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SAT and QBF

Success in SAT solving (last «2 decades)
ù research on solving generalizations of SAT

Such as...

§ QBF (quantified Boolean formula)
Instance: Q1v1 . . .Qnvn

Ź

clauses
PSPACE-complete

Recall...

§ SAT
Instance: Dv1 . . . Dvn

Ź

clauses
NP-complete

Note: SAT treated as a black-box oracle by QBF solvers
(e.g. QBF solver sKizzo - Benedetti ’05)
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QBF proof complexity

Rise in study of QBF ù

algorithmic techniques and proof systems

QBF proof complexity – study lengths of proofs
in proof systems (for certifying QBF falsity)

Motivations:

§ Certify a solver’s no decision
§ Solvers typically generate proofs

understanding proof length ù understanding running time
§ Connection to separation of complexity classes
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Dilemma

Basic, primary question, on lower bounds:

Take a usual QBF proof system, such as Q-resolution.
Can it be shown that (exponentially) long proofs are needed?

Answer: YES!

When restricted to SAT instances,
Q-resolution is identical to resolution.

So lower bounds on resolution apply to Q-resolution.

Reaction: This doesn’t seem interesting.

We generalize resolution to Q-resolution to handle QBFs and
quantifier alternation,
but this argument doesn’t address this extra generality.

This also clashes with the QBF view of SAT as an oracle.
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Escaping the dilemma

How can we prove lower bounds that are based on alternation?

We present a framework for doing this.

§ We define a proof system ensemble to be an infinite
collection of proof systems,

where in each, proof checking can be done in the PH

§ An ensemble has polynomially bounded proofs if
it contains a proof system where all false QBFs have
polysize proofs

§ Result: straightforward to define ensembles that have
poly bd proofs on any set of QBFs with bounded alternation

So, proof size lower bounds address the ability to handle
alternation
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Contributions

1. Framework – proof system ensembles

2. Definition of relaxing QU-resolution,
a particular ensemble obtained by “lifting” QU-resolution

3. Two technical results on relaxing QU-resolution:
exponential lower bound for general version,
exponential separation of general/tree-like versions

This talk: focus on 1 and 2.
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Proof system ensemble

Def (simplified): A proof system ensemble for a language L is
a sequence pLkqkě1 of langs in PH such that:

(@k ě 1) tx | Dπ : px , πq P Lku “ L

Def: Let Z be a set of functions NÑ N. (eg: Z “ Ωp2nq)
A pf system ensemble pLkqkě1 requires proofs of size Z on
instances Φ1,Φ2, . . . if @k ě 1, Dz P Z where

(@n ě 1, @π) pΦn, πq P Lk ñ |π| ě zpnq
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Polynomially bounded ensembles

Def: A pf system ensemble pLkqkě1 is polynomially bounded on
a language L if Dc, D polynomial p such that

@x P L Dπ where |π| ď pp|x |q and px , πq P Lc

Prop: There exists a polynomially bounded pf system
ensemble for a language L iff L P PH

Note: pf system ensembles to be studied will be polynomially
bounded on any formulas tΦiu having bounded alternation

Note: D poly bd ensemble for QBF ô PSPACE Ď PH

Relationship between this framework & PH vs. PSPACE qtn

is analogous to

the relationship between SAT proof complexity &
NP vs. coNP qtn
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QU-resolution

Clausal QBF Φ “ Q1v1 . . .Qnvn
Ź

clauses
Let S be the set of clauses

Def: QU-resolution proof for Φ from clause set C
is a sequence of clauses C1,C2, . . . where each Ci :
§ is in C,
§ can be derived by resolving two previous clauses, or

§ can be derived by taking a previous clause and applying
@-elimination
(remove a @-literal if its variable is the “last one” of the
clause)

Standard QU-resolution takes C “ S.

Note: empty clause is derivable ô Φ is false

Our approach: Define sets of clauses HpΦ,Πkq P PH

Will have S Ď HpΦ,Π2q Ď HpΦ,Π3q Ď ¨ ¨ ¨

Each HpΦ,Πkq will give us a pf system
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Implied clauses

Goal: define HpΦ,Πkq

Setup: Let Φ “ Pφ be a QBF

P is a quantifier prefix Q1v1 . . .Qnvn; φ is
Ź

clauses

Let a be a partial assignment to some of the vars tv1, . . . , vnu

Question: When is clausepaq implied, ie, when can clausepaq
be added to the QBF (while preserving truth/falsity)?
§ For SAT (all Qi “ D): Let φras be φ but where variables of

dompaq are instantiated according to a

Fact: φras unsat ñ clausepaq implied

§ For QBF:
Let Pras be P but with all variables of dompaq removed,
and variables “before” dompaq made existential

Prop: Prasφras false ñ clausepaq implied
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Let Φ “ Pφ be a QBF, let a be a partial assignment,
define Φras “ Prasφras

Prop: Φras false ñ clausepaq implied
(ie can be added to Φ)

Observe: when φ is a
Ź

of clauses, each clause C of φ is
implied!

Observe: if a is the empty assignment,
then Φras “ Φ and clausepaq is the empty clause

Note: in our view, detecting when a “partially instantiated QBF”
is false is a highly natural consideration;
in SAT/CSP, propagation/consistency heuristics are used,
which allow for clause learning

To use prop: need to detect when Φras is false
...but this is hard in general!
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Relaxing
Goal: define HpΦ,Πkq

Let Φ “ Pφ be a QBF, let a be a partial assignment,
define Φras “ Prasφras

Prop: Φras false ñ clausepaq implied
(ie can be added to Φ)

How do we detect if a Φras is false? Hard in general!

Def (approximate): A relaxation of a QBF Ψ is
a QBF obtained from Ψ by shifting universal quantifiers left
and/or existential quantifiers right

Example: Consider a QBF Dx1Dx2@y@y 1Dx3ψ.
Example relaxations: @y@y 1Dx1Dx2Dx3ψ, Dx1@y 1Dx2@yDx3ψ

Prop: If a relaxation of a QBF Ψ is false, then Ψ is false

Def: For k ě 2, define HpΦ,Πkq as the set

tclausepaq | Φras has a false Πk relaxationu
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Relaxing QU-resolution

Def: For k ě 2, define HpΦ,Πkq as the set

tclausepaq | Φras has a false Πk relaxationu

We have HpΦ,Π2q Ď HpΦ,Π3q Ď ¨ ¨ ¨

Def: Relaxing QU-resolution is the proof system ensemble
pLkqkě2 where Lk is defined as

tpΦ, πq | π is a QU-res proof of Φ from HpΦ,Πkqu

Remarks:

§ This makes sense even if Φ is not clausal, i.e.,
even if Φ has the form Q1v1 . . .Qnvn(circuit)

§ This way of “lifting” to an enhanced set of clauses
can be used to define relaxed versions
of any clause-based QBF proof system
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