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Complexity of rational functions with respect to a
subset of arithmetic operations
Let M ⊂ {+, −, ×, /}. Complexity CM(f ) for a rational function
f ∈ Q(X1, . . . ,Xn) is defined as the minimal number of operations from
M necessary to compute f , provided it is finite.

Problem. For given M ⊂ M1 ⊂ {+, −, ×, /} how big can be CM(f ) in
comparison with CM1(f )?

This problem is non-trivial just for three pairs of M ⊂ M1.

Theorem
C+,−,×(f ) ≤ O(C+,−,×, /(f ) · deg(f ))
for a polynomial f (V. Strassen, 1973)

(”ring complexity” ≤ O (”field complexity” · deg))
Question. Is the bound sharp for big deg(f )?

Corollary

C+,−,×(det) ≤ O(n4) (D. K. Faddeev, V. N. Faddeeva, 1960)
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Subtraction-free computations
• C+,×(f ) can be exponentially bigger than C+,×, /(f )

• C+,×, /(g) can be exponentially bigger than C+,−,×, /(g).

L. Valiant, 1980 has constructed a polynomial h (with positive
coefficients) such that C+,×(h) is exponentially bigger than
C+,−,×, /(h). Funny consequence: at least one of two above • results
holds. But which one?: A growth of C+,×, /(h) is not known.
Subtraction-free computations have a meaning in numerical analysis:
if a computation deals with positive numbers c given with a relative
error, i. e. (1− ε) · b < c < (1 + ε) · b where ε is a relative error then
one can estimate easily relative error after operations +, ×, /.
Polynomial in n variables is called numerically positive if it is positive
everywhere on the positive orthant (0,∞)n.
Theorem. Polynomial f has a finite subtraction-free complexity
C+,×, /(f ) <∞ iff for each face P of its Newton polytope the restriction
f |P is numerically positive (Handelman, 1985).
Corollary. Subtraction-free complexity is computable.
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Cluster algebras

Consider n × n matrix X = (Xij) with variable entries. For a set
I ⊂ {1, . . . ,n} of size |I| = k denote by ∆I the determinant of k × k
submatrix of X formed by first k rows and by columns i ∈ I. Then the
flag algebra F [{∆I}I ] is the ring of regular functions on the flag variety.

Clusters are special families of flag minors ∆I (being bases of the flag
algebra). To describe clusters define relation I ≺ J for I, J ⊂ {1, . . . ,n}
if for any pair i ∈ I \ J, j ∈ J \ I we have i < j . We say that I, J are
strongly separated if either I ≺ J or J ≺ I. Cluster is a maximal (wrt
inclusion) family of pairwise strongly separated flag minors (excluding
I = {1, . . . ,n}). Each cluster contains n(n + 1)/2− 1 flag minors
(Fomin-Zelevinsky).

Shorthand: for j /∈ I denote Ij =: I ∪ {j}.
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Cluster graph
Plücker relations: ∆Iik ·∆Ij = ∆Iij ·∆Ik + ∆Ijk ·∆Ii , i , j , k /∈ I; i < j < k
Clusters form a directed acyclic cluster graph: there is an edge from
one cluster to another if they are, respectively, of the types
{∆Iik , ∆Iij , ∆Ik , ∆Ijk , ∆Ii , . . . };
{∆Ij , ∆Iij , ∆Ik , ∆Ijk , ∆Ii , . . . }
Cluster graph is graded according to the sum of sizes |I|. A birational
(with integer positive coefficients) transformation from one cluster to
another (along an edge or back) is called a flip. Cluster graph has the
unique minimal element corresponding to I being all the proper
intervals of {1, . . . ,n} and the unique maximal element corresponding
to all the complements of the proper intervals.
Fomin-Zelevinsky: any non-minimal cluster contains a 5-tuple
∆Iik , ∆Iij , ∆Ik , ∆Ijk , ∆Ii , therefore, a flip can be applied to the cluster.
Any flag minor belongs to some cluster. Thus, any flag minor can be
computed with O(n3) flips starting with the interval flag minors, and a
flag minor is a Laurent polynomial in the interval flag minors with
integer positive coefficients.
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Totally positive matrices
As a consequence from cluster transformations we conclude that for a
real matrix if all the interval flag minors are positive then all flag minors
are positive as well.

A real matrix is called totally positive if all its minors are positive.
Cluster transformation entail that for total positivity it suffices to verify
positivity of minors formed by sets of rows I and of columns J for all
pairs of intervals I, J ⊂ {1, . . . ,n}.
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Cubic subtraction-free complexity of Schur
polynomials
Substitute for the entries of the matrix Xij = x j

i . Then
∆ := ∆{1,...,k} =

∏
1≤i<j≤k (xj − xi) is Vandermond determinant. The

quotient SI = ∆I/∆ is a Schur polynomial having integer positive
coefficients (called Kostka numbers being #P-hard to compute).

Since for an interval I = [i , i + 1, . . . , j] the interval Schur polynomial is
the monomial SI = (x1 · · · xj−i+1)i being easy to compute, we get

Corollary
Subtraction-free complexity of a Schur polynomial
C+,×, /(SI) ≤ O(n3 · log n).

This does not yet imply an exponential gap between C+,×, / and C+,×
because we don’t know a lower bound on the complexity C+,×(SI). To
establish this gap we proceed to another class of cluster
transformations.
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the monomial SI = (x1 · · · xj−i+1)i being easy to compute, we get

Corollary
Subtraction-free complexity of a Schur polynomial
C+,×, /(SI) ≤ O(n3 · log n).

This does not yet imply an exponential gap between C+,×, / and C+,×
because we don’t know a lower bound on the complexity C+,×(SI). To
establish this gap we proceed to another class of cluster
transformations.
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Star-mesh transformations
Let edges of a complete graph G with n vertices (viewed as an
electrical circuit) be endowed with conductances xi,j . Denote by
condi,j(G) the conductance of the circuit between vertices i , j .

For a spanning tree T of G denote by X T the monomial being the
product of xi,j for all edges i , j of T . The generating polynomial f (G) is
the sum of the monomials X T over all spanning trees T .
Example: for G with 3 vertices f (G) = x1,2 · x2,3 + x1,2 · x1,3 + x2,3 · x1,3.
For vertices v , w of G denote by Gv ,w the graph obtained from G by
gluing v , w into a vertex u with new conductances xi,u := xi,v + xi,w .

Kirchhoff (1847): condi,j(G) = f (G)/f (Gi,j).

Star-mesh transformation: let a vertex v 6= i , j of G. Denote by Gv a
graph obtained from G by removing v and replacing each conductance
xp,q by xp,q + xp,v · xq,v ·

∑
k (xk ,v )−1. Then condi,j(G) = condi,j(Gv ).

Corollary

Subtraction-free complexity C+,×, /(condi,j(G), f (G)) ≤ O(n3).
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Star-mesh transformations
Let edges of a complete graph G with n vertices (viewed as an
electrical circuit) be endowed with conductances xi,j . Denote by
condi,j(G) the conductance of the circuit between vertices i , j .

For a spanning tree T of G denote by X T the monomial being the
product of xi,j for all edges i , j of T . The generating polynomial f (G) is
the sum of the monomials X T over all spanning trees T .
Example: for G with 3 vertices f (G) = x1,2 · x2,3 + x1,2 · x1,3 + x2,3 · x1,3.
For vertices v , w of G denote by Gv ,w the graph obtained from G by
gluing v , w into a vertex u with new conductances xi,u := xi,v + xi,w .

Kirchhoff (1847): condi,j(G) = f (G)/f (Gi,j).

Star-mesh transformation: let a vertex v 6= i , j of G. Denote by Gv a
graph obtained from G by removing v and replacing each conductance
xp,q by xp,q + xp,v · xq,v ·

∑
k (xk ,v )−1. Then condi,j(G) = condi,j(Gv ).

Corollary

Subtraction-free complexity C+,×, /(condi,j(G), f (G)) ≤ O(n3).
Dima Grigoriev (CNRS) Subtraction-free complexity 18.05.16 8 / 1



Star-mesh transformations
Let edges of a complete graph G with n vertices (viewed as an
electrical circuit) be endowed with conductances xi,j . Denote by
condi,j(G) the conductance of the circuit between vertices i , j .

For a spanning tree T of G denote by X T the monomial being the
product of xi,j for all edges i , j of T . The generating polynomial f (G) is
the sum of the monomials X T over all spanning trees T .
Example: for G with 3 vertices f (G) = x1,2 · x2,3 + x1,2 · x1,3 + x2,3 · x1,3.
For vertices v , w of G denote by Gv ,w the graph obtained from G by
gluing v , w into a vertex u with new conductances xi,u := xi,v + xi,w .

Kirchhoff (1847): condi,j(G) = f (G)/f (Gi,j).

Star-mesh transformation: let a vertex v 6= i , j of G. Denote by Gv a
graph obtained from G by removing v and replacing each conductance
xp,q by xp,q + xp,v · xq,v ·

∑
k (xk ,v )−1. Then condi,j(G) = condi,j(Gv ).

Corollary

Subtraction-free complexity C+,×, /(condi,j(G), f (G)) ≤ O(n3).
Dima Grigoriev (CNRS) Subtraction-free complexity 18.05.16 8 / 1



Star-mesh transformations
Let edges of a complete graph G with n vertices (viewed as an
electrical circuit) be endowed with conductances xi,j . Denote by
condi,j(G) the conductance of the circuit between vertices i , j .

For a spanning tree T of G denote by X T the monomial being the
product of xi,j for all edges i , j of T . The generating polynomial f (G) is
the sum of the monomials X T over all spanning trees T .
Example: for G with 3 vertices f (G) = x1,2 · x2,3 + x1,2 · x1,3 + x2,3 · x1,3.
For vertices v , w of G denote by Gv ,w the graph obtained from G by
gluing v , w into a vertex u with new conductances xi,u := xi,v + xi,w .

Kirchhoff (1847): condi,j(G) = f (G)/f (Gi,j).

Star-mesh transformation: let a vertex v 6= i , j of G. Denote by Gv a
graph obtained from G by removing v and replacing each conductance
xp,q by xp,q + xp,v · xq,v ·

∑
k (xk ,v )−1. Then condi,j(G) = condi,j(Gv ).

Corollary

Subtraction-free complexity C+,×, /(condi,j(G), f (G)) ≤ O(n3).
Dima Grigoriev (CNRS) Subtraction-free complexity 18.05.16 8 / 1



Star-mesh transformations
Let edges of a complete graph G with n vertices (viewed as an
electrical circuit) be endowed with conductances xi,j . Denote by
condi,j(G) the conductance of the circuit between vertices i , j .

For a spanning tree T of G denote by X T the monomial being the
product of xi,j for all edges i , j of T . The generating polynomial f (G) is
the sum of the monomials X T over all spanning trees T .
Example: for G with 3 vertices f (G) = x1,2 · x2,3 + x1,2 · x1,3 + x2,3 · x1,3.
For vertices v , w of G denote by Gv ,w the graph obtained from G by
gluing v , w into a vertex u with new conductances xi,u := xi,v + xi,w .

Kirchhoff (1847): condi,j(G) = f (G)/f (Gi,j).

Star-mesh transformation: let a vertex v 6= i , j of G. Denote by Gv a
graph obtained from G by removing v and replacing each conductance
xp,q by xp,q + xp,v · xq,v ·

∑
k (xk ,v )−1. Then condi,j(G) = condi,j(Gv ).

Corollary

Subtraction-free complexity C+,×, /(condi,j(G), f (G)) ≤ O(n3).
Dima Grigoriev (CNRS) Subtraction-free complexity 18.05.16 8 / 1



Star-mesh transformations
Let edges of a complete graph G with n vertices (viewed as an
electrical circuit) be endowed with conductances xi,j . Denote by
condi,j(G) the conductance of the circuit between vertices i , j .

For a spanning tree T of G denote by X T the monomial being the
product of xi,j for all edges i , j of T . The generating polynomial f (G) is
the sum of the monomials X T over all spanning trees T .
Example: for G with 3 vertices f (G) = x1,2 · x2,3 + x1,2 · x1,3 + x2,3 · x1,3.
For vertices v , w of G denote by Gv ,w the graph obtained from G by
gluing v , w into a vertex u with new conductances xi,u := xi,v + xi,w .

Kirchhoff (1847): condi,j(G) = f (G)/f (Gi,j).

Star-mesh transformation: let a vertex v 6= i , j of G. Denote by Gv a
graph obtained from G by removing v and replacing each conductance
xp,q by xp,q + xp,v · xq,v ·

∑
k (xk ,v )−1. Then condi,j(G) = condi,j(Gv ).

Corollary

Subtraction-free complexity C+,×, /(condi,j(G), f (G)) ≤ O(n3).
Dima Grigoriev (CNRS) Subtraction-free complexity 18.05.16 8 / 1



Star-mesh transformations
Let edges of a complete graph G with n vertices (viewed as an
electrical circuit) be endowed with conductances xi,j . Denote by
condi,j(G) the conductance of the circuit between vertices i , j .

For a spanning tree T of G denote by X T the monomial being the
product of xi,j for all edges i , j of T . The generating polynomial f (G) is
the sum of the monomials X T over all spanning trees T .
Example: for G with 3 vertices f (G) = x1,2 · x2,3 + x1,2 · x1,3 + x2,3 · x1,3.
For vertices v , w of G denote by Gv ,w the graph obtained from G by
gluing v , w into a vertex u with new conductances xi,u := xi,v + xi,w .

Kirchhoff (1847): condi,j(G) = f (G)/f (Gi,j).

Star-mesh transformation: let a vertex v 6= i , j of G. Denote by Gv a
graph obtained from G by removing v and replacing each conductance
xp,q by xp,q + xp,v · xq,v ·

∑
k (xk ,v )−1. Then condi,j(G) = condi,j(Gv ).

Corollary

Subtraction-free complexity C+,×, /(condi,j(G), f (G)) ≤ O(n3).
Dima Grigoriev (CNRS) Subtraction-free complexity 18.05.16 8 / 1



Star-mesh transformations
Let edges of a complete graph G with n vertices (viewed as an
electrical circuit) be endowed with conductances xi,j . Denote by
condi,j(G) the conductance of the circuit between vertices i , j .

For a spanning tree T of G denote by X T the monomial being the
product of xi,j for all edges i , j of T . The generating polynomial f (G) is
the sum of the monomials X T over all spanning trees T .
Example: for G with 3 vertices f (G) = x1,2 · x2,3 + x1,2 · x1,3 + x2,3 · x1,3.
For vertices v , w of G denote by Gv ,w the graph obtained from G by
gluing v , w into a vertex u with new conductances xi,u := xi,v + xi,w .

Kirchhoff (1847): condi,j(G) = f (G)/f (Gi,j).

Star-mesh transformation: let a vertex v 6= i , j of G. Denote by Gv a
graph obtained from G by removing v and replacing each conductance
xp,q by xp,q + xp,v · xq,v ·

∑
k (xk ,v )−1. Then condi,j(G) = condi,j(Gv ).

Corollary

Subtraction-free complexity C+,×, /(condi,j(G), f (G)) ≤ O(n3).
Dima Grigoriev (CNRS) Subtraction-free complexity 18.05.16 8 / 1



Star-mesh transformations
Let edges of a complete graph G with n vertices (viewed as an
electrical circuit) be endowed with conductances xi,j . Denote by
condi,j(G) the conductance of the circuit between vertices i , j .

For a spanning tree T of G denote by X T the monomial being the
product of xi,j for all edges i , j of T . The generating polynomial f (G) is
the sum of the monomials X T over all spanning trees T .
Example: for G with 3 vertices f (G) = x1,2 · x2,3 + x1,2 · x1,3 + x2,3 · x1,3.
For vertices v , w of G denote by Gv ,w the graph obtained from G by
gluing v , w into a vertex u with new conductances xi,u := xi,v + xi,w .

Kirchhoff (1847): condi,j(G) = f (G)/f (Gi,j).

Star-mesh transformation: let a vertex v 6= i , j of G. Denote by Gv a
graph obtained from G by removing v and replacing each conductance
xp,q by xp,q + xp,v · xq,v ·

∑
k (xk ,v )−1. Then condi,j(G) = condi,j(Gv ).

Corollary

Subtraction-free complexity C+,×, /(condi,j(G), f (G)) ≤ O(n3).
Dima Grigoriev (CNRS) Subtraction-free complexity 18.05.16 8 / 1



Star-mesh transformations
Let edges of a complete graph G with n vertices (viewed as an
electrical circuit) be endowed with conductances xi,j . Denote by
condi,j(G) the conductance of the circuit between vertices i , j .

For a spanning tree T of G denote by X T the monomial being the
product of xi,j for all edges i , j of T . The generating polynomial f (G) is
the sum of the monomials X T over all spanning trees T .
Example: for G with 3 vertices f (G) = x1,2 · x2,3 + x1,2 · x1,3 + x2,3 · x1,3.
For vertices v , w of G denote by Gv ,w the graph obtained from G by
gluing v , w into a vertex u with new conductances xi,u := xi,v + xi,w .

Kirchhoff (1847): condi,j(G) = f (G)/f (Gi,j).

Star-mesh transformation: let a vertex v 6= i , j of G. Denote by Gv a
graph obtained from G by removing v and replacing each conductance
xp,q by xp,q + xp,v · xq,v ·

∑
k (xk ,v )−1. Then condi,j(G) = condi,j(Gv ).

Corollary

Subtraction-free complexity C+,×, /(condi,j(G), f (G)) ≤ O(n3).
Dima Grigoriev (CNRS) Subtraction-free complexity 18.05.16 8 / 1



Star-mesh transformations
Let edges of a complete graph G with n vertices (viewed as an
electrical circuit) be endowed with conductances xi,j . Denote by
condi,j(G) the conductance of the circuit between vertices i , j .

For a spanning tree T of G denote by X T the monomial being the
product of xi,j for all edges i , j of T . The generating polynomial f (G) is
the sum of the monomials X T over all spanning trees T .
Example: for G with 3 vertices f (G) = x1,2 · x2,3 + x1,2 · x1,3 + x2,3 · x1,3.
For vertices v , w of G denote by Gv ,w the graph obtained from G by
gluing v , w into a vertex u with new conductances xi,u := xi,v + xi,w .

Kirchhoff (1847): condi,j(G) = f (G)/f (Gi,j).

Star-mesh transformation: let a vertex v 6= i , j of G. Denote by Gv a
graph obtained from G by removing v and replacing each conductance
xp,q by xp,q + xp,v · xq,v ·

∑
k (xk ,v )−1. Then condi,j(G) = condi,j(Gv ).

Corollary

Subtraction-free complexity C+,×, /(condi,j(G), f (G)) ≤ O(n3).
Dima Grigoriev (CNRS) Subtraction-free complexity 18.05.16 8 / 1



Star-mesh transformations
Let edges of a complete graph G with n vertices (viewed as an
electrical circuit) be endowed with conductances xi,j . Denote by
condi,j(G) the conductance of the circuit between vertices i , j .

For a spanning tree T of G denote by X T the monomial being the
product of xi,j for all edges i , j of T . The generating polynomial f (G) is
the sum of the monomials X T over all spanning trees T .
Example: for G with 3 vertices f (G) = x1,2 · x2,3 + x1,2 · x1,3 + x2,3 · x1,3.
For vertices v , w of G denote by Gv ,w the graph obtained from G by
gluing v , w into a vertex u with new conductances xi,u := xi,v + xi,w .

Kirchhoff (1847): condi,j(G) = f (G)/f (Gi,j).

Star-mesh transformation: let a vertex v 6= i , j of G. Denote by Gv a
graph obtained from G by removing v and replacing each conductance
xp,q by xp,q + xp,v · xq,v ·

∑
k (xk ,v )−1. Then condi,j(G) = condi,j(Gv ).

Corollary

Subtraction-free complexity C+,×, /(condi,j(G), f (G)) ≤ O(n3).
Dima Grigoriev (CNRS) Subtraction-free complexity 18.05.16 8 / 1



Arborescences
Now G is a complete graph with n vertices and edges i , j endowed with
two variables xi,j 6= xj,i . Fix a vertex r of G and consider any spanning
tree T of G as having its root at r and all its edges directed towards r
(such directed trees are called arborescences). Then the monomial
X T corresponding to this tree is the product of all xi,j over all edges i , j
of T according to the chosen direction of T . The generating polynomial
φ(G) of arborescences is the sum of all the monomials X T .

Example: if n = 3, r = 2 then φ(G) = x1,2 · x3,2 + x1,2 · x3,1 + x1,3 · x3,2.

Star-mesh transformation: let a vertex v 6= r of G. Denote by Gv a
graph obtained from G by removing v and replacing each xp,q by
xp,q + xp,v · xv ,q · (

∑
k xv ,k )−1. Then φ(G) =

∑
k xv ,k · φ(Gv ).

Corollary

C+,×, /(φ(G)) ≤ O(n3).

Schnorr-Valiant-Jerrum-Snir: C+,×(φ(G)) ≥ cn for some c > 1.
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Subtraction can be exponentially powerful
Polya (1923): any homogeneous polynomial h ∈ R[x1, . . . , xn] positive
everywhere on the non-negative orthant Rn

≥0 \ {0} can be represented
as a fraction P/(x1 + · · ·+ xn)N for suitable integer N and a polynomial
P with positive coefficients.
Example: x2 − xy + y2 = (x3 + y3)/(x + y).

Lemma

For any representation hn := (t − x1)4 + (x1 − 2x2)4 + (x2
2 − tx3)2 +

(x2
3 − tx4)2 + · · ·+ (x2

n−1 − txn)2 + 2x4
n + 4x2

n (t − x1)2 = P/Q where
P, Q being polynomials with positive coefficients we have
deg(Q) > 2c2n

for some constant c > 0.

Corollary
(Polya’s theorem for hn)∞ > C+,×, /(hn) > c2n (lemma)

(since after each operation the degree of a rational representation at
most doubles). On the other hand, evidently, C+,−,×, /(hn) < O(n).
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