corollary 5.5).

Example 5.7 Let a vector a⃗ := (1, 0, 1), therefore M = 1. If to follow the
bounds (8) formally, then the graph G := Ga⃗ should have 13 vertices. We
simplify the construction of G imposing stronger bounds than (8), namely,
|m(1, 2)| ≤ 1. One can verify that in case of the chosen a⃗ this simplification
still computes the entropy H := Ha⃗ and the tropical Hilbert function d := da⃗.

The graph G has 7 vertices v, we list their corresponding polygons Pv ⊂ R2:

Pv∞ = {x−y > 1}, Pv1 = {x−y = 1}, Pv0.5 = {0 < x−y < 1}, Pv0 = {x−y = 0},

Pv−0.5 = {−1 < x− y < 0}, Pv−1 = {x− y = −1}, Pv−∞ = {x− y < −1}
(see Definition 2.1).

Note that the set Bv∞ = {1}, Bv−∞ = {2}, for all other vertices v of G the
set Bv = {1, 2} (see Definition 2.1), the set Sv∞ = {1}, Sv1 = {1, 2}, for all
other vertices v of G the set Sv = {2} (see Definition 2.8).
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The graph G has 12 following edges:

e1 := (v∞, v−∞), e2 := (v1, v−1), e3 := (v1, v−0.5), e4 := (v1, v0),

e5 := (v1, v0.5), e6 := (v1, v1), e7 := (v1, v∞), e8 := (v0.5, v−1),

e9 := (v0, v−1), e10 := (v−0.5, v−1), e11 := (v−1, v−1), e12 := (v−∞, v−1).

Observe that the edges e1, e8, e9, e10, e11, e12 (so, the edges not outgoing from the
vertex v1) are constructed according to Definition 2.9, the edge e7 is constructed
according to Definition 2.11, the edges e2, e3, e4, e5, e6 are constructed accord-
ing to Definition 2.13. Just the edges e3, e5, e7 are augmenting (cf. Proposi-
tion 3.3).

The graph G has the source v1 (i.e. the vertex without incoming edges),
and the sink v−1 (i.e. the vertex without outgoing edges). Since no cycle in G
contains an augmenting edge, the entropy H = 0 due to Corollary 4.3. This
also follows from [4].

Every path in G starts with several loops in v1 (perhaps, empty), ends with
several loops in v−1 (perhaps, empty), and has at most two edges inbetween.
Consider a path

T0 = v1 . . . v1︸ ︷︷ ︸
p

v∞v−∞ v−1 . . . v−1︸ ︷︷ ︸
q

.

Then the polyhedron QT0 ⊂ Rp+q+3 (see Theorem 3.5) is described as follows.
For arbitrary z0, z1 > z0 + p+ 1 ∈ R the point

(z0, z0 + 1, . . . , z0 + p, z1, z0 + p, z0 + p− 1, . . . , z0 + p− q − 1)

belongs to QT0. Vice versa, these points exhaust QT0. Therefore, dimQT0 = 2,
it holds n(T0) = d(T0) = 1 (cf. Theorem 3.5). One can verify that any path
T in G provides a polyhedron QT of dimension at most 2. Indeed, if T starts
with the vertex v1 then n(T ) = 1, d(T ) ≤ 1 because any path contains at most
one augmenting edge. Otherwise, if T starts with with a vertex different from
v1 then n(T ) ≤ 2, d(T ) = 0. Thus, the Hilbert function d(k) = 2, k ≥ 2 (cf.
Theorem 3.5, Corollary 5.5).

Example 5.8 Now consider a vector a⃗ := (0, 1, 0). Thus, M = 1. Again as
in Example 5.7 we simplify the construction of the graph G. It contains the
same 7 vertices as in Example 5.7.

It holds Bv∞ = {1}, Bv−∞ = {2}, for all other vertices v of G it holds
Bv = {1, 2}. It holds Sv−1 = {1, 2}, Sv−∞ = {2}, for all other vertices v of G
it holds Sv = {1}.

The graph G has the following edges:

e1 := (v∞, v−∞), e2 := (v1, v−1), e3 := (v0.5, v−0.5), e4 := (v0, v0),
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e5 := (v−0.5, v0.5), e6 := (v−1, v1), e7 := (v−1, v∞), e8 := (v−∞, v1).

The edge e6 is constructed according to Definition 2.13, the edge e7 is con-
structed according to Definition 2.11, all other edges are constructed according
to Definition 2.9. The only augmenting edge is e7.

The unique simple cycle of G which contains the augmenting edge is
(v−∞, v1, v−1, v∞). Therefore, the entropy H = 1/4 (see also [4]).

Consider a path

T := (v−∞, v1, v−1, v∞), . . . , (v−∞, v1, v−1, v∞)︸ ︷︷ ︸
p

of the length 4p − 1. Then for any reals z0 + 1 < z1, . . . , zp+1 take the point
(u1, . . . , u4p+1) such that u4l+1 = zl+1, 0 ≤ l ≤ p, u4j+2 = u4j+4 = u4j+3 − 1 =
z0, 0 ≤ j < p. The point (u1, . . . , u4p+1) belongs to the polyhedron QT (see
Theorem 3.5). Vice versa, one can check that any point of QT has the described
form, hence dimQT = p+ 2.

One can verify that for every 1 ≤ q ≤ 4p − 1 the maximum in
maxT ′{dimQT ′}, where T ′ ranges over all paths of the length q of G, is at-
tained at the prefix of the length q of T . Thus, the tropical Hilbert function
d(k) = ⌊(k − 1)/4⌋+ 2 (cf. Theorem 3.5, Corollary 5.5).

Remark 5.9 In case when the tropical entropy H = Ha⃗ = 0 Lemma 4.2
implies that d(k) = const for sufficiently large k, taking into account that d(k)
is a non-decreasing function. Recall (see [4]) that Newton polygon N (⃗a) ⊂ R2

for a vector a⃗ = (a0, . . . , an) is defined as the convex hull of the rays {(i, y) :
y ≥ ai} for 0 ≤ i ≤ n. We say that the vector a⃗ is regular [4] if each point
(i, ai) with ai < ∞ is a vertex of N (⃗a), and the indices i for which ai < ∞
constitute an arithmetic progression. It was proved in [4, Corollary 5.7] that
Ha⃗ = 0 iff a⃗ is regular. For regular a⃗ in case when each (i, ai), 0 ≤ i ≤ n is a
vertex of N (⃗a) one can deduce from [3, Corollary 4.9] that d(k) = k for k ≤ n
and d(k) = n for k ≥ n.

6 Tropical boolean vectors

As we already mentioned it would be interesting to extend the results of the
paper to arbitrary vectors a⃗ involving infinite coordinates. The first step to
implementing this idea can be considered as the construction of an appropriate
graph Ga⃗ (cf. section 2) for the case when a⃗ is a tropical boolean vector (see
the Introduction). In this case, the construction looks simpler and contains less
technical details comparing to the case considered in the previous sections 2,
3.
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6.1 Construction of a graph for tropical boolean vectors

We call a vector a⃗ = (a0, . . . , an) tropical boolean vector if for all 0 ≤ i ≤ n it
holds either ai = 0 or ai = ∞, and a0 = an = 0.

Below we construct a directed graph G := Ga⃗. First we define the vertices
of G.

Definition 6.1 Every vertex v of G corresponds to an (open in its linear
hull) nonempty polyhedron P := Pv ⊂ Rn with the condition that for each pair
of coordinates yr, yt, 1 ≤ r, t ≤ n a system of equations and strict inequalities
defining P contains either yr = yt or yr < yt.

These linear restrictions set the order on the coordinates y1, . . . , yn. The
polyhedra {Pv}v constitute a partition of Rn. Now we define the edges of G.

Definition 6.2 There is an edge (v, w) in G iff there exist vectors
(y0, . . . , yn−1) ∈ Pv, (y1, . . . , yn) ∈ Pw such that the sequence (y0, . . . , yn) ∈
Rn+1 satisfies the vector a⃗.

Similar to subsection 2.2 for a vertex v of G define S := Sv as a set of
0 ≤ t ≤ n − 1 such that yt = at + yt = min0≤j≤n−1{aj + yj}. In other words,
t ∈ S iff at = 0 and yt ≤ yj for each 0 ≤ j ≤ n − 1 such that aj = 0. The
definition of S does not depend on a choice of a point (y0, . . . , yn−1) ∈ Pv (cf.
Lemma 2.7). The following theorem is similar to Theorem 3.1.

Theorem 6.3 Let v be a vertex of the graph G := Ga⃗ (see Definitions 6.1,
6.2) and (y0, . . . , yn−1) ∈ Pv.

If a point (z0, . . . , zn−1) ∈ Pv and a sequence (z0, . . . , zn) ∈ Rn+1 satisfies
the vector a⃗ then (z1, . . . , zn) ∈ Pw for some edge (v, w) of G.

Conversely, let (y1, . . . , yn) ∈ Pw for an edge (v, w) of G, and the sequence
(y0, . . . , yn) ∈ Rn+1 satisfy the vector a⃗. If t ∈ S for some 0 ≤ t ≤ n− 1 then
yn ≥ yt.

i) Let t ∈ S for some 1 ≤ t ≤ n− 1 and yr = yn for some 1 ≤ r ≤ n− 1.
Assume that a point (z0, . . . , zn−1) ∈ Pv. If a point (z1, . . . , zn−1, z) ∈ Pw then
z = zr. The point (z1, . . . , zn−1, zr) ∈ Pw, and the sequence (z0, . . . , zn−1, zr) ∈
Rn+1 satisfies the vector a⃗.

ii) Let t ∈ S for some 1 ≤ t ≤ n − 1. Assume that yr1 < yn for some
1 ≤ r1 ≤ n− 1 and for every 1 ≤ r ≤ n− 1 neither yr1 < yr ≤ yn nor yn ≤ yr
holds. Then for any point (z0, . . . , zn−1) ∈ Pv if a point (z1, . . . , zn−1, z) ∈ Pw

then zr1 < z and for every 1 ≤ r ≤ n − 1 neither zr1 < zr ≤ zn nor zn ≤ zr
holds. For any zr1 < zn ∈ R the point (z1, . . . , zn) ∈ Pw and the sequence
(z0, . . . , zn) ∈ Rn+1 satisfies the vector a⃗.
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iii) Let t ∈ S for some 1 ≤ t ≤ n − 1. Assume that yr1 < yn < yr2 for
some 1 ≤ r1, r2 ≤ n − 1, and for every 1 ≤ r ≤ n − 1 neither yr1 < yr ≤ yn
nor yn ≤ yr < yr2 holds. Then for any point (z0, . . . , zn−1) ∈ Pv if a point
(z1, . . . , zn−1, z) ∈ Pw then zr1 < z < zr2 and for every 1 ≤ r ≤ n − 1 neither
zr1 < zr ≤ zn nor zn ≤ zr < zr2 holds. For any zn ∈ R, zr1 < zn < zr2 the point
(z1, . . . , zn) ∈ Pw and the sequence (z0, . . . , zn) ∈ Rn+1 satisfies the vector a⃗.

iv) Let S = {0}. Then yn = y0. For any point (z0, . . . , zn−1) ∈ Pv the point
(z1, . . . , zn−1, z0) ∈ Pw and the sequence (z0, . . . , zn−1, z0) ∈ Rn+1 satisfies the
vector a⃗.

Proof. An informal idea of the proof is to transfer inequalities on the
differences between the coordinates y to the corresponding inequalities on the
coordinates z, and back.

Let (z0, . . . , zn−1) ∈ Pv and a sequence (z0, . . . , zn−1, zn) ∈ Rn+1 satisfy the
vector a⃗. Assume that t ∈ S for some 1 ≤ t ≤ n− 1, then

zt = at + zt = min
0≤j≤n

{aj + zj}. (43)

First, consider the case when t ∈ S for some 1 ≤ t ≤ n− 1 and zn = zr for
some 1 ≤ r ≤ n (cf. i)). Then the sequence (y0, . . . , yn−1, yn = yr) ∈ Rn+1 also
satisfies the vector a⃗. Indeed, (43) implies that yt = at+yt = min0≤j≤n{aj+yj}.
Therefore, due to Definition 6.2 there exists an edge (v, w) of G such that
(y1, . . . , yn−1, yn = yr) ∈ Pw. Hence (z1, . . . , zn−1, zn = zr) ∈ Pw as well. This
proves the first statement of the theorem in the case under consideration.

Now consider the case when t ∈ S for some 1 ≤ t ≤ n − 1 and zn > zr
for each 1 ≤ r ≤ n − 1 (cf. ii)). Then for any y > max1≤j≤n−1{yj} the
sequence (y0, . . . , yn−1, y) ∈ Rn+1 satisfies the vector a⃗. Indeed, (43) implies
that yt = at + yt = min{min0≤j≤n−1{aj + yj}, y}. Due to Definition 6.2 there
exists an edge (v, w) (independent of y) of G such that (y1, . . . , yn−1, y) ∈ Pw.
Hence (z1, . . . , zn−1, zn) ∈ Pw as well. This proves the first statement of the
theorem in the case under consideration.

The case when t ∈ S for some 1 ≤ t ≤ n − 1 and zr1 < zn < zr2 for some
1 ≤ r1, r2 ≤ n − 1 such that for each 1 ≤ r ≤ n − 1 neither zr1 < zr ≤ zn
nor zn ≤ zr < zr2 holds (cf. iii)) can be studied in a similar manner as the
previous case.

Finally, consider the case S = {0} (cf. iv)). Then z0 < zl for each
1 ≤ l ≤ n − 1 for which al = 0. Therefore, zn = z0. Hence the se-
quence (y0, . . . , yn−1, y0) ∈ Rn+1 satisfies the vector a⃗. Due to Definition 6.2
there exists an edge (v, w) of G such that (y1, . . . , yn−1, y0) ∈ Pw. Therefore
(z1, . . . , zn−1, z0) ∈ Pw as well. This proves the first statement of the theorem.

One can directly verify the second statement of the theorem. 2

Corollary 6.4 The edges of the graph G (see Definition 6.2) do not depend
on choices of points (y0, . . . , yn−1) ∈ Pv.
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Remark 6.5 Let an edge (v, w) fulfill the assumptions of one of the items
Theorem 6.3 i), ii), iii) and a point (z0, . . . , zn−1) ∈ Pv. Then for any z ∈ R
such that (z1, . . . , zn−1, z) ∈ Pw the sequence (z0, . . . , zn−1, z) ∈ Rn+1 satisfies
the vector a⃗. In contrast, in case of Theorem 6.3 iv) only for the value z = z0 it
holds that the sequence (z0, . . . , zn−1, z) satisfies the vector a⃗ (cf. Theorem 3.1).

6.2 The polyhedron of tropical recurrent sequences pro-
duced along a path of the graph

Consider an arbitrary path T of a length k with vertices v0, . . . , vk in the graph
Ga⃗. Similar to subsection 2.2 we describe a recursive process producing along T
tropical recurrent sequences satisfying the vector a⃗. For the first vertex v0 take
any vector (y1, . . . , yn) ∈ Pv0 . Assume by recursion that a tropical recurrent
sequence (y1, . . . , yk+n) is already produced along T . Then (yk+1, . . . , yk+n) ∈
Pvk . Take an edge (vk, w) of G and denote by Tw the extension of T by (vk, w).
We choose yk+n+1 ∈ R such that (yk+2, . . . , yk+n+1) ∈ Pw and the sequence
(yk+1, . . . , yk+n+1) ∈ Rn+1 satisfies the vector a⃗. Thus, the tropical recurrent
sequence (y1, . . . , yk+n+1) is produced along Tw. Theorem 6.3 justifies that a
required yk+n+1 exists and moreover, Theorem 6.3 describes all possible yk+n+1.
This completes the description of the recursive process.

Denote by QT ⊂ Rk+n the set of all the tropical recurrent sequences pro-
duced along T by the described recursive process. One can define QT by
imposing linear inequalities for each edge of T . Say, for an edge (vi, vi+1), 0 ≤
i ≤ k− 1 we impose that the point (yi+1, . . . , yi+n+1) belongs to Pvi , the point
(yi+2, . . . , yi+n+2) belongs to Pvi+1

. This suffices for edges (vi, vi+1) fulfilling the
items Theorem 6.3 i), ii), iii). In case of Theorem 6.3 iv) one has to impose an
extra condition that yi+1 = yi+n+2, i.e. the sequence (yi+1, . . . , yi+n+2) ∈ Rn+1

satisfies the vector a⃗. Thus, QT is (an open in its linear hull) polyhedron.
If an edge (vi, vi+1) fulfills one of the items Theorem 6.3 i), iv) we call the

edge rigid, otherwise, if the edge fulfills one of the items Theorem 6.3 ii), iii)
we call the edge augmenting. Similar to subsection 2.2 when the edge (vk, w)
is rigid the value of yk+n+1 is unique, while when the edge is augmenting the
values of yk+n+1 vary in an open interval. Therefore, when the edge (vk, w)
is rigid the polyhedron QTw is homeomophic to QT , while when the edge is
augmenting the polyhedron QTw is homeomophic to QT × R.

Conversely, Theorem 6.3 implies that any tropical recurrent sequence sat-
isfying the vector a⃗ emerges along a suitable path of G in the described above
recursive process. Thus, the tropical prevariety of all tropical recurrent se-
quences of a length k + n satisfying the vector a⃗ coincides with the union of
polyhedra QT over all the paths of the length k in G.

For a path T in the graph G denote by d(T ) the number of augmenting
edges in T . By n(T ) ≤ n denote the number of the pairwise distinct coor-
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dinates in (y1, . . . , yn) ∈ Pv0 for the first vertex v0 of T . We summarize the
proved above in the following theorem which is analogous to the Theorem 3.5
for the case when a⃗ is a tropical boolean vector.

Theorem 6.6 For any tropical boolean vector a⃗ := (a0, . . . , an) (i. e. a0 =
an = 0 and each ai, 0 ≤ i ≤ n equals either 0 or ∞) a finite directed graph
G := Ga⃗ is constructed with the following properties. For an arbitrary path T of
a length k in G denote by QT ⊂ Rk+n the polyhedron of all the tropical recurrent
sequences satisfying the vector a⃗ and corresponding (as described above in this
subsection) to the path T in G. Then dim(QT ) = d(T ) + n(T ). Moreover, the
union of polyhedra QT over all the paths T of the length k coincides with the
tropical prevariety of all the tropical recurrent sequences of the length k + n
satisfying the vector a⃗.

Now let us notice that all the arguments presented in sections 4 and 5
for the graph constructed in section 2 are also true in the case of tropical
boolean vectors. Indeed, both definitions of n(T ) and d(T ) and thereby, Hilbert
function da⃗(s) coincide, respectively, with the definitions for the case when a⃗
has a finite amplitude. Moreover, an analogue of Theorem 3.5 holds in the
tropical boolean case (Theorem 6.6). As all the statements from sections 4
and 5 (except of Theorem 5.4 and Corollary 5.5) depend only on da⃗(s) and on
Theorem 3.5, we can formulate the following corollaries.

Corollary 6.7 Lemmata 4.1, 4.2, 5.1, 5.2, 5.3 and Corollary 4.3 hold
when a⃗ is a tropical boolean vector.

Proof. Follows from the proofs of the mentioned statements. 2

Corollary 6.8 Theorem 5.4 and Corollary 5.5 hold when a⃗ is a tropical
boolean vector putting in the bounds M = 1.

Proof. From subsection 6.1 it follows that the number of vertices V in G is
less than the amount of orders on an n-element set, hence it is less than nn.
Thus, we can put M = 1 in the bounds. The remaining part of the proof is
literally as in the proofs of the mentioned statements. 2

Let us note that for any tropical boolean vector a⃗ every vertex of Ga⃗

could be presented as a sequence of numbers from 0 to n which reflects the
order between the coordinates of the corresponding polyhedron. For exam-
ple polyhedron Pv ⊂ R3 defined by a system of equalities and inequalities
{y1 < y2, y1 < y3, y2 = y3} could be presented as sequence {0, 1, 1}.

Example 6.9 Now we illustrate constructions in this section for vector a⃗ =
(0, 0,∞, 0).

It is not hard to see that there are 13 different orderings on 3 coordinates.
We list corresponding polyhedra (see Definition 6.1) Pv ⊂ R3 :
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Pv0,0,0 = {y1 = y2 = y3}, Pv1,0,0 = {y1 > y2, y2 = y3},
Pv0,0,1 = {y1 = y2, y2 < y3}, Pv0,1,0 = {y1 < y2, y1 = y3},
Pv1,0,1 = {y1 > y2, y1 = y2}, Pv1,1,0 = {y1 = y2, y2 > y3},
Pv0,1,1 = {y1 < y2, y2 = y3}, Pv0,2,1 = {y1 < y2, y1 < y3},
Pv1,2,0 = {y1 > y3, y2 > y1}, Pv2,1,0 = {y1 > y2, y2 > y3},
Pv2,0,1 = {y1 > y3, y2 < y3}, Pv0,1,2 = {y1 < y2, y2 < y3},

Pv1,0,2 = {y1 > y2, y1 < y3}.

The graph Ga⃗ has the following 13 edges (see Definition 6.2):

e1 := (v0,0,0, v0,0,1), e2 = (v1,0,0, v0,0,0), e3 = (v0,0,1, v0,1,0),
e4 := (v0,0,1, v0,1,1), e5 = (v0,0,1, v0,2,1), e6 = (v0,0,1, v0,1,2),
e7 := (v0,1,0, v1,0,0), e8 = (v1,0,1, v0,1,0), e9 = (v0,1,1, v1,1,0),

e10 := (v0,2,1, v2,1,0), e11 = (v2,0,1, v0,1,0), e12 = (v0,1,2, v1,2,0),
e13 := (v1,0,2, v0,1,0).

Moreover, just the edges e1, e5 and e6 are augmenting (see Theorem 6.3).
There is only one cycle in this graph:

(v0,0,0, v0,0,1, v0,1,0, v1,0,0).

As only one of these edges is augmenting we obtain that Ha⃗ =
1
4
(cf. Corol-

lary 6.7).
Now we give the detailed description of the tropical Hilbert function d(k)

in this case (cf. Corollary 6.8):

� if k = 1, 2, 3 then d(k) = 3. The maximum of the dimension dim(QT )
over paths of a given length in Ga⃗ (see Theorem 6.6) is attained at the
path

T := e11e7e2e1;

� if k = 4p, where p ≥ 1 then d(k) = 3 + p. The maximum is attained at
the path

T := e11 (v0,0,0, v0,0,1, v0,1,0, v1,0,0) · · · (v0,0,0, v0,0,1, v0,1,0, v1,0,0)︸ ︷︷ ︸
p−1

e7e2e1;

� if k = 4p + 1, where p ≥ 1 then d(k) = 3 + (p + 1). The maximum is
attained at the path

T := e11 (v0,0,0, v0,0,1, v0,1,0, v1,0,0) · · · (v0,0,0, v0,0,1, v0,1,0, v1,0,0)︸ ︷︷ ︸
p−1

e7e2e1e5;
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� if k = 4p + 2, where p ≥ 1 then d(k) = 3 + (p + 1). The maximum is
attained at the path

T := e11 (v0,0,0, v0,0,1, v0,1,0, v1,0,0) · · · (v0,0,0, v0,0,1, v0,1,0, v1,0,0)︸ ︷︷ ︸
p−1

e7e2e1e6e12;

� if k = 4p+ 3, where p ≥ 1 then d(k) = 3 + p. The maximum is attained
at the path

T := e11 (v0,0,0, v0,0,1, v0,1,0, v1,0,0) · · · (v0,0,0, v0,0,1, v0,1,0, v1,0,0)︸ ︷︷ ︸
p

e7e2.

7 Sharp bounds on the tropical entropy

7.1 Sharp lower bound on the positive entropy

In this section our main goal is to prove that if for a vector a⃗ = (a0, . . . , an) ∈
Zn+1 its tropical entropy H (⃗a) > 0 then H (⃗a) ≥ 1

4
. Together with the example

[4, Example 5.5] demonstrating that H(0, 1, 0) = 1/4 (cf. also Example 5.8)
we will conclude that this bound is sharp. This result is the answer to the
hypothesis that was formulated in [4, Remark 5.6] (for the criterion of positivity
of the tropical entropy see [4, Corollary 5.7], cf. also Remark 5.9).

For convenience, we use the following assumptions in this section:

� we consider tropical sequences {zI}I∈Z infinite in both directions. To
obtain finite tropical sequence it is enough to consider only I ∈ N;

� for most of the considered cases we attach diagrams with simple exam-
ples. To save place on these diagrams the ≥ sign is replaced by sign ∼
above the symbol.

Theorem 7.1 If a vector a⃗ is not regular then H (⃗a) ≥ 1
4
.

Proof. Consider Newton polygon N (⃗a) of the vector a⃗ (see Remark 5.9).
It has several bounded edges and two unbounded edges. First, assume that
there is a bounded edge of N (⃗a) such that there are at least three points of
a⃗, i. e. of the form (i, ai) (in this case we follow the proof of [4, Theorem
5.5]). Making a suitable affine transformation of the plane one can suppose
w.l.o.g. that this edge lies on the abscissas axis and (0, 0) is its left end-
point (the transformation, perhaps, converts the tropical polynomial f , see
(1), into a tropical Laurent polynomial, the proof still goes through for the
latter). Consider the points of a⃗ located on this edge: E0 := {(e, 0) : ae = 0},
then |E0| ≥ 3 by our assumption. One can assume w.l.o.g. that the greatest
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common divisor GCD(E0) of the differences e1 − e2 of all the pairs of the
elements e1, e2 ∈ E0 of E0 equals 1. Otherwise, one can consider separately
all GCD(E0) arithmetic progressions with the difference GCD(E0).

Pick any three elements of E0 not all with the same parity, say 0, 2v, u
w.l.o.g. where v ≥ 1 and u being odd. Consider the following tropical recurrent
sequence {zI}I∈Z satisfying a :

� z2l+1 = 0, for 0 ≤ l ∈ Z;

� z2(2qv+r) = 0, for q ∈ Z and 0 ≤ r < v;

� z2((2q+1)v+r) ≥ 0, for q ∈ Z and 0 ≤ r < v.

{zI}I∈Z
sequence

values:

Index: 0 2v 4v 6v 8vu

0 0 0 0 0̃ 0 0̃ 0 0 0 0 0 0̃ 0 0̃ 0 0

2v 2v 2v 2v

Taking finite fragments (z1, . . . , zN) with growing N we conclude that
H (⃗a) ≥ 1

2+1+1
= 1

4
.

In the other case we have 0, 2v + 1 and 2u+ 1 ∈ E0 and thus we have the
following sequence {zI}I∈Z :

� z2l = 0, for 0 ≤ l ∈ Z;

� z2(2q(u−v)+r)+1 = 0, for q ∈ Z and 0 ≤ r < u− v;

� z2((2q+1)(u−v)+r)+1 ≥ 0, for q ∈ Z and 0 ≤ r < u− v.

{zI}I∈Z
sequence

values:

Index: 0 2v + 1 2u+ 1

0 0 0 0 0 0̃ 0 0̃ 0 0

2|u− v| 2|u− v|

Now we assume that no edge of N (⃗a) contains a point of a⃗ other than two
vertices of this edge. We take an edge of N (⃗a) with the biggest difference
of indices of its vertices. Due to a suitable affine transformation we suppose
w.l.o.g. that these vertices are (0, 0) and (n0, 0). There exists i ∈ J such that
n0 does not divide i, since a⃗ is not regular. Among such i we pick i0 for which
c := ai0 is minimal. Then c > 0. Denote k = GCD(n0, i0). When n0

k
is even

we consider the sequence {zI}I∈Z:

� zqn0−2ji0+i = 0, when 0 ≤ 2j ≤ n0

k
;

32



� z2qn0−(2j+1)i0+i = c, when 0 < 2j + 1 < n0

k
;

� z(2q+1)n0−(2j+1)i0+i ≥ c, when 0 < 2j + 1 < n0

k
,

for q ∈ Z, 0 ≤ i < k.

{zI}I∈Z
Sequence

values:

Index: 0 i0 n0 2n0 3n0

0 0 c̃ c̃ 0 0 c̃ c̃ 0 0 c c 0 0 c c 0 0 c̃ c̃ 0 0 c̃ c̃ 0 0

i0i0i0k k k

This sequence satisfies a⃗ and taking finite fragments (z1, . . . , zN) with grow-
ing N we conclude that H (⃗a) ≥ 1

2+1+1
= 1

4
. Thus further we suppose that n0

k

is odd.
We denote the first (respectively, the last) index of a by B (respectively, by

E). Thus, the projection of N (⃗a) is the interval from B to E on the abscissas
axis. Before we prove the statement of the theorem in general case let us prove
the following lemma.

Lemma 7.2 If there exists i1 ̸= i0 such that n0 ∤ i1 and ai1 = ai0 then
H (⃗a) ≥ 1

4
.

Proof.
L.I Let n0|(i1 − i0).
Then we consider a sequence {zI}I∈Z such that:

� zqn0−2ji0+i = 0 when 0 ≤ 2j < n0

k
;

� zqn0−(2j+1)i0+i ≥ c when 0 < 2j + 1 < n0

k

for q ∈ Z, 0 ≤ i < k.

Sequence
{zI}I∈Z

values:

Index: 0 i0 n0 i1 2n0 3n0

0 0 0 c̃ c̃ 0 0 0 c̃ c̃ 0 0 0 c̃ c̃ 0

i0i0i0i0

This sequence satisfies a.
Indeed,

� For m = qn0 − 2ji0 + i we have minB≤v≤E{av + zv+m} = 0, the minimum
is attained at indices m and m+ n0.

� For m = qn0 − (2j + 1)i0 + i we have minB≤v≤E{av + zv+m} = c, the
minimum is attained at indices m+ i0 and m+ i1.
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Taking finite fragments (z1, . . . , zN) with growing N we conclude that H (⃗a) ≥
1
2
for even n0

k
and H (⃗a) ≥

n0
k

−1

2
·k

n0
≥ 1

3
.

L.II Let n0 ∤ (i1 − i0).

L.II.1 Assume that k = 1 (since we consider the case where n0

k
is odd,

thus n0 is odd).
First, consider sequence {wI}I∈Z such that:

� wqn0−2ji0 = 0 when 0 ≤ 2j ≤ n0;

� w2qn0−(2j+1)i0 = c when 0 < 2j + 1 < n0;

� w(2q+1)n0−(2j+1)i0 ≥ c when 0 < 2j + 1 < n0

for q ∈ Z.
This sequence satisfies a.
Indeed,

� For m = qn0 − 2ji0 we have minB≤v≤E{av +wv+m} = 0, the minimum is
attained at indices m and m+ n0.

� For m = 2qn0 − (2j + 1)i0 we have minB≤v≤E{av + wv+m} = c, the
minimum is attained at indices m+ i0 and m.

� For m = (2q + 1)n0 − (2j + 1)i0 we have minB≤v≤E{av +wv+m} = c, the
minimum is attained at indices m+ i0 and m+ n0.

Now, we claim that there exists 0 < 2l+1 < n0 such that wqn0−(2l+1)i0+i1 = 0
for all q ∈ Z. Note, that if we found 2l′ + 1 such that wqn0−(2l′+1)i0+i′1

= 0 for
all q ∈ Z for some i′1 ≡ i1, then wqn0−(2l′+1)i0+i1 = 0 for all q ∈ Z.

Recall that GCD(i0, n0) = 1 and n0 ∤ i1, therefore there exists mi1 such
that mi1i0 ≡ i1 (mod n0) and 0 < mi1 < n0.

� If mi1 is odd then the required 2l+ 1 equals n0 − 2. Indeed, qn0 − (n0 −
2)i0 + mi1i0 = qn0 − (n0 − 2 − mi1)i0. 0 ≤ n0 − 2 − mi1 < n0 − 2 and
(n0 − 1−mi1) is even, thus wqn0−(n0−2−mi1

)i0 = 0.

� If mi1 is even then the required 2l+1 equals mi1−1. Indeed, qn0−(mi1−
1)i0 +mi1i0 = qn0 + i0 = (q + i0)n0 − (n0 − 1)i0. 0 < n0 − 1 < n0 and
n0 − 1 is even, thus w(q+i0)n0−(n0−1)i0 = 0.

Now consider a sequence {zI}I∈Z such that:

� zqn0−2ji0 = 0 when 0 ≤ 2j ≤ n0;
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� z2qn0−(2j+1)i0 = c when 0 < 2j + 1 < n0 and l ̸= j;

� z2qn0−(2l+1)i0 ≥ 0;

� z(2q+1)n0−(2j+1)i0 ≥ c when 0 < 2j + 1 < n0

for q ∈ Z.

Sequence
{wI}I∈Z

values:

Index: 0 i0 i1 n0 i0n0

0 0 0 c̃ c 0 0 0 c c̃ 0 0 0

i0i0i0i0

Sequence
{zI}I∈Z

values:

Index: 0 i0 i1 n0 i0n0

0 0 0 c̃ c̃ 0 0 0 c c̃ 0 0 0

This sequence satisfies a. Indeed,

� For m = qn0 − 2ji0 we have minB≤v≤E{av + zv+m} = 0, the minimum is
attained at indices m and m+ n0.

� For m = 2qn0 − (2j + 1)i0 and j ̸= l we have minB≤v≤E{av + zv+m} = c,
the minimum is attained at indices m+ i0 and m.

� Form = 2qn0−(2l+1)i0 we have minB≤v≤E{av+zv+m} = c, the minimum
is attained at indices m+ i0 and m+ i1.

� For m = (2q + 1)n0 − (2j + 1)i0 we have minB≤v≤E{av + zv+m} = c, the
minimum is attained at indices m+ i0 and m+ n0.

Taking finite fragments (z1, . . . , zN) with growing N we conclude that

H (⃗a) ≥
n−1
2

+1

2n
≥ 1

4
.

L.II.2 Now assume that k > 1.
Define k1 := GCD(i1, n0). W.l.o.g. we can consider that k1 ≥ k (otherwise

we can swap i0 and i1).
We will find k different indices l1, . . . lk such that wqn0+lj+i1 = 0 for all q ∈ Z

and for all 1 ≤ j ≤ k and lj1 ̸≡ lj2 for all j1 ̸= j2. Note, that if i
′
1 ≡ i1 (mod n0)

and wqn0+lj+i′1
= 0 for all q ∈ Z and for all 1 ≤ j ≤ k then it is true for i1.

Thus, we can assume that 0 ≤ i1 < n0. We can represent i1 as s · k + r, where
0 ≤ r < k. We study two different cases:
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L.II.2.1 r = 0.
Denote n′ := n0

k
, i′0 =

i0
k
and i′1 :=

i1
k
.Consider a′ = (aj)j≡0 (mod k). Sequence

{w′
I}I∈Z is defined as follows:

� w′
q′

n0
k
−2j

i0
k

= 0, where 0 ≤ 2j < n0

k
;

� w′
2q′

n0
k
−(2j+1)

i0
k

= c, where 0 < 2j + 1 < n0

k
;

� w′
(2q′+1)

n0
k
−(2j+1)

i0
k

≥ c, where 0 < 2j + 1 < n0

k

for q′ ∈ Z.
Similar to the previous case (k = 1) we can consider sequence {z′I}I∈Z that

provides the bound H(a′) ≥ 1
4
for n′

0, i
′
0, i

′
1 and a′. Now take sequence {zI}I∈Z

as follows:

� zi·k+r = z′i, for 0 ≤ i ∈ Z and 0 ≤ r < k.

{w′
I}I∈Z

Sequence

values:

Index: 0 i′0 i′1 n′
0 2n′

0

0 0 c̃ 0 0 c 0 0

{z′I}I∈Z
Sequence

values:

Index: 0 i′0 i′1 n′
0 2n′

0

0 0 c̃ 0 0 c̃ 0 0

{zI}I∈Z
Sequence

values:

Index: 0 i0 i1 n0 2n0

0 0 0 0 0 0 c̃ c̃ c̃ 0 0 0 0 0 0 c̃ c̃ c̃ 0 0 0 0 0 0

This provides us the bound H (⃗a) ≥ 1
4
.

L.II.2.2 r ̸= 0
Note, that in this case k1 > k and thus s ̸= 0 and s+1 ̸= n0

k
. Here we have

three different cases:
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L.II.2.2a s ≡ i0
k
(mod n0

k
).

From the proof for k = 1 we know that there exists 0 < 2l + 1 < n0

k
such

that w′
q′

n0
k
−(2l+1)

i0
k
+(s+1)

= 0 for all q′ ∈ Z.
Consider {zI}I∈Z as follows:

� zqn0−2ji0+i, where 0 ≤ 2j < n0 and 0 ≤ i < k;

� z2qn0−(2j+1)i0+i = c, where 0 < 2j + 1 < n0, j ̸= l and 0 ≤ i < k;

� z2qn0−(2l+1)i0+i ≥ c, where 0 ≤ i < k;

� z(2q+1)n0−(2l+1)i0+i, where 0 < 2j + 1 < n0 and 0 ≤ i < k

for q ∈ Z.

{w′
I}I∈Z

Sequence

values:

Index: 0 i′0 s+ 1 n′
0 2n′

0

0 0 c̃ 0 0 c 0 0

{z′I}I∈Z
Sequence

values:

Index: 0 i′0 s+ 1 n′
0 2n′

0

0 0 c̃ 0 0 c̃ 0 0

{zI}I∈Z
Sequence

values:

Index: 0 i0 i1 n0 2n0

0 0 0 0 0 0 c̃ c̃ c̃ 0 0 0 0 0 0 c̃ c̃ c̃ 0 0 0 0 0 0

We claim that {zI}I∈Z satisfies a. Indeed,

� For m = qn0 − 2ji0 + i we have minB≤v≤E{av + zv+m} = 0, the minimum
is attained at indices m and m+ n0.

� For m = 2qn0 − (2j + 1)i0 + i, j ̸= l we have minB≤v≤E{av + zv+m} = c,
the minimum is attained at indices m and m+ i0.

� Form = (2q+1)n0−(2j+1)i0+i, j ̸= l we have minB≤v≤E{av+zv+m} = c,
the minimum is attained at indices m+ n0 and m+ i0.
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� For m = qn0 − (2l + 1)i0 + i we have minB≤v≤E{av + zv+m} = c, the
minimum is attained at indices m+ i1 and m+ i0.

Taking finite fragments (z1, . . . , zN) with growing N we conclude that

H (⃗a) ≥
n
k
−1

2
·k+k

2n
≥ 1

4

L.II.2.2b s+ 1 ≡ i0
k
(mod n0

k
).

This case is the same as the previous one except that we need to find
0 < 2l + 1 < n0

k
such that w′

q′
n0
k
−(2l+1)

i0
k
+s

= 0 for all q′ ∈ Z.

{w′
I}I∈Z

Sequence

values:

Index: 0 i′0s n′
0 2n′

0

0 c c̃ 0 0 0 c̃ c 0 0 0

{z′I}I∈Z
Sequence

values:

Index: 0 i′0s n′
0 2n′

0

0 c̃ c̃ 0 0 0 c̃ c 0 0 0

{zI}I∈Z
Sequence

values:

Index: 0 i0i1 n0 2n0

0 0 0 c̃ c̃ c̃ c̃ c̃ c̃ 0 0 0 0 0 0 0 0 0 c̃ c̃ c̃ c c c 0 0 0 0 0 0 0 0 0

Taking finite fragments (z1, . . . , zN) with growing N we conclude that

H (⃗a) ≥
n0
k

−1

2
·k+k

2n0
≥ 1

4

L.II.2.2c s, s+ 1 ̸≡ i0
k
(mod n0

k
).

From the proof for k = 1 we know that there exist 0 < 2l + 1, 2l′ + 1 < n0

k

such that w′
q′

n0
k
−(2l+1)

i0
k
+s

= 0 and w′
q′

n0
k
−(2l′+1)

i0
k
+(s+1)

= 0 for all 0 ≤ q′ ∈ Z.
Consider {zI}I∈Z as follows:

� zqn0−2ji0+i, where 0 ≤ 2j < n0 and 0 ≤ i < k;

� z2qn0−(2j+1)i0+i = c, where 0 < 2j + 1 < n0, j ̸= l, l′ and 0 ≤ i < k;

� z2qn0−(2l+1)i0+i ≥ c, where 0 ≤ i < k − r;
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� z2qn0−(2l+1)i0+i = c, where k − r ≤ i < k;

� z2qn0−(2l′+1)i0+i = c, where 0 ≤ i < k − r;

� z2qn0−(2l′+1)i0+i ≥ c, where k − r ≤ i < k;

� z2qn0−(2l+1)i0+i ≥ c, where 0 ≤ i < k;

� z(2q+1)n0−(2l+1)i0+i, where 0 < 2j + 1 < n0 and 0 ≤ i < k

for q ∈ Z. We claim that {zI}I∈Z satisfies a.
Indeed,

� For m = qn0 − 2ji0 + i we have minB≤v≤E{av + zv+m} = 0, the minimum
is attained at indices m and m+ n0.

� For m = 2qn0−(2j+1)i0+ i, j ̸= l, l′ we have minB≤v≤E{av+zv+m} = c,
the minimum is attained at indices m and m+ i0.

� Form = 2qn0−(2l+1)i0+i, k−r ≤ i < k we have minB≤v≤E{av+zv+m} =
c, the minimum is attained at indices m and m+ i0.

� Form = 2qn0−(2l′+1)i0+i, we have 0 ≤ i < k−r minB≤v≤E{av+zv+m} =
c, the minimum is attained at indices m and m+ i0.

� Form = (2q+1)n0−(2j+1)i0+i, j ̸= l, l′ we have minB≤v≤E{av+zv+m} =
c, the minimum is attained at indices m+ n0 and m+ i0.

� For m = (2q+1)n0− (2l+1)i0+ i, k− r ≤ i < k we have minB≤v≤E{av+
zv+m} = c, the minimum is attained at indices m+ n0 and m+ i0.

� For m = (2q+1)n0− (2l′+1)i0+ i, 0 ≤ i < k−r we have minB≤v≤E{av+
zv+m} = c, the minimum is attained at indices m+ n0 and m+ i0.

� Form = qn0−(2l+1)i0+i, 0 ≤ i < k−r we have minB≤v≤E{av+zv+m} =
c, the minimum is attained at indices m+ i1 and m+ i0.

� Form = qn0−(2l′+1)i0+i, k−r ≤ i < k we have minB≤v≤E{av+zv+m} =
c, the minimum is attained at indices m+ i1 and m+ i0.

Taking finite fragments (z1, . . . , zN) with growing N we conclude that

H (⃗a) ≥
n0
k

−1

2
·k+k

2n0
≥ 1

4
. 2

Now we are returning to the proof of the theorem. Assume that there is
no such n ∤ ii, i0 ̸= i1 that ai1 = ai0 . As in the proof of Lemma 7.2 we will
consider two different cases.

T.1 k = 1.
Define the following sequence {wI}I∈Z:
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� wqn0−2ji0 = 0 when 0 ≤ 2j < n0;

� w2qn0−(2j+1)i0 = c when 0 < 2j + 1 < n0;

� w(2q+1)n0−(2j+1)i0 ≥ c when 0 < 2j + 1 < n0

for q ∈ Z.
We define L0 := {B ≤ v ≤ E , n0 ∤ v, v ̸= 0, n0, such that wqn0−(n0−1)i0+v = 0

for all q ∈ Z}. Set x := min {av | v ∈ L0}. Also define ix by the equation
aix = x. If such ix is not unique then we choose any ix with such property.

T.1.1 First assume that x ≤ 2c.
In this case we define a sequence {zI}I∈Z as follows:

� zqn0−2ji0 = 0 when 0 ≤ 2j < n0, 2j ̸= n0 − 1;

� z2qn0−(2j+1)i0 = c when 0 < 2j + 1 < n0;

� z(2q+1)n0−(2j+1)i0 ≥ x when 0 < 2j + 1 < n0

� z2qn0−(n0−1)i0 = x;

� z(2q+1)n0−(n0−1)i0 ≥ x

for q ∈ Z.

{wI}I∈Z
Sequence

values:

Index: 0 i0 n0 2n0

0 0 0 c̃ c 0 0 0 c c̃ 0

{zI}I∈Z
Sequence

values:

Index: 0 i0 n0 2n0

0 0 x x̃ c 0 0 x̃ c x̃ 0

We claim that {zI}I∈Z satisfies a.
Indeed,

� For m = qn0 − 2ji0, 2j ̸= n0 − 1 we have minB≤v≤E{av + zv+m} = 0, the
minimum is attained at indices m and m+ n0.

� For m = 2qn0−(2j+1)i0, 2j ̸= n0−1 we have minB≤v≤E{av+zv+m} = c,
the minimum is attained at indices m and m+ i0.
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� For m = (2q + 1)n0 − (2j + 1)i0 we have minB≤v≤E{av + zv+m} = c, the
minimum is attained at indices m+ n0 and m+ i0.

� Form = 2qn0−(n−1)i0, we have minB≤v≤E{av+zv+m} = x, the minimum
is attained at indices m and m + ix (because av + zv+m is at least x if
v ∈ L0 and av + zv+m ≥ min{c+ c, c+ x} ≥ x if v ̸∈ L0).

� For m = (2q + 1)n0 − (n0 − 1)i0 we have minB≤v≤E{av + zv+m} = x, the
minimum is attained at indices m+ n0 and m+ ix (because av + zv+m is
at least x if v ∈ L0 and av + zv+m ≥ min{c+ c, c+ x} ≥ x if v ̸∈ L0).

Taking finite fragments (z1, . . . , zN) with growing N we conclude that

H (⃗a) ≥
n0−1

2
+1

2n0
≥ 1

4
.

T.1.2 Now we assume that x > 2c.
Denote minv ̸=i0, v∤n0{av} by s. Note, that s > c. Indeed, otherwise we can

use lemma 7.2 and get the required bound. Denote minv ̸=0,n0, v|n0{av} by d.
Note, that d > 0. Finally, set y := min{s+ c, x, 2c+ d}.

Define a sequence {zI}I∈Z as follows:

� zqn0−2ji0 = 0 when 0 ≤ 2j < n0, 2j ̸= n0 − 1;

� z2qn0−(2j+1)i0 = c when 0 < 2j + 1 < n0;

� z(2q+1)n0−(2j+1)i0 ≥ y when 0 < 2j + 1 < n0

� z4qn0−(n0−1)i0 = 2c;

� z(4q+1)n0−(n0−1)i0 = tq, is a free variable, tq ∈ [2c, y];

� z(4q+2)n0−(n0−1)i0 = tq, is a free variable, tq ∈ [2c, y];

� z(4q+3)n0−(n0−1)i0 = 2c

for q ∈ Z.

{wI}I∈Z
Sequence
values:

Index: 2n0 3n0 4n0 5n0

0 0 0 c̃ c 0 0 0 c c̃ 0 0 0 c̃ c 0 0 0 c c̃

{zI}I∈Z
Sequence
values:

Index: 2n0 3n0 4n0 5n0

0 0 2c ỹ c 0 0 t1 c ỹ 0 0 t1 ỹ c 0 0 2c c ỹ

41



We claim that {zI}I∈Z satisfies a.
Indeed,

� For m = qn0 − 2ji0, we have 2j ̸= n0 − 1 minB≤v≤E{av + zv+m} = 0, the
minimum is attained at indices m and m+ n0.

� For m = 2qn0−(2j+1)i0, 2j ̸= n0−1 we have minB≤v≤E{av+zv+m} = c,
the minimum is attained at indices m and m+ i0.

� For m = (2q + 1)n0 − (2j + 1)i0 we have minB≤v≤E{av + zv+m} = c, the
minimum is attained at indices m+ n0 and m+ i0.

� For m = 4qn0 − (n0 − 1)i0, we have minB≤v≤E{av + zv+m} = 2c, the
minimum is attained at indices m and m + i0 (because av + zv+m is at
least x > 2c if v ∈ L0, and av + zv+m ≥ min{s+ c, 0 + tq, d+ 2c} ≥ 2c if
v ̸∈ L0).

� For m = (4q + 1)n0 − (n0 − 1)i0 we have minB≤v≤E{av + zv+m} = tq, the
minimum is attained at indicesm andm+n0 (because av+zv+m is at least
x > y ≥ tq if v ∈ L0, and av + zv+m ≥ min{c+ y, s+ c, d+ 2c} ≥ y ≥ tq
if v ̸∈ L0).

� For m = (4q+2)n0− (n0− 1)i0, we have minB≤v≤E{av + zv+m} = 2c, the
minimum is attained at indices m+ n0 and m+ i0 (because av + zv+m is
at least x > 2c if v ∈ L0, and av + zv+m ≥ min{s+ c, 0+ tq, d+2c} ≥ 2c
if v ̸∈ L0).

� For m = (4q+3)n0− (n0− 1)i0, we have minB≤v≤E{av + zv+m} = 2c, the
minimum is attained at indices m and m + n0 (because av + zv+m is at
least x > 2c if v ∈ L0, and av+zv+m ≥ min{c+y, s+c, 0+tq, d+2c} ≥ 2c
if v ̸∈ L0).

Taking finite fragments (z1, . . . , zN) with growing N we conclude that
H (⃗a) ≥ n0−1+1

4n0
= 1

4
.

T.2 k > 1.
Consider the following sequence {z′I}I∈Z:

� z′qn0−2ji0+i = 0 when 0 ≤ 2j ≤ n0;

� z′2qn0−(2j+1)i0+i = c when 0 < 2j + 1 < n0;

� z′(2q+1)n0−(2j+1)i0+i ≥ c when 0 < 2j + 1 < n0
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for q ∈ Z and 0 ≤ i < k.
For 0 ≤ i < k definemathcalL0,r := {B ≤ v ≤ E , n0 ∤ v, v ̸= 0, n0 such that

z′qn0−(n0−1)i0+r+v = 0 for all q ∈ Z and such that qn0−(n0−1)i0+r+v ̸= q′n0−
(n0− 1)i0+ r′ for any q′ and for any 0 ≤ r′ < k}. Set xr := min{av | v ∈ L0,r}.
Define ix,r by the equation aix,r = xr.

Denote minv ̸=i0, v∤n0{av} by s. Note, that s > c. Indeed, otherwise we can
use lemma 7.2 and get the required bound. Denote minv ̸=0,n0, v|n0{av} by d.
Note, that d > 0. For 0 ≤ r < k set yr := min{s+ c, xr, 2c+d}. Finally, define
M := max0≤r<k{xr, yr}.

Define a sequence {zI}I∈Z as follows:

• zqn0−2ji0+r = 0 when 0 ≤ 2j ≤ n0, 2j ̸= (n0 − 1), where 0 ≤ r < k;

• z2qn0−(2j+1)i0+r = c when 0 < 2j + 1 < n0, where 0 ≤ r < k;

• z(2q+1)n0−(2j+1)i0+r ≥ M when 0 < 2j + 1 < n0, where 0 ≤ r < k;

For 0 ≤ r < k set:

1. if xr ≤ 2c then:

• z2qn0−(n0−1)i0+r = xr;

• z(2q+1)n0−(n0−1)i0+r ≥ M ;

2. if xr > 2c then:

• z4qn0−(n0−1)i0+r = 2c;

• z(4q+1)n0−(n0−1)i0+r = tq,r, is a free variable, tq,r ∈ [2c, yr];

• z(4q+2)n0−(n0−1)i0+r = tq,r, is a free variable, tq,r ∈ [2c, yr];

• z(4q+3)n0−(n0−1)i0+r = 2c

for q ∈ Z.

{zI}I∈Z
Sequence

values:

Index: 2n0 3n0

0 0 x0 M̃ c 0 0 x̃0 c M̃0 0 2c M̃ c 0 0 t1,1 c M̃

Index: 4n0 5n0

0 0 x0 M̃ c 0 0 x̃0 c M̃0 0 t1,1 M̃ c 0 0 2c c M̃
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We claim that this sequence satisfies a. It is sufficient to check that a
subsequence {zqn0−(n−1)i0+r′}q∈Z does not change the minima in the subse-
quence {zqn0−(n−1)i0+r}0≤q∈Z with r ̸= r′ in the definition of satisfiability of
the vector a⃗ (see (1)). The latter is true because zqn0−(n0−1)i0+r′ ≥ c and thus
zqn0−(n0−1)i0+r′+av ≥ c+s ≥ xr (if xr ≤ 2c) and zqn0−(n0−1)i0+r′+av ≥ c+s ≥ yr
(if xr > 2c).

Taking finite fragments (z1, . . . , zN) with growing N we conclude that in

the worst case H (⃗a) ≥ (
n0
k
−1)k+k

4n0
= 1

4
. 2

7.2 Sharp upper bound on the tropical entropy in case
of a single bounded edge of Newton polygon

The last theorem is an upper bound on H (⃗a) in case of a single bounded edge
of Newton polygon N (⃗a). We conjecture that this bound holds for an arbitrary
vector a⃗. We mention that in [4] a weaker upper bound 1−1/n was established
for an arbitrary vector a⃗. Together with the result H (⃗a) = 1− 2/(n+ 1) for a
vector a = (a0, . . . , an) with a0 = · · · = an = 0 [4, Example 5.2] it demonstrates
the sharpness of the obtained upper bound. The full proof will be provided in
the future.

Theorem 7.3 If Newton polygon for a⃗ has only one bounded edge then
H (⃗a) ≤ 1− 2

n+1
.

Proof. For convenience we make a suitable affine transformation such that
a0 = an = 0.

Consider the polyhedral complex D(s). It is a union of a finite number of
polyhedra such that each of these polyhedra Q satisfies the following condi-
tions. For every 0 ≤ j ≤ s − n there exists a pair 0 ≤ i1 < i2 ≤ n such
that

zj+i1 + ai1 = zj + ai2 = min
0≤p≤n

{zp+j + ap} (44)

for any (z1, . . . , zs) ∈ Q.

For every Q we consider the following restriction graph RG(Q) :

� vertices are the indices of coordinates from 1 to s;

� there is an edge between vertices i and j if there is a linear condition of
the form yi + γ = yj which is true for all (y1, . . . , ys) ∈ Q.

Let us notice that RG(Q) is the union of connected components where each
component is the complete subgraph. Moreover, the dimension of Q equals
the number of components of RG(Q) (cf. [5]).
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Let us fix some Q from the finite union above. For arbitrary (t1, . . . , ts) ∈ Q
we construct the following sequence by recursion:

� The first element of the sequence equals the least index i0 such that
ti0 = min1≤f≤s tf ;

� Let iv be the last current constructed element of the sequence. If iv+n >
s then we terminate the process and declare iv to be the last constructed
element of the sequence.

� If iv + n ≤ s then we consider min0≤p≤n{tiv+p + ap}. According to the
definition of a tropical sequence and the definition of Q there exist 0 ≤
p1 < p2 such that min0≤p≤n{ziv+p + ap} = ziv+p1 + ap1 = ziv+p2 + ap2 for
all (z1, . . . , zs) ∈ Q. If p1 > 0 then we set iv+1 = iv+p1 and iv+2 = iv+p2.
Otherwise, we just set iv+1 = iv + p2.

Note that there can be more than two indices where min0≤p≤n{ziv+p+ap}
is attained for all (z1, . . . , zs) ∈ Q. We pick some pair p1 < p2.

We will call this sequence an equality row for (t1, . . . , ts). Now we claim two
important statements:

�

i0 < n+ 1 (45)

Indeed, suppose the contrary. Then consider min0≤p≤n{ti0−n+p+ ap}. As
ti0 = min1≤f≤s{tf} and an = 0 then this minimum equals min1≤f≤s{tf}
and there exist p1 < p2 ≤ n such that ti0−n+p1 + ap1 = ti0−n+p2 + ap2 =
min1≤f≤s{tf}. As ap ≥ 0 then we obtain that ap2 = ap1 = 0 and
ti0−n+p1 = ti0−n+p2 = ti0 . However, i0 − n+ p1 < i0 and we get a contra-
diction with that i0 is the least index such that ti0 = min1≤f≤s{tf}.

�

tiv = ti0 , (46)

for all iv in the equality row.

We prove this by recursion. For i0 the statement is already true. Suppose
we have proved this statement for iv and we consider min0≤p≤n{tiv+p+ap}
then either tiv + a0 = tiv+1 + ap2 equals this minimum or tiv+1 + ap1 =
tiv+2 + ap2 . However, this minimum is less or equal to tiv + a0 = tiv =
min1≤f≤s{tf}. Recalling the fact that ap ≥ 0 for 0 ≤ p ≤ n we obtain
that ap1 = ap2 = 0 and either tiv+1 = tiv = ti0 or tiv+2 = tiv+1 = tiv = ti0 .

Let us fix (t1, . . . , ts) ∈ Q and its equality row {i0, . . . , iE}. Consider an-
other arbitrary point (t′1, . . . , t

′
s) ∈ Q. We prove the following lemma:
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Lemma 7.4 If for some v it is true that t′iv = min0≤f≤s{t′f} then for all
w ≥ v it is true that t′iw = t′iv .

Proof of lemma. Indeed, during the recursive construction of the equality
row iv for (t1, . . . , ts) there could appear one of the following three possibilities:

� v = 0. Then the processes of construction of equality row for (t1, . . . , ts)
and for (t′1, . . . , t

′
s) completely coincide.

� We considered min0≤p≤n{tiv−1+p + ap} which is equal to tiv−1+p1 + ap1 =
tiv−1+p2 + ap2 for some p1 < p2 and iv = iv−1 + p2. Then the processes of
construction of equality row for (t1, . . . , ts) and for (t′1, . . . , t

′
s) completely

coincide starting from the next step.

� We considered min0≤p≤n{tiv−1+p + ap} which is equal to tiv−1+p1 + ap1 =
tiv−1+p2 + ap2 for some p1 < p2 and iv = iv−1 + p1. We recall that these
equalities are true for arbitrary (z1, . . . , zs) ∈ Q and so they are true for
(t′1, . . . , t

′
s). Thus t′iv−1+p2

also equals min1≤f≤s{t′f} and we come to the
previous case.

Now we define Qb as

{(y1, . . . , ys) ∈ Q and b is the least index such that yb = min1≤f≤s{tf}}

According to the statement 45 Q =
n⋃

b=1

Qb. Next we prove the crucial

lemma.

Lemma 7.5 The number of connected components in the RG(Qb) is not
greater than s+ 4− 2s

n+1
.

Proof of lemma. According to the definition of Qb and according to lemma
7.4 for every iv > b from the equality row, (b, iv) is an edge in RG(Qb). We
partition [b, s] into disjoint intervals each of length n+ 1 starting from b. Now

we produce the following sequence {G′
r}

[ s−q
n+1

]

r=0 of subgraphs by recursion on an
interval number:

� G′
0 is just RG(Qb) without edges;

� Suppose we have produced G′
r and now we are considering (r + 1)-th

interval of length (n + 1). The interval contains at least one element iv
from the equality row. If there are at least two elements from the equality
row then for each iv from this interval we add an edge (b, iv) to the graph
G′

r and obtain G′
r+1.
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Otherwise, we consider (r + 1)-th interval:

[b+ (n+ 1) · r; b+ (n+ 1) · r + n].

Consider min0≤p≤n{yb+(n+1)·r+p + ap}. According to the definition of the
tropical sequence there exist p1 < p2 such that this minimum equals
yb+(n+1)·r+p1+ap1 = yb+(n+1)·r+p2+ap2 for all (y1, . . . , ys) ∈ Qb. Thus there
is an edge from RG(Qb) whose vertices have indices from the (r + 1)-th
interval and at least one of them does not lie in the equality row. We call
this edge a non-equality edge. Then we set G′

r+1 as G′
r with one added

edge (b, iv) and one added non-equality edge.

We claim that for every r the number of components in G′
r is at least by

two less than G′
r−1. It follows from the fact that at each step all edges have at

least one end-point which does not belong to the transitive closure of previous
subgraph.

Thus we obtain that the number of components is less than s− 2 · [ s−b
n+1

] ≤
s+ 2− 2 s−b

n+1
≤ s+ 4− 2 s

n+1
.

Now we note that dimQ = max1≤b≤n{dimQb} and therefore, according to
lemma 7.5 we obtain that dimQ ≤ s + 4− 2s

n+1
. Tending to the limit on s we

obtain the required statement of the theorem. 2
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