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Quantified Boolean Formulas (QBF)

• QBFs are propositional formulas with Boolean quantifiers
ranging over 0,1.

• Deciding QBF is PSPACE complete.
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Semantics via a two-player game

• We consider QBFs in prenex form with CNF matrix.

Example: ∀y1y2∃x1x2. (¬y1 ∨ x1) ∧ (y2 ∨ ¬x2)

• A QBF represents a two-player game between ∃ and ∀.

• ∃ wins a game if the matrix becomes true.

• ∀ wins a game if the matrix becomes false.

• A QBF is true iff there exists a winning strategy for ∃.

• A QBF is false iff there exists a winning strategy for ∀.

Example:
∀u∃e. (u ∨ e) ∧ (¬u ∨ ¬e)

∃ wins by playing e ← ¬u.
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The success of SAT/QBF solving

• SAT — given a Boolean formula, determine if it is satisfiable.

• QBF — given a Quantified Boolean formula (without free
variables), determine if it is true.

• Despite SAT being NP hard, SAT solvers are very successful.

• QBF solving applies to further fields (verification, planning),
but is at an earlier stage.

• Proof complexity is the main theoretical framework to
understanding performance and limitations of SAT/QBF
solving.

• Runs of the solver on unsatisfiable formulas yield proofs of
unsatisfiability in resolution-type proof systems.
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QBF Proof complexity

Main questions

• develop QBF proof systems modelling QBF solvers

• understand their proof complexity

Contributions of QBF proof complexity

• Bounds on proof size: Prove sharp upper and lower bounds for
the size of proofs in various systems.

• Techniques: Lower bound techniques for the size of proofs.

• Simulations: Understand whether proofs from one system can
be efficiently translated to proofs in another system.

Relations to other fields

• QBF solving

• Separating complexity classes (NP vs. PSPACE)

• first-order logic



Lower bound techniques in proof complexity

Techniques for lower bounds in propositional proof systems

• feasible interpolation [Kraj́ıček 97]

• size-width relation [Ben-Sasson & Wigderson 01]

• game-theoretic techniques [Pudlák, Buss, Impagliazzo,. . .]

• proof complexity generators [Kraj́ıček, Alekhnovich et al.]

Long-standing belief

• There exists a close connection between lower bounds for
Boolean circuits and lower bounds for proof systems.

• But: could not been made formal yet.

• Here: a rigorous connection for QBF proof systems.
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Which lower bound techniques work for QBF?

Techniques for propositional proof systems

• feasible interpolation [Kraj́ıček 97]

• size-width relation [Ben-Sasson & Wigderson 01]

• game-theoretic techniques [Pudlák, Buss, Impagliazzo,. . .]

• proof complexity generators [Kraj́ıček, Alekhnovich et al.]

In QBF proof systems

• feasible interpolation holds for QBF resolution systems
[B., Chew, Mahajan, Shukla ICALP’15]

• size-width relations fail for QBF resolution systems
[B., Chew, Mahajan, Shukla STACS’16]

• game-theoretic techniques work for weak tree-like systems
[B., Chew, Sreenivasaiah 15] [Chen 15]
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In this talk

1. Develop a new technique that transfers circuit lower bounds
to QBF proof size lower bounds

2. Illustrate the technique for QBF resolution systems

3. Provide a general construction for QBF proof systems

4. Exploit the full spectrum of circuit lower bounds to obtain
lower bounds for strong QBF systems
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QBF proof systems

• There are two main paradigms in QBF solving: Expansion
based solving and CDCL solving.

• Various QBF proof systems model these different solvers.

Tree-Q-Res

Q-Res∀Exp+Res

LD-Q-Res QU-Res

LQU+-Res

IR-calc

IRM-calc

expansion solving

CDCL solving

• Various sequent calculi exist as well.
[Kraj́ıček & Pudlák 90], [Cook & Morioka 05], [Egly 12]

• General proof checking format QRAT [Biere, Heule, Seidl 14]



QBF proof systems at a glance

Tree-Q-Res

Q-Res∀Exp+Res

LD-Q-Res QU-Res

LQU+-Res

IR-calc

IRM-calc

expansion solving

CDCL solving

Q-Resolution (Q-Res)

• QBF analogue of Resolution (?)

• introduced by [Kleine Büning, Karpinski, Flögel 95]
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Q-Resolution

= Resolution + ∀-reduction [Kleine Büning et al. 95]

Rules

• Resolution: x ∨ C ¬x ∨ D (x existentially quantified)
C ∨ D

C ∨ D is not tautological.

• ∀-Reduction: C ∨ u (u universally quantified)
C

C does not contain variables right of u in the quantifier prefix.

Example ∀u∃x u ∨ xu ∨ ¬x
u

⊥
∀u
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Understanding the simulation structure of QBF systems

Tree-Q-Res

Q-Res∀Exp+Res

LD-Q-Res QU-Res

LQU+-Res

IR-calc

IRM-calc strictly stronger

incomparable

expansion solving

CDCL solving

• In this talk we will concentrate on a lower bound for Q-Res.

• Serves as primer for the general lower bound technique.

Olaf Beyersdorff Proof Complexity of Quantified Boolean Formulas 12 / 38



Understanding the simulation structure of QBF systems

Tree-Q-Res

Q-Res∀Exp+Res

LD-Q-Res QU-Res

LQU+-Res

IR-calc

IRM-calc strictly stronger

incomparable

expansion solving

CDCL solving

• In this talk we will concentrate on a lower bound for Q-Res.

• Serves as primer for the general lower bound technique.

Olaf Beyersdorff Proof Complexity of Quantified Boolean Formulas 12 / 38



Exploiting strategies

• We move back to thinking about the two player game.
Remember every false QBF has a winning strategy (for the
universal player).

• Hope: short proofs will lead to easy strategies . . .

• . . . or the contrapositive: Hard strategies require large proofs

• Then we just need to find false formulas with ‘hard strategies’
for the universal player.
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Strategy extraction

Theorem (Balabanov & Jiang 12)

From a Q-Res refutation π of φ, we can extract in poly-time a
winning strategy for the universal player for φ.
For each universal variable u of φ the winning strategy can be
represented as a decision list.

• Short Q-Res proofs give short strategies in decision list format.

• Decision lists can be expressed as bounded depth circuits.
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Intermezzo: Boolean circuits

Boolean circuits

• compute Boolean functions
via gates ∧, ∨, ¬, . . .

• P/poly: functions with polynomial-size
Boolean circuits

• AC0: polynomial size and
constant depth

x1 x2 x3

¬
∧ ∧ ∧

∨ ∨

∧

depth

Fundamental problem of circuit complexity

Find functions that cannot be computed by small Boolean circuits.

Often postulated connection

Can we obtain lower bounds for proof size from lower bounds for
Boolean circuits?
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A lower bound for bounded-depth circuits

Parity(x1, . . . , xn) = x1 ⊕ . . .⊕ xn

Theorem (Ajtai 83, Furst, Saxe & Sipser 84, Håstad 87)

Parity/∈ AC0. In fact, every non-uniform family of
bounded-depth circuits computing Parity is of exponential size.

• Now we only need to force the universal strategy to compute
Parity!
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QParity
• Let φn be a propositional formula computing x1 ⊕ . . .⊕ xn.
• Consider the QBF ∃x1, . . . , xn∀z . (z ∨ φn) ∧ (¬z ∨ ¬φn).
• The matrix of this QBF states that z is equivalent to the

opposite value of x1 ⊕ . . .⊕ xn.
• The unique strategy for the universal player is therefore to

play z equal to x1 ⊕ . . .⊕ xn.

Defining φn

• Let xor(o1, o2, o) be the set of clauses
{¬o1 ∨ ¬o2 ∨ ¬o, o1 ∨ o2 ∨ ¬o, ¬o1 ∨ o2 ∨ o, o1 ∨ ¬o2 ∨ o}.

• Define

QParityn = ∃x1, . . . , xn ∀z ∃t2, . . . , tn. xor(x1, x2, t2) ∪
n⋃

i=3

xor(ti−1, xi , ti ) ∪ {z ∨ tn,¬z ∨ ¬tn}
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The exponential lower bound

QParityn = ∃x1, . . . , xn ∀z ∃t2, . . . , tn. xor(x1, x2, t2) ∪
n⋃

i=3

xor(ti−1, xi , ti ) ∪ {z ∨ tn,¬z ∨ ¬tn}

Theorem (B., Chew & Janota 15)

QParityn require exponential-size Q-Res refutations.

Proof idea

• By [Balabanov & Jiang 12] we extract strategies from any
Q-Res proof as a decision list in polynomial time.

• But Parity(x1, . . . xn) requires exponential-size decision lists
[Håstad 87].

• Therefore Q-Res proofs must be of exponential size.

Olaf Beyersdorff Proof Complexity of Quantified Boolean Formulas 18 / 38



From propositional proof systems to QBF

A general ∀red rule

• Fix a prenex QBF Φ.

• Let F (x̄ , u) be a propositional line in a refutation of Φ,
where u is universal with innermost quant. level in F

F (x̄ , u)

F (x̄ , 0)

F (x̄ , u)

F (x̄ , 1)

New QBF proof systems

For any ‘natural’ line-based propositional proof system P define
the QBF proof system P + ∀red by adding ∀red to the rules of P.

Proposition (B., Bonacina & Chew 15)

P + ∀red is sound and complete for QBF.
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Important propositional proof systems

Truth table

Tree-Resolution

Resolution

Cutting PlanesAC0-Frege

Nullstellensatz

Polynomial Calculus

PCR

Frege

Extended Frege

optimal proof system?

exp. lower bounds
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The current research frontier

Resolution

AC0-Frege

AC0[p]-Frege

TC0-Frege

Frege

Cutting Planes

Frege systems use:

• axiom schemas

• rules, e.g. modus ponens A A→B
B
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The current research frontier

Resolution

AC0-Frege

AC0[p]-Frege

TC0-Frege

Frege

formulas of constant depth

constant depth with mod p gates

constant depth with counting gates

Frege systems use:

• axiom schemas

• rules, e.g. modus ponens A A→B
B
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The current research frontier

Resolution

AC0-Frege

AC0[p]-Frege

TC0-Frege

Frege

exp. lower bounds (propositional)

[Ajtai 88] [Pitassi, Beame & Impagliazzo 93]

[Kraj́ıček, Pudlák & Woods 95]

[Haken 85]

exp. lower bounds (QBF)

[B., Bonacina & Chew (ITCS’16)]

Frege systems use:

• axiom schemas

• rules, e.g. modus ponens A A→B
B
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Strategy extraction for ∀-Red+P

A C-decision list computes a function u = f (x̄)

If C1(x̄) Then u ← c1

Else If C2(x̄) Then u ← c2
...

Else If Cl(x̄) Then u ← cl
Else u ← cl+1 where Ci ∈ C and ci ∈ {0, 1}

Theorem (B., Bonacina, Chew 16)

C-Frege+∀red has strategy extraction in C-decision lists,
i.e. from a refutation π of F (x̄ , ū) you can extract in poly-time a
collection of C-decision lists computing a winning strategy on the
universal variables of F .
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From decision lists to circuits
If C1(x̄) Then u ← c1

Else If C2(x̄) Then u ← c2
...

Else If Cl(x̄) Then u ← cl
Else u ← cl+1 where Ci ∈ C and ci ∈ {0, 1}

Proposition

Each C-decision list as above can be transformed into a C-circuit of
depth max(depth(Ci )) + 2.

Corollary (B., Bonacina, Chew 16)

• depth-d-Frege+∀red has strategy extraction with circuits of
depth d + 2.

• AC0-Frege+∀red has strategy extraction in AC0.

• AC0[p]-Frege+∀red has strategy extraction in AC0[p].
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From functions to QBF

• Let f (x̄) be a Boolean function.

• Define the QBF

Q-f = ∃x̄∀z∃t̄. z 6= f (x̄)

• t̄ are auxiliary variables describing the computation of a circuit
for f .

• z 6= f (x̄) is encoded as a CNF.

• The only winning strategy for the universal player is to play
z ← f (x̄).
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From circuit lower bounds to proof size lower bounds

Theorem (B., Bonacina, Chew 16)

Let f be any function hard for depth 3 circuits.
Then Q-f is hard for Res + ∀red.

Proof.

• Let Π be a refutation of Q-f in Res + ∀red.

• By strategy extraction, we obtain from Π a decision list
computing f .

• Transform the decision list into a depth 3 circuit C for f .

• As f is hard to compute in depth 3, Π must be long.

Olaf Beyersdorff Proof Complexity of Quantified Boolean Formulas 25 / 38



Strong lower bound example I

Theorem (Razborov 87, Smolensky 87)

For each odd prime p, Parity requires exponential-size AC0[p]
circuits.

Theorem (B., Bonacina, Chew 16)

Q-Parity requires exponential-size AC0[p]-Frege+∀red proofs.

In contrast
No lower bound is known for AC0[p]-Frege.
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Strong separations

Theorem (Smolensky 87)

MODq requires exponential-size AC0[p] circuits, where p and q are
distinct primes.

Carefully choosing the formulas representing MODq we get:

Corollary (B., Bonacina, Chew 16)

For each pair p, q of distinct primes the MODq-formulas

• require exponential-size proofs in AC0[p]-Frege+∀red,
• but have polynomial-size proofs in AC0[q]-Frege+∀red.

Corollary (B., Bonacina, Chew 16)

AC0[p]-Frege+∀red is exponentially weaker than TC0-Frege+∀red.

In the propositional case

these separations are wide open.
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Strong lower bound example II

Theorem (Håstad 89)

The functions Sipserd exponentially separate depth d − 1 from
depth d circuits.

Theorem (B., Bonacina, Chew 16)

Q-Sipserd

• requires exponential-size proofs in depth (d − 3)-Frege+∀red.
• has polynomial-size proofs in depth d-Frege+∀red.

Note

• Q-Sipserd is a quantified CNF.

• Separating depth d Frege systems with constant depth
formulas (independent of d) is a major open problem in the
propositional case.
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Lower bounds for Frege?

Theorem [B., Bonacina & Chew (ITCS’16)]

If PSPACE 6⊆ NC1, then Q-Frege has superpolynomial lower
bounds.

Open problem

unconditional lower bounds for Q-Frege

Theorem [B. & Pich (LICS’16)]

Q-Frege has superpolynomial lower bounds if and only if

• PSPACE 6⊆ NC1 or

• Frege has superpolynomial lower bounds.
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Monotone circuit lower bounds and proofs

Feasible interpolation

• classical technique relating circuit complexity to proof
complexity.

• transforms lower bounds for monotone circuits into lower
bounds for proof size

• holds for resolution [Kraj́ıček 97] and
Cutting Planes [Pudlák 97]

In contrast to strategy extraction

no relation between the circuit class and the lines in the system
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Interpolants and Craig’s interpolation theorem

Theorem (Craig 57)

Let A(X ,Y ), B(X ,Z ) be propositional formulas in pairwise
disjoints sets of variables X , Y , Z . If A(X ,Y )→ B(X ,Z ) then
there exists an interpolant C (X ) such that A(X ,Y )→ C (X ) and
C (X )→ B(X ,Z ).

• Says nothing about finding interpolants, just that they exist.

• In general interpolants may be hard to compute and large in
the size of the original formula [Mundici 84].

• The interpolation theorem is also true for QBFs
∀XQ1YQ2Z . A(X ,Y )→ B(X ,Z ).

• If A(X ,Y ) is monotone in X then C (X ) can be found as a
monotone circuit.
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Feasible interpolation

Definition (Kraj́ıček 97)

• A proof system P has feasible interpolation if from a P-proof
of A(X ,Y )→ B(X ,Z ) an interpolating circuit C (X ) can be
extracted in poly time.

• Monotone feasible interpolation: if X appears only positively
in A(X ,Y ), then we can extract a monotone interpolating
circuit C (X ).

• For a refutation system P we look at refutations of
A(X ,Y ) ∧ ¬B(X ,Z ).
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Feasible Interpolation in QBF

Theorem [B., Chew, Mahajan, Shukla (ICALP’15)]

All QBF resolution calculi have monotone feasible interpolation for
false formulas ∃XQ1YQ2Z . A(X ,Y ) ∧ B(X ,Z ).

Tree-Q-Res

Q-Res∀Exp+Res

LD-Q-Res QU-Res

LQU+-Res

IR-calc

IRM-calc
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Proof Idea

Theorem (B., Chew, Mahajan, Shukla 15)

All QBF resolution calculi have monotone feasible interpolation for
false formulas ∃XQ1YQ2Z . A(X ,Y ) ∧ B(X ,Z ).

Proof sketch

• We lift the idea of the proof in [Pudlák 97].

• For a refutation π we look at restricted proofs πα when X is
completely assigned by α.

• We observe that the lines of πα are derived only from one of
A(α(X ),Y ) or B(α(X ),Z ).

• We use the proof rules to inductively build a circuit C (X ) so
that C (α) calculates which of A or B gives each line in πα.

• C is our interpolating circuit.
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Lower bounds via feasible interpolation

Theorem (Alon, Boppana 87)

All monotone circuits that compute Clique
n/2
n (X ) are of

exponential size.

Clique-CoClique formulas

∃X∃YClique
n/2
n (X ,Y ) ∧ ∀Z∃TCoClique

n/2
n (X ,Z ,T )

Corollary (B., Chew, Mahajan, Shukla 15)

Clique-CoClique formulas require exponential size proofs in all QBF
resolution systems.
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Relation to Strategy Extraction

• Each feasible interpolation problem

F = ∃~pQ~qQ~r . [A(~p, ~q) ∧ B(~p, ~r)]

can be transformed into a strategy extraction problem for

Fb = ∃~p ∀bQ~qQ~r . [(A(~p, ~q) ∨ b) ∧ (B(~p, ~r) ∨ ¬b)] .

• The interpolant corresponds to the winning strategy of the
universal player for b.

• Feasible interpolation can be viewed as a special case of
strategy extraction.
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Summary

• Developed a new technique via strategy extraction for QBF
proof systems.

• Implies many new lower bounds and separations for QBF
systems.

• Directly translates circuit lower bounds to proof size lower
bounds for QBF proof systems.

• No such direct transfer known in classical proof complexity.
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Major problems in QBF proof complexity

1. Find hard formulas for QBF systems.
Currently we have:

• Formulas from [Kleine Büning, Karpinski, Flögel 95]
• Formulas from [Janota, Marques-Silva 13]
• Parity Formulas and generalisations [B., Chew, Janota 15]

[B., Bonacina, Chew 16]
• Clique co-clique formulas [B., Chew, Mahajan, Shukla 15]

2. Which (classical) lower-bound techniques work for QBF?
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