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Ask questions

Do ask questions during the talk.

I am not fond of speaking for too long on my own.
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The plan

A long time ago, I wrote a thesis on circuit complexity.

Some open problems from the thesis were recently solved by
very similar methods.

What happened?
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My opinion

Memories are “adjustable”.

If you think about something again and again the memory
changes.

Nicer and more general ways of saying something are adopted.

“I was thinking about it this way all along but just did not write it
this way”.

On a few accounts I know I am guilty of this.
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Basic definition

A circuit is a directed acyclic graph from inputs to one output
with n inputs.

x̄1

x2 x̄3

x̄1

∨

∧

∧

∨

Size: Number of gates, S = 4

Depth: Longest path from input to output, d = 3
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Small-depth circuits

Unbounded fanin circuits with ∧ and ∨-gates in alternating
layers. Neighboring gates of same type can be collapsed.
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Classical questions

What size is needed to computer parity (exact or approximate)?

Is depth k more powerful than depth k − 1 (and say polynomial
size)?

Johan Håstad (KTH) Revisit



Something easy? to understand

Depth 2. A t-DNF

∧∧ ∧ ∧

≤ t inputs to each∧-gate

∧ ∧

∨

and an s-CNF
∧

∨ ∨ ∨ ∨ ∨ ∨

≤ s inputs to each∨-gate

If f computed by one then ¬f computed by the other and thus
these are equally hard to study.

Johan Håstad (KTH) Revisit



Computing parity in small depth

For depth 2 parity requires size 1 + 2n−1 and bottom fanin n
both as a CNF and DNF.

Not difficult to establish exact bounds.
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Parity in depth 4

A parity tree of depth 2 of fan-out
√

n.

Replace each gate by a depth two circuit of size 2
√

n.

Circuit of depth 4 and size n2
√

n.
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In pictures

+
+

+

+

turns into

Ignoring negations, which causes a factor 2 blowup.

Take CNF for top gate and DNF for second level. Adjacent
levels of or-gates and we can decrease depth to 3.
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Higher depth

Parity tree of depth k and fan-out n1/k .

CNFs on odd levels, DNFs on even levels.

Depth k + 1 and size n2n1/k
.
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Parity result of 1986

The final theorem after work by Furst, Saxe, and Sipser, Ajtai
and Yao.

Theorem [H86] To compute parity of n variables in depth d you
need size

2Ω(n1/(d−1)).

In fact (joint with Ravi Boppana) with size smaller than this you
can only agree with parity for a fraction

1
2

+ 2−Ω(n1/(d−1))

of the inputs.
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Best possible?

For exact computing best possible up to the implied constant.

For correlation, strangely not.

For polynomial size, Ajtai’s result gave better bounds for
correlation and this was something strange already then.
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More recent results, 2014

We will outline an argument that a circuit of size S and depth d
can only agree with parity on a fraction

1
2

+ 2−Ω(n/(log S)d−1)

of the inputs.

Proved independently by Impagliazzo, Matthews and Paturi.

Johan Håstad (KTH) Revisit



The hierarchy theorem

Strengthening work of Sipser and Yao we proved

Theorem [H86] There is a function, fd computable by a
read-once formula of depth d that requires size

2Ω(nΩ(1/d))

to be computed by depth d − 1.

Open question: How about non-trivial agreement?

I do not even think I was a 100% convinced that the
strengthening was true, at least not for read-once formulas.
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More recent results, 2015

Rossman, Servedio and Tan prove that (for a different function
fd ) the agreement can be at most

1
2

+ n−Ω(1/d).

I extend this from d =
√

log n/ log log n to log n/ log log n and
make the proof more succinct.
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Rest of talk

Discussing original proofs and what adjustments were needed
for the more modern results.
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Restrictions

Sipser [S83]: Randomly give values to most of the variables.

Formally: ρ ∈ Rp for each variable xi independently:

Keep it is a variable with probability p, otherwise fix it to 0 and 1
with equal probability, (1− p)/2.

Notation ρ(xi) = 0,1, ∗.
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What restrictions do

Restrictions simplify small-depth circuit.

Functions that survive restrictions are hard to compute by
small-depth circuits.

Parity survives any restriction but for other functions we need
more sensitive spaces of restrictions.
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The switching lemma

After preliminary work by Yao with more complicated notions.

Lemma [H86] Any depth two circuit which is a ∨ of ∧’s each of
which is size ≤ t can, when hit with a random ρ ∈ Rp, with
probability at least 1− (5pt)s, be converted to a depth two
circuit which is a ∧ of ∨’s each of which is of size ≤ s.
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A picture

∧∧ ∧ ∧

≤ t inputs to each∧-gate

∧ ∧

∨

turns into
∧

∨ ∨ ∨ ∨ ∨ ∨

≤ s inputs to each∨-gate

with probability 1− (5pt)s by ρ ∈ Rp.

And the other way around.
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Proofs of the switching lemma

Original proof by me through a labeling argument working with
conditioning of clauses of the formula.

Ravi Boppana suggested to write it with arbitrary conditioning
and induction. Which I adopted and forgot that this was Ravi’s
suggestion.

Sasha Razborov later showed how to write it as a labeling
argument.

I think the arguments are (essentially) the same but the
induction formalism gives shorter proofs with less notation.
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Variants in statement

Originally I proved proved that each minterm is of size at most
s.

Cai suggested that it is better to say that the depth of a decision
tree is at most t .

Originally proved also under conditions of the form Fdρ≡ 1,
(including Boppana).

I now prefer conditioning ρ ∈ ∆ for a downward closed set ∆.
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Downward closed sets

If ρ ∈ ∆ and ρ(xi) = ∗, then changing this value to 0 or 1 does
not make ρ leave ∆. Examples

The set of restrictions forcing F to the constant 1.
The set of restrictions that give the value ∗ to at most pn
variables.
The set of restrictions that make C possible to compute by
a decision tree of depth at most 7.
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Proof summary

Let C = ∧m
i=1Ci where each |Ci | ≤ t . Want to prove.

Pr [depth(Cdρ) ≥ s|ρ ∈ ∆] ≤ (5pt)s,

by induction over m.

If C1dρ≡ 1 we stick it into the conditioning and use induction.

If C1dρ 6≡ 1 we put the variables in C1 which are given the value
∗ by ρ into the decision tree and apply induction.
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The key sub-lemma

For any set of variables Y appearing in C1.

Pr [ρ(Y ) = ∗ | C1dρ 6≡ 1 ∧ ρ ∈ ∆] ≤ (
2p

1 + p
)|Y |.

Belonging to ∆ does not bias coordinates towards being ∗.

Proof of sub-lemma: Take any ρ contributing to the event and
change its value on Y to other values consistent with C1dρ 6≡ 1.
This gives restrictions satisfying the conditioning.
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The key fact

We need

Pr [ρ(xi) = ∗]
Pr [ρ(xi) = 0 ∨ ρ(xi) = ∗]

and
Pr [ρ(xi) = ∗]

Pr [ρ(xi) = 1 ∨ ρ(xi) = ∗]

to be small. For ρ ∈ Rp these are 2p
1+p , the number that shows

up in key sub-lemma.
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Switching gives parity lower bound

Induction with p = n−1/(d−1) and s = t = 1
10n1/(d−1).

Each restriction wipes out one level.
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In pictures, I

∧ ∧ ∧

∨ ∨

∧ ∧ ∧

∨

∧

bottom fanin≤ t

Apply ρ ∈ Rp and use lemma on each depth 2 sub-circuit.

∧

∧ ∧ ∧

∨ ∨ ∨ ∨ ∨1

bottom fanin≤ s
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In pictures, II

After switching we have

∧

∧ ∧ ∧

∨ ∨ ∨ ∨ ∨1

bottom fanin≤ s

and we make shortcuts

∧

∨ ∨ ∨ ∨ ∨

bottom fanin≤ s
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Punch line, switching

Repeat until circuit has depth 2.

When reduced to a decision tree of not full depth there is no
correlation with parity.

Johan Håstad (KTH) Revisit



Parameters

If size of the circuit is S, the probability to fail at least some
switching is S2−t .

Make sure that the expected number of variables remaining in
the end is 2t .

The probability of agreeing with parity is at most
1
2 + S2−t + 2−ct .
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Clearly best possible!?

The estimate of the switching lemma is essentially sharp.

Need p ≤ 1
t and cannot get better than exponential decay in s.

Correlation 1
2 + 2−r requires failure probabilities 2−r and thus

s ≈ r and thus we need to have t ≈ r and p ≈ 1
r .

Only at most nr2−d variables remain.

I was stuck. I could not see a way around this in 1986 and gave
up.
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Looking more closely

With probability S2−s we need to handle the event that an
individual depth-two circuit has some path in its decision tree of
length s.

Usually a single path of length s appearing in a single decision
tree being constructed.

The failure is extremely local.
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Getting stronger correlation

Apply restriction ρ.

Go over depth two circuits, Di , one by one.
If depth of decision tree of Didρ is at most 10 log S, switch
it.
If some path of the decision tree of Didρ is at least 10 log S
fix the variables along this path.

Apply induction on the number of depth-2 sub-circuits.

As the proof of the Switching lemma but on one higher level.

The Switching lemma does for this argument what the “key
sub-lemma” did for the Switching lemma.
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The structure of overall proof

1 At stage i we have a circuit of depth d − i with bottom fanin
10 log S and size S.

2 We apply a restriction with p = (c log S)−1.
3 We switch each sub-circuit of depth 2 maintaining fanin

10 log S. If needed we fix some extra variables.

The probability of being forced to fix the value of k extra
variables is 2−ck .

Johan Håstad (KTH) Revisit



To apply the induction

Need to make sure that the conditioning is of the proper form,
i.e. downward closed.

Intuitive reasons

A successful switch is a downward closed condition.
If we get a long path in a decision tree, we fix the values of
all “touched” variables.
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A subtle point

The property “the decision tree of Cdρ created by the proof of
the switching lemma is of depth at most s” is is not a downward
closed property.

However, “Cdρ has a decision tree of depth at most s” is a
downward closed property, and this is enough.
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The correlation of parity theorem

In the end we get

Theorem Let f be computed by a depth d circuit of size S.
Then

Pr [f (x) = parity(x)] ≤ 1
2

+ 2−Ω(n/(log S)d−1).
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The mental lesson

Maybe something is likely to go wrong, but maybe the price to
pay to fix it is much smaller than you think at first.

Do not panic!

Try again!
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Proving hierarchy theorem

We have two circuits.

The defining circuit Depth d and small (probably size n).
Computes fd and has known structure.

The competing circuit Depth d − 1 and large. Unknown
structure, except possibly for small bottom fanin. Should not
compute fd .

If the size of the competing circuit is S and we are doing
switching we probably have bottom fanin T ≈ log S.
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An obstacle

We need to have large bottom fanin of the defining circuit. At
least as large as the competing circuit. We need to maintain
this property in each step of the induction.

Any gate with fanin T takes its “favorite” value (true for or-gates,
false for and-gates) with probability 1− 2−T .

Replacing gates next to the input by their favorite values we get
a constant that equals the value of the defining circuit with
probability at least 1− n2−T = 1− n/Sc .

Superpolynomial lower bounds seems to require a defining
circuit that is well approximated by a constant.

It seems completely impossible to prove average-case lower
bounds in the hierarchy setting by a switching lemma?!
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As far as I remember

I think this was the end of my thinking on the subject in the
1980’ies.
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Checking again

The two statements.

1 The defining circuit needs bottom fanin at least
T = Ω(log S).

2 Any circuit of size n and bottom fanin T takes it favorite
value with probability 1− n2−T .

Do we need to have unbiased inputs?

In fact not. Original inputs need to be unbiased to get average
case, but we can introduce intermediate variables to denote
more complicated objects.
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The function Fd

Computed by a read-once formula.

Top fanin 22m.

Middle level fan-ins Θ(m22m).

Bottom fanin Θ(m2m).

Inputs are 1− 2−m biased and given by the conjunction of m
unbiased variables.
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Defining hierarchy restrictions, hierarchy

Independently for each depth 2 circuit of defining circuit.

0 0 0 0

101110 0 1 1 1*11 1 1
0 1 1 1 1

0 1 1 1 1

*

∨

∧ ∧ ∧ ∧ ∧

Set value of gate v to a biased variable bv which is 0 with
probability 1− q and otherwise *.
Make each variable feeding into v equal to 1 with probability
1− q and otherwise bv .
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Sanity check

Both

Pr [ρ(xi) = ∗]
Pr [ρ(xi) = 0 ∨ ρ(xi) = ∗]

and
Pr [ρ(xi) = ∗]

Pr [ρ(xi) = 1 ∨ ρ(xi) = ∗]
are about q even conditioning on a downward closed ∆.

For the first change bv from ∗ to 0, for the second only xi .
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Items to worry about

Will gate v really take value bv ?
If we find one ∗ this biases other variables to ∗.
Handing out values with too much dependence is
dangerous for the proof of the Switching lemma.

The second item is true of variables in the same gate.
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Dealing with problems in 1986

If the fanin of the gate is T .

If we set qT large enough, v is very likely to take the value bv .

Forces a non-uniformly picked input.

Once we have applied ρ we had an additional step of fixing all
but one variable in each block.
Probably creates a non-uniformly picked input.
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Solution by [RST]

Allow the gate not to take the value bv . Make sure that this
does not destroy the defining circuit too much.

Identify all variables given the value bv in the same block with a
the same new variable. Need to be careful to get the correct
distribution. “Projections”

A delicate game to make a biased selection of bv give the
independent distribution overall.
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Properties to balance

1 Not destroying the defining circuit.
2 Making the input uniformly random.
3 Making it possible to prove the switching lemma.

The more independent we pick various parts of the restriction,
the easier is 3 and the harder is 1.

The condition 2 needs to be true by definition and leaves little
choice.
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New proof vs [RST]

Rather technical.

Focus more directly on not destroying the defining circuit.

Proof of Switching lemma with induction rather than labeling.

The key sub-lemma of the Switching lemma does not require
much.

Johan Håstad (KTH) Revisit



Average case hierarchy

For any d ≤ c log n/ log log n we have.

Theorem There is a function Fd computed by a read-once
depth d formula such that for any circuit, C, of size 2O(n1/5d ) and
depth at most d − 1 we have

Pr [C(x) = Fd (x)] ≤ 1
2

+ n−1/8d .

Rossman, Servedio and Tan had this for d ≤
√

log n/ log log n.
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Exponentially small?

Can we make the correlation exponentially small?

Not possible for a read-once formula as one input of the top
gate is at least 1

2 + 1
n correlated with the output.

At first I thought it would be extremely difficult to define a
suitable function but making the talk I became more optimistic.
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A final mental lesson

If you each day firmly believe that what want to prove is not only
true but provable by the ideas you have at hand, then you do
well.

When you are correct you are much more likely to find the
proof.

When you are wrong you would not have found the proof
anyhow.

Can you each day really convince yourself and still remain
sane?
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Induction vs labeling

For the switching lemma I think induction is better than labeling.

Does require some self-confidence when thinking about
conditioning.

I had some incorrect proofs for both theorems mentioned in this
talk at first.
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The End
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