
Proof Complexity Modulo
the Polynomial Hierarchy: Understanding

Alternation as a Source of Hardness

Hubie Chen
Univ. del País Vasco & Ikerbasque

San Sebastián, Spain

St. Petersburg, May 2016

SAT and QBF

Success in SAT solving (last «2 decades)
ù research on solving generalizations of SAT

Such as...

§ QBF (quantified Boolean formula)
Instance: Q1v1 . . .Qnvn

Ź

clauses
PSPACE-complete

Recall...

§ SAT
Instance: Dv1 . . . Dvn

Ź

clauses
NP-complete

Note: SAT treated as a black-box oracle by QBF solvers
(e.g. QBF solver sKizzo - Benedetti ’05)

SAT and QBF

Success in SAT solving (last «2 decades)
ù research on solving generalizations of SAT

Such as...

§ QBF (quantified Boolean formula)
Instance: Q1v1 . . .Qnvn

Ź

clauses
PSPACE-complete

Recall...

§ SAT
Instance: Dv1 . . . Dvn

Ź

clauses
NP-complete

Note: SAT treated as a black-box oracle by QBF solvers
(e.g. QBF solver sKizzo - Benedetti ’05)

SAT and QBF

Success in SAT solving (last «2 decades)
ù research on solving generalizations of SAT

Such as...

§ QBF (quantified Boolean formula)
Instance: Q1v1 . . .Qnvn

Ź

clauses
PSPACE-complete

Recall...

§ SAT
Instance: Dv1 . . . Dvn

Ź

clauses
NP-complete

Note: SAT treated as a black-box oracle by QBF solvers
(e.g. QBF solver sKizzo - Benedetti ’05)

SAT and QBF

Success in SAT solving (last «2 decades)
ù research on solving generalizations of SAT

Such as...

§ QBF (quantified Boolean formula)
Instance: Q1v1 . . .Qnvn

Ź

clauses
PSPACE-complete

Recall...

§ SAT
Instance: Dv1 . . . Dvn

Ź

clauses
NP-complete

Note: SAT treated as a black-box oracle by QBF solvers
(e.g. QBF solver sKizzo - Benedetti ’05)

SAT and QBF

Success in SAT solving (last «2 decades)
ù research on solving generalizations of SAT

Such as...

§ QBF (quantified Boolean formula)
Instance: Q1v1 . . .Qnvn

Ź

clauses
PSPACE-complete

Recall...

§ SAT
Instance: Dv1 . . . Dvn

Ź

clauses
NP-complete

Note: SAT treated as a black-box oracle by QBF solvers
(e.g. QBF solver sKizzo - Benedetti ’05)

QBF proof complexity

Rise in study of QBF ù

algorithmic techniques and proof systems

QBF proof complexity – study lengths of proofs
in proof systems (for certifying QBF falsity)

Motivations:

§ Certify a solver’s no decision
§ Solvers typically generate proofs

understanding proof length ù understanding running time
§ Connection to separation of complexity classes

QBF proof complexity

Rise in study of QBF ù

algorithmic techniques and proof systems

QBF proof complexity – study lengths of proofs
in proof systems (for certifying QBF falsity)

Motivations:

§ Certify a solver’s no decision
§ Solvers typically generate proofs

understanding proof length ù understanding running time
§ Connection to separation of complexity classes

QBF proof complexity

Rise in study of QBF ù

algorithmic techniques and proof systems

QBF proof complexity – study lengths of proofs
in proof systems (for certifying QBF falsity)

Motivations:

§ Certify a solver’s no decision
§ Solvers typically generate proofs

understanding proof length ù understanding running time
§ Connection to separation of complexity classes

QBF proof complexity

Rise in study of QBF ù

algorithmic techniques and proof systems

QBF proof complexity – study lengths of proofs
in proof systems (for certifying QBF falsity)

Motivations:

§ Certify a solver’s no decision
§ Solvers typically generate proofs

understanding proof length ù understanding running time
§ Connection to separation of complexity classes

QBF proof complexity

Rise in study of QBF ù

algorithmic techniques and proof systems

QBF proof complexity – study lengths of proofs
in proof systems (for certifying QBF falsity)

Motivations:

§ Certify a solver’s no decision

§ Solvers typically generate proofs
understanding proof length ù understanding running time

§ Connection to separation of complexity classes

QBF proof complexity

Rise in study of QBF ù

algorithmic techniques and proof systems

QBF proof complexity – study lengths of proofs
in proof systems (for certifying QBF falsity)

Motivations:

§ Certify a solver’s no decision
§ Solvers typically generate proofs

understanding proof length ù understanding running time

§ Connection to separation of complexity classes

QBF proof complexity

Rise in study of QBF ù

algorithmic techniques and proof systems

QBF proof complexity – study lengths of proofs
in proof systems (for certifying QBF falsity)

Motivations:

§ Certify a solver’s no decision
§ Solvers typically generate proofs

understanding proof length ù understanding running time
§ Connection to separation of complexity classes

Dilemma

Basic, primary question, on lower bounds:

Take a usual QBF proof system, such as Q-resolution.
Can it be shown that (exponentially) long proofs are needed?

Answer: YES!

When restricted to SAT instances,
Q-resolution is identical to resolution.

So lower bounds on resolution apply to Q-resolution.

Reaction: This doesn’t seem interesting.

We generalize resolution to Q-resolution to handle QBFs and
quantifier alternation,
but this argument doesn’t address this extra generality.

This also clashes with the QBF view of SAT as an oracle.

Dilemma

Basic, primary question, on lower bounds:

Take a usual QBF proof system, such as Q-resolution.
Can it be shown that (exponentially) long proofs are needed?

Answer: YES!

When restricted to SAT instances,
Q-resolution is identical to resolution.

So lower bounds on resolution apply to Q-resolution.

Reaction: This doesn’t seem interesting.

We generalize resolution to Q-resolution to handle QBFs and
quantifier alternation,
but this argument doesn’t address this extra generality.

This also clashes with the QBF view of SAT as an oracle.

Dilemma

Basic, primary question, on lower bounds:

Take a usual QBF proof system, such as Q-resolution.
Can it be shown that (exponentially) long proofs are needed?

Answer: YES!

When restricted to SAT instances,
Q-resolution is identical to resolution.

So lower bounds on resolution apply to Q-resolution.

Reaction: This doesn’t seem interesting.

We generalize resolution to Q-resolution to handle QBFs and
quantifier alternation,
but this argument doesn’t address this extra generality.

This also clashes with the QBF view of SAT as an oracle.

Dilemma

Basic, primary question, on lower bounds:

Take a usual QBF proof system, such as Q-resolution.
Can it be shown that (exponentially) long proofs are needed?

Answer: YES!

When restricted to SAT instances,
Q-resolution is identical to resolution.

So lower bounds on resolution apply to Q-resolution.

Reaction: This doesn’t seem interesting.

We generalize resolution to Q-resolution to handle QBFs and
quantifier alternation,
but this argument doesn’t address this extra generality.

This also clashes with the QBF view of SAT as an oracle.

Dilemma

Basic, primary question, on lower bounds:

Take a usual QBF proof system, such as Q-resolution.
Can it be shown that (exponentially) long proofs are needed?

Answer: YES!

When restricted to SAT instances,
Q-resolution is identical to resolution.

So lower bounds on resolution apply to Q-resolution.

Reaction: This doesn’t seem interesting.

We generalize resolution to Q-resolution to handle QBFs and
quantifier alternation,
but this argument doesn’t address this extra generality.

This also clashes with the QBF view of SAT as an oracle.

Dilemma

Basic, primary question, on lower bounds:

Take a usual QBF proof system, such as Q-resolution.
Can it be shown that (exponentially) long proofs are needed?

Answer: YES!

When restricted to SAT instances,
Q-resolution is identical to resolution.

So lower bounds on resolution apply to Q-resolution.

Reaction: This doesn’t seem interesting.

We generalize resolution to Q-resolution to handle QBFs and
quantifier alternation,
but this argument doesn’t address this extra generality.

This also clashes with the QBF view of SAT as an oracle.

Dilemma

Basic, primary question, on lower bounds:

Take a usual QBF proof system, such as Q-resolution.
Can it be shown that (exponentially) long proofs are needed?

Answer: YES!

When restricted to SAT instances,
Q-resolution is identical to resolution.

So lower bounds on resolution apply to Q-resolution.

Reaction: This doesn’t seem interesting.

We generalize resolution to Q-resolution to handle QBFs and
quantifier alternation,
but this argument doesn’t address this extra generality.

This also clashes with the QBF view of SAT as an oracle.

Dilemma

Basic, primary question, on lower bounds:

Take a usual QBF proof system, such as Q-resolution.
Can it be shown that (exponentially) long proofs are needed?

Answer: YES!

When restricted to SAT instances,
Q-resolution is identical to resolution.

So lower bounds on resolution apply to Q-resolution.

Reaction: This doesn’t seem interesting.

We generalize resolution to Q-resolution to handle QBFs and
quantifier alternation,
but this argument doesn’t address this extra generality.

This also clashes with the QBF view of SAT as an oracle.

Escaping the dilemma

How can we prove lower bounds that are based on alternation?

We present a framework for doing this.

§ We define a proof system ensemble to be an infinite
collection of proof systems,

where in each, proof checking can be done in the PH

§ An ensemble has polynomially bounded proofs if
it contains a proof system where all false QBFs have
polysize proofs

§ Result: straightforward to define ensembles that have
poly bd proofs on any set of QBFs with bounded alternation

So, proof size lower bounds address the ability to handle
alternation

Escaping the dilemma

How can we prove lower bounds that are based on alternation?

We present a framework for doing this.

§ We define a proof system ensemble to be an infinite
collection of proof systems,

where in each, proof checking can be done in the PH

§ An ensemble has polynomially bounded proofs if
it contains a proof system where all false QBFs have
polysize proofs

§ Result: straightforward to define ensembles that have
poly bd proofs on any set of QBFs with bounded alternation

So, proof size lower bounds address the ability to handle
alternation

Escaping the dilemma

How can we prove lower bounds that are based on alternation?

We present a framework for doing this.

§ We define a proof system ensemble to be an infinite
collection of proof systems,

where in each, proof checking can be done in the PH

§ An ensemble has polynomially bounded proofs if
it contains a proof system where all false QBFs have
polysize proofs

§ Result: straightforward to define ensembles that have
poly bd proofs on any set of QBFs with bounded alternation

So, proof size lower bounds address the ability to handle
alternation

Escaping the dilemma

How can we prove lower bounds that are based on alternation?

We present a framework for doing this.

§ We define a proof system ensemble to be an infinite
collection of proof systems,

where in each, proof checking can be done in the PH

§ An ensemble has polynomially bounded proofs if
it contains a proof system where all false QBFs have
polysize proofs

§ Result: straightforward to define ensembles that have
poly bd proofs on any set of QBFs with bounded alternation

So, proof size lower bounds address the ability to handle
alternation

Escaping the dilemma

How can we prove lower bounds that are based on alternation?

We present a framework for doing this.

§ We define a proof system ensemble to be an infinite
collection of proof systems,

where in each, proof checking can be done in the PH

§ An ensemble has polynomially bounded proofs if
it contains a proof system where all false QBFs have
polysize proofs

§ Result: straightforward to define ensembles that have
poly bd proofs on any set of QBFs with bounded alternation

So, proof size lower bounds address the ability to handle
alternation

Escaping the dilemma

How can we prove lower bounds that are based on alternation?

We present a framework for doing this.

§ We define a proof system ensemble to be an infinite
collection of proof systems,

where in each, proof checking can be done in the PH

§ An ensemble has polynomially bounded proofs if
it contains a proof system where all false QBFs have
polysize proofs

§ Result: straightforward to define ensembles that have
poly bd proofs on any set of QBFs with bounded alternation

So, proof size lower bounds address the ability to handle
alternation

Contributions

1. Framework – proof system ensembles

2. Definition of relaxing QU-resolution,
a particular ensemble obtained by “lifting” QU-resolution

3. Two technical results on relaxing QU-resolution:
exponential lower bound for general version,
exponential separation of general/tree-like versions

This talk: focus on 1 and 2.

Contributions

1. Framework – proof system ensembles

2. Definition of relaxing QU-resolution,
a particular ensemble obtained by “lifting” QU-resolution

3. Two technical results on relaxing QU-resolution:
exponential lower bound for general version,
exponential separation of general/tree-like versions

This talk: focus on 1 and 2.

Contributions

1. Framework – proof system ensembles

2. Definition of relaxing QU-resolution,
a particular ensemble obtained by “lifting” QU-resolution

3. Two technical results on relaxing QU-resolution:
exponential lower bound for general version,
exponential separation of general/tree-like versions

This talk: focus on 1 and 2.

Contributions

1. Framework – proof system ensembles

2. Definition of relaxing QU-resolution,
a particular ensemble obtained by “lifting” QU-resolution

3. Two technical results on relaxing QU-resolution:
exponential lower bound for general version,
exponential separation of general/tree-like versions

This talk: focus on 1 and 2.

Contributions

1. Framework – proof system ensembles

2. Definition of relaxing QU-resolution,
a particular ensemble obtained by “lifting” QU-resolution

3. Two technical results on relaxing QU-resolution:
exponential lower bound for general version,
exponential separation of general/tree-like versions

This talk: focus on 1 and 2.

Act: Framework

Proof system ensemble

Def (simplified): A proof system ensemble for a language L is
a sequence pLkqkě1 of langs in PH such that:

(@k ě 1) tx | Dπ : px , πq P Lku “ L

Def: Let Z be a set of functions NÑ N. (eg: Z “ Ωp2nq)
A pf system ensemble pLkqkě1 requires proofs of size Z on
instances Φ1,Φ2, . . . if @k ě 1, Dz P Z where

(@n ě 1, @π) pΦn, πq P Lk ñ |π| ě zpnq

Proof system ensemble

Def (simplified): A proof system ensemble for a language L is
a sequence pLkqkě1 of langs in PH such that:

(@k ě 1) tx | Dπ : px , πq P Lku “ L

Def: Let Z be a set of functions NÑ N. (eg: Z “ Ωp2nq)
A pf system ensemble pLkqkě1 requires proofs of size Z on
instances Φ1,Φ2, . . . if @k ě 1, Dz P Z where

(@n ě 1, @π) pΦn, πq P Lk ñ |π| ě zpnq

Proof system ensemble

Def (simplified): A proof system ensemble for a language L is
a sequence pLkqkě1 of langs in PH such that:

(@k ě 1) tx | Dπ : px , πq P Lku “ L

Def: Let Z be a set of functions NÑ N. (eg: Z “ Ωp2nq)
A pf system ensemble pLkqkě1 requires proofs of size Z on
instances Φ1,Φ2, . . . if @k ě 1, Dz P Z where

(@n ě 1, @π) pΦn, πq P Lk ñ |π| ě zpnq

Polynomially bounded ensembles

Def: A pf system ensemble pLkqkě1 is polynomially bounded on
a language L if Dc, D polynomial p such that

@x P L Dπ where |π| ď pp|x |q and px , πq P Lc

Prop: There exists a polynomially bounded pf system
ensemble for a language L iff L P PH

Note: pf system ensembles to be studied will be polynomially
bounded on any formulas tΦiu having bounded alternation

Note: D poly bd ensemble for QBF ô PSPACE Ď PH

Relationship between this framework & PH vs. PSPACE qtn

is analogous to

the relationship between SAT proof complexity &
NP vs. coNP qtn

Polynomially bounded ensembles

Def: A pf system ensemble pLkqkě1 is polynomially bounded on
a language L if Dc, D polynomial p such that

@x P L Dπ where |π| ď pp|x |q and px , πq P Lc

Prop: There exists a polynomially bounded pf system
ensemble for a language L iff L P PH

Note: pf system ensembles to be studied will be polynomially
bounded on any formulas tΦiu having bounded alternation

Note: D poly bd ensemble for QBF ô PSPACE Ď PH

Relationship between this framework & PH vs. PSPACE qtn

is analogous to

the relationship between SAT proof complexity &
NP vs. coNP qtn

Polynomially bounded ensembles

Def: A pf system ensemble pLkqkě1 is polynomially bounded on
a language L if Dc, D polynomial p such that

@x P L Dπ where |π| ď pp|x |q and px , πq P Lc

Prop: There exists a polynomially bounded pf system
ensemble for a language L iff L P PH

Note: pf system ensembles to be studied will be polynomially
bounded on any formulas tΦiu having bounded alternation

Note: D poly bd ensemble for QBF ô PSPACE Ď PH

Relationship between this framework & PH vs. PSPACE qtn

is analogous to

the relationship between SAT proof complexity &
NP vs. coNP qtn

Polynomially bounded ensembles

Def: A pf system ensemble pLkqkě1 is polynomially bounded on
a language L if Dc, D polynomial p such that

@x P L Dπ where |π| ď pp|x |q and px , πq P Lc

Prop: There exists a polynomially bounded pf system
ensemble for a language L iff L P PH

Note: pf system ensembles to be studied will be polynomially
bounded on any formulas tΦiu having bounded alternation

Note: D poly bd ensemble for QBF ô PSPACE Ď PH

Relationship between this framework & PH vs. PSPACE qtn

is analogous to

the relationship between SAT proof complexity &
NP vs. coNP qtn

Polynomially bounded ensembles

Def: A pf system ensemble pLkqkě1 is polynomially bounded on
a language L if Dc, D polynomial p such that

@x P L Dπ where |π| ď pp|x |q and px , πq P Lc

Prop: There exists a polynomially bounded pf system
ensemble for a language L iff L P PH

Note: pf system ensembles to be studied will be polynomially
bounded on any formulas tΦiu having bounded alternation

Note: D poly bd ensemble for QBF ô PSPACE Ď PH

Relationship between this framework & PH vs. PSPACE qtn

is analogous to

the relationship between SAT proof complexity &
NP vs. coNP qtn

Polynomially bounded ensembles

Def: A pf system ensemble pLkqkě1 is polynomially bounded on
a language L if Dc, D polynomial p such that

@x P L Dπ where |π| ď pp|x |q and px , πq P Lc

Prop: There exists a polynomially bounded pf system
ensemble for a language L iff L P PH

Note: pf system ensembles to be studied will be polynomially
bounded on any formulas tΦiu having bounded alternation

Note: D poly bd ensemble for QBF ô PSPACE Ď PH

Relationship between this framework & PH vs. PSPACE qtn

is analogous to

the relationship between SAT proof complexity &
NP vs. coNP qtn

Act: Relaxing QU-resolution

QU-resolution

Clausal QBF Φ “ Q1v1 . . .Qnvn
Ź

clauses
Let S be the set of clauses

Def: QU-resolution proof for Φ from clause set C
is a sequence of clauses C1,C2, . . . where each Ci :
§ is in C,
§ can be derived by resolving two previous clauses, or

§ can be derived by taking a previous clause and applying
@-elimination
(remove a @-literal if its variable is the “last one” of the
clause)

Standard QU-resolution takes C “ S.

Note: empty clause is derivable ô Φ is false

Our approach: Define sets of clauses HpΦ,Πkq P PH

Will have S Ď HpΦ,Π2q Ď HpΦ,Π3q Ď ¨ ¨ ¨

Each HpΦ,Πkq will give us a pf system

QU-resolution
Clausal QBF Φ “ Q1v1 . . .Qnvn

Ź

clauses
Let S be the set of clauses

Def: QU-resolution proof for Φ from clause set C
is a sequence of clauses C1,C2, . . . where each Ci :
§ is in C,
§ can be derived by resolving two previous clauses, or
§ can be derived by taking a previous clause and applying
@-elimination
(remove a @-literal if its variable is the “last one” of the
clause)

Standard QU-resolution takes C “ S.

Note: empty clause is derivable ô Φ is false

Our approach: Define sets of clauses HpΦ,Πkq P PH

Will have S Ď HpΦ,Π2q Ď HpΦ,Π3q Ď ¨ ¨ ¨

Each HpΦ,Πkq will give us a pf system

QU-resolution
Clausal QBF Φ “ Q1v1 . . .Qnvn

Ź

clauses
Let S be the set of clauses

Def: QU-resolution proof for Φ from clause set C
is a sequence of clauses C1,C2, . . . where each Ci :

§ is in C,
§ can be derived by resolving two previous clauses, or
§ can be derived by taking a previous clause and applying
@-elimination
(remove a @-literal if its variable is the “last one” of the
clause)

Standard QU-resolution takes C “ S.

Note: empty clause is derivable ô Φ is false

Our approach: Define sets of clauses HpΦ,Πkq P PH

Will have S Ď HpΦ,Π2q Ď HpΦ,Π3q Ď ¨ ¨ ¨

Each HpΦ,Πkq will give us a pf system

QU-resolution
Clausal QBF Φ “ Q1v1 . . .Qnvn

Ź

clauses
Let S be the set of clauses

Def: QU-resolution proof for Φ from clause set C
is a sequence of clauses C1,C2, . . . where each Ci :
§ is in C,

§ can be derived by resolving two previous clauses, or
§ can be derived by taking a previous clause and applying
@-elimination
(remove a @-literal if its variable is the “last one” of the
clause)

Standard QU-resolution takes C “ S.

Note: empty clause is derivable ô Φ is false

Our approach: Define sets of clauses HpΦ,Πkq P PH

Will have S Ď HpΦ,Π2q Ď HpΦ,Π3q Ď ¨ ¨ ¨

Each HpΦ,Πkq will give us a pf system

QU-resolution
Clausal QBF Φ “ Q1v1 . . .Qnvn

Ź

clauses
Let S be the set of clauses

Def: QU-resolution proof for Φ from clause set C
is a sequence of clauses C1,C2, . . . where each Ci :
§ is in C,
§ can be derived by resolving two previous clauses, or

§ can be derived by taking a previous clause and applying
@-elimination
(remove a @-literal if its variable is the “last one” of the
clause)

Standard QU-resolution takes C “ S.

Note: empty clause is derivable ô Φ is false

Our approach: Define sets of clauses HpΦ,Πkq P PH

Will have S Ď HpΦ,Π2q Ď HpΦ,Π3q Ď ¨ ¨ ¨

Each HpΦ,Πkq will give us a pf system

QU-resolution
Clausal QBF Φ “ Q1v1 . . .Qnvn

Ź

clauses
Let S be the set of clauses

Def: QU-resolution proof for Φ from clause set C
is a sequence of clauses C1,C2, . . . where each Ci :
§ is in C,
§ can be derived by resolving two previous clauses, or
§ can be derived by taking a previous clause and applying
@-elimination
(remove a @-literal if its variable is the “last one” of the
clause)

Standard QU-resolution takes C “ S.

Note: empty clause is derivable ô Φ is false

Our approach: Define sets of clauses HpΦ,Πkq P PH

Will have S Ď HpΦ,Π2q Ď HpΦ,Π3q Ď ¨ ¨ ¨

Each HpΦ,Πkq will give us a pf system

QU-resolution
Clausal QBF Φ “ Q1v1 . . .Qnvn

Ź

clauses
Let S be the set of clauses

Def: QU-resolution proof for Φ from clause set C
is a sequence of clauses C1,C2, . . . where each Ci :
§ is in C,
§ can be derived by resolving two previous clauses, or
§ can be derived by taking a previous clause and applying
@-elimination
(remove a @-literal if its variable is the “last one” of the
clause)

Standard QU-resolution takes C “ S.

Note: empty clause is derivable ô Φ is false

Our approach: Define sets of clauses HpΦ,Πkq P PH

Will have S Ď HpΦ,Π2q Ď HpΦ,Π3q Ď ¨ ¨ ¨

Each HpΦ,Πkq will give us a pf system

QU-resolution
Clausal QBF Φ “ Q1v1 . . .Qnvn

Ź

clauses
Let S be the set of clauses

Def: QU-resolution proof for Φ from clause set C
is a sequence of clauses C1,C2, . . . where each Ci :
§ is in C,
§ can be derived by resolving two previous clauses, or
§ can be derived by taking a previous clause and applying
@-elimination
(remove a @-literal if its variable is the “last one” of the
clause)

Standard QU-resolution takes C “ S.

Note: empty clause is derivable ô Φ is false

Our approach: Define sets of clauses HpΦ,Πkq P PH

Will have S Ď HpΦ,Π2q Ď HpΦ,Π3q Ď ¨ ¨ ¨

Each HpΦ,Πkq will give us a pf system

QU-resolution
Clausal QBF Φ “ Q1v1 . . .Qnvn

Ź

clauses
Let S be the set of clauses

Def: QU-resolution proof for Φ from clause set C
is a sequence of clauses C1,C2, . . . where each Ci :
§ is in C,
§ can be derived by resolving two previous clauses, or
§ can be derived by taking a previous clause and applying
@-elimination
(remove a @-literal if its variable is the “last one” of the
clause)

Standard QU-resolution takes C “ S.

Note: empty clause is derivable ô Φ is false

Our approach: Define sets of clauses HpΦ,Πkq P PH

Will have S Ď HpΦ,Π2q Ď HpΦ,Π3q Ď ¨ ¨ ¨

Each HpΦ,Πkq will give us a pf system

Implied clauses

Goal: define HpΦ,Πkq

Setup: Let Φ “ Pφ be a QBF

P is a quantifier prefix Q1v1 . . .Qnvn; φ is
Ź

clauses

Let a be a partial assignment to some of the vars tv1, . . . , vnu

Question: When is clausepaq implied, ie, when can clausepaq
be added to the QBF (while preserving truth/falsity)?
§ For SAT (all Qi “ D): Let φras be φ but where variables of

dompaq are instantiated according to a

Fact: φras unsat ñ clausepaq implied

§ For QBF:
Let Pras be P but with all variables of dompaq removed,
and variables “before” dompaq made existential

Prop: Prasφras false ñ clausepaq implied

Implied clauses

Goal: define HpΦ,Πkq

Setup: Let Φ “ Pφ be a QBF

P is a quantifier prefix Q1v1 . . .Qnvn; φ is
Ź

clauses

Let a be a partial assignment to some of the vars tv1, . . . , vnu

Question: When is clausepaq implied, ie, when can clausepaq
be added to the QBF (while preserving truth/falsity)?
§ For SAT (all Qi “ D): Let φras be φ but where variables of

dompaq are instantiated according to a

Fact: φras unsat ñ clausepaq implied

§ For QBF:
Let Pras be P but with all variables of dompaq removed,
and variables “before” dompaq made existential

Prop: Prasφras false ñ clausepaq implied

Implied clauses

Goal: define HpΦ,Πkq

Setup: Let Φ “ Pφ be a QBF

P is a quantifier prefix Q1v1 . . .Qnvn; φ is
Ź

clauses

Let a be a partial assignment to some of the vars tv1, . . . , vnu

Question: When is clausepaq implied, ie, when can clausepaq
be added to the QBF (while preserving truth/falsity)?
§ For SAT (all Qi “ D): Let φras be φ but where variables of

dompaq are instantiated according to a

Fact: φras unsat ñ clausepaq implied

§ For QBF:
Let Pras be P but with all variables of dompaq removed,
and variables “before” dompaq made existential

Prop: Prasφras false ñ clausepaq implied

Implied clauses

Goal: define HpΦ,Πkq

Setup: Let Φ “ Pφ be a QBF

P is a quantifier prefix Q1v1 . . .Qnvn; φ is
Ź

clauses

Let a be a partial assignment to some of the vars tv1, . . . , vnu

Question: When is clausepaq implied, ie, when can clausepaq
be added to the QBF (while preserving truth/falsity)?
§ For SAT (all Qi “ D): Let φras be φ but where variables of

dompaq are instantiated according to a

Fact: φras unsat ñ clausepaq implied

§ For QBF:
Let Pras be P but with all variables of dompaq removed,
and variables “before” dompaq made existential

Prop: Prasφras false ñ clausepaq implied

Implied clauses

Goal: define HpΦ,Πkq

Setup: Let Φ “ Pφ be a QBF

P is a quantifier prefix Q1v1 . . .Qnvn; φ is
Ź

clauses

Let a be a partial assignment to some of the vars tv1, . . . , vnu

Question: When is clausepaq implied, ie, when can clausepaq
be added to the QBF (while preserving truth/falsity)?

§ For SAT (all Qi “ D): Let φras be φ but where variables of
dompaq are instantiated according to a

Fact: φras unsat ñ clausepaq implied

§ For QBF:
Let Pras be P but with all variables of dompaq removed,
and variables “before” dompaq made existential

Prop: Prasφras false ñ clausepaq implied

Implied clauses

Goal: define HpΦ,Πkq

Setup: Let Φ “ Pφ be a QBF

P is a quantifier prefix Q1v1 . . .Qnvn; φ is
Ź

clauses

Let a be a partial assignment to some of the vars tv1, . . . , vnu

Question: When is clausepaq implied, ie, when can clausepaq
be added to the QBF (while preserving truth/falsity)?
§ For SAT (all Qi “ D): Let φras be φ but where variables of

dompaq are instantiated according to a

Fact: φras unsat ñ clausepaq implied

§ For QBF:
Let Pras be P but with all variables of dompaq removed,
and variables “before” dompaq made existential

Prop: Prasφras false ñ clausepaq implied

Implied clauses

Goal: define HpΦ,Πkq

Setup: Let Φ “ Pφ be a QBF

P is a quantifier prefix Q1v1 . . .Qnvn; φ is
Ź

clauses

Let a be a partial assignment to some of the vars tv1, . . . , vnu

Question: When is clausepaq implied, ie, when can clausepaq
be added to the QBF (while preserving truth/falsity)?
§ For SAT (all Qi “ D): Let φras be φ but where variables of

dompaq are instantiated according to a

Fact: φras unsat ñ clausepaq implied

§ For QBF:
Let Pras be P but with all variables of dompaq removed,
and variables “before” dompaq made existential

Prop: Prasφras false ñ clausepaq implied

Implied clauses

Goal: define HpΦ,Πkq

Setup: Let Φ “ Pφ be a QBF

P is a quantifier prefix Q1v1 . . .Qnvn; φ is
Ź

clauses

Let a be a partial assignment to some of the vars tv1, . . . , vnu

Question: When is clausepaq implied, ie, when can clausepaq
be added to the QBF (while preserving truth/falsity)?
§ For SAT (all Qi “ D): Let φras be φ but where variables of

dompaq are instantiated according to a

Fact: φras unsat ñ clausepaq implied

§ For QBF:
Let Pras be P but with all variables of dompaq removed,
and variables “before” dompaq made existential

Prop: Prasφras false ñ clausepaq implied

Implied clauses

Goal: define HpΦ,Πkq

Setup: Let Φ “ Pφ be a QBF

P is a quantifier prefix Q1v1 . . .Qnvn; φ is
Ź

clauses

Let a be a partial assignment to some of the vars tv1, . . . , vnu

Question: When is clausepaq implied, ie, when can clausepaq
be added to the QBF (while preserving truth/falsity)?
§ For SAT (all Qi “ D): Let φras be φ but where variables of

dompaq are instantiated according to a

Fact: φras unsat ñ clausepaq implied

§ For QBF:
Let Pras be P but with all variables of dompaq removed,
and variables “before” dompaq made existential

Prop: Prasφras false ñ clausepaq implied

Implied clauses: remarks

Goal: define HpΦ,Πkq

Let Φ “ Pφ be a QBF, let a be a partial assignment,
define Φras “ Prasφras

Prop: Φras false ñ clausepaq implied
(ie can be added to Φ)

Observe: when φ is a
Ź

of clauses, each clause C of φ is
implied!

Observe: if a is the empty assignment,
then Φras “ Φ and clausepaq is the empty clause

Note: in our view, detecting when a “partially instantiated QBF”
is false is a highly natural consideration;
in SAT/CSP, propagation/consistency heuristics are used,
which allow for clause learning

To use prop: need to detect when Φras is false
...but this is hard in general!

Implied clauses: remarks
Goal: define HpΦ,Πkq

Let Φ “ Pφ be a QBF, let a be a partial assignment,
define Φras “ Prasφras

Prop: Φras false ñ clausepaq implied
(ie can be added to Φ)

Observe: when φ is a
Ź

of clauses, each clause C of φ is
implied!

Observe: if a is the empty assignment,
then Φras “ Φ and clausepaq is the empty clause

Note: in our view, detecting when a “partially instantiated QBF”
is false is a highly natural consideration;
in SAT/CSP, propagation/consistency heuristics are used,
which allow for clause learning

To use prop: need to detect when Φras is false
...but this is hard in general!

Implied clauses: remarks
Goal: define HpΦ,Πkq

Let Φ “ Pφ be a QBF, let a be a partial assignment,
define Φras “ Prasφras

Prop: Φras false ñ clausepaq implied
(ie can be added to Φ)

Observe: when φ is a
Ź

of clauses, each clause C of φ is
implied!

Observe: if a is the empty assignment,
then Φras “ Φ and clausepaq is the empty clause

Note: in our view, detecting when a “partially instantiated QBF”
is false is a highly natural consideration;
in SAT/CSP, propagation/consistency heuristics are used,
which allow for clause learning

To use prop: need to detect when Φras is false
...but this is hard in general!

Implied clauses: remarks
Goal: define HpΦ,Πkq

Let Φ “ Pφ be a QBF, let a be a partial assignment,
define Φras “ Prasφras

Prop: Φras false ñ clausepaq implied
(ie can be added to Φ)

Observe: when φ is a
Ź

of clauses, each clause C of φ is
implied!

Observe: if a is the empty assignment,
then Φras “ Φ and clausepaq is the empty clause

Note: in our view, detecting when a “partially instantiated QBF”
is false is a highly natural consideration;
in SAT/CSP, propagation/consistency heuristics are used,
which allow for clause learning

To use prop: need to detect when Φras is false
...but this is hard in general!

Implied clauses: remarks
Goal: define HpΦ,Πkq

Let Φ “ Pφ be a QBF, let a be a partial assignment,
define Φras “ Prasφras

Prop: Φras false ñ clausepaq implied
(ie can be added to Φ)

Observe: when φ is a
Ź

of clauses, each clause C of φ is
implied!

Observe: if a is the empty assignment,
then Φras “ Φ and clausepaq is the empty clause

Note: in our view, detecting when a “partially instantiated QBF”
is false is a highly natural consideration;
in SAT/CSP, propagation/consistency heuristics are used,
which allow for clause learning

To use prop: need to detect when Φras is false
...but this is hard in general!

Implied clauses: remarks
Goal: define HpΦ,Πkq

Let Φ “ Pφ be a QBF, let a be a partial assignment,
define Φras “ Prasφras

Prop: Φras false ñ clausepaq implied
(ie can be added to Φ)

Observe: when φ is a
Ź

of clauses, each clause C of φ is
implied!

Observe: if a is the empty assignment,
then Φras “ Φ and clausepaq is the empty clause

Note: in our view, detecting when a “partially instantiated QBF”
is false is a highly natural consideration;
in SAT/CSP, propagation/consistency heuristics are used,
which allow for clause learning

To use prop: need to detect when Φras is false
...but this is hard in general!

Relaxing
Goal: define HpΦ,Πkq

Let Φ “ Pφ be a QBF, let a be a partial assignment,
define Φras “ Prasφras

Prop: Φras false ñ clausepaq implied
(ie can be added to Φ)

How do we detect if a Φras is false? Hard in general!

Def (approximate): A relaxation of a QBF Ψ is
a QBF obtained from Ψ by shifting universal quantifiers left
and/or existential quantifiers right

Example: Consider a QBF Dx1Dx2@y@y 1Dx3ψ.
Example relaxations: @y@y 1Dx1Dx2Dx3ψ, Dx1@y 1Dx2@yDx3ψ

Prop: If a relaxation of a QBF Ψ is false, then Ψ is false

Def: For k ě 2, define HpΦ,Πkq as the set

tclausepaq | Φras has a false Πk relaxationu

Relaxing
Goal: define HpΦ,Πkq

Let Φ “ Pφ be a QBF, let a be a partial assignment,
define Φras “ Prasφras

Prop: Φras false ñ clausepaq implied
(ie can be added to Φ)

How do we detect if a Φras is false? Hard in general!

Def (approximate): A relaxation of a QBF Ψ is
a QBF obtained from Ψ by shifting universal quantifiers left
and/or existential quantifiers right

Example: Consider a QBF Dx1Dx2@y@y 1Dx3ψ.
Example relaxations: @y@y 1Dx1Dx2Dx3ψ, Dx1@y 1Dx2@yDx3ψ

Prop: If a relaxation of a QBF Ψ is false, then Ψ is false

Def: For k ě 2, define HpΦ,Πkq as the set

tclausepaq | Φras has a false Πk relaxationu

Relaxing
Goal: define HpΦ,Πkq

Let Φ “ Pφ be a QBF, let a be a partial assignment,
define Φras “ Prasφras

Prop: Φras false ñ clausepaq implied
(ie can be added to Φ)

How do we detect if a Φras is false? Hard in general!

Def (approximate): A relaxation of a QBF Ψ is
a QBF obtained from Ψ by shifting universal quantifiers left
and/or existential quantifiers right

Example: Consider a QBF Dx1Dx2@y@y 1Dx3ψ.
Example relaxations: @y@y 1Dx1Dx2Dx3ψ, Dx1@y 1Dx2@yDx3ψ

Prop: If a relaxation of a QBF Ψ is false, then Ψ is false

Def: For k ě 2, define HpΦ,Πkq as the set

tclausepaq | Φras has a false Πk relaxationu

Relaxing
Goal: define HpΦ,Πkq

Let Φ “ Pφ be a QBF, let a be a partial assignment,
define Φras “ Prasφras

Prop: Φras false ñ clausepaq implied
(ie can be added to Φ)

How do we detect if a Φras is false? Hard in general!

Def (approximate): A relaxation of a QBF Ψ is
a QBF obtained from Ψ by shifting universal quantifiers left
and/or existential quantifiers right

Example: Consider a QBF Dx1Dx2@y@y 1Dx3ψ.
Example relaxations: @y@y 1Dx1Dx2Dx3ψ, Dx1@y 1Dx2@yDx3ψ

Prop: If a relaxation of a QBF Ψ is false, then Ψ is false

Def: For k ě 2, define HpΦ,Πkq as the set

tclausepaq | Φras has a false Πk relaxationu

Relaxing
Goal: define HpΦ,Πkq

Let Φ “ Pφ be a QBF, let a be a partial assignment,
define Φras “ Prasφras

Prop: Φras false ñ clausepaq implied
(ie can be added to Φ)

How do we detect if a Φras is false? Hard in general!

Def (approximate): A relaxation of a QBF Ψ is
a QBF obtained from Ψ by shifting universal quantifiers left
and/or existential quantifiers right

Example: Consider a QBF Dx1Dx2@y@y 1Dx3ψ.
Example relaxations: @y@y 1Dx1Dx2Dx3ψ, Dx1@y 1Dx2@yDx3ψ

Prop: If a relaxation of a QBF Ψ is false, then Ψ is false

Def: For k ě 2, define HpΦ,Πkq as the set

tclausepaq | Φras has a false Πk relaxationu

Relaxing
Goal: define HpΦ,Πkq

Let Φ “ Pφ be a QBF, let a be a partial assignment,
define Φras “ Prasφras

Prop: Φras false ñ clausepaq implied
(ie can be added to Φ)

How do we detect if a Φras is false? Hard in general!

Def (approximate): A relaxation of a QBF Ψ is
a QBF obtained from Ψ by shifting universal quantifiers left
and/or existential quantifiers right

Example: Consider a QBF Dx1Dx2@y@y 1Dx3ψ.
Example relaxations: @y@y 1Dx1Dx2Dx3ψ, Dx1@y 1Dx2@yDx3ψ

Prop: If a relaxation of a QBF Ψ is false, then Ψ is false

Def: For k ě 2, define HpΦ,Πkq as the set

tclausepaq | Φras has a false Πk relaxationu

Relaxing QU-resolution

Def: For k ě 2, define HpΦ,Πkq as the set

tclausepaq | Φras has a false Πk relaxationu

We have HpΦ,Π2q Ď HpΦ,Π3q Ď ¨ ¨ ¨

Def: Relaxing QU-resolution is the proof system ensemble
pLkqkě2 where Lk is defined as

tpΦ, πq | π is a QU-res proof of Φ from HpΦ,Πkqu

Remarks:

§ This makes sense even if Φ is not clausal, i.e.,
even if Φ has the form Q1v1 . . .Qnvn(circuit)

§ This way of “lifting” to an enhanced set of clauses
can be used to define relaxed versions
of any clause-based QBF proof system

Relaxing QU-resolution
Def: For k ě 2, define HpΦ,Πkq as the set

tclausepaq | Φras has a false Πk relaxationu

We have HpΦ,Π2q Ď HpΦ,Π3q Ď ¨ ¨ ¨

Def: Relaxing QU-resolution is the proof system ensemble
pLkqkě2 where Lk is defined as

tpΦ, πq | π is a QU-res proof of Φ from HpΦ,Πkqu

Remarks:

§ This makes sense even if Φ is not clausal, i.e.,
even if Φ has the form Q1v1 . . .Qnvn(circuit)

§ This way of “lifting” to an enhanced set of clauses
can be used to define relaxed versions
of any clause-based QBF proof system

Relaxing QU-resolution
Def: For k ě 2, define HpΦ,Πkq as the set

tclausepaq | Φras has a false Πk relaxationu

We have HpΦ,Π2q Ď HpΦ,Π3q Ď ¨ ¨ ¨

Def: Relaxing QU-resolution is the proof system ensemble
pLkqkě2 where Lk is defined as

tpΦ, πq | π is a QU-res proof of Φ from HpΦ,Πkqu

Remarks:

§ This makes sense even if Φ is not clausal, i.e.,
even if Φ has the form Q1v1 . . .Qnvn(circuit)

§ This way of “lifting” to an enhanced set of clauses
can be used to define relaxed versions
of any clause-based QBF proof system

Relaxing QU-resolution
Def: For k ě 2, define HpΦ,Πkq as the set

tclausepaq | Φras has a false Πk relaxationu

We have HpΦ,Π2q Ď HpΦ,Π3q Ď ¨ ¨ ¨

Def: Relaxing QU-resolution is the proof system ensemble
pLkqkě2 where Lk is defined as

tpΦ, πq | π is a QU-res proof of Φ from HpΦ,Πkqu

Remarks:

§ This makes sense even if Φ is not clausal, i.e.,
even if Φ has the form Q1v1 . . .Qnvn(circuit)

§ This way of “lifting” to an enhanced set of clauses
can be used to define relaxed versions
of any clause-based QBF proof system

Relaxing QU-resolution
Def: For k ě 2, define HpΦ,Πkq as the set

tclausepaq | Φras has a false Πk relaxationu

We have HpΦ,Π2q Ď HpΦ,Π3q Ď ¨ ¨ ¨

Def: Relaxing QU-resolution is the proof system ensemble
pLkqkě2 where Lk is defined as

tpΦ, πq | π is a QU-res proof of Φ from HpΦ,Πkqu

Remarks:

§ This makes sense even if Φ is not clausal, i.e.,
even if Φ has the form Q1v1 . . .Qnvn(circuit)

§ This way of “lifting” to an enhanced set of clauses
can be used to define relaxed versions
of any clause-based QBF proof system

Contributions

1. Framework – proof system ensembles

2. Definition of relaxing QU-resolution,
a particular ensemble obtained by “lifting” QU-resolution

3. Two technical results on relaxing QU-resolution:
exponential lower bound for general version,
exponential separation of general/tree-like versions

Contributions

1. Framework – proof system ensembles

2. Definition of relaxing QU-resolution,
a particular ensemble obtained by “lifting” QU-resolution

3. Two technical results on relaxing QU-resolution:
exponential lower bound for general version,
exponential separation of general/tree-like versions

Contributions

1. Framework – proof system ensembles

2. Definition of relaxing QU-resolution,
a particular ensemble obtained by “lifting” QU-resolution

3. Two technical results on relaxing QU-resolution:
exponential lower bound for general version,
exponential separation of general/tree-like versions

Contributions

1. Framework – proof system ensembles

2. Definition of relaxing QU-resolution,
a particular ensemble obtained by “lifting” QU-resolution

3. Two technical results on relaxing QU-resolution:
exponential lower bound for general version,
exponential separation of general/tree-like versions

Questions

We gave one proposal for how to define pf system ensembles.

Are there natural ways to define other pf system ensembles?

What constitutes a good/reasonable/natural/etc. definition
of a proof system ensemble?

Questions

We gave one proposal for how to define pf system ensembles.

Are there natural ways to define other pf system ensembles?

What constitutes a good/reasonable/natural/etc. definition
of a proof system ensemble?

Questions

We gave one proposal for how to define pf system ensembles.

Are there natural ways to define other pf system ensembles?

What constitutes a good/reasonable/natural/etc. definition
of a proof system ensemble?

Questions

We gave one proposal for how to define pf system ensembles.

Are there natural ways to define other pf system ensembles?

What constitutes a good/reasonable/natural/etc. definition
of a proof system ensemble?

Questions

We gave one proposal for how to define pf system ensembles.

Are there natural ways to define other pf system ensembles?

What constitutes a good/reasonable/natural/etc. definition
of a proof system ensemble?

