Bounded arithmetic, ultrapowers, and replacement

Michal Garlík

University of Warsaw

Proof Complexity Workshop in St. Petersburg 2016

- (Buss) The Σ_1^b -definable functions in S_2^1 are exactly those in *FP*.
- (Allen, Takeuti) The Σ_1^b -definable functions in R_2^1 are exactly those in uniform *FNC*.
- Separations of theories of bounded arithmetic shed insight into problems in computational complexity. There are known model construction tasks in bounded arithmetic which are equivalent to problems in complexity theory.
- With strict R₂¹ it looks like its Σ₁^b-consequences are a fair bit weaker than FNC, so there is a hope to separate it from S₂¹.
- Cook-Thapen: several separation results for theories below S_2^1 . E.g.: If integer factoring is not possible in probabilistic polynomial time, then $PV_1 \neq S_2^1$.

•
$$L_2: 0, S, +, \cdot, =, \leq$$
,
 $\lfloor x/2 \rfloor$ (x divided by 2 rounded down),
 $|x|$ (= $\lceil \log(x + 1) \rceil$, the length of x in binary notation),
 $x \# y$ (= $2^{|x| \cdot |y|}$),
 $MSP(x, i)$ (= $\lfloor x/2^i \rfloor$),
 $x \div y$ (x minus y if this is greater than zero and zero otherwise)

- BASIC is a finite set of open axioms fixing the basic properties of the language, like x + S(y) = S(x + y), |x#y| = |x| · |y| + 1,...
- $L^m IND_{\phi}$ induction axiom for a formula ϕ is

$$\phi(0) \land \forall x < |t|_m(\phi(x) \to \phi(S(x))) \to \phi(|t|_m),$$

where t is a term and we are using $|x|_0 := x, |x|_m := ||x|_{m-1}|$.

Bounded arithmetic theories

- Bounded quantifiers: $\exists x \leq t$; $\forall x \leq t$
- Sharply bounded quantifiers: $\exists x \leq |t|$; $\forall x \leq |t|$
- A formula is called (sharply) bounded if all quantifiers in it are (sharply) bounded.
- Σ_0^b (or Π_0^b) is the class of sharply bounded formulas
- For i > 0, \sum_{i+1}^{b} (resp. \prod_{i+1}^{b}) is the least class containing \prod_{i}^{b} (resp. \sum_{i}^{b}) and closed under conjunction, disjunction, sharply bounded quantification and bounded existential (resp. universal) quantification.

•
$$T_2^i$$
 is $BASIC + \Sigma_i^b - IND$
 S_2^i is $BASIC + \Sigma_i^b - LIND$
 R_2^i is $BASIC + \Sigma_i^b - LLIND$

Coding and Replacement

- Since we have MSP and -i in the language, we can define a term $\beta_a(w, i)$, such that if w is the number whose binary representation consists of 1 followed by binary representations of numbers b_1, \ldots, b_ℓ , each padded with zeros to be of length |a|, then $\beta_a(w, i) = b_i$.
- Replacement scheme (also called sharply bounded collection scheme) $BB\Gamma$ for a class of formulas Γ is

$$(\forall x \leq |s|)(\exists y \leq t)A(x,y) \rightarrow \ (\exists w \leq 2(t\#2s))(\forall x \leq |s|)\beta_t(w,x) \leq t \land A(x,\beta_t(w,x))$$

for each $A(x, y) \in \Gamma$ and for all terms s, t, such that A(x, y), s, t may contain other free variables but t and s do not involve x or y. Here 2(t#2s) is a bound on any string consisting of concatenating |s| + 1 strings of length $\leq |t|$.

Strict theories

• The strict variant of Σ_i^b , the $strict\Sigma_i^b$ -formulas, are of the form

 $(\exists x_1 \leq t_1)(\forall x_2 \leq t_2)\dots(Qx_i \leq t_i)\phi,$

where Q is \exists if *i* is odd and \forall if *i* is even, and ϕ is sharply bounded.

- A strictΠ^b_i-formula is defined similarly but with the outer quantifier being universal.
- Does it make any difference if we define Tⁱ₂, Sⁱ₂, Rⁱ₂ using strictΣ^b_i L^mIND rather than Σ^b_i L^mIND (m = 0, 1, 2, respectively)? Denote these theories by strictTⁱ₂, strictSⁱ₂, strictRⁱ₂.
- Makes no difference for T_2^i and S_2^i : The strict theory proves $BB\Sigma_i^b$, and so it proves that each formula is equivalent to its strict form.
- For R_2^i it is unknown. We don't know whether $strictR_2^i$ proves $BB\Sigma_i^b$.
- R_2^i proves $BB\Sigma_i^b$ (Allen): Use LLIND on

$$egin{aligned} (orall u \leq |s|)(\exists w \leq 2(t\#2s))(orall x \leq |s|)\ & [(x \leq 2^{\min(j,||s||)} \wedge u + x \leq |s|)
ightarrow A(u+x,eta_t(w,x)] \end{aligned}$$

Definable ultrapower

- Skolem: the first historical construction of a nonstandard model of PA
- Paris, Hájek-Pudlák: constructions of extensions of models of arithmetic

Restricted ultrapower

- Kochen-Kripke: reproved Paris-Harrington theorem
- Máté: suggests it as a possible method to tackle problems in computational complexity
- Krajíček: similar method of Boolean-valued models based on random variables

Let M be a countable nonstandard model of arithmetic, $n \in M$ a nonstandard element and $\psi(x, y)$ an L_2 -formula. We are looking for a construction of models of S_2^1 of the form \mathcal{F}/G , such that:

- \mathcal{F} is some set of functions $f \in M$ with domain $\Omega \subseteq M$
- G is a filter on M-definable subsets of Ω
- \mathcal{F}/G coincides with M up to n
- $\mathcal{F}/G \models (\forall y) \neg \psi([id_{\Omega}], y).$

Definition (ϵ -OWP)

Let $\epsilon : \mathbf{N} \to [0, 1]$ be a function. A polynomial-time function $g : \{0, 1\}^* \to \{0, 1\}^*$ is called an ϵ -OWP (one-way permutation) if for every n, g is a permutation of $\{0, 1\}^n$ and for any polynomial p, for all sufficiently large n and for every boolean circuit C of size at most p(n),

$$\Pr_{x\in\{0,1\}^n}[g(C(x))=x]<\epsilon(n).$$

We will need $\epsilon(x) := 2^{-x^{\delta}}$ where $\delta > 0$ is some rational number.

Theorem

Let M be a nonstandard model of true arithmetic and let $n \in M$ be nonstandard. Let $\epsilon(x) := 2^{-x^{\delta}}$ where $\delta > 0$ is some (standard) rational number and assume that an ϵ -OWP exists. Denote g the ϵ -OWP in M and Let \tilde{g} be a function symbol interpreted in M by g. Then there exists a model N of strictR¹₂(\tilde{g}) such that N restricted to Log(N) coincides with M restricted to $\{x \in M \mid x \leq n^k \text{ for some } k \in \mathbf{N}\}$ and the following instance of BB $\Sigma_0^b(\tilde{g})$ does not hold in N:

$$\begin{aligned} (\forall x) \big((\forall i < n) (\exists z < 1 \# LSP(x, n)) \, \tilde{g}(z) &= \beta_{LSP(x, n)}(x, i) \\ &\to (\exists y) (\forall i < n) \, \tilde{g}(\beta_{LSP(x, n)}(y, i)) = \beta_{LSP(x, n)}(x, i) \big). \end{aligned}$$

Theorem

Let $\delta > 0$ be a rational number and let $\epsilon(x) := 2^{-x^{\delta}}$. If an ϵ -OWP exists and is in NC, then strict R_2^1 is weaker than R_2^1 .

Theorem

Let $\delta > 0$ be a rational number, $\epsilon(x) := 2^{-x^{\delta}}$ and suppose that an ϵ -OWP exists. Then $PV_1 + strict\Sigma_1^b(PV) - LLIND$ is weaker than $PV_1 + \Sigma_1^b(PV) - LLIND$.

Theorem

For a new unary relation symbol α , strict $R_2^1(\alpha)$ is weaker than $R_2^1(\alpha)$.

Thank you!