TESTING CONTAINMENT OF TROPICAL HYPERSURFACES WITHIN POLYNOMIAL COMPLEXITY

Dima Grigoriev

CNRS, Mathématique, Université de Lille, Villeneuve d'Ascq, 59655, France e-mail: dmitry.grigoryev@univ-lille.fr URL: http://en.wikipedia.org/wiki/Dima_Grigoriev

Abstract

For tropical *n*-variable polynomials f, g a criterion of containment for tropical hypersurfaces $\operatorname{Trop}(f) \subset \operatorname{Trop}(g)$ is provided in terms of their Newton polyhedra $N(f), N(g) \subset \mathbb{R}^{n+1}$. Namely, $\operatorname{Trop}(f) \subset \operatorname{Trop}(g)$ iff for every vertex v of N(g) there exists a unique vertex w of N(f) such that for the tangent cones it holds $v - w + N(f)_w \subseteq N(g)_v$. Relying on this criterion an algorithm is designed which tests whether $\operatorname{Trop}(f) \subset$ $\operatorname{Trop}(g)$ within polynomial complexity.

keywords: containment of tropical hypersurfaces, tangent cones of Newton polyhedra, polynomial complexity algorithm

AMS classification: 14T05

Introduction

Consider a tropical polynomial [6], [8]

$$f = \min_{1 \le i \le k} \{M_i\}, \ M_i = \sum_{1 \le j \le n} a_{i,j} x_j + a_{i,0}, \ 0 \le a_{i,j} \in \mathbb{Z} \cup \{\infty\}, \ a_{i,0} \in \mathbb{R} \cup \{\infty\}.$$
(1)

The tropical hypersurface $\operatorname{Trop}(f) \subset \mathbb{R}^n$ consists of points (x_1, \ldots, x_n) such that the minimum in (1) is attained at least at two tropical monomials $M_i, 1 \leq i \leq k$.

For each $1 \leq i \leq k$ consider the ray $\{(a_{i,1}, \ldots, a_{i,n}, a) : a_{i,0} \leq a \in \mathbb{R}\} \subset \mathbb{R}^{n+1}$ with the apex at the point $(a_{i,1}, \ldots, a_{i,n}, a_{i,0})$. The convex hull of all these rays for $1 \leq i \leq k$ is Newton polyhedron N(f). Rays of this form we

call vertical, and the last coordinate we call vertical. Note that N(f) contains edges of finite length and vertical rays.

A point $(x_1, \ldots, x_n) \in \operatorname{Trop}(f)$ iff a parallel shift H'_x of the hyperplane $H_x = \{(z_1, \ldots, z_n, x_1z_1 + \cdots + x_nz_n) : z_1, \ldots, z_n \in \mathbb{R}\} \subset \mathbb{R}^{n+1}$ has at least two common points (vertices) with N(f), so that N(f) is located in the half-space above H'_x (with respect to the vertical coordinate). In this case H'_x has (at least) a common edge with N(f), and we say that H'_x supports N(f) at $H'_x \cap N(f)$.

The goal of the paper is to provide for tropical polynomials f, g an explicit criterion of containment $\operatorname{Trop}(f) \subset \operatorname{Trop}(g)$ in terms of Newton polyhedra N(f), N(g). Namely, $\operatorname{Trop}(f) \subset \operatorname{Trop}(g)$ iff for each vertex v of N(g) there exists a unique vertex w of N(f) such that $v-w+N(f)_w \subseteq N(g)_v$ where $N(f)_w$ denotes the tangent cone of N(f) at the vertex w. Relying on this criterion, we design an algorithm which tests whether $\operatorname{Trop}(f) \subset \operatorname{Trop}(g)$ within polynomial bit-complexity.

Note that a criterion of emptiness of a tropical prevariety $\operatorname{Trop}(f_1, \ldots, f_l)$ is established in [4] (one can treat this as a tropical weak Nullstellensatz), further developments one can find in [7], [1]. The issue of containment of tropical hypersurfaces is a particular case of an open problem of a tropical strong Nullstellensatz, i.e. a criterion of containment $\operatorname{Trop}(f_1, \ldots, f_l) \subseteq \operatorname{Trop}(g)$. We mention that in [5] (which improves [2]) a strong Nullstellensatz is provided for systems of min-plus equations of the form f = g (in terms of congruences of tropical polynomials).

Observe that the family of all tropical prevarieties coincides with the family of all min-plus prevarieties (and both coincide with the family of all finite unions of polyhedra given by linear constraints with rational coefficients [8]). On the other hand, the issue of a strong Nullstellensatz is different for these two types of equations.

1 Containment of tropical hypersurfaces and tangent cones

Theorem 1.1 Assume that each of tropical polynomials f, g has at most of k tropical monomials of the form $i_1x_1 + \cdots + i_nx_n + a$ where integers $|a|, i_1, \ldots, i_n \leq 2^d$. There is an algorithm which tests whether $\operatorname{Trop}(f) \subseteq$ $\operatorname{Trop}(g)$ within bit-complexity $O((n + k)^{1.5}nk^3d)$. In particular, the bitcomplexity is polynomial in the bit-size of the input 2k(n + 1)d.

The proof of the theorem relies on the following criterion of containment of tropical hypersurfaces. **Proposition 1.2** For tropical polynomials f, g in n variables it holds $\operatorname{Trop}(f) \subseteq \operatorname{Trop}(g)$ iff for each vertex v the Newton polyhedron $N(g) \subset \mathbb{R}^{n+1}$ there exists a vertex w of N(f) such that $v - w + N(f)_w \subseteq N(g)_v$. Moreover, for each vertex v the vertex w is unique, and for any hyperplane $H \subset \mathbb{R}^{n+1}$ such that $H \cap N(g)_v = \{v\}$ there exists a (unique) hyperplane H_0 parallel to Hfor which it holds $H_0 \cap N(f)_w = \{w\}$.

Proof of the proposition. First assume that for each vertex v of N(g) there exists a vertex w of N(f) such that $v - w + N(f)_w \subseteq N(g)_v$. Suppose that $\operatorname{Trop}(f) \notin \operatorname{Trop}(g)$, then there exists a hyperplane $\mathbb{R}^{n+1} \supset H \in \operatorname{Trop}(f) \setminus \operatorname{Trop}(g)$ (cf. the description of a tropical hypersurface as a set of hyperplanes in the introduction). Therefore, a parallel shift H_0 of H supports N(g) at its single vertex v. By the assumption, $v - w + N(f)_w \subseteq N(g)_x$ for some vertex w of N(f). Hence the hyperplane $w - v + H_0$ supports N(f) at its single vertex w. This leads to a contradiction with that $H \in \operatorname{Trop}(f)$. Thus, $\operatorname{Trop}(f) \subseteq \operatorname{Trop}(g)$.

Conversely, assume that $\operatorname{Trop}(f) \subseteq \operatorname{Trop}(g)$. For a vertex v of N(g) choose a supporting hyperplane H at v such that $H \cap N(g)_v = \{v\}$. Then there exists a unique vertex w of N(f) such that $(w - v + H) \cap N(f) = \{w\}$ taking into account that $\operatorname{Trop}(f) \subseteq \operatorname{Trop}(g)$.

We claim that $v - w + N(f)_w \subseteq N(g)_v$. Suppose the contrary. Then there exists a ray $L \subset v - w + N(f)_w$ such that $L \cap N(g)_v = \{v\}$. Therefore, there exists a hyperplane H_1 such that $L \subset H_1$, $H_1 \cap N(g)_v = \{v\}$. Hence $H_1 \in \operatorname{Trop}(f) \setminus \operatorname{Trop}(g)$. The obtained contradiction proves the claim.

Finally, we justify the uniqueness of a vertex w in the proposition, in other words, its independence of a choice of a hyperplane H supporting N(g) at v. Suppose the contrary. Then there exists a supporting hyperplane H which supports N(f) at least at two vertices, since the space of supporting hyperplanes (such that $H \cap N(g)_v = \{v\}$) is connected. This contradicts to $\operatorname{Trop}(f) \subseteq \operatorname{Trop}(g)$. \Box

In other words, Proposition 1.2 means that $\operatorname{Trop}(f) \subseteq \operatorname{Trop}(g)$ iff each cone of the highest dimension of the normal fan of N(g) is contained in a cone (of the highest dimension) of the normal fan of N(f). We mention that it is known that $\operatorname{Trop}(f) \subseteq \operatorname{Trop}(g)$ iff it holds for the Minkowski sum $t \cdot$ N(f) + P = N(g) for suitable t > 0 and a polyhedron P (however, an exact reference is unknown to the author). This result implies Proposition 1.2 in one direction: namely, that the containment $\operatorname{Trop}(f) \subseteq \operatorname{Trop}(g)$ entails the criterion of containment in Proposition 1.2. On the other hand, the criterion of containment from Proposition 1.2 is more relevant to design an algorithm to test whether $\operatorname{Trop}(f) \subseteq \operatorname{Trop}(g)$.

In the construction of the algorithm asserted in Theorem 1.1 we stick with straight-line program [3] as a computational model.

Proof of the Theorem. We repeatedly involve a linear programming algorithm which has bit-complexity $O((n + m)^{1.5}nL)$ [10] where *n* denotes the number of variables, *m* denotes the number of (linear) constraints, and *L* denotes the bit-size of the input. Moreover, the algorithm produces a solution from \mathbb{Q}^n of a linear programming problem (provided that it does exist) with bit-size $O(n^2L)$.

Therefore for given points $v, v_1, \ldots, v_m \in \mathbb{Z}^n$ with absolute values of their coordinates at most 2^d one can test whether v belongs to the convex hull $conv\{v_1, \ldots, v_m\}$ within bit-complexity $O((n+m)^{1.5}nm^2d)$. Indeed, one has to solve a linear programming problem:

$$v = b_1 v_1 + \dots + b_m v_m, \ 0 \le b_1, \dots, b_m \le 1.$$

Applying the latter subroutine to the problems whether v_i belongs to $conv\{v_1,\ldots,v_{i-1},v_{i+1},\ldots,v_m\}, 1 \leq i \leq m$, one can find the vertices of the polytope $conv\{v_1,\ldots,v_m\}$ within bit-complexity $O((n+m)^{1.5}nm^3d)$.

We agree that a tropical monomial $i_1x_1 + \cdots + i_nx_n + a$ corresponds to the point $(i_1, \ldots, i_n, a) \in \mathbb{Z}^{n+1}$. One can find the vertices of Newton polyhedron N(g) within bit-complexity $O((n+k)^{1.5}nk^3d)$ (as well as the vertices of N(f)) as follows. Let $v_1, \ldots, v_k \in \mathbb{Z}^{n+1}$ be the points corresponding to the tropical monomials of g. Then $v_i, 1 \leq i \leq k$ is a vertex of N(g) iff the following linear programming problem has no solution:

$$v_i - b(0, \dots, 0, 1) = \sum_{1 \le j \ne i \le k} b_j v_j, \ b \ge 0, 0 \le b_j \le 1, 0 \le j \ne i \le k.$$
(2)

W.l.o.g. assume that the vertices of N(g) are $v_1, \ldots, v_s, s \leq k$ (they are just the vertices on the bottom of the polytope $conv\{v_1, \ldots, v_k\}$). Similarly, assume that $w_1, \ldots, w_t, t \leq k$ are the vertices of N(f).

For each vertex v_i , $1 \leq i \leq s$ the algorithm produces a vector $u_i \in \mathbb{Z}^{n+1}$ solving the following linear programming problem:

$$\langle u_i, v_j - v_i \rangle > 0, \ 1 \le j \ne i \le s, \ \langle u_i, (0, \dots, 0, 1) \rangle > 0.$$
 (3)

Then the hyperplane $H_i \subset \mathbb{R}^{n+1}$ orthogonal to u_i supports N(g) at its single vertex v_i . The bit-complexity of producing u_i does not exceed $O((n+k)^{1.5}nkd)$. The bit-size of u_i is bounded by $O(n^2d)$. Denote $v_0 := v_i + (0, \ldots, 0, 1)$.

After that the algorithm finds a vertex w_q of the polyhedron N(f) with the minimal value of $\langle w_q, u_i \rangle$. This can be executed within bit-complexity $O(n^2kd)$. If a vertex w_q is not unique then the hyperplane parallel to H_i and passing through w_q does not support N(f) at its single vertex w_q , therefore $H_i \in \operatorname{Trop}(f) \setminus \operatorname{Trop}(g)$, and in this case the algorithm outputs that $\operatorname{Trop}(f) \not\subseteq$ $\operatorname{Trop}(g)$ and halts. Denote $w'_l := v_i + w_l - w_q, 1 \leq l \leq t$. Finally, for each $1 \leq l \neq q \leq t$ the algorithm solves the following linear programming problem:

$$\langle u, w'_l - v_i \rangle = 0, \ \langle u, v_j - v_i \rangle > 0, 0 \le j \ne i \le s, \ \langle u, w'_p - v_i \rangle \ge 0, 1 \le p \le t.$$
 (4)

If (4) has a solution $u \in \mathbb{Q}^{n+1}$ then the hyperplane orthogonal to u belongs to $\operatorname{Trop}(f) \setminus \operatorname{Trop}(g)$. In this case the algorithm outputs that $\operatorname{Trop}(f) \nsubseteq \operatorname{Trop}(g)$ and halts. Otherwise, if (4) has no solutions for each $1 \leq i \leq s$, $1 \leq l \neq q \leq t$ then the algorithm outputs that $\operatorname{Trop}(f) \subseteq \operatorname{Trop}(g)$. The bit-complexity of solving the systems (4) can be bounded by $O((n+k)^{1.5}nk^2d)$.

The correctness of the algorithm follows from Proposition 1.2. \square

Now we summarize the algorithm testing whether $\operatorname{Trop}(f) \subseteq \operatorname{Trop}(g)$ designed in the proof of Theorem 1.1.

• The algorithm finds the vertices v_1, \ldots, v_s of N(g): namely, v_i is a vertex of N(g) iff (2) has no solutions. Similarly, the algorithm finds the vertices w_1, \ldots, w_t of N(f).

• For each $1 \leq i \leq s$ the algorithm produces a vector u_i satisfying (3). Denote by H_i the hyperplane orthogonal to u_i . The algorithm finds a vertex w_q of N(f) with the minimal value of $\langle w_q, u_i \rangle$. If the vertex w_q is not unique then the hyperplane $H_i \in \text{Trop}(f) \setminus \text{Trop}(g)$, and the algorithm halts.

• For each point $w'_l := v_i + w_l - w_q, 1 \leq l \neq q \leq t$ the algorithm tests whether (4) has a solution u. If it is the case then the hyperplane orthogonal to u belongs to $\operatorname{Trop}(f) \setminus \operatorname{Trop}(g)$, and the algorithm halts. Otherwise, if (4) has no solutions for $1 \leq i \leq s, 1 \leq l \neq q \leq t$ then the algorithm outputs that $\operatorname{Trop}(f) \subseteq \operatorname{Trop}(g)$.

It would be interesting to provide a criterion of containment for tropical prevarieties $\operatorname{Trop}(f_1, \ldots, f_k) \subseteq \operatorname{Trop}(g)$. Note that the latter problem is NP-hard [9].

Acknowledgements. The author is grateful to anonymous referees for valuable remarks.

References

- M. Akian, A. Béreau and S. Gaubert. The tropical Nullstellensatz and Positivstellensatz for sparse polynomial systems. ACM Proc. Int. Symp. Symb. Alg. Comput., 43-52, 2023.
- [2] A. Bertram and R. Easton. The tropical Nullstellensatz for congruences. Adv. Math., 308:36-82, 2017.

- [3] P. Bürgisser, M. Clausen and A. Shokrollahi. Algebraic Complexity Theory, volume 315 of Grundlehren der mathematischen Wissenschaften. Springer, 1997.
- [4] D. Grigoriev and V. Podolskii. Tropical effective primary and dual Nullstellensaetze. Discr. Comput. Geometry, 59:507–552, 2018.
- [5] D. Joo and K. Mincheva. Prime congruences of additively idempotent semirings and a Nullstellensatz for tropical polynomials. *Selecta Math.*, 24:2207-2233, 2018.
- [6] M. Joswig. Essentials of Tropical Combinatorics, volume 219 of Graduate Studies in Mathematics. American Mathematical Society, 2021.
- [7] D. Maclagan and F. Rincon. Tropical ideals. Compos. Math., 154:640-670, 2018.
- [8] D. Maclagan and B. Sturmfels. Introduction to Tropical Geometry, volume 161 of Graduate Studies in Mathematics. American Mathematical Society, 2015.
- [9] T. Theobald. On the frontiers of polynomial computations in tropical geometry. J. Symb. Comput., 41:1360-1375, 2006.
- [10] P. Vaidya. Speeding-up linear programming using fast matrix multiplication. Proc. IEEE Symp. Found. Comput. Sci., 332-337, 1989.