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Today’s topic: Separation problem for Frege and extended Frege.

Open Problem: Is there a family of tautologies {φ1, φ2, . . . } with
polynomial size extended Frege proofs that requires exponential
size Frege proofs?

Many people believe the answer is “yes” because they also believe
in an exponential separation between Boolean formula/circuit size.

◮ Each line of a Frege proof is a Boolean formula.

◮ Each line of an extended Frege proof is a Boolean circuit.

◮ But, connection to separating formulas/circuits isn’t precise.

Question: What tautologies could provide the separation?



Conjectured problems separating Frege and extended Frege

Many combinatorial principles have been proposed to exponentially
separate Frege and extended Frege systems:

Poly. size (Quasi)poly. size
Tautology extended Frege Proof Frege Proof
Pigeonhole principle [Cook-Reckhow ’79] [Buss ’87]
Ramsey’s Theorem [Krishnamurthy ’85] [Pudlák ’92 ]
Frankl’s Theorem [Bonet-Buss-Pitassi ’95] [A-Bonet-Buss ’15]
Matrix identities [Soltys-Kulinicz ’01] [Hrubĕs-Tzameret ’13]
Local Improvement [Beckmann-Buss ’14] Open
Kneser-Lovász [Istrate-Crăciun ’14] [ABBCI ’15]
Tucker lemma [ABBCI ’15] Open

Today we’ll talk about the last two lines of the table.



Kneser Graphs
Kneser-Lovász bounds the chromatic number of Kneser graphs.

Definition: The (n, k)-Kneser graph is the undirected graph with
vertex set

(

n
k

)

and {S ,T} is an edge iff S ∩ T = ∅.
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Figure: The (5, 2)-Kneser graph.



The Kneser-Lovász theorem

Theorem (Lovász ’78)

Let n ≥ 2k > 1. The (n, k)-Kneser graph has no coloring with
(n − 2k + 1) colors.

Lovász’s proof:

◮ goes through the Borsuk–Ulam theorem, and

◮ pioneered the use of topological methods in combinatorics.

Theorem (Borsuk–Ulam ’33)

If f : Sn → R
n is continuous, then there is an x ∈ Sn such that

f (−x) = f (x).

[Matoušek ’04] gave a more combinatorial proof of KLT using the
Tucker lemma, a discrete form of the Borsuk–Ulam theorem.



Propositional translation of the Kneser-Lovász theorem

Propositional variable pS,i = ⊤ means vertex S is assigned color i .

The formula Kneser
n
k is:

∧

S∈(nk)

∨

i∈[m]

pS,i →
∨

S,T∈(nk)
S∩T=∅

∨

i∈[m]

(pS,i ∧ pT ,i) .

For fixed k , these formulas are polynomial size in n.

For m = n − 2k + 1, these formulas are tautologies.



Prior work and our contribution

Prior work:

Theorem (Istrate-Crăciun)

The formulas Kneser
n
2 have polynomial size Frege proofs and the

formulas Kneser
n
3 have polynomial size extended Frege proofs.

Our contribution:

Theorem
For fixed k ≥ 1, the formulas Kneser

n
k have polynomial size

extended Frege proofs.

Theorem
For fixed k ≥ 1, the formulas Kneser

n
k have quasipolynomial size

Frege proofs.



Proof outline

We prove the Kneser-Lovász theorem by infinite descent.

◮ For n > k4:
◮ Given: (n − 2k + 1)-coloring of

(

n
k

)

◮ Produce: ((n − 1)− 2k + 1)-coloring of
(

n−1
k

)

◮ How: Eliminate one “star-shaped” color class.

◮ Repeat until we have a (k4 − 2k + 1)-coloring of
(

k4

k

)

.

◮ Exhaustively check all possible such colorings of
(

k4

k

)

.

◮ By the Kneser-Lovász theorem, there are no such colorings.



Key concept: Star-shaped color classes

Fix a coloring of the (n, k)-Kneser graph with m colors.

◮ Let Pℓ be the set of vertices assigned color ℓ.

◮ No two elements of Pℓ can be disjoint.

◮ One way for this to happen is if ∩Pℓ 6= ∅.

◮ Such Pℓ’s are called star-shaped.

Star-shaped color classes allow for one round of infinite descent:

◮ Suppose Pℓ is star-shaped, with i ∈ ∩Pℓ.

◮ Discard vertices containing i . This discards color ℓ.

◮ Remaining subgraph is (m− 1)-colorable, isomorphic to
(

n−1
k

)

.

Such Pℓ’s exist (next two slides)



Non-stars are small

Theorem
Let Pℓ be a color class of

(

n
k

)

with ∩Pℓ = ∅, then |Pℓ| ≤ k2
(

n−2
k−2

)

.

Proof.
Take any S0 = {a1, . . . , ak} ∈ Pℓ. Since ∩Pℓ = ∅, there are
S1, . . . ,Sk ∈ Pℓ with ai /∈ Si for i = 1, . . . , k .

To specify an arbitrary element T ∈ Pℓ:

1. Specify some ai ∈ S0 ∩ T 6= ∅.

2. Specify some b ∈ Si ∩ T 6= ∅, note: ai 6= b.

3. Specify k − 2 elements from remaining n − 2 possible values.

Thus, |Pℓ| ≤ k2
(

n−2
k−2

)

.

We could have also used [Erdős-Ko-Rado ’61], which gives slightly
worse bounds, or [Hilton–Milner ’67], which gives better bounds.



Star-shaped color classes exist.

We just showed that non-star Pℓ’s have |Pℓ| ∈ O(nk−2).

By contrast, if Pℓ is star-shaped, then |Pℓ| ∈ O(nk−1).

Lemma
For n > k4, any coloring of the (n, k)-Kneser graph with
n − 2k + 1 colors has at least one star-shaped color class.

Proof: (sketch)
Suppose no color classes are star-shaped.

◮ O(n) many color classes

◮ O(nk−2) many vertices in each

◮ But there are
(

n
k

)

∈ Ω(nk) vertices in total.



Formalization in (extended) Frege

For extended Frege:

◮ Frege systems can carry out the counting arguments above,
using the counting techniques introduced by [Buss ’87].

◮ Extension rule can define a violation of Kneser
n−1
k from a

violation of Kneser
n
k

◮ The small instances (n ≤ k4) are handled by exhaustive
enumeration of cases.

For Frege:

◮ More careful counting: there are many star-shaped colors.

◮ Eliminate many star-shaped colors in parallel: requires only
logarithmically many rounds of descent

“QED” poly. size extended Frege proofs of KLT, and quasipoly.
size Frege proofs of KLT.



But can Frege systems reason topologically?

Our Frege proofs of KLT bypass topological arguments.

So the question remains: can Frege systems reason topologically?

We introduce new principle, the Truncated Tucker lemma:

◮ Write prop. translations of Truncated Tucker as Tuckernk .

◮ For fixed k , Tuckernk is poly. size

◮ There are poly size. Frege proofs of Kneser
n
k from Tucker

n
k



Special case: Truncated Tucker principle for k = 1.

Let A be an (n+ 1)× (n+ 1) matrix with the following properties

◮ The matrix elements aij are in the set {±1, . . . ,±(n − 1)}

◮ Every off-diagonal aij has aij = −aji .

Say that two matrix elements aij and ai ′j ′ are related if

◮ Both aij and ai ′j ′ are off-diagonal,

◮ i ≤ i ′ and j ≤ j ′, and

◮ i 6= j ′ and j 6= i ′.

Theorem (Truncated Tucker, k = 1 case)

For any matrix A as above, there are two related matrix elements
aij and ai ′j ′ with aij = −ai ′j ′ .



Example

Here is an example where n = 6.

1 2 3 4 5 6 7

1 x -4 5 -4 1 1 -3
2 4 x 5 -1 5 3 5
3 -5 -5 x -5 5 2 2
4 4 1 5 x 5 5 5
5 -1 -5 -5 -5 x 2 2
6 -1 -3 -2 -5 -2 x -3
7 3 -5 -2 -5 -2 3 x

The red ±5 ’s are not related (not what we want).

The blue ±5 ’s are related (what we want).



Truncated Tucker, continued

Theorem (ABBCI ’15)

Tucker
n
1 has polynomial size extended Frege proofs.

Open question:

◮ Does Tuckern1 have subexponential size Frege proofs?

◮ Does Tuckernk for k > 1 have subexponential size (extended)
Frege proofs?

Kneser and Truncated Tucker are also TFNP problems. Many
open questions there!



Thank you!



Bonus slide: Erdős-Ko-Rado

A set F ⊆
(

n
k

)

is an intersecting family if A,B ∈ F ⇒ A ∩ B 6= ∅.

Theorem (EKR ’61)

If n ≥ 2k and F ⊆
(

n
k

)

is an intersecting family, then |F| ≤
(

n−1
k−1

)

.

Furthermore, if ∩F = ∅, then |F| ≤ k3.
(

n−2
k−2

)

Theorem (Hilton–Milner ’67)

If n ≥ 2k and F ⊆
(

n
k

)

is an intersecting family with ∩F = ∅, then

|F| ≤ 1 +
(

n−1
k−1

)

−
(

n−k−1
k−1

)


