Bounded arithmetic, ultrapowers, and replacement

Michal Garlík

University of Warsaw

Proof Complexity Workshop in St. Petersburg 2016

- (Buss) The Σ^b_1 -definable functions in S^1_2 are exactly those in FP.
- (Allen, Takeuti) The Σ_1^b -definable functions in R_2^1 are exactly those in uniform FNC.
- Separations of theories of bounded arithmetic shed insight into problems in computational complexity. There are known model construction tasks in bounded arithmetic which are equivalent to problems in complexity theory.
- With $\textit{strictR}_2^1$ it looks like its Σ_1^b -consequences are a fair bit weaker than FNC , so there is a hope to separate it from S^1_2 .
- Cook-Thapen: several separation results for theories below S^1_2 . E.g.: If integer factoring is not possible in probabilistic polynomial time, then $PV_1 \neq S_2^1$.

\n- \n
$$
L_2: 0, S, +, \cdot, =, \leq
$$
,\n $[x/2]$ (x divided by 2 rounded down),\n $[x]$ ($= \lceil \log(x + 1) \rceil$, the length of x in binary notation),\n $x \# y$ ($= 2^{|x| \cdot |y|}$),\n $MSP(x, i)$ ($= [x/2^i]$),\n $x \div y$ (x minus y if this is greater than zero and zero otherwise).\n
\n

- BASIC is a finite set of open axioms fixing the basic properties of the language, like $x + S(y) = S(x + y)$, $|x \neq y| = |x| \cdot |y| + 1, ...$
- $L^m \mathsf{IND}_\phi$ induction axiom for a formula ϕ is

$$
\phi(0) \wedge \forall x < |t|_m(\phi(x) \rightarrow \phi(S(x))) \rightarrow \phi(|t|_m),
$$

where t is a term and we are using $|x|_0 := x, |x|_m := ||x|_{m-1}|$.

Bounded arithmetic theories

- **•** Bounded quantifiers: $\exists x \leq t$; $\forall x \leq t$
- Sharply bounded quantifiers: $\exists x \leq |t|$; $\forall x \leq |t|$
- A formula is called (sharply) bounded if all quantifiers in it are (sharply) bounded.
- Σ^b_0 (or Π^b_0) is the class of sharply bounded formulas
- For $i > 0$, Σ_{i+1}^b (resp. $\prod_{i=1}^b$) is the least class containing Π_i^b (resp. $(\boldsymbol{\Sigma}_i^b)$ and closed under conjunction, disjunction, sharply bounded quantification and bounded existential (resp. universal) quantification.

•
$$
T_2^i
$$
 is BASIC + Σ_i^b - IND
\n S_2^i is BASIC + Σ_i^b - LIND
\n R_2^i is BASIC + Σ_i^b - LUND

Coding and Replacement

- Since we have MSP and \div in the language, we can define a term β _a(w, i), such that if w is the number whose binary representation consitst of 1 followed by binary representations of numbers $b_1, \ldots, b_\ell,$ each padded with zeros to be of length $|a|$, then $\beta_{\bm{s}}(w,i) = b_i.$
- Replacement scheme (also called sharply bounded collection scheme) BBΓ for a class of formulas Γ is

$$
(\forall x \leq |s|)(\exists y \leq t)A(x,y) \rightarrow
$$

$$
(\exists w \leq 2(t \# 2s))(\forall x \leq |s|)\beta_t(w,x) \leq t \land A(x,\beta_t(w,x))
$$

for each $A(x, y) \in \Gamma$ and for all terms s, t, such that $A(x, y)$, s, t may contain other free variables but t and s do not involve x or y . Here $2(t\#2s)$ is a bound on any string consisting of concatenating $|s|+1$ strings of length $\leq |t|$.

Strict theories

The strict variant of Σ^b_i , the $\mathit{strict}\Sigma^b_i$ -formulas, are of the form

 $(\exists x_1 \le t_1)(\forall x_2 \le t_2) \dots (Qx_i \le t_i)\phi,$

where Q is \exists if i is odd and \forall if i is even, and ϕ is sharply bounded.

- A $\mathsf{strict} \Pi^b_i$ -formula is defined similarly but with the outer quantifier being universal.
- Does it make any difference if we define T_2^i, S_2^i, R_2^i using $\textit{strict}\Sigma^b_i-L^m\mathsf{IND}$ rather than $\Sigma^b_i-L^m\mathsf{IND}$ $(m=0,1,2,$ respectively)? Denote these theories by strict \mathcal{T}_2^i , strict S_2^i , strict \mathcal{R}_2^i .
- Makes no difference for T_2^i and S_2^i : The strict theory proves $BB\Sigma^b_i$, and so it proves that each formula is equivalent to its strict form.
- For R_2^i it is unknown. We don't know whether strict R_2^i proves $B\mathcal{B}\Sigma_i^b$.
- R_2^i proves $BB\Sigma_i^b$ (Allen): Use LLIND on

$$
(\forall u \leq |s|)(\exists w \leq 2(t\#2s))(\forall x \leq |s|)
$$

$$
[(x \leq 2^{\min(j,||s||)} \land u + x \leq |s|) \to A(u + x, \beta_t(w, x)]
$$

Definable ultrapower

- Skolem: the first historical construction of a nonstandard model of PA
- Paris, Hájek-Pudlák: constructions of extensions of models of arithmetic

Restricted ultrapower

- Kochen-Kripke: reproved Paris-Harrington theorem
- Máté: suggests it as a possible method to tackle problems in computational complexity
- Krajíček: similar method of Boolean-valued models based on random variables

Let M be a countable nonstandard model of arithmetic, $n \in M$ a nonstandard element and $\psi(x, y)$ an L_2 -formula. We are looking for a construction of models of S^1_2 of the form ${\cal F}/G$, such that:

- \bullet F is some set of functions $f \in M$ with domain $\Omega \subseteq M$
- G is a filter on M-definable subsets of Ω
- \bullet F/G coincides with M up to n
- \bullet $\mathcal{F}/\mathcal{G} \models (\forall y) \neg \psi([id_{\Omega}], y).$

Definition (ϵ -OWP)

Let $\epsilon : \mathbb{N} \to [0, 1]$ be a function. A polynomial-time function $g: \{0,1\}^* \rightarrow \{0,1\}^*$ is called an $\epsilon\text{-}\mathit{OWP}$ (one-way permutation) if for every n, g is a permutation of $\{0,1\}^n$ and for any polynomial p , for all sufficiently large n and for every boolean circuit C of size at most $p(n)$.

$$
\Pr_{x\in\{0,1\}^n}[g(C(x))=x]<\epsilon(n).
$$

We will need $\epsilon(x) := 2^{-\varkappa^\delta}$ where $\delta > 0$ is some rational number.

Theorem

Let M be a nonstandard model of true arithmetic and let $n \in M$ be nonstandard. Let $\epsilon({\sf x}) := 2^{-{\sf x}^\delta}$ where $\delta>0$ is some (standard) rational number and assume that an ϵ -OWP exists. Denote g the ϵ -OWP in M and Let \tilde{g} be a function symbol interpreted in M by g. Then there exists a model N of strict $R^1_2(\widetilde{g})$ such that N restricted to Log(N) coincides with M restricted to $\{x \in M \mid x \leq n^k \text{ for some } k \in \mathbb{N}\}\$ and the following instance of $B\!B\!S^{\ b}_0(\tilde{g})$ does not hold in N:

$$
(\forall x)((\forall i < n)(\exists z < 1 \# LSP(x, n)) \tilde{g}(z) = \beta_{LSP(x, n)}(x, i) \\ \rightarrow (\exists y)(\forall i < n) \tilde{g}(\beta_{LSP(x, n)}(y, i)) = \beta_{LSP(x, n)}(x, i)).
$$

Theorem

Let $\delta > 0$ be a rational number and let $\epsilon(x) := 2^{-x^{\delta}}$. If an ϵ -OWP exists and is in NC, then strict R_2^1 is weaker than R_2^1 .

Theorem

Let $\delta>0$ be a rational number, $\epsilon(x):=2^{-x^{\delta}}$ and suppose that an ϵ -OWP exists. Then $PV_1 + \text{strict} \Sigma_1^b(PV) - \text{LLIND}$ is weaker than $PV_1 + \Sigma_1^b(PV) - \text{LLIND}.$

Theorem

For a new unary relation symbol α , strict $R^1_2(\alpha)$ is weaker than $R^1_2(\alpha).$

Thank you!