Subtraction-free complexity and cluster algebras (joint work with S. Fomin, G. Koshevoy)

Dima Grigoriev (Lille)

CNRS

18/05/2016, Saint-Petersbourg

Let $M \subset \{+, -, \times, /\}$. Complexity $C_M(f)$ for a rational function $f \in \mathbb{Q}(X_1, \ldots, X_n)$ is defined as the minimal number of operations from M necessary to compute f, provided it is finite.

Problem. For given $M \subset M_1 \subset \{+, -, \times, /\}$ how big can be $C_M(f)$ in comparison with $C_{M_1}(f)$?

This problem is non-trivial just for three pairs of $M \subset M_1$.

Theorem

 $C_{+,-,\times}(f) \le O(C_{+,-,\times,/}(f) \cdot \deg(f))$ for a polynomial f (**V. Strassen, 1973**)

("ring complexity" $\leq O$ ("field complexity" \cdot deg)) **Question**. Is the bound sharp for big deg(f)?

Corollary

$\mathcal{C}_{+,-,\, imes}(\det) \leq \mathcal{O}(n^4)$ (D. K. Faddeev, V. N. Faddeeva, 1960

Dima Grigoriev (CNRS)

Let $M \subset \{+, -, \times, /\}$. Complexity $C_M(f)$ for a rational function $f \in \mathbb{Q}(X_1, \ldots, X_n)$ is defined as the minimal number of operations from M necessary to compute f, provided it is finite.

Problem. For given $M \subset M_1 \subset \{+, -, \times, /\}$ how big can be $C_M(f)$ in comparison with $C_{M_1}(f)$?

This problem is non-trivial just for three pairs of $M \subset M_1$.

Theorem

 $C_{+,-,\times}(f) \le O(C_{+,-,\times,/}(f) \cdot \deg(f))$ for a polynomial f (**V. Strassen, 1973**)

("ring complexity" $\leq O$ ("field complexity" \cdot deg)) **Question**. Is the bound sharp for big deg(f)?

Corollary

$\mathcal{C}_{+,-,\, imes}(\det) \leq \mathcal{O}(n^4)$ (D. K. Faddeev, V. N. Faddeeva, 1960

Dima Grigoriev (CNRS)

Let $M \subset \{+, -, \times, /\}$. Complexity $C_M(f)$ for a rational function $f \in \mathbb{Q}(X_1, \ldots, X_n)$ is defined as the minimal number of operations from M necessary to compute f, provided it is finite.

Problem. For given $M \subset M_1 \subset \{+, -, \times, /\}$ how big can be $C_M(f)$ in comparison with $C_{M_1}(f)$?

This problem is non-trivial just for three pairs of $M \subset M_1$.

Theorem

 $C_{+,-,\times}(f) \leq O(C_{+,-,\times,/}(f) \cdot \deg(f))$ for a polynomial f (**V. Strassen, 1973**)

("ring complexity" $\leq O$ ("field complexity" \cdot deg)) **Question**. Is the bound sharp for big deg(f)?

Corollary

$\mathcal{C}_{+,\,-,\, imes}(\mathsf{det}) \leq \mathcal{O}(n^4)$ (D. K. Faddeev, V. N. Faddeeva, 1960

Dima Grigoriev (CNRS)

Let $M \subset \{+, -, \times, /\}$. Complexity $C_M(f)$ for a rational function $f \in \mathbb{Q}(X_1, \ldots, X_n)$ is defined as the minimal number of operations from M necessary to compute f, provided it is finite.

Problem. For given $M \subset M_1 \subset \{+, -, \times, /\}$ how big can be $C_M(f)$ in comparison with $C_{M_1}(f)$?

This problem is non-trivial just for three pairs of $M \subset M_1$.

Theorem

 $C_{+,-,\times}(f) \le O(C_{+,-,\times,/}(f) \cdot \deg(f))$ for a polynomial f (**V. Strassen, 1973**)

("ring complexity" $\leq O$ ("field complexity" \cdot deg)) **Question**. Is the bound sharp for big deg(f)?

Corollary

$\mathcal{C}_{+,\,-,\, imes}(\mathsf{det}) \leq \mathcal{O}(n^4)$ (D. K. Faddeev, V. N. Faddeeva, 1960

Dima Grigoriev (CNRS)

Let $M \subset \{+, -, \times, /\}$. Complexity $C_M(f)$ for a rational function $f \in \mathbb{Q}(X_1, \ldots, X_n)$ is defined as the minimal number of operations from M necessary to compute f, provided it is finite.

Problem. For given $M \subset M_1 \subset \{+, -, \times, /\}$ how big can be $C_M(f)$ in comparison with $C_{M_1}(f)$?

This problem is non-trivial just for three pairs of $M \subset M_1$.

Theorem

 $C_{+,-,\times}(f) \leq O(C_{+,-,\times,/}(f) \cdot \deg(f))$ for a polynomial f (V. Strassen, 1973)

("ring complexity" $\leq O$ ("field complexity" \cdot deg))

Question. Is the bound sharp for big deg(f)?

Corollary

$\mathcal{C}_{+,\,-,\, imes}(\mathsf{det}) \leq \mathcal{O}(n^4)$ (D. K. Faddeev, V. N. Faddeeva, 1960

Let $M \subset \{+, -, \times, /\}$. Complexity $C_M(f)$ for a rational function $f \in \mathbb{Q}(X_1, \ldots, X_n)$ is defined as the minimal number of operations from M necessary to compute f, provided it is finite.

Problem. For given $M \subset M_1 \subset \{+, -, \times, /\}$ how big can be $C_M(f)$ in comparison with $C_{M_1}(f)$?

This problem is non-trivial just for three pairs of $M \subset M_1$.

Theorem

 $C_{+,-,\times}(f) \leq O(C_{+,-,\times,/}(f) \cdot \deg(f))$ for a polynomial f (V. Strassen, 1973)

("ring complexity" $\leq O$ ("field complexity" $\cdot \deg$))

Question. Is the bound sharp for big deg(f)?

Corollary

$\mathcal{O}_{+,\,-,\, imes}(\mathsf{det}) \leq \mathcal{O}(n^4)$ (D. K. Faddeev, V. N. Faddeeva, 1960)

Dima Grigoriev (CNRS)

Let $M \subset \{+, -, \times, /\}$. Complexity $C_M(f)$ for a rational function $f \in \mathbb{Q}(X_1, \ldots, X_n)$ is defined as the minimal number of operations from M necessary to compute f, provided it is finite.

Problem. For given $M \subset M_1 \subset \{+, -, \times, /\}$ how big can be $C_M(f)$ in comparison with $C_{M_1}(f)$?

This problem is non-trivial just for three pairs of $M \subset M_1$.

Theorem

 $C_{+,-,\times}(f) \leq O(C_{+,-,\times,/}(f) \cdot \deg(f))$ for a polynomial f (V. Strassen, 1973)

("ring complexity" $\leq O$ ("field complexity" \cdot deg)) **Question**. Is the bound sharp for big deg(*f*)?

Corollary

$\mathcal{O}_{+,\,-,\, imes}(\mathsf{det}) \leq \mathcal{O}(n^4)$ (D. K. Faddeev, V. N. Faddeeva, 1960)

Dima Grigoriev (CNRS)

Let $M \subset \{+, -, \times, /\}$. Complexity $C_M(f)$ for a rational function $f \in \mathbb{Q}(X_1, \ldots, X_n)$ is defined as the minimal number of operations from M necessary to compute f, provided it is finite.

Problem. For given $M \subset M_1 \subset \{+, -, \times, /\}$ how big can be $C_M(f)$ in comparison with $C_{M_1}(f)$?

This problem is non-trivial just for three pairs of $M \subset M_1$.

Theorem

 $C_{+,-,\times}(f) \leq O(C_{+,-,\times,/}(f) \cdot \deg(f))$ for a polynomial f (V. Strassen, 1973)

("ring complexity" $\leq O$ ("field complexity" $\cdot \deg$))

Question. Is the bound sharp for big deg(f)?

Corollary

$\mathcal{C}_{+,\,-,\, imes}(\text{det}) \leq \mathcal{O}(n^4)$ (D. K. Faddeev, V. N. Faddeeva, 1960)

Dima Grigoriev (CNRS)

• $C_{+,\times}(f)$ can be exponentially bigger than $C_{+,\times,/}(f)$

• $C_{+,\times,/}(g)$ can be exponentially bigger than $C_{+,-,\times,/}(g)$.

L. Valiant, 1980 has constructed a polynomial *h* (with positive coefficients) such that $C_{+,\times}(h)$ is exponentially bigger than $C_{+,-,\times,/}(h)$. Funny consequence: at least one of two above • results holds. But which one?: A growth of $C_{+,\times,/}(h)$ is not known.

Subtraction-free computations have a meaning in numerical analysis: if a computation deals with positive numbers *c* given with a relative error, i. e. $(1 - \epsilon) \cdot b < c < (1 + \epsilon) \cdot b$ where ϵ is a relative error then one can estimate easily relative error after operations +, \times , /.

Polynomial in *n* variables is called *numerically positive* if it is positive everywhere on the positive orthant $(0, \infty)^n$.

Theorem. Polynomial *f* has a finite subtraction-free complexity $C_{+, \times, /}(f) < \infty$ iff for each face *P* of its Newton polytope the restriction $f|_P$ is numerically positive (**Handelman, 1985**).

Dima Grigoriev (CNRS)

• $C_{+,\times}(f)$ can be exponentially bigger than $C_{+,\times,/}(f)$

• $C_{+,\times,/}(g)$ can be exponentially bigger than $C_{+,-,\times,/}(g)$.

L. Valiant, 1980 has constructed a polynomial *h* (with positive coefficients) such that $C_{+,\times}(h)$ is exponentially bigger than $C_{+,-,\times,/}(h)$. Funny consequence: at least one of two above • results holds. But which one?: A growth of $C_{+,\times,/}(h)$ is not known.

Subtraction-free computations have a meaning in numerical analysis: if a computation deals with positive numbers *c* given with a relative error, i. e. $(1 - \epsilon) \cdot b < c < (1 + \epsilon) \cdot b$ where ϵ is a relative error then one can estimate easily relative error after operations +, \times , /.

Polynomial in *n* variables is called *numerically positive* if it is positive everywhere on the positive orthant $(0, \infty)^n$.

Theorem. Polynomial *f* has a finite subtraction-free complexity $C_{+, \times, /}(f) < \infty$ iff for each face *P* of its Newton polytope the restriction $f|_P$ is numerically positive (**Handelman, 1985**).

Dima Grigoriev (CNRS)

• $C_{+,\times}(f)$ can be exponentially bigger than $C_{+,\times,/}(f)$

• $C_{+,\times,/}(g)$ can be exponentially bigger than $C_{+,-,\times,/}(g)$.

L. Valiant, 1980 has constructed a polynomial *h* (with positive coefficients) such that $C_{+,\times}(h)$ is exponentially bigger than $C_{+,-,\times,/}(h)$. Funny consequence: at least one of two above • results holds. But which one?: A growth of $C_{+,\times,/}(h)$ is not known.

Subtraction-free computations have a meaning in numerical analysis: if a computation deals with positive numbers *c* given with a relative error, i. e. $(1 - \epsilon) \cdot b < c < (1 + \epsilon) \cdot b$ where ϵ is a relative error then one can estimate easily relative error after operations +, \times , /.

Polynomial in *n* variables is called *numerically positive* if it is positive everywhere on the positive orthant $(0, \infty)^n$.

Theorem. Polynomial *f* has a finite subtraction-free complexity $C_{+, \times, /}(f) < \infty$ iff for each face *P* of its Newton polytope the restriction $f|_P$ is numerically positive (**Handelman, 1985**).

Dima Grigoriev (CNRS)

- $C_{+,\,\times}(f)$ can be exponentially bigger than $C_{+,\,\times,\,/}(f)$
- $C_{+,\,\times,\,/}(g)$ can be exponentially bigger than $C_{+,\,-,\,\times,\,/}(g)$.

L. Valiant, 1980 has constructed a polynomial *h* (with positive coefficients) such that $C_{+,\times}(h)$ is exponentially bigger than $C_{+,-,\times,/}(h)$. Funny consequence: at least one of two above • results holds. But which one?: A growth of $C_{+,\times,/}(h)$ is not known.

Subtraction-free computations have a meaning in numerical analysis: if a computation deals with positive numbers *c* given with a relative error, i. e. $(1 - \epsilon) \cdot b < c < (1 + \epsilon) \cdot b$ where ϵ is a relative error then one can estimate easily relative error after operations +, \times , /.

Polynomial in *n* variables is called *numerically positive* if it is positive everywhere on the positive orthant $(0, \infty)^n$.

Theorem. Polynomial *f* has a finite subtraction-free complexity $C_{+, \times, /}(f) < \infty$ iff for each face *P* of its Newton polytope the restriction $f|_P$ is numerically positive (**Handelman, 1985**).

Dima Grigoriev (CNRS)

- $C_{+,\times}(f)$ can be exponentially bigger than $C_{+,\times,/}(f)$
- $C_{+,\times,/}(g)$ can be exponentially bigger than $C_{+,-,\times,/}(g)$.
- L. Valiant, 1980 has constructed a polynomial h (with positive coefficients) such that $C_{+,\times}(h)$ is exponentially bigger than

 $C_{+,-,\times,/}(h)$. Funny consequence: at least one of two above • results

- $C_{+,\,\times}(f)$ can be exponentially bigger than $C_{+,\,\times,\,/}(f)$
- $C_{+,\, imes,\,/}(g)$ can be exponentially bigger than $C_{+,\,-,\, imes,\,/}(g)$.

L. Valiant, 1980 has constructed a polynomial *h* (with positive coefficients) such that $C_{+,\times}(h)$ is exponentially bigger than $C_{+,-,\times,/}(h)$. Funny consequence: at least one of two above • results holds. But which one?: A growth of $C_{+,\times,/}(h)$ is not known.

Subtraction-free computations have a meaning in numerical analysis: if a computation deals with positive numbers *c* given with a relative error, i. e. $(1 - \epsilon) \cdot b < c < (1 + \epsilon) \cdot b$ where ϵ is a relative error then one can estimate easily relative error after operations +, \times , /.

Polynomial in *n* variables is called *numerically positive* if it is positive everywhere on the positive orthant $(0, \infty)^n$.

Theorem. Polynomial *f* has a finite subtraction-free complexity $C_{+, \times, /}(f) < \infty$ iff for each face *P* of its Newton polytope the restriction $f|_P$ is numerically positive (**Handelman, 1985**).

Dima Grigoriev (CNRS)

Corollary. Subtraction-free complexity is computable < € > < € >

• $C_{+,\times}(f)$ can be exponentially bigger than $C_{+,\times,/}(f)$

• $C_{+,\times,/}(g)$ can be exponentially bigger than $C_{+,-,\times,/}(g)$.

L. Valiant, 1980 has constructed a polynomial h (with positive coefficients) such that $C_{+,\times}(h)$ is exponentially bigger than $C_{+,-,\times,/}(h)$. Funny consequence: at least one of two above • results holds. But which one?: A growth of $C_{\perp} \propto p(h)$ is not known.

- $C_{+,\times}(f)$ can be exponentially bigger than $C_{+,\times,/}(f)$
- $C_{+,\times,/}(g)$ can be exponentially bigger than $C_{+,-,\times,/}(g)$.

L. Valiant, 1980 has constructed a polynomial h (with positive coefficients) such that $C_{+,\times}(h)$ is exponentially bigger than $C_{+,-,\times,/}(h)$. Funny consequence: at least one of two above • results holds. But which one?: A growth of $C_{+,\times,/}(h)$ is not known.

- $C_{+,\,\times}(f)$ can be exponentially bigger than $C_{+,\,\times,\,/}(f)$
- $C_{+,\,\times,\,/}(g)$ can be exponentially bigger than $C_{+,\,-,\,\times,\,/}(g)$.
- **L. Valiant, 1980** has constructed a polynomial *h* (with positive coefficients) such that $C_{+,\times}(h)$ is exponentially bigger than $C_{+,-,\times,/}(h)$. Funny consequence: at least one of two above results holds. But which one?: A growth of $C_{+,\times,/}(h)$ is not known.
- Subtraction-free computations have a meaning in numerical analysis: if a computation deals with positive numbers *c* given with a relative error, i. e. $(1 \epsilon) \cdot b < c < (1 + \epsilon) \cdot b$ where ϵ is a relative error then one can estimate easily relative error after operations +, ×, /.
- Polynomial in *n* variables is called *numerically positive* if it is positive everywhere on the positive orthant $(0, \infty)^n$.

Theorem. Polynomial *f* has a finite subtraction-free complexity $C_{+,\times,/}(f) < \infty$ iff for each face *P* of its Newton polytope the restriction $f|_P$ is numerically positive (**Handelman, 1985**).

Dima Grigoriev (CNRS)

Subtraction-free complexity is computable <= <= >

- $C_{+,\, imes}(f)$ can be exponentially bigger than $C_{+,\, imes,\,/}(f)$
- $C_{+,\,\times,\,/}(g)$ can be exponentially bigger than $C_{+,\,-,\,\times,\,/}(g)$.

L. Valiant, 1980 has constructed a polynomial *h* (with positive coefficients) such that $C_{+,\times}(h)$ is exponentially bigger than $C_{+,-,\times,/}(h)$. Funny consequence: at least one of two above • results holds. But which one?: A growth of $C_{+,\times,/}(h)$ is not known.

Subtraction-free computations have a meaning in numerical analysis: if a computation deals with positive numbers *c* given with a relative error, i. e. $(1 - \epsilon) \cdot b < c < (1 + \epsilon) \cdot b$ where ϵ is a relative error then one can estimate easily relative error after operations +, \times , /.

Polynomial in *n* variables is called *numerically positive* if it is positive everywhere on the positive orthant $(0, \infty)^n$.

Theorem. Polynomial *f* has a finite subtraction-free complexity $C_{+,\times,/}(f) < \infty$ iff for each face *P* of its Newton polytope the restriction $f|_P$ is numerically positive (**Handelman, 1985**).

Dima Grigoriev (CNRS)

Subtraction-free complexity is computable () + = + = =

- $C_{+,\,\times}(f)$ can be exponentially bigger than $C_{+,\,\times,\,/}(f)$
- $C_{+,\,\times,\,/}(g)$ can be exponentially bigger than $C_{+,\,-,\,\times,\,/}(g)$.
- **L. Valiant, 1980** has constructed a polynomial *h* (with positive coefficients) such that $C_{+,\times}(h)$ is exponentially bigger than $C_{+,-,\times,/}(h)$. Funny consequence: at least one of two above results holds. But which one?: A growth of $C_{+,\times,/}(h)$ is not known.
- Subtraction-free computations have a meaning in numerical analysis: if a computation deals with positive numbers *c* given with a relative error, i. e. $(1 \epsilon) \cdot b < c < (1 + \epsilon) \cdot b$ where ϵ is a relative error then one can estimate easily relative error after operations +, \times , /.
- Polynomial in *n* variables is called *numerically positive* if it is positive everywhere on the positive orthant $(0, \infty)^n$.

Theorem. Polynomial *f* has a finite subtraction-free complexity $C_{+,\times,/}(f) < \infty$ iff for each face *P* of its Newton polytope the restriction $f|_P$ is numerically positive (**Handelman, 1985**).

Dima Grigoriev (CNRS)

Corollary, Subtraction-free complexity is completelow

- $C_{+, \times}(f)$ can be exponentially bigger than $C_{+, \times, /}(f)$
- $C_{+,\,\times,\,/}(g)$ can be exponentially bigger than $C_{+,\,-,\,\times,\,/}(g)$.

L. Valiant, 1980 has constructed a polynomial *h* (with positive coefficients) such that $C_{+,\times}(h)$ is exponentially bigger than $C_{+,-,\times,/}(h)$. Funny consequence: at least one of two above \bullet results holds. But which one?: A growth of $C_{+,\times,/}(h)$ is not known.

Subtraction-free computations have a meaning in numerical analysis: if a computation deals with positive numbers *c* given with a relative error, i. e. $(1 - \epsilon) \cdot b < c < (1 + \epsilon) \cdot b$ where ϵ is a relative error then one can estimate easily relative error after operations +, \times , /.

Polynomial in *n* variables is called *numerically positive* if it is positive everywhere on the positive orthant $(0, \infty)^n$.

Theorem. Polynomial *f* has a finite subtraction-free complexity $C_{+,\times,/}(f) < \infty$ iff for each face *P* of its Newton polytope the restriction $f|_P$ is numerically positive (**Handelman, 1985**).

- $C_{+,\,\times}(f)$ can be exponentially bigger than $C_{+,\,\times,\,/}(f)$
- $C_{+,\,\times,\,/}(g)$ can be exponentially bigger than $C_{+,\,-,\,\times,\,/}(g)$.
- **L. Valiant, 1980** has constructed a polynomial *h* (with positive coefficients) such that $C_{+,\times}(h)$ is exponentially bigger than $C_{+,-,\times,/}(h)$. Funny consequence: at least one of two above results holds. But which one?: A growth of $C_{+,\times,/}(h)$ is not known.
- Subtraction-free computations have a meaning in numerical analysis: if a computation deals with positive numbers *c* given with a relative error, i. e. $(1 \epsilon) \cdot b < c < (1 + \epsilon) \cdot b$ where ϵ is a relative error then one can estimate easily relative error after operations +, \times , /.
- Polynomial in *n* variables is called *numerically positive* if it is positive everywhere on the positive orthant $(0, \infty)^n$.

Theorem. Polynomial *f* has a finite subtraction-free complexity $C_{+,\times,/}(f) < \infty$ iff for each face *P* of its Newton polytope the restriction $f|_P$ is numerically positive (**Handelman, 1985**).

Corollary. Subtraction-free complexity is computable.

Consider $n \times n$ matrix $X = (X_{ij})$ with variable entries. For a set $I \subset \{1, ..., n\}$ of size |I| = k denote by Δ_I the determinant of $k \times k$ submatrix of X formed by first k rows and by columns $i \in I$. Then the **flag algebra** $F[\{\Delta_I\}_I]$ is the ring of regular functions on the flag variety.

Clusters are special families of flag minors Δ_I (being bases of the flag algebra). To describe clusters define relation $I \prec J$ for $I, J \in \{1, ..., n\}$ if for any pair $i \in I \setminus J, j \in J \setminus I$ we have i < j. We say that I, J are **strongly separated** if either $I \prec J$ or $J \prec I$. Cluster is a maximal (wrt inclusion) family of pairwise strongly separated flag minors (excluding $I = \{1, ..., n\}$). Each cluster contains n(n + 1)/2 - 1 flag minors (**Fomin-Zelevinsky**).

Shorthand: for $j \notin I$ denote $Ij =: I \cup \{j\}$.

Consider $n \times n$ matrix $X = (X_{ij})$ with variable entries. For a set

 $I \subset \{1, ..., n\}$ of size |I| = k denote by Δ_I the determinant of $k \times k$ submatrix of X formed by first k rows and by columns $i \in I$. Then the **flag algebra** $F[\{\Delta_I\}_I]$ is the ring of regular functions on the flag variety.

Clusters are special families of flag minors Δ_I (being bases of the flag algebra). To describe clusters define relation $I \prec J$ for $I, J \subset \{1, ..., n\}$ if for any pair $i \in I \setminus J, j \in J \setminus I$ we have i < j. We say that I, J are **strongly separated** if either $I \prec J$ or $J \prec I$. Cluster is a maximal (wrt inclusion) family of pairwise strongly separated flag minors (excluding $I = \{1, ..., n\}$). Each cluster contains n(n + 1)/2 - 1 flag minors (**Fomin-Zelevinsky**).

Shorthand: for $j \notin I$ denote $Ij =: I \cup \{j\}$.

Consider $n \times n$ matrix $X = (X_{ij})$ with variable entries. For a set $I \subset \{1, ..., n\}$ of size |I| = k denote by Δ_I the determinant of $k \times k$ submatrix of X formed by first k rows and by columns $i \in I$. Then the flag algebra $F[\{\Delta_I\}_I]$ is the ring of regular functions on the flag variety.

Clusters are special families of flag minors Δ_I (being bases of the flag algebra). To describe clusters define relation $I \prec J$ for $I, J \subset \{1, ..., n\}$ if for any pair $i \in I \setminus J, j \in J \setminus I$ we have i < j. We say that I, J are **strongly separated** if either $I \prec J$ or $J \prec I$. Cluster is a maximal (wrt inclusion) family of pairwise strongly separated flag minors (excluding $I = \{1, ..., n\}$). Each cluster contains n(n + 1)/2 - 1 flag minors (**Fomin-Zelevinsky**).

Shorthand: for $j \notin I$ denote $Ij =: I \cup \{j\}$.

Consider $n \times n$ matrix $X = (X_{ij})$ with variable entries. For a set $I \subset \{1, ..., n\}$ of size |I| = k denote by Δ_I the determinant of $k \times k$ submatrix of X formed by first k rows and by columns $i \in I$. Then the **flag algebra** $F[\{\Delta_I\}_I]$ is the ring of regular functions on the flag variety.

Clusters are special families of flag minors Δ_I (being bases of the flag algebra). To describe clusters define relation $I \prec J$ for $I, J \subset \{1, ..., n\}$ if for any pair $i \in I \setminus J, j \in J \setminus I$ we have i < j. We say that I, J are **strongly separated** if either $I \prec J$ or $J \prec I$. Cluster is a maximal (wrt inclusion) family of pairwise strongly separated flag minors (excluding $I = \{1, ..., n\}$). Each cluster contains n(n + 1)/2 - 1 flag minors (**Fomin-Zelevinsky**).

Shorthand: for $j \notin I$ denote $Ij =: I \cup \{j\}$.

< ロ > < 同 > < 回 > < 回 > .

Consider $n \times n$ matrix $X = (X_{ij})$ with variable entries. For a set $I \subset \{1, ..., n\}$ of size |I| = k denote by Δ_I the determinant of $k \times k$ submatrix of X formed by first k rows and by columns $i \in I$. Then the **flag algebra** $F[\{\Delta_I\}_I]$ is the ring of regular functions on the flag variety.

Clusters are special families of flag minors Δ_I (being bases of the flag algebra). To describe clusters define relation $I \prec J$ for $I, J \subset \{1, \ldots, n\}$ if for any pair $i \in I \setminus J, j \in J \setminus I$ we have i < j. We say that I, J are **strongly separated** if either $I \prec J$ or $J \prec I$. Cluster is a maximal (wrt inclusion) family of pairwise strongly separated flag minors (excluding $I = \{1, \ldots, n\}$). Each cluster contains n(n + 1)/2 - 1 flag minors (Fomin-Zelevinsky).

Shorthand: for $j \notin I$ denote $Ij =: I \cup \{j\}$.

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・

Consider $n \times n$ matrix $X = (X_{ij})$ with variable entries. For a set $I \subset \{1, ..., n\}$ of size |I| = k denote by Δ_I the determinant of $k \times k$ submatrix of X formed by first k rows and by columns $i \in I$. Then the **flag algebra** $F[\{\Delta_I\}_I]$ is the ring of regular functions on the flag variety.

Clusters are special families of flag minors Δ_I (being bases of the flag algebra). To describe clusters define relation $I \prec J$ for $I, J \subset \{1, ..., n\}$ if for any pair $i \in I \setminus J, j \in J \setminus I$ we have i < j. We say that I, J are **strongly separated** if either $I \prec J$ or $J \prec I$. Cluster is a maximal (wrt inclusion) family of pairwise strongly separated flag minors (excluding $I = \{1, ..., n\}$). Each cluster contains n(n+1)/2 - 1 flag minors (Fomin-Zelevinsky).

Shorthand: for $j \notin I$ denote $Ij =: I \cup \{j\}$.

Consider $n \times n$ matrix $X = (X_{ij})$ with variable entries. For a set $I \subset \{1, ..., n\}$ of size |I| = k denote by Δ_I the determinant of $k \times k$ submatrix of X formed by first k rows and by columns $i \in I$. Then the **flag algebra** $F[\{\Delta_I\}_I]$ is the ring of regular functions on the flag variety.

Clusters are special families of flag minors Δ_I (being bases of the flag algebra). To describe clusters define relation $I \prec J$ for $I, J \subset \{1, ..., n\}$ if for any pair $i \in I \setminus J, j \in J \setminus I$ we have i < j. We say that I, J are **strongly separated** if either $I \prec J$ or $J \prec I$. Cluster is a maximal (wrt inclusion) family of pairwise strongly separated flag minors (excluding $I = \{1, ..., n\}$). Each cluster contains n(n + 1)/2 - 1 flag minors (Fomin-Zelevinsky).

Shorthand: for $j \notin I$ denote $Ij =: I \cup \{j\}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Consider $n \times n$ matrix $X = (X_{ij})$ with variable entries. For a set $I \subset \{1, ..., n\}$ of size |I| = k denote by Δ_I the determinant of $k \times k$ submatrix of X formed by first k rows and by columns $i \in I$. Then the **flag algebra** $F[\{\Delta_I\}_I]$ is the ring of regular functions on the flag variety.

Clusters are special families of flag minors Δ_I (being bases of the flag algebra). To describe clusters define relation $I \prec J$ for $I, J \subset \{1, ..., n\}$ if for any pair $i \in I \setminus J, j \in J \setminus I$ we have i < j. We say that I, J are **strongly separated** if either $I \prec J$ or $J \prec I$. Cluster is a maximal (wrt inclusion) family of pairwise strongly separated flag minors (excluding $I = \{1, ..., n\}$). Each cluster contains n(n+1)/2 - 1 flag minors (Fomin-Zelevinsky).

Shorthand: for $j \notin I$ denote $Ij =: I \cup \{j\}$.

(日)

Consider $n \times n$ matrix $X = (X_{ij})$ with variable entries. For a set $I \subset \{1, ..., n\}$ of size |I| = k denote by Δ_I the determinant of $k \times k$ submatrix of X formed by first k rows and by columns $i \in I$. Then the **flag algebra** $F[\{\Delta_I\}_I]$ is the ring of regular functions on the flag variety.

Clusters are special families of flag minors Δ_I (being bases of the flag algebra). To describe clusters define relation $I \prec J$ for $I, J \subset \{1, ..., n\}$ if for any pair $i \in I \setminus J, j \in J \setminus I$ we have i < j. We say that I, J are **strongly separated** if either $I \prec J$ or $J \prec I$. Cluster is a maximal (wrt inclusion) family of pairwise strongly separated flag minors (excluding $I = \{1, ..., n\}$). Each cluster contains n(n + 1)/2 - 1 flag minors (**Fomin-Zelevinsky**).

Shorthand: for $j \notin I$ denote $Ij =: I \cup \{j\}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Consider $n \times n$ matrix $X = (X_{ij})$ with variable entries. For a set $I \subset \{1, ..., n\}$ of size |I| = k denote by Δ_I the determinant of $k \times k$ submatrix of X formed by first k rows and by columns $i \in I$. Then the **flag algebra** $F[\{\Delta_I\}_I]$ is the ring of regular functions on the flag variety.

Clusters are special families of flag minors Δ_I (being bases of the flag algebra). To describe clusters define relation $I \prec J$ for $I, J \subset \{1, ..., n\}$ if for any pair $i \in I \setminus J, j \in J \setminus I$ we have i < j. We say that I, J are **strongly separated** if either $I \prec J$ or $J \prec I$. Cluster is a maximal (wrt inclusion) family of pairwise strongly separated flag minors (excluding $I = \{1, ..., n\}$). Each cluster contains n(n + 1)/2 - 1 flag minors (**Fomin-Zelevinsky**).

Shorthand: for $j \notin I$ denote $Ij =: I \cup \{j\}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Plücker relations: $\Delta_{lik} \cdot \Delta_{lj} = \Delta_{lij} \cdot \Delta_{lk} + \Delta_{ljk} \cdot \Delta_{li}$, $i, j, k \notin l$; i < j < kClusters form a directed acyclic **cluster graph**: there is an edge from one cluster to another if they are, respectively, of the types $\{\Delta_{lik}, \Delta_{lii}, \Delta_{lik}, \Delta_{lik}, \Delta_{li}, \dots\}$;

 $\{\Delta_{lj}, \Delta_{lij}, \Delta_{lk}, \Delta_{ljk}, \Delta_{li}, \ldots\}$

Cluster graph is graded according to the sum of sizes |I|. A birational (with integer positive coefficients) transformation from one cluster to another (along an edge or back) is called a **flip**. Cluster graph has the unique minimal element corresponding to *I* being all the proper intervals of $\{1, ..., n\}$ and the unique maximal element corresponding to all the complements of the proper intervals.

Fomin-Zelevinsky: any non-minimal cluster contains a 5-tuple $\Delta_{lik}, \Delta_{lij}, \Delta_{lk}, \Delta_{ljk}, \Delta_{li}$, therefore, a flip can be applied to the cluster. Any flag minor belongs to some cluster. Thus, any flag minor can be computed with $O(n^3)$ flips starting with the interval flag minors, and a flag minor is a Laurent polynomial in the interval flag minors with integer positive coefficients.

Plücker relations: $\Delta_{lik} \cdot \Delta_{lj} = \Delta_{lij} \cdot \Delta_{lk} + \Delta_{ljk} \cdot \Delta_{li}$, $i, j, k \notin l$; i < j < k

Clusters form a directed acyclic **cluster graph**: there is an edge from one cluster to another if they are, respectively, of the types $\{\Delta_{lik}, \Delta_{lij}, \Delta_{lk}, \Delta_{ljk}, \Delta_{li}, \dots\};$ $\{\Delta_{lj}, \Delta_{lij}, \Delta_{lk}, \Delta_{ljk}, \Delta_{lj}, \dots\}$

Cluster graph is graded according to the sum of sizes |I|. A birational (with integer positive coefficients) transformation from one cluster to another (along an edge or back) is called a **flip**. Cluster graph has the unique minimal element corresponding to *I* being all the proper intervals of $\{1, ..., n\}$ and the unique maximal element corresponding to all the complements of the proper intervals.

Fomin-Zelevinsky: any non-minimal cluster contains a 5-tuple $\Delta_{lik}, \Delta_{lij}, \Delta_{lk}, \Delta_{ljk}, \Delta_{li}$, therefore, a flip can be applied to the cluster. Any flag minor belongs to some cluster. Thus, any flag minor can be computed with $O(n^3)$ flips starting with the interval flag minors, and a flag minor is a Laurent polynomial in the interval flag minors with integer positive coefficients.

Plücker relations: $\Delta_{lik} \cdot \Delta_{lj} = \Delta_{lij} \cdot \Delta_{lk} + \Delta_{ljk} \cdot \Delta_{li}$, $i, j, k \notin I$; i < j < k

Clusters form a directed acyclic **cluster graph**: there is an edge from one cluster to another if they are, respectively, of the types

 $\{ \Delta_{lik}, \Delta_{lij}, \Delta_{lk}, \Delta_{ljk}, \Delta_{li}, \dots \};$ $\{ \Delta_{lj}, \Delta_{lij}, \Delta_{lk}, \Delta_{ljk}, \Delta_{li}, \dots \}$

Cluster graph is graded according to the sum of sizes |I|. A birational (with integer positive coefficients) transformation from one cluster to another (along an edge or back) is called a **flip**. Cluster graph has the unique minimal element corresponding to *I* being all the proper intervals of $\{1, ..., n\}$ and the unique maximal element corresponding to all the complements of the proper intervals.

Fomin-Zelevinsky: any non-minimal cluster contains a 5-tuple $\Delta_{lik}, \Delta_{lij}, \Delta_{lk}, \Delta_{ljk}, \Delta_{li}$, therefore, a flip can be applied to the cluster. Any flag minor belongs to some cluster. Thus, any flag minor can be computed with $O(n^3)$ flips starting with the interval flag minors, and a flag minor is a Laurent polynomial in the interval flag minors with integer positive coefficients.

Plücker relations: $\Delta_{lik} \cdot \Delta_{lj} = \Delta_{lij} \cdot \Delta_{lk} + \Delta_{ljk} \cdot \Delta_{li}$, $i, j, k \notin l$; i < j < kClusters form a directed acyclic **cluster graph**: there is an edge from one cluster to another if they are, respectively, of the types $\{\Delta_{lik}, \Delta_{lij}, \Delta_{lk}, \Delta_{ljk}, \Delta_{li}, \dots\};$ $\{\Delta_{li}, \Delta_{lij}, \Delta_{lk}, \Delta_{ljk}, \Delta_{li}, \dots\}$

Cluster graph is graded according to the sum of sizes |I|. A birational (with integer positive coefficients) transformation from one cluster to another (along an edge or back) is called a **flip**. Cluster graph has the unique minimal element corresponding to *I* being all the proper intervals of $\{1, ..., n\}$ and the unique maximal element corresponding to all the complements of the proper intervals.

Fomin-Zelevinsky: any non-minimal cluster contains a 5-tuple $\Delta_{lik}, \Delta_{lij}, \Delta_{lk}, \Delta_{ljk}, \Delta_{li}$, therefore, a flip can be applied to the cluster. Any flag minor belongs to some cluster. Thus, any flag minor can be computed with $O(n^3)$ flips starting with the interval flag minors, and a flag minor is a Laurent polynomial in the interval flag minors with integer positive coefficients.

Plücker relations: $\Delta_{lik} \cdot \Delta_{lj} = \Delta_{lij} \cdot \Delta_{lk} + \Delta_{ljk} \cdot \Delta_{li}$, $i, j, k \notin l$; i < j < k

Clusters form a directed acyclic **cluster graph**: there is an edge from one cluster to another if they are, respectively, of the types

$$\{\Delta_{lik}, \Delta_{lij}, \Delta_{lk}, \Delta_{ljk}, \Delta_{li}, \dots\}; \\ \{\Delta_{lj}, \Delta_{lij}, \Delta_{lk}, \Delta_{ljk}, \Delta_{ljk}, \Delta_{li}, \dots\}$$

Cluster graph is graded according to the sum of sizes |I|. A birational (with integer positive coefficients) transformation from one cluster to another (along an edge or back) is called a **flip**. Cluster graph has the unique minimal element corresponding to *I* being all the proper intervals of $\{1, ..., n\}$ and the unique maximal element corresponding to all the complements of the proper intervals.

Fomin-Zelevinsky: any non-minimal cluster contains a 5-tuple $\Delta_{lik}, \Delta_{lij}, \Delta_{lk}, \Delta_{ljk}, \Delta_{li}$, therefore, a flip can be applied to the cluster. Any flag minor belongs to some cluster. Thus, any flag minor can be computed with $O(n^3)$ flips starting with the interval flag minors, and a flag minor is a Laurent polynomial in the interval flag minors with integer positive coefficients.

Plücker relations: $\Delta_{lik} \cdot \Delta_{lj} = \Delta_{lij} \cdot \Delta_{lk} + \Delta_{ljk} \cdot \Delta_{li}$, $i, j, k \notin l$; i < j < k

Clusters form a directed acyclic **cluster graph**: there is an edge from one cluster to another if they are, respectively, of the types

$$\{\Delta_{lik}, \Delta_{lij}, \Delta_{lk}, \Delta_{ljk}, \Delta_{li}, \dots\};\\ \{\Delta_{lj}, \Delta_{lij}, \Delta_{lk}, \Delta_{ljk}, \Delta_{li}, \dots\}$$

Cluster graph is graded according to the sum of sizes |I|. A birational (with integer positive coefficients) transformation from one cluster to another (along an edge or back) is called a **flip**. Cluster graph has the unique minimal element corresponding to / being all the proper intervals of $\{1, ..., n\}$ and the unique maximal element corresponding to all the complements of the proper intervals.

Fomin-Zelevinsky: any non-minimal cluster contains a 5-tuple $\Delta_{lik}, \Delta_{lij}, \Delta_{lk}, \Delta_{ljk}, \Delta_{li}$, therefore, a flip can be applied to the cluster. Any flag minor belongs to some cluster. Thus, any flag minor can be computed with $O(n^3)$ flips starting with the interval flag minors, and a flag minor is a Laurent polynomial in the interval flag minors with integer positive coefficients.

Plücker relations: $\Delta_{lik} \cdot \Delta_{lj} = \Delta_{lij} \cdot \Delta_{lk} + \Delta_{ljk} \cdot \Delta_{li}$, $i, j, k \notin l$; i < j < k

Clusters form a directed acyclic **cluster graph**: there is an edge from one cluster to another if they are, respectively, of the types

$$\{\Delta_{lik}, \Delta_{lij}, \Delta_{lk}, \Delta_{ljk}, \Delta_{li}, \dots\}; \\ \{\Delta_{lj}, \Delta_{lij}, \Delta_{lk}, \Delta_{ljk}, \Delta_{lj}, \Delta_{li}, \dots\}$$

Cluster graph is graded according to the sum of sizes |I|. A birational (with integer positive coefficients) transformation from one cluster to another (along an edge or back) is called a **flip**. Cluster graph has the unique minimal element corresponding to *I* being all the proper intervals of $\{1, ..., n\}$ and the unique maximal element corresponding to all the complements of the proper intervals

Fomin-Zelevinsky: any non-minimal cluster contains a 5-tuple $\Delta_{lik}, \Delta_{lij}, \Delta_{lk}, \Delta_{ljk}, \Delta_{li}$, therefore, a flip can be applied to the cluster. Any flag minor belongs to some cluster. Thus, any flag minor can be computed with $O(n^3)$ flips starting with the interval flag minors, and a flag minor is a Laurent polynomial in the interval flag minors with integer positive coefficients.

Plücker relations: $\Delta_{lik} \cdot \Delta_{lj} = \Delta_{lij} \cdot \Delta_{lk} + \Delta_{ljk} \cdot \Delta_{li}$, $i, j, k \notin l$; i < j < k

Clusters form a directed acyclic **cluster graph**: there is an edge from one cluster to another if they are, respectively, of the types

$$\{\Delta_{lik}, \Delta_{lij}, \Delta_{lk}, \Delta_{ljk}, \Delta_{li}, \dots\}; \\ \{\Delta_{lj}, \Delta_{lij}, \Delta_{lk}, \Delta_{ljk}, \Delta_{lj}, \Delta_{li}, \dots\}$$

Cluster graph is graded according to the sum of sizes |I|. A birational (with integer positive coefficients) transformation from one cluster to another (along an edge or back) is called a **flip**. Cluster graph has the unique minimal element corresponding to *I* being all the proper intervals of $\{1, ..., n\}$ and the unique maximal element corresponding to all the complements of the proper intervals.

Fomin-Zelevinsky: any non-minimal cluster contains a 5-tuple $\Delta_{lik}, \Delta_{lij}, \Delta_{lk}, \Delta_{ljk}, \Delta_{li}$, therefore, a flip can be applied to the cluster. Any flag minor belongs to some cluster. Thus, any flag minor can be computed with $O(n^3)$ flips starting with the interval flag minors, and a flag minor is a Laurent polynomial in the interval flag minors with integer positive coefficients.

Plücker relations: $\Delta_{lik} \cdot \Delta_{lj} = \Delta_{lij} \cdot \Delta_{lk} + \Delta_{ljk} \cdot \Delta_{li}$, $i, j, k \notin l$; i < j < k

Clusters form a directed acyclic **cluster graph**: there is an edge from one cluster to another if they are, respectively, of the types

$$\{\Delta_{lik}, \Delta_{lij}, \Delta_{lk}, \Delta_{ljk}, \Delta_{li}, \dots\}; \\ \{\Delta_{lj}, \Delta_{lij}, \Delta_{lk}, \Delta_{ljk}, \Delta_{lj}, \Delta_{li}, \dots\}$$

Cluster graph is graded according to the sum of sizes |I|. A birational (with integer positive coefficients) transformation from one cluster to another (along an edge or back) is called a **flip**. Cluster graph has the unique minimal element corresponding to *I* being all the proper intervals of $\{1, ..., n\}$ and the unique maximal element corresponding to all the complements of the proper intervals.

Fomin-Zelevinsky: any non-minimal cluster contains a 5-tuple

 Δ_{lik} , Δ_{lij} , Δ_{lk} , Δ_{ljk} , Δ_{li} , therefore, a flip can be applied to the cluster. Any flag minor belongs to some cluster. Thus, any flag minor can be computed with $O(n^3)$ flips starting with the interval flag minors, and a flag minor is a Laurent polynomial in the interval flag minors with integer positive coefficients.

Plücker relations: $\Delta_{lik} \cdot \Delta_{lj} = \Delta_{lij} \cdot \Delta_{lk} + \Delta_{ljk} \cdot \Delta_{li}$, $i, j, k \notin l$; i < j < k

Clusters form a directed acyclic **cluster graph**: there is an edge from one cluster to another if they are, respectively, of the types

$$\{\Delta_{lik}, \Delta_{lij}, \Delta_{lk}, \Delta_{ljk}, \Delta_{li}, \dots\}; \\ \{\Delta_{lj}, \Delta_{lij}, \Delta_{lk}, \Delta_{ljk}, \Delta_{lj}, \Delta_{li}, \dots\}$$

Cluster graph is graded according to the sum of sizes |I|. A birational (with integer positive coefficients) transformation from one cluster to another (along an edge or back) is called a **flip**. Cluster graph has the unique minimal element corresponding to *I* being all the proper intervals of $\{1, ..., n\}$ and the unique maximal element corresponding to all the complements of the proper intervals.

Fomin-Zelevinsky: any non-minimal cluster contains a 5-tuple Δ_{lik} , Δ_{lij} , Δ_{lk} , Δ_{ljk} , Δ_{li} , therefore, a flip can be applied to the cluster. Any flag minor belongs to some cluster. Thus, any flag minor can be computed with $O(n^3)$ flips starting with the interval flag minors, and a flag minor is a Laurent polynomial in the interval flag minors with integer positive coefficients.

Plücker relations: $\Delta_{lik} \cdot \Delta_{lj} = \Delta_{lij} \cdot \Delta_{lk} + \Delta_{ljk} \cdot \Delta_{li}$, $i, j, k \notin l$; i < j < k

Clusters form a directed acyclic **cluster graph**: there is an edge from one cluster to another if they are, respectively, of the types

$$\{\Delta_{lik}, \Delta_{lij}, \Delta_{lk}, \Delta_{ljk}, \Delta_{li}, \dots\}; \\ \{\Delta_{lj}, \Delta_{lij}, \Delta_{lk}, \Delta_{ljk}, \Delta_{lj}, \Delta_{li}, \dots\}$$

Cluster graph is graded according to the sum of sizes |I|. A birational (with integer positive coefficients) transformation from one cluster to another (along an edge or back) is called a **flip**. Cluster graph has the unique minimal element corresponding to *I* being all the proper intervals of $\{1, ..., n\}$ and the unique maximal element corresponding to all the complements of the proper intervals.

Fomin-Zelevinsky: any non-minimal cluster contains a 5-tuple Δ_{lik} , Δ_{lij} , Δ_{lk} , Δ_{ljk} , Δ_{li} , therefore, a flip can be applied to the cluster. Any flag minor belongs to some cluster. Thus, any flag minor can be computed with $O(n^3)$ flips starting with the interval flag minors, and a flag minor is a Laurent polynomial in the interval flag minors with integer positive coefficients.

Plücker relations: $\Delta_{lik} \cdot \Delta_{lj} = \Delta_{lij} \cdot \Delta_{lk} + \Delta_{ljk} \cdot \Delta_{li}$, $i, j, k \notin l$; i < j < k

Clusters form a directed acyclic **cluster graph**: there is an edge from one cluster to another if they are, respectively, of the types

$$\{\Delta_{lik}, \Delta_{lij}, \Delta_{lk}, \Delta_{ljk}, \Delta_{li}, \dots\};\\ \{\Delta_{lj}, \Delta_{lij}, \Delta_{lk}, \Delta_{ljk}, \Delta_{lj}, \Delta_{li}, \dots\}$$

Cluster graph is graded according to the sum of sizes |I|. A birational (with integer positive coefficients) transformation from one cluster to another (along an edge or back) is called a **flip**. Cluster graph has the unique minimal element corresponding to *I* being all the proper intervals of $\{1, ..., n\}$ and the unique maximal element corresponding to all the complements of the proper intervals.

Fomin-Zelevinsky: any non-minimal cluster contains a 5-tuple Δ_{lik} , Δ_{lij} , Δ_{lk} , Δ_{ljk} , Δ_{li} , therefore, a flip can be applied to the cluster. Any flag minor belongs to some cluster. Thus, any flag minor can be computed with $O(n^3)$ flips starting with the interval flag minors, and a

flag minor is a Laurent polynomial in the interval flag minors with integer positive coefficients.

Plücker relations: $\Delta_{lik} \cdot \Delta_{lj} = \Delta_{lij} \cdot \Delta_{lk} + \Delta_{ljk} \cdot \Delta_{li}$, $i, j, k \notin l$; i < j < k

Clusters form a directed acyclic **cluster graph**: there is an edge from one cluster to another if they are, respectively, of the types

$$\{\Delta_{lik}, \Delta_{lij}, \Delta_{lk}, \Delta_{ljk}, \Delta_{li}, \dots\}; \\ \{\Delta_{lj}, \Delta_{lij}, \Delta_{lk}, \Delta_{ljk}, \Delta_{lj}, \Delta_{li}, \dots\}$$

Cluster graph is graded according to the sum of sizes |I|. A birational (with integer positive coefficients) transformation from one cluster to another (along an edge or back) is called a **flip**. Cluster graph has the unique minimal element corresponding to *I* being all the proper intervals of $\{1, ..., n\}$ and the unique maximal element corresponding to all the complements of the proper intervals.

Fomin-Zelevinsky: any non-minimal cluster contains a 5-tuple $\Delta_{lik}, \Delta_{lij}, \Delta_{lk}, \Delta_{ljk}, \Delta_{li}$, therefore, a flip can be applied to the cluster. Any flag minor belongs to some cluster. Thus, any flag minor can be computed with $O(n^3)$ flips starting with the interval flag minors, and a flag minor is a Laurent polynomial in the interval flag minors with integer positive coefficients.

Totally positive matrices

As a consequence from cluster transformations we conclude that for a real matrix if all the interval flag minors are positive then all flag minors are positive as well.

A real matrix is called *totally positive* if all its minors are positive. Cluster transformation entail that for total positivity it suffices to verify positivity of minors formed by sets of rows *I* and of columns *J* for all pairs of intervals $I, J \subset \{1, ..., n\}$.

< 🗇 > < 🖻 > <

Totally positive matrices

As a consequence from cluster transformations we conclude that for a real matrix if all the interval flag minors are positive then all flag minors are positive as well.

A real matrix is called *totally positive* if all its minors are positive. Cluster transformation entail that for total positivity it suffices to verify positivity of minors formed by sets of rows *I* and of columns *J* for all pairs of intervals $I, J \in \{1, ..., n\}$.

・ 同 ト ・ ヨ ト ・ ヨ

Totally positive matrices

As a consequence from cluster transformations we conclude that for a real matrix if all the interval flag minors are positive then all flag minors are positive as well.

A real matrix is called *totally positive* if all its minors are positive. Cluster transformation entail that for total positivity it suffices to verify positivity of minors formed by sets of rows *I* and of columns *J* for all pairs of intervals $I, J \subset \{1, ..., n\}$.

Substitute for the entries of the matrix $X_{ij} = x_i^j$. Then

 $\Delta := \Delta_{\{1,...,k\}} = \prod_{1 \le i < j \le k} (x_j - x_i)$ is Vandermond determinant. The quotient $S_l = \Delta_l / \Delta$ is a **Schur polynomial** having integer positive coefficients (called **Kostka numbers** being #P-hard to compute).

Since for an interval I = [i, i + 1, ..., j] the interval Schur polynomial is the monomial $S_I = (x_1 \cdots x_{i-i+1})^i$ being easy to compute, we get

Corollary

Subtraction-free complexity of a Schur polynomial $C_{+,\times,/}(S_l) \leq O(n^3 \cdot \log n).$

This does not yet imply an exponential gap between $C_{+,\times,/}$ and $C_{+,\times}$ because we don't know a lower bound on the complexity $C_{+,\times}(S_l)$. To establish this gap we proceed to another class of cluster transformations.

Substitute for the entries of the matrix $X_{ij} = x_i^j$. Then

 $\Delta := \Delta_{\{1,...,k\}} = \prod_{1 \le i < j \le k} (x_j - x_i)$ is Vandermond determinant. The quotient $S_I = \Delta_I / \Delta$ is a **Schur polynomial** having integer positive coefficients (called **Kostka numbers** being #P-hard to compute).

Since for an interval I = [i, i + 1, ..., j] the interval Schur polynomial is the monomial $S_I = (x_1 \cdots x_{i-i+1})^i$ being easy to compute, we get

Corollary

Subtraction-free complexity of a Schur polynomial $C_{+,\times,/}(S_l) \leq O(n^3 \cdot \log n).$

This does not yet imply an exponential gap between $C_{+,\times,/}$ and $C_{+,\times}$ because we don't know a lower bound on the complexity $C_{+,\times}(S_l)$. To establish this gap we proceed to another class of cluster transformations.

Substitute for the entries of the matrix $X_{ij} = x_i^j$. Then $\Delta := \Delta_{\{1,...,k\}} = \prod_{1 \le i < j \le k} (x_j - x_i)$ is Vandermond determinant. The quotient $S_i = \Delta_i / \Delta$ is a Schur polynomial having integer positive coefficients (called Kostka numbers being #*P*-hard to compute)

Since for an interval I = [i, i + 1, ..., j] the interval Schur polynomial is the monomial $S_I = (x_1 \cdots x_{j-i+1})^i$ being easy to compute, we get

Corollary

Subtraction-free complexity of a Schur polynomial $C_{+,\times,/}(S_l) \leq O(n^3 \cdot \log n).$

This does not yet imply an exponential gap between $C_{+,\times,/}$ and $C_{+,\times}$ because we don't know a lower bound on the complexity $C_{+,\times}(S_l)$. To establish this gap we proceed to another class of cluster transformations.

Substitute for the entries of the matrix $X_{ij} = x_i^j$. Then $\Delta := \Delta_{\{1,...,k\}} = \prod_{1 \le i < j \le k} (x_j - x_i)$ is Vandermond determinant. The quotient $S_I = \Delta_I / \Delta$ is a **Schur polynomial** having integer positive coefficients (called **Kostka numbers** being #P-hard to compute).

Since for an interval I = [i, i + 1, ..., j] the interval Schur polynomial is the monomial $S_I = (x_1 \cdots x_{j-i+1})^i$ being easy to compute, we get

Corollary

Subtraction-free complexity of a Schur polynomial $C_{+,\times,/}(S_l) \leq O(n^3 \cdot \log n).$

This does not yet imply an exponential gap between $C_{+,\times,/}$ and $C_{+,\times}$ because we don't know a lower bound on the complexity $C_{+,\times}(S_l)$. To establish this gap we proceed to another class of cluster transformations.

< ロ > < 同 > < 回 > < 回 > .

Substitute for the entries of the matrix $X_{ij} = x_i^J$. Then $\Delta := \Delta_{\{1,...,k\}} = \prod_{1 \le i < j \le k} (x_j - x_i)$ is Vandermond determinant. The quotient $S_I = \Delta_I / \Delta$ is a **Schur polynomial** having integer positive coefficients (called **Kostka numbers** being #*P*-hard to compute).

Since for an interval I = [i, i + 1, ..., j] the interval Schur polynomial is the monomial $S_I = (x_1 \cdots x_{i-i+1})^i$ being easy to compute, we get

Corollary

Subtraction-free complexity of a Schur polynomial $C_{+,\times,/}(S_l) \leq O(n^3 \cdot \log n).$

This does not yet imply an exponential gap between $C_{+,\times,/}$ and $C_{+,\times}$ because we don't know a lower bound on the complexity $C_{+,\times}(S_l)$. To establish this gap we proceed to another class of cluster transformations.

Substitute for the entries of the matrix $X_{ij} = x_i^j$. Then

 $\Delta := \Delta_{\{1,...,k\}} = \prod_{1 \le i < j \le k} (x_j - x_i)$ is Vandermond determinant. The quotient $S_I = \Delta_I / \Delta$ is a **Schur polynomial** having integer positive coefficients (called **Kostka numbers** being #P-hard to compute).

Since for an interval I = [i, i + 1, ..., j] the interval Schur polynomial is the monomial $S_I = (x_1 \cdots x_{i-i+1})^i$ being easy to compute, we get

Corollary

Subtraction-free complexity of a Schur polynomial $C_{+,\times,/}(S_l) \leq O(n^3 \cdot \log n).$

This does not yet imply an exponential gap between $C_{+,\times,/}$ and $C_{+,\times}$ because we don't know a lower bound on the complexity $C_{+,\times}(S_l)$. To establish this gap we proceed to another class of cluster transformations.

Substitute for the entries of the matrix $X_{ij} = x_i^j$. Then

 $\Delta := \Delta_{\{1,...,k\}} = \prod_{1 \le i < j \le k} (x_j - x_i)$ is Vandermond determinant. The quotient $S_I = \Delta_I / \Delta$ is a **Schur polynomial** having integer positive coefficients (called **Kostka numbers** being #P-hard to compute).

Since for an interval I = [i, i + 1, ..., j] the interval Schur polynomial is the monomial $S_I = (x_1 \cdots x_{i-i+1})^i$ being easy to compute, we get

Corollary

Subtraction-free complexity of a Schur polynomial $C_{+, \times, /}(S_l) \leq O(n^3 \cdot \log n).$

This does not yet imply an exponential gap between $C_{+,\times,/}$ and $C_{+,\times}$ because we don't know a lower bound on the complexity $C_{+,\times}(S_l)$. To establish this gap we proceed to another class of cluster transformations.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Substitute for the entries of the matrix $X_{ij} = x_i^j$. Then

 $\Delta := \Delta_{\{1,...,k\}} = \prod_{1 \le i < j \le k} (x_j - x_i)$ is Vandermond determinant. The quotient $S_I = \Delta_I / \Delta$ is a **Schur polynomial** having integer positive coefficients (called **Kostka numbers** being #P-hard to compute).

Since for an interval I = [i, i + 1, ..., j] the interval Schur polynomial is the monomial $S_I = (x_1 \cdots x_{i-i+1})^i$ being easy to compute, we get

Corollary

Subtraction-free complexity of a Schur polynomial $C_{+, \times, /}(S_l) \leq O(n^3 \cdot \log n).$

This does not yet imply an exponential gap between $C_{+,\times,/}$ and $C_{+,\times}$ because we don't know a lower bound on the complexity $C_{+,\times}(S_I)$. To establish this gap we proceed to another class of cluster transformations.

(日)

Substitute for the entries of the matrix $X_{ij} = x_i^j$. Then

 $\Delta := \Delta_{\{1,...,k\}} = \prod_{1 \le i < j \le k} (x_j - x_i)$ is Vandermond determinant. The quotient $S_I = \Delta_I / \Delta$ is a **Schur polynomial** having integer positive coefficients (called **Kostka numbers** being #P-hard to compute).

Since for an interval I = [i, i + 1, ..., j] the interval Schur polynomial is the monomial $S_I = (x_1 \cdots x_{i-i+1})^i$ being easy to compute, we get

Corollary

Subtraction-free complexity of a Schur polynomial $C_{+, \times, /}(S_l) \leq O(n^3 \cdot \log n).$

This does not yet imply an exponential gap between $C_{+,\times,/}$ and $C_{+,\times}$ because we don't know a lower bound on the complexity $C_{+,\times}(S_I)$. To establish this gap we proceed to another class of cluster transformations.

Substitute for the entries of the matrix $X_{ij} = x_i^j$. Then

 $\Delta := \Delta_{\{1,...,k\}} = \prod_{1 \le i < j \le k} (x_j - x_i)$ is Vandermond determinant. The quotient $S_I = \Delta_I / \Delta$ is a **Schur polynomial** having integer positive coefficients (called **Kostka numbers** being #P-hard to compute).

Since for an interval I = [i, i + 1, ..., j] the interval Schur polynomial is the monomial $S_I = (x_1 \cdots x_{i-i+1})^i$ being easy to compute, we get

Corollary

Subtraction-free complexity of a Schur polynomial $C_{+, \times, /}(S_l) \leq O(n^3 \cdot \log n).$

This does not yet imply an exponential gap between $C_{+,\times,/}$ and $C_{+,\times}$ because we don't know a lower bound on the complexity $C_{+,\times}(S_l)$. To establish this gap we proceed to another class of cluster transformations.

(日)

Let edges of a complete graph *G* with *n* vertices (viewed as an electrical circuit) be endowed with **conductances** $x_{i,j}$. Denote by $cond_{i,j}(G)$ the conductance of the circuit between vertices *i*, *j*.

For a spanning tree T of G denote by X^T the monomial being the product of $x_{i,j}$ for all edges i, j of T. The generating polynomial f(G) is the sum of the monomials X^T over all spanning trees T.

Example: for G with 3 vertices $f(G) = x_{1,2} \cdot x_{2,3} + x_{1,2} \cdot x_{1,3} + x_{2,3} \cdot x_{1,3}$.

For vertices v, w of G denote by $G_{v,w}$ the graph obtained from G by gluing v, w into a vertex u with new conductances $x_{i,u} := x_{i,v} + x_{i,w}$.

Kirchhoff (1847): $cond_{i,j}(G) = f(G)/f(G_{i,j})$.

Star-mesh transformation: let a vertex $v \neq i$, *j* of *G*. Denote by G_v a graph obtained from *G* by removing *v* and replacing each conductance $x_{p,q}$ by $x_{p,q} + x_{p,v} \cdot x_{q,v} \cdot \sum_k (x_{k,v})^{-1}$. Then $cond_{i,j}(G) = cond_{i,j}(G_v)$.

Corollary

Subtraction-free complexity

Let edges of a complete graph *G* with *n* vertices (viewed as an electrical circuit) be endowed with **conductances** $x_{i,j}$. Denote by $cond_{i,j}(G)$ the conductance of the circuit between vertices *i*, *j*.

For a spanning tree T of G denote by X^T the monomial being the product of $x_{i,j}$ for all edges i, j of T. The generating polynomial f(G) is the sum of the monomials X^T over all spanning trees T.

Example: for *G* with 3 vertices $f(G) = x_{1,2} \cdot x_{2,3} + x_{1,2} \cdot x_{1,3} + x_{2,3} \cdot x_{1,3}$.

For vertices v, w of G denote by $G_{v,w}$ the graph obtained from G by gluing v, w into a vertex u with new conductances $x_{i,u} := x_{i,v} + x_{i,w}$.

Kirchhoff (1847): $cond_{i,j}(G) = f(G)/f(G_{i,j})$.

Star-mesh transformation: let a vertex $v \neq i$, *j* of *G*. Denote by G_v a graph obtained from *G* by removing *v* and replacing each conductance $x_{p,q}$ by $x_{p,q} + x_{p,v} \cdot x_{q,v} \cdot \sum_k (x_{k,v})^{-1}$. Then $cond_{i,j}(G) = cond_{i,j}(G_v)$.

Corollary

Subtraction-free complexity

Let edges of a complete graph *G* with *n* vertices (viewed as an electrical circuit) be endowed with **conductances** $x_{i,j}$. Denote by $cond_{i,j}(G)$ the conductance of the circuit between vertices *i*, *j*.

For a spanning tree T of G denote by X^T the monomial being the product of $x_{i,j}$ for all edges i, j of T. The generating polynomial f(G) is the sum of the monomials X^T over all spanning trees T.

Example: for *G* with 3 vertices $f(G) = x_{1,2} \cdot x_{2,3} + x_{1,2} \cdot x_{1,3} + x_{2,3} \cdot x_{1,3}$. For vertices *v*, *w* of *G* denote by $G_{v,w}$ the graph obtained from *G* by gluing *v*, *w* into a vertex *u* with new conductances $x_{i,u} := x_{i,v} + x_{i,w}$.

Kirchhoff (1847): $cond_{i,j}(G) = f(G)/f(G_{i,j})$.

Star-mesh transformation: let a vertex $v \neq i$, *j* of *G*. Denote by G_v a graph obtained from *G* by removing *v* and replacing each conductance $x_{p,q}$ by $x_{p,q} + x_{p,v} \cdot x_{q,v} \cdot \sum_k (x_{k,v})^{-1}$. Then $cond_{i,j}(G) = cond_{i,j}(G_v)$.

Corollary

Subtraction-free complexity

Let edges of a complete graph *G* with *n* vertices (viewed as an electrical circuit) be endowed with **conductances** $x_{i,j}$. Denote by $cond_{i,j}(G)$ the conductance of the circuit between vertices *i*, *j*.

For a spanning tree T of G denote by X^T the monomial being the product of $x_{i,j}$ for all edges i, j of T. The generating polynomial f(G) is the sum of the monomials X^T over all spanning trees T.

Example: for *G* with 3 vertices $f(G) = x_{1,2} \cdot x_{2,3} + x_{1,2} \cdot x_{1,3} + x_{2,3} \cdot x_{1,3}$. For vertices *v*, *w* of *G* denote by $G_{v,w}$ the graph obtained from *G* by gluing *v*, *w* into a vertex *u* with new conductances $x_{i,u} := x_{i,v} + x_{i,w}$.

Kirchhoff (1847): $cond_{i,j}(G) = f(G)/f(G_{i,j})$.

Star-mesh transformation: let a vertex $v \neq i$, *j* of *G*. Denote by G_v a graph obtained from *G* by removing *v* and replacing each conductance $x_{p,q}$ by $x_{p,q} + x_{p,v} \cdot x_{q,v} \cdot \sum_k (x_{k,v})^{-1}$. Then $cond_{i,j}(G) = cond_{i,j}(G_v)$.

Corollary

Subtraction-free complexity

Let edges of a complete graph *G* with *n* vertices (viewed as an electrical circuit) be endowed with **conductances** $x_{i,j}$. Denote by $cond_{i,j}(G)$ the conductance of the circuit between vertices *i*, *j*.

For a spanning tree T of G denote by X^T the monomial being the product of $x_{i,j}$ for all edges i, j of T. The generating polynomial f(G) is the sum of the monomials X^T over all spanning trees T.

Example: for *G* with 3 vertices $f(G) = x_{1,2} \cdot x_{2,3} + x_{1,2} \cdot x_{1,3} + x_{2,3} \cdot x_{1,3}$. For vertices *v*, *w* of *G* denote by $G_{v,w}$ the graph obtained from *G* by gluing *v*, *w* into a vertex *u* with new conductances $x_{i,u} := x_{i,v} + x_{i,w}$.

Kirchhoff (1847): $cond_{i,j}(G) = f(G)/f(G_{i,j})$.

Star-mesh transformation: let a vertex $v \neq i$, *j* of *G*. Denote by G_v a graph obtained from *G* by removing *v* and replacing each conductance $x_{p,q}$ by $x_{p,q} + x_{p,v} \cdot x_{q,v} \cdot \sum_k (x_{k,v})^{-1}$. Then $cond_{i,j}(G) = cond_{i,j}(G_v)$.

Corollary

Subtraction-free complexity

Let edges of a complete graph *G* with *n* vertices (viewed as an electrical circuit) be endowed with **conductances** $x_{i,j}$. Denote by $cond_{i,j}(G)$ the conductance of the circuit between vertices *i*, *j*.

For a spanning tree T of G denote by X^T the monomial being the product of $x_{i,j}$ for all edges i, j of T. The generating polynomial f(G) is the sum of the monomials X^T over all spanning trees T.

Example: for *G* with 3 vertices $f(G) = x_{1,2} \cdot x_{2,3} + x_{1,2} \cdot x_{1,3} + x_{2,3} \cdot x_{1,3}$.

For vertices v, w of G denote by $G_{v,w}$ the graph obtained from G by gluing v, w into a vertex u with new conductances $x_{i,u} := x_{i,v} + x_{i,w}$.

Kirchhoff (1847): $cond_{i,j}(G) = f(G)/f(G_{i,j})$.

Star-mesh transformation: let a vertex $v \neq i$, *j* of *G*. Denote by G_v a graph obtained from *G* by removing *v* and replacing each conductance $x_{p,q}$ by $x_{p,q} + x_{p,v} \cdot x_{q,v} \cdot \sum_k (x_{k,v})^{-1}$. Then $cond_{i,j}(G) = cond_{i,j}(G_v)$.

Corollary

Subtraction-free complexit

Let edges of a complete graph *G* with *n* vertices (viewed as an electrical circuit) be endowed with **conductances** $x_{i,j}$. Denote by $cond_{i,j}(G)$ the conductance of the circuit between vertices *i*, *j*.

For a spanning tree T of G denote by X^T the monomial being the product of $x_{i,j}$ for all edges i, j of T. The generating polynomial f(G) is the sum of the monomials X^T over all spanning trees T.

Example: for *G* with 3 vertices $f(G) = x_{1,2} \cdot x_{2,3} + x_{1,2} \cdot x_{1,3} + x_{2,3} \cdot x_{1,3}$. For vertices *v*, *w* of *G* denote by $G_{v,w}$ the graph obtained from *G* by

gluing v, w into a vertex u with new conductances $x_{i,u} := x_{i,v} + x_{i,w}$.

Kirchhoff (1847): $cond_{i,j}(G) = f(G)/f(G_{i,j})$.

Star-mesh transformation: let a vertex $v \neq i$, *j* of *G*. Denote by G_v a graph obtained from *G* by removing *v* and replacing each conductance $x_{p,q}$ by $x_{p,q} + x_{p,v} \cdot x_{q,v} \cdot \sum_k (x_{k,v})^{-1}$. Then $cond_{i,j}(G) = cond_{i,j}(G_v)$.

Corollary

Subtraction-free complexit

Let edges of a complete graph *G* with *n* vertices (viewed as an electrical circuit) be endowed with **conductances** $x_{i,j}$. Denote by $cond_{i,j}(G)$ the conductance of the circuit between vertices *i*, *j*.

For a spanning tree T of G denote by X^T the monomial being the product of $x_{i,j}$ for all edges i, j of T. The generating polynomial f(G) is the sum of the monomials X^T over all spanning trees T.

Example: for *G* with 3 vertices $f(G) = x_{1,2} \cdot x_{2,3} + x_{1,2} \cdot x_{1,3} + x_{2,3} \cdot x_{1,3}$.

For vertices *v*, *w* of *G* denote by $G_{v,w}$ the graph obtained from *G* by gluing *v*, *w* into a vertex *u* with new conductances $x_{i,u} := x_{i,v} + x_{i,w}$.

Kirchhoff (1847): $cond_{i,j}(G) = f(G)/f(G_{i,j})$.

Star-mesh transformation: let a vertex $v \neq i$, *j* of *G*. Denote by G_v a graph obtained from *G* by removing *v* and replacing each conductance $x_{p,q}$ by $x_{p,q} + x_{p,v} \cdot x_{q,v} \cdot \sum_k (x_{k,v})^{-1}$. Then $cond_{i,j}(G) = cond_{i,j}(G_v)$.

Corollary

Subtraction-free complexi

Let edges of a complete graph *G* with *n* vertices (viewed as an electrical circuit) be endowed with **conductances** $x_{i,j}$. Denote by $cond_{i,j}(G)$ the conductance of the circuit between vertices *i*, *j*.

For a spanning tree T of G denote by X^T the monomial being the product of $x_{i,j}$ for all edges i, j of T. The generating polynomial f(G) is the sum of the monomials X^T over all spanning trees T.

Example: for *G* with 3 vertices $f(G) = x_{1,2} \cdot x_{2,3} + x_{1,2} \cdot x_{1,3} + x_{2,3} \cdot x_{1,3}$.

For vertices *v*, *w* of *G* denote by $G_{v,w}$ the graph obtained from *G* by gluing *v*, *w* into a vertex *u* with new conductances $x_{i,u} := x_{i,v} + x_{i,w}$.

Kirchhoff (1847): $cond_{i,j}(G) = f(G)/f(G_{i,j})$.

Star-mesh transformation: let a vertex $v \neq i$, *j* of *G*. Denote by G_v a graph obtained from *G* by removing *v* and replacing each conductance $x_{p,q}$ by $x_{p,q} + x_{p,v} \cdot x_{q,v} \cdot \sum_k (x_{k,v})^{-1}$. Then $cond_{i,j}(G) = cond_{i,j}(G_v)$.

Corollary

Subtraction-free complex

Let edges of a complete graph *G* with *n* vertices (viewed as an electrical circuit) be endowed with **conductances** $x_{i,j}$. Denote by $cond_{i,j}(G)$ the conductance of the circuit between vertices *i*, *j*.

For a spanning tree T of G denote by X^T the monomial being the product of $x_{i,j}$ for all edges i, j of T. The generating polynomial f(G) is the sum of the monomials X^T over all spanning trees T.

Example: for *G* with 3 vertices $f(G) = x_{1,2} \cdot x_{2,3} + x_{1,2} \cdot x_{1,3} + x_{2,3} \cdot x_{1,3}$.

For vertices *v*, *w* of *G* denote by $G_{v,w}$ the graph obtained from *G* by gluing *v*, *w* into a vertex *u* with new conductances $x_{i,u} := x_{i,v} + x_{i,w}$.

Kirchhoff (1847): $cond_{i,j}(G) = f(G)/f(G_{i,j})$.

Star-mesh transformation: let a vertex $v \neq i$, *j* of *G*. Denote by G_v a graph obtained from *G* by removing *v* and replacing each conductance $x_{p,q}$ by $x_{p,q} + x_{p,v} \cdot x_{q,v} \cdot \sum_k (x_{k,v})^{-1}$. Then $cond_{i,j}(G) = cond_{i,j}(G_v)$.

Corollary

ubtraction-free comple

Let edges of a complete graph *G* with *n* vertices (viewed as an electrical circuit) be endowed with **conductances** $x_{i,j}$. Denote by $cond_{i,j}(G)$ the conductance of the circuit between vertices *i*, *j*.

For a spanning tree T of G denote by X^T the monomial being the product of $x_{i,j}$ for all edges i, j of T. The generating polynomial f(G) is the sum of the monomials X^T over all spanning trees T.

Example: for *G* with 3 vertices $f(G) = x_{1,2} \cdot x_{2,3} + x_{1,2} \cdot x_{1,3} + x_{2,3} \cdot x_{1,3}$.

For vertices *v*, *w* of *G* denote by $G_{v,w}$ the graph obtained from *G* by gluing *v*, *w* into a vertex *u* with new conductances $x_{i,u} := x_{i,v} + x_{i,w}$.

Kirchhoff (1847): $cond_{i,j}(G) = f(G)/f(G_{i,j})$.

Star-mesh transformation: let a vertex $v \neq i$, *j* of *G*. Denote by G_v a graph obtained from *G* by removing *v* and replacing each conductance $x_{p,q}$ by $x_{p,q} + x_{p,v} \cdot x_{q,v} \cdot \sum_k (x_{k,v})^{-1}$. Then $cond_{i,j}(G) = cond_{i,j}(G_v)$.

Corollary

Let edges of a complete graph *G* with *n* vertices (viewed as an electrical circuit) be endowed with **conductances** $x_{i,j}$. Denote by $cond_{i,j}(G)$ the conductance of the circuit between vertices *i*, *j*.

For a spanning tree T of G denote by X^T the monomial being the product of $x_{i,j}$ for all edges i, j of T. The generating polynomial f(G) is the sum of the monomials X^T over all spanning trees T.

Example: for *G* with 3 vertices $f(G) = x_{1,2} \cdot x_{2,3} + x_{1,2} \cdot x_{1,3} + x_{2,3} \cdot x_{1,3}$.

For vertices v, w of G denote by $G_{v,w}$ the graph obtained from G by gluing v, w into a vertex u with new conductances $x_{i,u} := x_{i,v} + x_{i,w}$.

Kirchhoff (1847): $cond_{i,j}(G) = f(G)/f(G_{i,j})$.

Star-mesh transformation: let a vertex $v \neq i$, *j* of *G*. Denote by G_v a graph obtained from *G* by removing *v* and replacing each conductance $x_{p,q}$ by $x_{p,q} + x_{p,v} \cdot x_{q,v} \cdot \sum_k (x_{k,v})^{-1}$. Then $cond_{i,j}(G) = cond_{i,j}(G_v)$.

Corollary

Subtraction-free complexity $C_{+,\times,/}(cond_{i,i}(G), f(G)) \leq O(n^3)$.

Dima Grigoriev (CNRS)

Subtraction-free complexity

Arborescences

Now *G* is a complete graph with *n* vertices and edges *i*, *j* endowed with two variables $x_{i,j} \neq x_{j,i}$. Fix a vertex *r* of *G* and consider any spanning tree *T* of *G* as having its root at *r* and all its edges directed towards *r* (such directed trees are called *arborescences*). Then the monomial X^T corresponding to this tree is the product of all $x_{i,j}$ over all edges *i*, *j* of *T* according to the chosen direction of *T*. The generating polynomial $\phi(G)$ of arborescences is the sum of all the monomials X^T .

Example: if n = 3, r = 2 then $\phi(G) = x_{1,2} \cdot x_{3,2} + x_{1,2} \cdot x_{3,1} + x_{1,3} \cdot x_{3,2}$.

Star-mesh transformation: let a vertex $v \neq r$ of *G*. Denote by G_v a graph obtained from *G* by removing *v* and replacing each $x_{\rho,q}$ by $x_{\rho,q} + x_{\rho,v} \cdot x_{v,q} \cdot (\sum_k x_{v,k})^{-1}$. Then $\phi(G) = \sum_k x_{v,k} \cdot \phi(G_v)$.

Corollary

 $C_{+,\, imes,\,/}(\phi(G)) \leq O(n^3).$

Schnorr-Valiant-Jerrum-Snir: $C_{+,\times}(\phi(G)) \ge c^n$ for some c > 1

Dima Grigoriev (CNRS)

Arborescences

Now *G* is a complete graph with *n* vertices and edges *i*, *j* endowed with two variables $x_{i,j} \neq x_{j,i}$. Fix a vertex *r* of *G* and consider any spanning tree *T* of *G* as having its root at *r* and all its edges directed towards *r* (such directed trees are called *arborescences*). Then the monomial X^T corresponding to this tree is the product of all $x_{i,j}$ over all edges *i*, *j* of *T* according to the chosen direction of *T*. The generating polynomial $\phi(G)$ of arborescences is the sum of all the monomials X^T .

Example: if n = 3, r = 2 then $\phi(G) = x_{1,2} \cdot x_{3,2} + x_{1,2} \cdot x_{3,1} + x_{1,3} \cdot x_{3,2}$.

Star-mesh transformation: let a vertex $v \neq r$ of *G*. Denote by G_v a graph obtained from *G* by removing *v* and replacing each $x_{\rho,q}$ by $x_{\rho,q} + x_{\rho,v} \cdot x_{v,q} \cdot (\sum_k x_{v,k})^{-1}$. Then $\phi(G) = \sum_k x_{v,k} \cdot \phi(G_v)$.

Corollary

 $C_{+,\, imes,\,/}(\phi(G)) \leq O(n^3).$

Schnorr-Valiant-Jerrum-Snir: $C_{+,\times}(\phi(G)) \ge c^n$ for some c > 1

Dima Grigoriev (CNRS)

< < p>< < p>

Now *G* is a complete graph with *n* vertices and edges *i*, *j* endowed with two variables $x_{i,j} \neq x_{j,i}$. Fix a vertex *r* of *G* and consider any spanning tree *T* of *G* as having its root at *r* and all its edges directed towards *r* (such directed trees are called *arborescences*). Then the monomial

 X^T corresponding to this tree is the product of all $x_{i,j}$ over all edges i, j of T according to the chosen direction of T. The generating polynomial $\phi(G)$ of arborescences is the sum of all the monomials X^T .

Example: if n = 3, r = 2 then $\phi(G) = x_{1,2} \cdot x_{3,2} + x_{1,2} \cdot x_{3,1} + x_{1,3} \cdot x_{3,2}$.

Star-mesh transformation: let a vertex $v \neq r$ of *G*. Denote by G_v a graph obtained from *G* by removing *v* and replacing each $x_{\rho,q}$ by $x_{\rho,q} + x_{\rho,v} \cdot x_{v,q} \cdot (\sum_k x_{v,k})^{-1}$. Then $\phi(G) = \sum_k x_{v,k} \cdot \phi(G_v)$.

Corollary

 $C_{+,\, imes,\,/}(\phi(G)) \leq O(n^3).$

Now *G* is a complete graph with *n* vertices and edges *i*, *j* endowed with two variables $x_{i,j} \neq x_{j,i}$. Fix a vertex *r* of *G* and consider any spanning tree *T* of *G* as having its root at *r* and all its edges directed towards *r* (such directed trees are called *arborescences*). Then the monomial X^{T} corresponding to this tree is the product of all $x_{i,j}$ over all edges *i*, *j* of *T* according to the chosen direction of *T*. The generating polynomial $\phi(G)$ of arborescences is the sum of all the monomials X^{T} .

Example: if n = 3, r = 2 then $\phi(G) = x_{1,2} \cdot x_{3,2} + x_{1,2} \cdot x_{3,1} + x_{1,3} \cdot x_{3,2}$.

Star-mesh transformation: let a vertex $v \neq r$ of *G*. Denote by G_v a graph obtained from *G* by removing *v* and replacing each $x_{\rho,q}$ by $x_{\rho,q} + x_{\rho,v} \cdot x_{v,q} \cdot (\sum_k x_{v,k})^{-1}$. Then $\phi(G) = \sum_k x_{v,k} \cdot \phi(G_v)$.

Corollary

 $C_{+,\, imes,\,/}(\phi(G)) \leq O(n^3).$

Schnorr-Valiant-Jerrum-Snir: $C_{+,\times}(\phi(G)) \ge c^n$ for some c > 1

Dima Grigoriev (CNRS)

Now *G* is a complete graph with *n* vertices and edges *i*, *j* endowed with two variables $x_{i,j} \neq x_{j,i}$. Fix a vertex *r* of *G* and consider any spanning tree *T* of *G* as having its root at *r* and all its edges directed towards *r* (such directed trees are called *arborescences*). Then the monomial X^{T} corresponding to this tree is the product of all $x_{i,j}$ over all edges *i*, *j* of *T* according to the chosen direction of *T*. The generating polynomial $\phi(G)$ of arborescences is the sum of all the monomials X^{T} .

Example: if n = 3, r = 2 then $\phi(G) = x_{1,2} \cdot x_{3,2} + x_{1,2} \cdot x_{3,1} + x_{1,3} \cdot x_{3,2}$.

Star-mesh transformation: let a vertex $v \neq r$ of *G*. Denote by G_v a graph obtained from *G* by removing *v* and replacing each $x_{\rho,q}$ by $x_{\rho,q} + x_{\rho,v} \cdot x_{v,q} \cdot (\sum_k x_{v,k})^{-1}$. Then $\phi(G) = \sum_k x_{v,k} \cdot \phi(G_v)$.

Corollary

 $C_{+,\, imes,\,/}(\phi(G)) \leq O(n^3).$

Now *G* is a complete graph with *n* vertices and edges *i*, *j* endowed with two variables $x_{i,j} \neq x_{j,i}$. Fix a vertex *r* of *G* and consider any spanning tree *T* of *G* as having its root at *r* and all its edges directed towards *r* (such directed trees are called *arborescences*). Then the monomial X^{T} corresponding to this tree is the product of all $x_{i,j}$ over all edges *i*, *j* of *T* according to the chosen direction of *T*. The generating polynomial $\phi(G)$ of arborescences is the sum of all the monomials X^{T} .

Example: if n = 3, r = 2 then $\phi(G) = x_{1,2} \cdot x_{3,2} + x_{1,2} \cdot x_{3,1} + x_{1,3} \cdot x_{3,2}$.

Star-mesh transformation: let a vertex $v \neq r$ of *G*. Denote by G_v a graph obtained from *G* by removing *v* and replacing each $x_{p,q}$ by $x_{p,q} + x_{p,v} \cdot x_{v,q} \cdot (\sum_k x_{v,k})^{-1}$. Then $\phi(G) = \sum_k x_{v,k} \cdot \phi(G_v)$.

Corollary

 $C_{+,\,\times,\,/}(\phi(G)) \leq O(n^3).$

Schnorr-Valiant-Jerrum-Snir: $C_{+,\times}(\phi(G)) \ge c^n$ for some c > 1

Dima Grigoriev (CNRS)

Now *G* is a complete graph with *n* vertices and edges *i*, *j* endowed with two variables $x_{i,j} \neq x_{j,i}$. Fix a vertex *r* of *G* and consider any spanning tree *T* of *G* as having its root at *r* and all its edges directed towards *r* (such directed trees are called *arborescences*). Then the monomial X^{T} corresponding to this tree is the product of all $x_{i,j}$ over all edges *i*, *j* of *T* according to the chosen direction of *T*. The generating polynomial $\phi(G)$ of arborescences is the sum of all the monomials X^{T} .

Example: if n = 3, r = 2 then $\phi(G) = x_{1,2} \cdot x_{3,2} + x_{1,2} \cdot x_{3,1} + x_{1,3} \cdot x_{3,2}$.

Star-mesh transformation: let a vertex $v \neq r$ of *G*. Denote by G_v a

graph obtained from *G* by removing *v* and replacing each $x_{p,q}$ by $x_{p,q} + x_{p,v} \cdot x_{v,q} \cdot (\sum_k x_{v,k})^{-1}$. Then $\phi(G) = \sum_k x_{v,k} \cdot \phi(G_v)$.

Corollary

 $C_{+,\,\times,\,/}(\phi(G)) \leq O(n^3).$

Now *G* is a complete graph with *n* vertices and edges *i*, *j* endowed with two variables $x_{i,j} \neq x_{j,i}$. Fix a vertex *r* of *G* and consider any spanning tree *T* of *G* as having its root at *r* and all its edges directed towards *r* (such directed trees are called *arborescences*). Then the monomial X^{T} corresponding to this tree is the product of all $x_{i,j}$ over all edges *i*, *j* of *T* according to the chosen direction of *T*. The generating polynomial $\phi(G)$ of arborescences is the sum of all the monomials X^{T} .

Example: if n = 3, r = 2 then $\phi(G) = x_{1,2} \cdot x_{3,2} + x_{1,2} \cdot x_{3,1} + x_{1,3} \cdot x_{3,2}$.

Star-mesh transformation: let a vertex $v \neq r$ of *G*. Denote by G_v a graph obtained from *G* by removing *v* and replacing each $x_{p,q}$ by $x_{p,q} + x_{p,v} \cdot x_{v,q} \cdot (\sum_k x_{v,k})^{-1}$. Then $\phi(G) = \sum_k x_{v,k} \cdot \phi(G_v)$.

Corollary

$C_{+,\,\times,\,/}(\phi(G)) \leq O(n^3).$

Now *G* is a complete graph with *n* vertices and edges *i*, *j* endowed with two variables $x_{i,j} \neq x_{j,i}$. Fix a vertex *r* of *G* and consider any spanning tree *T* of *G* as having its root at *r* and all its edges directed towards *r* (such directed trees are called *arborescences*). Then the monomial X^{T} corresponding to this tree is the product of all $x_{i,j}$ over all edges *i*, *j* of *T* according to the chosen direction of *T*. The generating polynomial $\phi(G)$ of arborescences is the sum of all the monomials X^{T} .

Example: if n = 3, r = 2 then $\phi(G) = x_{1,2} \cdot x_{3,2} + x_{1,2} \cdot x_{3,1} + x_{1,3} \cdot x_{3,2}$.

Star-mesh transformation: let a vertex $v \neq r$ of *G*. Denote by G_v a graph obtained from *G* by removing *v* and replacing each $x_{p,q}$ by $x_{p,q} + x_{p,v} \cdot x_{v,q} \cdot (\sum_k x_{v,k})^{-1}$. Then $\phi(G) = \sum_k x_{v,k} \cdot \phi(G_v)$.

Corollary

 $C_{+,\,\times,\,/}(\phi(G)) \leq O(n^3).$

Now *G* is a complete graph with *n* vertices and edges *i*, *j* endowed with two variables $x_{i,j} \neq x_{j,i}$. Fix a vertex *r* of *G* and consider any spanning tree *T* of *G* as having its root at *r* and all its edges directed towards *r* (such directed trees are called *arborescences*). Then the monomial X^{T} corresponding to this tree is the product of all $x_{i,j}$ over all edges *i*, *j* of *T* according to the chosen direction of *T*. The generating polynomial $\phi(G)$ of arborescences is the sum of all the monomials X^{T} .

Example: if n = 3, r = 2 then $\phi(G) = x_{1,2} \cdot x_{3,2} + x_{1,2} \cdot x_{3,1} + x_{1,3} \cdot x_{3,2}$.

Star-mesh transformation: let a vertex $v \neq r$ of *G*. Denote by G_v a graph obtained from *G* by removing *v* and replacing each $x_{\rho,q}$ by $x_{\rho,q} + x_{\rho,v} \cdot x_{v,q} \cdot (\sum_k x_{v,k})^{-1}$. Then $\phi(G) = \sum_k x_{v,k} \cdot \phi(G_v)$.

Corollary

$$C_{+,\,\times,\,/}(\phi(G)) \leq O(n^3).$$

Now *G* is a complete graph with *n* vertices and edges *i*, *j* endowed with two variables $x_{i,j} \neq x_{j,i}$. Fix a vertex *r* of *G* and consider any spanning tree *T* of *G* as having its root at *r* and all its edges directed towards *r* (such directed trees are called *arborescences*). Then the monomial X^{T} corresponding to this tree is the product of all $x_{i,j}$ over all edges *i*, *j* of *T* according to the chosen direction of *T*. The generating polynomial $\phi(G)$ of arborescences is the sum of all the monomials X^{T} .

Example: if n = 3, r = 2 then $\phi(G) = x_{1,2} \cdot x_{3,2} + x_{1,2} \cdot x_{3,1} + x_{1,3} \cdot x_{3,2}$.

Star-mesh transformation: let a vertex $v \neq r$ of *G*. Denote by G_v a graph obtained from *G* by removing *v* and replacing each $x_{\rho,q}$ by $x_{\rho,q} + x_{\rho,v} \cdot x_{v,q} \cdot (\sum_k x_{v,k})^{-1}$. Then $\phi(G) = \sum_k x_{v,k} \cdot \phi(G_v)$.

Corollary

$$C_{+,\,\times,\,/}(\phi(G)) \leq O(n^3).$$

Polya (1923): any homogeneous polynomial $h \in \mathbb{R}[x_1, ..., x_n]$ positive everywhere on the non-negative orthant $\mathbb{R}_{\geq 0}^n \setminus \{0\}$ can be represented as a fraction $P/(x_1 + \cdots + x_n)^N$ for suitable integer N and a polynomial P with positive coefficients.

Example: $x^2 - xy + y^2 = (x^3 + y^3)/(x + y)$.

Lemma

For any representation $h_n := (t - x_1)^4 + (x_1 - 2x_2)^4 + (x_2^2 - tx_3)^2 + (x_3^2 - tx_4)^2 + \dots + (x_{n-1}^2 - tx_n)^2 + 2x_n^4 + 4x_n^2(t - x_1)^2 = P/Q$ where *P*, *Q* being polynomials with positive coefficients we have $\deg(Q) > 2^{c^{2^n}}$ for some constant c > 0.

Corollary

(Polya's theorem for h_n) $\infty > C_{+,\times,/}(h_n) > c2^n$ (lemma)

(since after each operation the degree of a rational representation at most doubles). On the other hand, evidently, $C_{+-} \times_{e'} (h_{n_{e}}) < Q(n)_{e'}$

Dima Grigoriev (CNRS)

Polya (1923): any homogeneous polynomial $h \in \mathbb{R}[x_1, ..., x_n]$ positive everywhere on the non-negative orthant $\mathbb{R}_{>0}^n \setminus \{0\}$ can be represented

as a fraction $P/(x_1 + \cdots + x_n)^N$ for suitable integer N and a polynomial P with positive coefficients.

Example: $x^2 - xy + y^2 = (x^3 + y^3)/(x + y)$.

Lemma

For any representation $h_n := (t - x_1)^4 + (x_1 - 2x_2)^4 + (x_2^2 - tx_3)^2 + (x_3^2 - tx_4)^2 + \dots + (x_{n-1}^2 - tx_n)^2 + 2x_n^4 + 4x_n^2(t - x_1)^2 = P/Q$ where *P*, *Q* being polynomials with positive coefficients we have $\deg(Q) > 2^{c^{2^n}}$ for some constant c > 0.

Corollary

(Polya's theorem for h_n) $\infty > C_{+,\times,/}(h_n) > c2^n$ (lemma)

(since after each operation the degree of a rational representation at most doubles). On the other hand, evidently, $C_{+-} = Q(n)_{+}$

Dima Grigoriev (CNRS)

Polya (1923): any homogeneous polynomial $h \in \mathbb{R}[x_1, \ldots, x_n]$ positive everywhere on the non-negative orthant $\mathbb{R}^n_{\geq 0} \setminus \{0\}$ can be represented as a fraction $P/(x_1 + \cdots + x_n)^N$ for suitable integer *N* and a polynomial *P* with positive coefficients.

Example: $x^2 - xy + y^2 = (x^3 + y^3)/(x + y)$.

Lemma

For any representation $h_n := (t - x_1)^4 + (x_1 - 2x_2)^4 + (x_2^2 - tx_3)^2 + (x_3^2 - tx_4)^2 + \dots + (x_{n-1}^2 - tx_n)^2 + 2x_n^4 + 4x_n^2(t - x_1)^2 = P/Q$ where *P*, *Q* being polynomials with positive coefficients we have $\deg(Q) > 2^{c^{2^n}}$ for some constant c > 0.

Corollary

(Polya's theorem for h_n) $\infty > C_{+,\times,/}(h_n) > c2^n$ (lemma)

(since after each operation the degree of a rational representation at most doubles). On the other hand, evidently, $C_{+-} = Q(n)_{+}$

Dima Grigoriev (CNRS)

Polya (1923): any homogeneous polynomial $h \in \mathbb{R}[x_1, \ldots, x_n]$ positive everywhere on the non-negative orthant $\mathbb{R}_{\geq 0}^n \setminus \{0\}$ can be represented as a fraction $P/(x_1 + \cdots + x_n)^N$ for suitable integer *N* and a polynomial *P* with positive coefficients.

Example: $x^2 - xy + y^2 = (x^3 + y^3)/(x + y)$.

Lemma

For any representation $h_n := (t - x_1)^4 + (x_1 - 2x_2)^4 + (x_2^2 - tx_3)^2 + (x_3^2 - tx_4)^2 + \dots + (x_{n-1}^2 - tx_n)^2 + 2x_n^4 + 4x_n^2(t - x_1)^2 = P/Q$ where *P*, *Q* being polynomials with positive coefficients we have $\deg(Q) > 2^{c^{2^n}}$ for some constant c > 0.

Corollary

(Polya's theorem for h_n) $\infty > C_{+,\times,/}(h_n) > c2^n$ (lemma)

(since after each operation the degree of a rational representation at most doubles). On the other hand, evidently, $C_{+-} = Q(n)_{+}$

Dima Grigoriev (CNRS)

Polya (1923): any homogeneous polynomial $h \in \mathbb{R}[x_1, \ldots, x_n]$ positive everywhere on the non-negative orthant $\mathbb{R}^n_{\geq 0} \setminus \{0\}$ can be represented as a fraction $P/(x_1 + \cdots + x_n)^N$ for suitable integer *N* and a polynomial *P* with positive coefficients.

Example: $x^2 - xy + y^2 = (x^3 + y^3)/(x + y)$.

Lemma

For any representation $h_n := (t - x_1)^4 + (x_1 - 2x_2)^4 + (x_2^2 - tx_3)^2 + (x_3^2 - tx_4)^2 + \dots + (x_{n-1}^2 - tx_n)^2 + 2x_n^4 + 4x_n^2(t - x_1)^2 = P/Q$ where *P*, *Q* being polynomials with positive coefficients we have $\deg(Q) > 2^{Q^2}$ for some constant c > 0.

Corollary

(Polya's theorem for h_n) $\infty > C_{+, \times, /}(h_n) > c2^n$ (lemma)

(since after each operation the degree of a rational representation at most doubles). On the other hand, evidently, $C_{\downarrow} = \sum_{i=1}^{n} \langle h_{i} \rangle \langle Q(n) \rangle$

Dima Grigoriev (CNRS)

Polya (1923): any homogeneous polynomial $h \in \mathbb{R}[x_1, \ldots, x_n]$ positive everywhere on the non-negative orthant $\mathbb{R}_{\geq 0}^n \setminus \{0\}$ can be represented as a fraction $P/(x_1 + \cdots + x_n)^N$ for suitable integer *N* and a polynomial *P* with positive coefficients.

Example: $x^2 - xy + y^2 = (x^3 + y^3)/(x + y)$.

Lemma

For any representation $h_n := (t - x_1)^4 + (x_1 - 2x_2)^4 + (x_2^2 - tx_3)^2 + (x_3^2 - tx_4)^2 + \dots + (x_{n-1}^2 - tx_n)^2 + 2x_n^4 + 4x_n^2(t - x_1)^2 = P/Q$ where *P*, *Q* being polynomials with positive coefficients we have $\deg(Q) > 2^{c2^n}$ for some constant c > 0.

Corollary

(Polya's theorem for h_n) $\infty > C_{+,\times,/}(h_n) > c2^n$ (lemma)

(since after each operation the degree of a rational representation at most doubles). On the other hand, evidently, $C_{\downarrow} = \sum_{i=1}^{n} \langle h_i \rangle < Q(n)_{\downarrow}$

Dima Grigoriev (CNRS)

Polya (1923): any homogeneous polynomial $h \in \mathbb{R}[x_1, \ldots, x_n]$ positive everywhere on the non-negative orthant $\mathbb{R}_{\geq 0}^n \setminus \{0\}$ can be represented as a fraction $P/(x_1 + \cdots + x_n)^N$ for suitable integer *N* and a polynomial *P* with positive coefficients.

Example: $x^2 - xy + y^2 = (x^3 + y^3)/(x + y)$.

Lemma

For any representation $h_n := (t - x_1)^4 + (x_1 - 2x_2)^4 + (x_2^2 - tx_3)^2 + (x_3^2 - tx_4)^2 + \dots + (x_{n-1}^2 - tx_n)^2 + 2x_n^4 + 4x_n^2(t - x_1)^2 = P/Q$ where *P*, *Q* being polynomials with positive coefficients we have $\deg(Q) > 2^{c2^n}$ for some constant c > 0.

Corollary

(Polya's theorem for h_n) $\infty > C_{+, \times, /}(h_n) > c2^n$ (lemma)

(since after each operation the degree of a rational representation at most doubles). On the other hand, evidently, $C_{+} = A_{a} (h_{n}) < Q(n)$

Dima Grigoriev (CNRS)

Polya (1923): any homogeneous polynomial $h \in \mathbb{R}[x_1, \ldots, x_n]$ positive everywhere on the non-negative orthant $\mathbb{R}_{\geq 0}^n \setminus \{0\}$ can be represented as a fraction $P/(x_1 + \cdots + x_n)^N$ for suitable integer *N* and a polynomial *P* with positive coefficients.

Example: $x^2 - xy + y^2 = (x^3 + y^3)/(x + y)$.

Lemma

For any representation $h_n := (t - x_1)^4 + (x_1 - 2x_2)^4 + (x_2^2 - tx_3)^2 + (x_3^2 - tx_4)^2 + \dots + (x_{n-1}^2 - tx_n)^2 + 2x_n^4 + 4x_n^2(t - x_1)^2 = P/Q$ where *P*, *Q* being polynomials with positive coefficients we have $\deg(Q) > 2^{c2^n}$ for some constant c > 0.

Corollary

(Polya's theorem for
$$h_n$$
) $\infty > C_{+, \times, /}(h_n) > c2^n$ (lemma)

(since after each operation the degree of a rational representation at most doubles). On the other hand, evidently, $C_{\pm n}$, $\chi_{\pm}(h_n) < Q(n)$, and

Dima Grigoriev (CNRS)

Polya (1923): any homogeneous polynomial $h \in \mathbb{R}[x_1, \ldots, x_n]$ positive everywhere on the non-negative orthant $\mathbb{R}_{\geq 0}^n \setminus \{0\}$ can be represented as a fraction $P/(x_1 + \cdots + x_n)^N$ for suitable integer *N* and a polynomial *P* with positive coefficients.

Example: $x^2 - xy + y^2 = (x^3 + y^3)/(x + y)$.

Lemma

For any representation $h_n := (t - x_1)^4 + (x_1 - 2x_2)^4 + (x_2^2 - tx_3)^2 + (x_3^2 - tx_4)^2 + \dots + (x_{n-1}^2 - tx_n)^2 + 2x_n^4 + 4x_n^2(t - x_1)^2 = P/Q$ where *P*, *Q* being polynomials with positive coefficients we have $\deg(Q) > 2^{c2^n}$ for some constant c > 0.

Corollary

(Polya's theorem for
$$h_n$$
) $\infty > C_{+,\times,/}(h_n) > c2^n$ (lemma)

(since after each operation the degree of a rational representation at most doubles). On the other hand, evidently, $C_{1,n} = Q(n)$

Dima Grigoriev (CNRS)

Polya (1923): any homogeneous polynomial $h \in \mathbb{R}[x_1, \ldots, x_n]$ positive everywhere on the non-negative orthant $\mathbb{R}_{\geq 0}^n \setminus \{0\}$ can be represented as a fraction $P/(x_1 + \cdots + x_n)^N$ for suitable integer *N* and a polynomial *P* with positive coefficients.

Example: $x^2 - xy + y^2 = (x^3 + y^3)/(x + y)$.

Lemma

For any representation $h_n := (t - x_1)^4 + (x_1 - 2x_2)^4 + (x_2^2 - tx_3)^2 + (x_3^2 - tx_4)^2 + \dots + (x_{n-1}^2 - tx_n)^2 + 2x_n^4 + 4x_n^2(t - x_1)^2 = P/Q$ where *P*, *Q* being polynomials with positive coefficients we have $\deg(Q) > 2^{c2^n}$ for some constant c > 0.

Corollary

(Polya's theorem for
$$h_n$$
) $\infty > C_{+,\times,/}(h_n) > c2^n$ (lemma)

(since after each operation the degree of a rational representation at most doubles). On the other hand, evidently, $C_{+,-,\times,-}(h_n) < O(n)$.

Dima Grigoriev (CNRS)