
TESTING CONTAINMENT OF TROPICAL HYPERSURFACES
WITHIN POLYNOMIAL COMPLEXITY

Dima Grigoriev

CNRS, Mathématique, Université de Lille, Villeneuve d’Ascq, 59655, France

e-mail: dmitry.grigoryev@univ-lille.fr

URL: http://en.wikipedia.org/wiki/Dima Grigoriev

Abstract

For tropical n-variable polynomials f, g a criterion of containment for
tropical hypersurfaces Trop(f) ⊂ Trop(g) is provided in terms of their
Newton polyhedra N(f), N(g) ⊂ Rn+1. Namely, Trop(f) ⊂ Trop(g) iff
for every vertex v of N(g) there exists a unique vertex w of N(f) such
that for the tangent cones it holds v−w+N(f)w ⊆ N(g)v. Relying on
this criterion an algorithm is designed which tests whether Trop(f) ⊂
Trop(g) within polynomial complexity.

keywords: containment of tropical hypersurfaces, tangent cones of Newton
polyhedra, polynomial complexity algorithm

AMS classification: 14T05

Introduction

Consider a tropical polynomial [6], [8]

f = min
1≤i≤k

{Mi}, Mi =
∑

1≤j≤n

ai,jxj + ai,0, 0 ≤ ai,j ∈ Z ∪ {∞}, ai,0 ∈ R ∪ {∞}.

(1)
The tropical hypersurface Trop(f) ⊂ Rn consists of points (x1, . . . , xn) such
that the minimum in (1) is attained at least at two tropical monomials Mi, 1 ≤
i ≤ k.

For each 1 ≤ i ≤ k consider the ray {(ai,1, . . . , ai,n, a) : ai,0 ≤ a ∈ R} ⊂
Rn+1 with the apex at the point (ai,1, . . . , ai,n, ai,0). The convex hull of all
these rays for 1 ≤ i ≤ k is Newton polyhedron N(f). Rays of this form we

1

call vertical, and the last coordinate we call vertical. Note that N(f) contains
edges of finite length and vertical rays.

A point (x1, . . . , xn) ∈ Trop(f) iff a parallel shift H ′
x of the hyperplane

Hx = {(z1, . . . , zn, x1z1 + · · · + xnzn) : z1, . . . , zn ∈ R} ⊂ Rn+1 has at least
two common points (vertices) with N(f), so that N(f) is located in the half-
space above H ′

x (with respect to the vertical coordinate). In this case H ′
x has

(at least) a common edge with N(f), and we say that H ′
x supports N(f) at

H ′
x ∩N(f).
The goal of the paper is to provide for tropical polynomials f, g an explicit

criterion of containment Trop(f) ⊂ Trop(g) in terms of Newton polyhedra
N(f), N(g). Namely, Trop(f) ⊂ Trop(g) iff for each vertex v of N(g) there
exists a unique vertex w ofN(f) such that v−w+N(f)w ⊆ N(g)v whereN(f)w
denotes the tangent cone of N(f) at the vertex w. Relying on this criterion, we
design an algorithm which tests whether Trop(f) ⊂ Trop(g) within polynomial
bit-complexity.

Note that a criterion of emptiness of a tropical prevariety Trop(f1, . . . , fl) is
established in [4] (one can treat this as a tropical weak Nullstellensatz), further
developments one can find in [7], [1]. The issue of containment of tropical
hypersurfaces is a particular case of an open problem of a tropical strong
Nullstellensatz, i.e. a criterion of containment Trop(f1, . . . , fl) ⊆ Trop(g). We
mention that in [5] (which improves [2]) a strong Nullstellensatz is provided
for systems of min-plus equations of the form f = g (in terms of congruences
of tropical polynomials).

Observe that the family of all tropical prevarieties coincides with the family
of all min-plus prevarieties (and both coincide with the family of all finite
unions of polyhedra given by linear constraints with rational coefficients [8]).
On the other hand, the issue of a strong Nullstellensatz is different for these
two types of equations.

1 Containment of tropical hypersurfaces and

tangent cones

Theorem 1.1 Assume that each of tropical polynomials f, g has at most
of k tropical monomials of the form i1x1 + · · · + inxn + a where integers
|a|, i1, . . . , in ≤ 2d. There is an algorithm which tests whether Trop(f) ⊆
Trop(g) within bit-complexity O((n + k)1.5nk3d). In particular, the bit-
complexity is polynomial in the bit-size of the input 2k(n+ 1)d.

The proof of the theorem relies on the following criterion of containment
of tropical hypersurfaces.

2

Proposition 1.2 For tropical polynomials f, g in n variables it holds
Trop(f) ⊆ Trop(g) iff for each vertex v the Newton polyhedron N(g) ⊂ Rn+1

there exists a vertex w of N(f) such that v − w +N(f)w ⊆ N(g)v. Moreover,
for each vertex v the vertex w is unique, and for any hyperplane H ⊂ Rn+1

such that H ∩N(g)v = {v} there exists a (unique) hypeplane H0 parallel to H
for which it holds H0 ∩N(f)w = {w}.

Proof of the proposition. First assume that for each vertex v of N(g)
there exists a vertex w of N(f) such that v − w + N(f)w ⊆ N(g)v. Suppose
that Trop(f) ⊈ Trop(g), then there exists a hyperplane Rn+1 ⊃ H ∈ Trop(f)\
Trop(g) (cf. the description of a tropical hypersurface as a set of hyperplanes
in the introduction). Therefore, a parallel shift H0 of H supports N(g) at
its single vertex v. By the assumption, v − w + N(f)w ⊆ N(g)x for some
vertex w of N(f). Hence the hyperplane w − v + H0 supports N(f) at its
single vertex w. This leads to a contradiction with that H ∈ Trop(f). Thus,
Trop(f) ⊆ Trop(g).

Conversely, assume that Trop(f) ⊆ Trop(g). For a vertex v of N(g) choose
a supporting hyperplane H at v such that H ∩N(g)v = {v}. Then there exists
a unique vertex w of N(f) such that (w − v +H) ∩ N(f) = {w} taking into
account that Trop(f) ⊆ Trop(g).

We claim that v−w+N(f)w ⊆ N(g)v. Suppose the contrary. Then there
exists a ray L ⊂ v − w + N(f)w such that L ∩ N(g)v = {v}. Therefore,
there exists a hyperplane H1 such that L ⊂ H1, H1 ∩ N(g)v = {v}. Hence
H1 ∈ Trop(f) \ Trop(g). The obtained contradiction proves the claim.

Finally, we justify the uniqueness of a vertex w in the proposition, in other
words, its independence of a choice of a hyperplane H supporting N(g) at v.
Suppose the contrary. Then there exists a supporting hyperplane H which
supports N(f) at least at two vertices, since the space of supporting hy-
perplanes (such that H ∩ N(g)v = {v}) is connected. This contradicts to
Trop(f) ⊆ Trop(g). 2

In other words, Proposition 1.2 means that Trop(f) ⊆ Trop(g) iff each
cone of the highest dimension of the normal fan of N(g) is contained in a
cone (of the highest dimension) of the normal fan of N(f). We mention that
it is known that Trop(f) ⊆ Trop(g) iff it holds for the Minkowski sum t ·
N(f) + P = N(g) for suitable t > 0 and a polyhedron P (however, an exact
reference is unknown to the author). This result implies Proposition 1.2 in
one direction: namely, that the containment Trop(f) ⊆ Trop(g) entails the
criterion of containment in Proposition 1.2. On the other hand, the criterion
of containment from Proposition 1.2 is more relevant to design an algorithm
to test whether Trop(f) ⊆ Trop(g).

In the construction of the algorithm asserted in Theorem 1.1 we stick with
straight-line program [3] as a computational model.

3

Proof of the Theorem. We repeatedly involve a linear programming
algorithm which has bit-complexity O((n + m)1.5nL) [10] where n denotes
the number of variables, m denotes the number of (linear) constraints, and L
denotes the bit-size of the input. Moreover, the algorithm produces a solution
from Qn of a linear programming problem (provided that it does exist) with
bit-size O(n2L).

Therefore for given points v, v1, . . . , vm ∈ Zn with absolute values of their
coordinates at most 2d one can test whether v belongs to the convex hull
conv{v1, . . . , vm} within bit-complexity O((n + m)1.5nm2d). Indeed, one has
to solve a linear programming problem:

v = b1v1 + · · ·+ bmvm, 0 ≤ b1, . . . , bm ≤ 1.

Applying the latter subroutine to the problems whether vi belongs to
conv{v1, . . . , vi−1, vi+1, . . . , vm}, 1 ≤ i ≤ m, one can find the vertices of the
polytope conv{v1, . . . , vm} within bit-complexity O((n+m)1.5nm3d).

We agree that a tropical monomial i1x1+ · · ·+ inxn+ a corresponds to the
point (i1, . . . , in, a) ∈ Zn+1. One can find the vertices of Newton polyhedron
N(g) within bit-complexity O((n+k)1.5nk3d) (as well as the vertices of N(f))
as follows. Let v1, . . . , vk ∈ Zn+1 be the points corresponding to the tropical
monomials of g. Then vi, 1 ≤ i ≤ k is a vertex of N(g) iff the following linear
programming problem has no solution:

vi − b(0, . . . , 0, 1) =
∑

1≤j ̸=i≤k

bjvj, b ≥ 0, 0 ≤ bj ≤ 1, 0 ≤ j ̸= i ≤ k. (2)

W.l.o.g. assume that the vertices of N(g) are v1, . . . , vs, s ≤ k (they are
just the vertices on the bottom of the polytope conv{v1, . . . , vk}). Similarly,
assume that w1, . . . , wt, t ≤ k are the vertices of N(f).

For each vertex vi, 1 ≤ i ≤ s the algorithm produces a vector ui ∈ Zn+1

solving the following linear programming problem:

⟨ui, vj − vi⟩ > 0, 1 ≤ j ̸= i ≤ s, ⟨ui, (0, . . . , 0, 1)⟩ > 0. (3)

Then the hyperplane Hi ⊂ Rn+1 orthogonal to ui supports N(g) at its single
vertex vi. The bit-complexity of producing ui does not exceed O((n+k)1.5nkd).
The bit-size of ui is bounded by O(n2d). Denote v0 := vi + (0, . . . , 0, 1).

After that the algorithm finds a vertex wq of the polyhedron N(f) with
the minimal value of ⟨wq, ui⟩. This can be executed within bit-complexity
O(n2kd). If a vertex wq is not unique then the hyperplane parallel to Hi and
passing through wq does not support N(f) at its single vertex wq, therefore
Hi ∈ Trop(f)\Trop(g), and in this case the algorithm outputs that Trop(f) ⊈
Trop(g) and halts. Denote w′

l := vi + wl − wq, 1 ≤ l ≤ t.

4

Finally, for each 1 ≤ l ̸= q ≤ t the algorithm solves the following linear
programming problem:

⟨u,w′
l − vi⟩ = 0, ⟨u, vj − vi⟩ > 0, 0 ≤ j ̸= i ≤ s, ⟨u,w′

p − vi⟩ ≥ 0, 1 ≤ p ≤ t. (4)

If (4) has a solution u ∈ Qn+1 then the hyperplane orthogonal to u belongs to
Trop(f) \Trop(g). In this case the algorithm outputs that Trop(f) ⊈ Trop(g)
and halts. Otherwise, if (4) has no solutions for each 1 ≤ i ≤ s, 1 ≤ l ̸= q ≤ t
then the algorithm outputs that Trop(f) ⊆ Trop(g). The bit-complexity of
solving the systems (4) can be bounded by O((n+ k)1.5nk2d).

The correctness of the algorithm follows from Proposition 1.2. 2

Now we summarize the algorithm testing whether Trop(f) ⊆ Trop(g) de-
signed in the proof of Theorem 1.1.

• The algorithm finds the vertices v1, . . . , vs of N(g): namely, vi is a vertex
of N(g) iff (2) has no solutions. Similarly, the algorithm finds the vertices
w1, . . . , wt of N(f).

• For each 1 ≤ i ≤ s the algorithm produces a vector ui satisfying (3).
Denote by Hi the hyperplane orthogonal to ui. The algorithm finds a vertex
wq of N(f) with the minimal value of ⟨wq, ui⟩. If the vertex wq is not unique
then the hyperplane Hi ∈ Trop(f) \ Trop(g), and the algorithm halts.

• For each point w′
l := vi + wl − wq, 1 ≤ l ̸= q ≤ t the algorithm tests

whether (4) has a solution u. If it is the case then the hyperplane orthogonal
to u belongs to Trop(f) \ Trop(g), and the algorithm halts. Otherwise, if (4)
has no solutions for 1 ≤ i ≤ s, 1 ≤ l ̸= q ≤ t then the algorithm outputs that
Trop(f) ⊆ Trop(g).

It would be interesting to provide a criterion of containment for tropical
prevarieties Trop(f1, . . . , fk) ⊆ Trop(g). Note that the latter problem is NP-
hard [9].

Acknowledgements. The author is grateful to anonymous referees for
valuable remarks.

References

[1] M. Akian, A. Béreau and S. Gaubert. The tropical Nullstellensatz and
Positivstellensatz for sparse polynomial systems. ACM Proc. Int. Symp.
Symb. Alg. Comput., 43-52, 2023.

[2] A. Bertram and R. Easton. The tropical Nullstellensatz for congruences.
Adv. Math., 308:36-82, 2017.

5

[3] P. Bürgisser, M. Clausen and A. Shokrollahi. Algebraic Complexity The-
ory, volume 315 of Grundlehren der mathematischen Wissenschaften.
Springer, 1997.

[4] D. Grigoriev and V. Podolskii. Tropical effective primary and dual Null-
stellensaetze. Discr. Comput. Geometry, 59:507–552, 2018.

[5] D. Joo and K. Mincheva. Prime congruences of additively idempotent
semirings and a Nullstellensatz for tropical polynomials. Selecta Math.,
24:2207-2233, 2018.

[6] M. Joswig. Essentials of Tropical Combinatorics, volume 219 of Graduate
Studies in Mathematics. American Mathematical Society, 2021.

[7] D. Maclagan and F. Rincon. Tropical ideals. Compos. Math., 154:640-670,
2018.

[8] D. Maclagan and B. Sturmfels. Introduction to Tropical Geometry, volume
161 of Graduate Studies in Mathematics. American Mathematical Society,
2015.

[9] T. Theobald. On the frontiers of polynomial computations in tropical
geometry. J. Symb. Comput., 41:1360-1375, 2006.

[10] P. Vaidya. Speeding-up linear programming using fast matrix multiplica-
tion. Proc. IEEE Symp. Found. Comput. Sci., 332-337, 1989.

6

