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Abstract

For tropical n-variable polynomials f, g a criterion of containment for
tropical hypersurfaces Trop(f) C Trop(g) is provided in terms of their
Newton polyhedra N(f), N(g) € R**L. Namely, Trop(f) C Trop(g) iff
for every vertex v of N(g) there exists a unique vertex w of N(f) such
that for the tangent cones it holds v —w+ N(f), € N(g),. Relying on
this criterion an algorithm is designed which tests whether Trop(f) C
Trop(g) within polynomial complexity.
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Introduction

Consider a tropical polynomial [6], [8]

f = min {MZ}, Mz = Z QA 55 + Q;.0, 0 S Qg j e ZU {OO}, ;0 ceRU {OO}

1<i<k
1<j<n
(1)

The tropical hypersurface Trop(f) C R™ consists of points (z1,...,x,) such
that the minimum in (1) is attained at least at two tropical monomials M;, 1 <
i <k.

For each 1 < ¢ < k consider the ray {(a;1,...,ain,a) : a0 <a € R} C
R™™! with the apex at the point (a;1,...,a;n,a;0). The convex hull of all
these rays for 1 < i < k is Newton polyhedron N(f). Rays of this form we



call vertical, and the last coordinate we call vertical. Note that N(f) contains
edges of finite length and vertical rays.

A point (z1,...,z,) € Trop(f) iff a parallel shift H. of the hyperplane
H, ={(z1,..., 20,0121 + -+ + Tp2p) : 21,...,2, € R} C R has at least
two common points (vertices) with N(f), so that N(f) is located in the half-
space above H! (with respect to the vertical coordinate). In this case H. has
(at least) a common edge with N(f), and we say that H. supports N(f) at
H. NN(f).

The goal of the paper is to provide for tropical polynomials f, g an explicit
criterion of containment Trop(f) C Trop(g) in terms of Newton polyhedra
N(f),N(g). Namely, Trop(f) C Trop(g) iff for each vertex v of N(g) there
exists a unique vertex w of N(f) such that v—w+N(f), € N(g), where N(f)y
denotes the tangent cone of N(f) at the vertex w. Relying on this criterion, we
design an algorithm which tests whether Trop(f) C Trop(g) within polynomial
bit-complexity.

Note that a criterion of emptiness of a tropical prevariety Trop(fi, ..., f;) is
established in [4] (one can treat this as a tropical weak Nullstellensatz), further
developments one can find in [7], [1]. The issue of containment of tropical
hypersurfaces is a particular case of an open problem of a tropical strong
Nullstellensatz, i.e. a criterion of containment Trop(fi,. .., f;) € Trop(g). We
mention that in [5] (which improves [2]) a strong Nullstellensatz is provided
for systems of min-plus equations of the form f = g (in terms of congruences
of tropical polynomials).

Observe that the family of all tropical prevarieties coincides with the family
of all min-plus prevarieties (and both coincide with the family of all finite
unions of polyhedra given by linear constraints with rational coefficients [8]).
On the other hand, the issue of a strong Nullstellensatz is different for these
two types of equations.

1 Containment of tropical hypersurfaces and
tangent cones

Theorem 1.1 Assume that each of tropical polynomials f,g has at most
of k tropical monomials of the form i1xy + --- + i,z, + a where integers
lal,i1,...,in < 2% There is an algorithm which tests whether Trop(f) C
Trop(g) within bit-complexity O((n + k)" nk3d). In particular, the bit-
complexity is polynomial in the bit-size of the input 2k(n + 1)d.

The proof of the theorem relies on the following criterion of containment
of tropical hypersurfaces.



Proposition 1.2 For tropical polynomials f,qg in n wvariables it holds
Trop(f) C Trop(g) iff for each vertex v the Newton polyhedron N(g) C R
there ezists a vertex w of N(f) such that v —w + N(f)w € N(g),. Moreover,
for each vertex v the vertex w is unique, and for any hyperplane H C R"*!
such that H N N(g), = {v} there ezists a (unique) hypeplane Hy parallel to H
for which it holds Hy N N(f)., = {w}.

Proof of the proposition. First assume that for each vertex v of N(g)
there exists a vertex w of N(f) such that v —w + N(f), € N(g),. Suppose
that Trop(f) € Trop(g), then there exists a hyperplane R"*' > H € Trop(f)\
Trop(g) (cf. the description of a tropical hypersurface as a set of hyperplanes
in the introduction). Therefore, a parallel shift Hy of H supports N(g) at
its single vertex v. By the assumption, v — w + N(f), € N(g), for some
vertex w of N(f). Hence the hyperplane w — v + Hy supports N(f) at its
single vertex w. This leads to a contradiction with that H € Trop(f). Thus,
Trop(f) C Trop(g).

Conversely, assume that Trop(f) C Trop(g). For a vertex v of N(g) choose
a supporting hyperplane H at v such that H NN (g), = {v}. Then there exists
a unique vertex w of N(f) such that (w — v+ H) N N(f) = {w} taking into
account that Trop(f) C Trop(g).

We claim that v —w + N(f), € N(g),. Suppose the contrary. Then there
exists a ray L C v —w + N(f), such that L N N(g), = {v}. Therefore,
there exists a hyperplane H; such that L C Hy, H; N N(g), = {v}. Hence
H, € Trop(f) \ Trop(g). The obtained contradiction proves the claim.

Finally, we justify the uniqueness of a vertex w in the proposition, in other
words, its independence of a choice of a hyperplane H supporting N(g) at v.
Suppose the contrary. Then there exists a supporting hyperplane H which
supports N(f) at least at two vertices, since the space of supporting hy-
perplanes (such that H N N(g), = {v}) is connected. This contradicts to

Trop(f) C Trop(g). O

In other words, Proposition 1.2 means that Trop(f) C Trop(g) iff each
cone of the highest dimension of the normal fan of N(g) is contained in a
cone (of the highest dimension) of the normal fan of N(f). We mention that
it is known that Trop(f) C Trop(g) iff it holds for the Minkowski sum ¢ -
N(f)+ P = N(g) for suitable t > 0 and a polyhedron P (however, an exact
reference is unknown to the author). This result implies Proposition 1.2 in
one direction: namely, that the containment Trop(f) C Trop(g) entails the
criterion of containment in Proposition 1.2. On the other hand, the criterion
of containment from Proposition 1.2 is more relevant to design an algorithm
to test whether Trop(f) C Trop(g).

In the construction of the algorithm asserted in Theorem 1.1 we stick with
straight-line program [3] as a computational model.
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Proof of the Theorem. We repeatedly involve a linear programming
algorithm which has bit-complexity O((n + m)®nL) [10] where n denotes
the number of variables, m denotes the number of (linear) constraints, and L
denotes the bit-size of the input. Moreover, the algorithm produces a solution
from Q" of a linear programming problem (provided that it does exist) with
bit-size O(n%L).

Therefore for given points v, vy, ..., v, € Z" with absolute values of their
coordinates at most 2¢ one can test whether v belongs to the convex hull
conv{vy, ..., v, } within bit-complexity O((n + m)'*nm?d). Indeed, one has
to solve a linear programming problem:

v:b1v1+---+bmvm, Ogbl,...,bmgl.

Applying the latter subroutine to the problems whether v; belongs to
conv{vy, ..., Vi1,0i11,-.-,Um}, 1 < i < m, one can find the vertices of the
polytope conv{vy, ..., v,} within bit-complexity O((n + m)"*nm?3d).

We agree that a tropical monomial iyx1 + - - - + 4,2, + a corresponds to the
point (i1, ...,i,,a) € Z". One can find the vertices of Newton polyhedron
N (g) within bit-complexity O((n+ k)*nk3d) (as well as the vertices of N(f))
as follows. Let vy,...,v; € Z™ be the points corresponding to the tropical
monomials of g. Then v;,1 < i <k is a vertex of N(g) iff the following linear
programming problem has no solution:

vi=b(0,...,0,1) = > b, b>0,0<b;<1,0<j#i <k (2)

1<j#i<k

W.lo.g. assume that the vertices of N(g) are vy,...,vs5, s < k (they are
just the vertices on the bottom of the polytope conv{vi,...,v;}). Similarly,
assume that wy, ..., w;, t < k are the vertices of N(f).

For each vertex v;, 1 < i < s the algorithm produces a vector u; € Z"+!
solving the following linear programming problem:

(wi,v; —v;) >0, 1 <j#i<s, (u;,(0,...,0,1)) > 0. (3)

Then the hyperplane H; C R™"! orthogonal to u; supports N(g) at its single
vertex v;. The bit-complexity of producing u; does not exceed O((n+k)'*nkd).
The bit-size of u; is bounded by O(n?d). Denote vy := v; + (0,...,0,1).

After that the algorithm finds a vertex w, of the polyhedron N(f) with
the minimal value of (w,,u;). This can be executed within bit-complexity
O(n*kd). If a vertex w, is not unique then the hyperplane parallel to H; and
passing through w, does not support N(f) at its single vertex w,, therefore
H, € Trop(f)\Trop(g), and in this case the algorithm outputs that Trop(f) ¢
Trop(g) and halts. Denote w; := v; + w; —w,, 1 <1 <t



Finally, for each 1 < [ # ¢ < t the algorithm solves the following linear
programming problem:
(u, wy —v;) =0, (u,v; —v;) >0,0<j#i<s, (u,w,—v;)>0,1<p<t. (4)
If (4) has a solution u € Q"*! then the hyperplane orthogonal to u belongs to
Trop(f) \ Trop(g). In this case the algorithm outputs that Trop(f) € Trop(g)
and halts. Otherwise, if (4) has no solutions for each 1 <i<s, 1 <Il#¢q<t
then the algorithm outputs that Trop(f) € Trop(g). The bit-complexity of
solving the systems (4) can be bounded by O((n + k)'*nk?d).

The correctness of the algorithm follows from Proposition 1.2. O

Now we summarize the algorithm testing whether Trop(f) C Trop(g) de-
signed in the proof of Theorem 1.1.

e The algorithm finds the vertices vy, ..., vs of N(g): namely, v; is a vertex
of N(g) iff (2) has no solutions. Similarly, the algorithm finds the vertices
wi, ..., wy of N(f).

e For each 1 < i < s the algorithm produces a vector w; satisfying (3).
Denote by H; the hyperplane orthogonal to u;. The algorithm finds a vertex
w, of N(f) with the minimal value of (w,,u;). If the vertex w, is not unique
then the hyperplane H; € Trop(f) \ Trop(g), and the algorithm halts.

e For each point w; = v; + w; — wy, 1 < 1 # g < t the algorithm tests
whether (4) has a solution w. If it is the case then the hyperplane orthogonal
to u belongs to Trop(f) \ Trop(g), and the algorithm halts. Otherwise, if (4)
has no solutions for 1 <i <s, 1 <[ # ¢ <t then the algorithm outputs that
Trop(f) € Trop(g).

It would be interesting to provide a criterion of containment for tropical
prevarieties Trop(fi,..., fr) € Trop(g). Note that the latter problem is NP-
hard [9].
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