Syntactic versus semantic cutting planes

Pavel Hrubeš

Institute of Mathematics, Prague

Based on work with Y. Filmus and M. Lauria

Semi-algebraic proof systems

- Systems based on integer linear programming, intended to prove that a set of linear equalities has no 0, 1-solution.
- A CNF can be represented as a set of linear inequalities.

Cutting Planes

Cutting Planes

- ► Manipulates linear inequalities with integer coefficients, $a_1x_1 + \cdots + a_nx_n \ge b$, with $a_1, \ldots, a_n, b \in \mathbb{Z}$
- ► Given a system L of linear inequalities with no 0, 1-solution, CP derives the inequality 0 ≥ 1 from L.

Cutting Planes

- ► Manipulates linear inequalities with integer coefficients, $a_1x_1 + \cdots + a_nx_n \ge b$, with $a_1, \ldots, a_n, b \in \mathbb{Z}$
- ► Given a system L of linear inequalities with no 0, 1-solution, CP derives the inequality 0 ≥ 1 from L.

Axioms are inequalities in $\ensuremath{\mathcal{L}}$ and the inequalities

$$x_i \geq 0, \ x_i \leq 1.$$

The rules are:

$$\frac{L \ge b}{cL \ge cb}\,, \ \text{ if } c \ge 0\,, \ \frac{L_1 \ge b_1\,, \ L_2 \ge b_2}{L_1 + L_2 \ge b_1 + b_2}\,,$$

 $\frac{a_1x_1+\ldots a_nx_n\geq b}{(a_1/c)x_1+\ldots (a_n/c)x_n\geq \lceil b/c\rceil}\,, \text{ provided } c>0 \text{ divides every } a_i\,.$

- Refutes a set of linear inequalities, but the intermediary steps can have degree 2.
- We can add two inequalities and multiply by a positive number. The additional rules are

$$\frac{L \ge 0}{xL \ge 0}$$
, $\frac{L \ge 0}{(1-x)L \ge 0}$, *x* a variable, *L* degree one.

- Refutes a set of linear inequalities, but the intermediary steps can have degree 2.
- We can add two inequalities and multiply by a positive number. The additional rules are

$$\frac{L \ge 0}{xL \ge 0}$$
, $\frac{L \ge 0}{(1-x)L \ge 0}$, *x* a variable, *L* degree one.

Degree-*d* **semantic systems**

- Refutes a set of linear inequalities, but the intermediary steps can have degree 2.
- We can add two inequalities and multiply by a positive number. The additional rules are

$$\frac{L \ge 0}{xL \ge 0}$$
, $\frac{L \ge 0}{(1-x)L \ge 0}$, *x* a variable, *L* degree one.

Degree-*d* **semantic systems**

- Intermediate inequalities can have degree $\leq d$.
- Inference rule is any valid inference.

$$\frac{L_1 \ge 0\,, \ L_2 \ge 0}{L \ge 0}\,,$$

provided every 0, 1-assignment which satisfies the assumption satisfies the conclusion.

- Exponential lower bound on Cutting Planes [Pudlák'97]
- A lower bound on Lovász-Schrijver system, assuming certain boolean circuit lower bounds [Pudlák'97].
 - Interpolation technique.
- Exponential lower bounds for tree-like degree-d semantic systems [Beame, Pitassi & Segerlind' 07].
 - Communication lower bounds on randomized multi-party communication complexity of DISJ [Lee& Shraibman'08, Sherstov'12,..].
- Exponential lower-bound for non-commutative Lovasz-Schrijver [Dasch'01].

- Exponential lower bound on Cutting Planes [Pudlák'97]
- A lower bound on Lovász-Schrijver system, assuming certain boolean circuit lower bounds [Pudlák'97].
 - Interpolation technique.
- Exponential lower bounds for tree-like degree-d semantic systems [Beame, Pitassi & Segerlind' 07].
 - Communication lower bounds on randomized multi-party communication complexity of DISJ [Lee& Shraibman'08, Sherstov'12,..].
- Exponential lower-bound for non-commutative Lovasz-Schrijver [Dasch'01].

- Exponential lower bound on Cutting Planes [Pudlák'97]
- A lower bound on Lovász-Schrijver system, assuming certain boolean circuit lower bounds [Pudlák'97].
 - Interpolation technique.
- Exponential lower bounds for tree-like degree-d semantic systems [Beame, Pitassi & Segerlind' 07].
 - Communication lower bounds on randomized multi-party communication complexity of DISJ [Lee& Shraibman'08, Sherstov'12,..].
- Exponential lower-bound for non-commutative Lovasz-Schrijver [Dasch'01].

- Exponential lower bound on Cutting Planes [Pudlák'97]
- A lower bound on Lovász-Schrijver system, assuming certain boolean circuit lower bounds [Pudlák'97].
 - Interpolation technique.
- Exponential lower bounds for tree-like degree-d semantic systems [Beame, Pitassi & Segerlind' 07].
 - Communication lower bounds on randomized multi-party communication complexity of DISJ [Lee& Shraibman'08, Sherstov'12,..].
- Exponential lower-bound for non-commutative Lovasz-Schrijver [Dasch'01].

Open problem. Prove super-polynomial lower bound on the Lovász-Schrijver system, or the degree-2 semantic system.

Syntactic Cutting Planes: explicit inference rules

$$\frac{L \ge b}{cL \ge cb} \,, \; \text{ if } c \ge 0 \,, \; \frac{L_1 \ge b_1 \,, \; L_2 \ge b_2}{L_1 + L_2 \ge b_1 + b_2} \,,$$

 $\frac{a_1x_1+\ldots a_nx_n\geq b}{(a_1/c)x_1+\ldots (a_n/c)x_n\geq \lceil b/c\rceil}\,, \text{ provided } c>0 \text{ divides every } a_i\,.$

Semantic Cutting Planes: Inference rule

$$\frac{L_1 \ge b_1 \ , \ L_2 \ge b_2}{L \ge b}$$

whenever $L \ge b$ follows from $L_1 \ge b_1$, $L_2 \ge b_2$.

Theorem (Lower bound).

For every *n*, there exists an unsatisfiable CNF of polynomial size which requires semantic CP refutations with $2^{n^{\Omega(1)}}$ proof lines.

Theorem (Separation).

There exists an unsatisfiable CNF which has a semantic CP refutation of polynomial size but every syntactic CP refutation has an exponential size.

Theorem (Pudlák).

There exists an unsatisfiable CNF of polynomial size which requires syntactic CP refutations with exponentially many proof lines.

Theorem.

There exists an unsatisfiable CNF of polynomial size which requires semantic CP refutations with exponentially many proof lines.

Theorem.

There exists an unsatisfiable CNF of polynomial size which requires semantic CP refutations with exponentially many proof lines.

 Cutting Planes has feasible interpolation via monotone real circuits.

Monotone real circuit

computes a monotone boolean function

 $f: \{0,1\}^n \to \{0,1\}.$

- ► the inputs as well as the output are in {0, 1}, but
- the intermediary gates can compute an *arbitrary* non-decreasing real function (in two variables).

Monotone real circuit

- computes a monotone boolean function
 - $f: \{0,1\}^n \to \{0,1\}.$
- ▶ the inputs as well as the output are in {0,1}, but
- the intermediary gates can compute an *arbitrary* non-decreasing real function (in two variables).

Monotone real circuits are exponentially more powerful than monotone Boolean circuits [Rosenbloom'97].

Clique^k_n = {
$$G \in \{0, 1\}^{\binom{n}{2}}$$
 : G has a clique of size k },
Color^k_n = { $G \in \{0, 1\}^{\binom{n}{2}}$: G is k -colorable}.

• Clique^{$$k+1$$} \cap Color ^{k} $= \emptyset$.

• Clique^k is closed upwards (and Color^k downwards).

Clique^k_n = {
$$G \in \{0, 1\}^{\binom{n}{2}}$$
 : G has a clique of size k },
Color^k_n = { $G \in \{0, 1\}^{\binom{n}{2}}$: G is k -colorable}.

• Clique^{$$k+1$$} \cap Color ^{k} $= \emptyset$.

• Clique^k is closed upwards (and Color^k downwards).

Clique^k_n = {
$$G \in \{0, 1\}^{\binom{n}{2}}$$
 : G has a clique of size k },
Color^k_n = { $G \in \{0, 1\}^{\binom{n}{2}}$: G is k -colorable}.

• Clique^{$$k+1$$} \cap Color ^{k} $= \emptyset$.

Clique^k is closed upwards (and Color^k downwards).

Theorem (Pudlák).

For a suitable k (k $\sim n^{2/3}$), every monotone real circuit which accepts on Clique^{k+1}_n and rejects on Color^k_n has exponential size.

 $x = \{x_{i_1,i_2}, i_1 < i_2 \in [n]\}$ - represent a graph on vertices [n].

 $CLIQUE_n^k(x, y)$ - a CNF formula asserting that y defines a clique of size k in x.

 $x = \{x_{i_1,i_2}, i_1 < i_2 \in [n]\}$ - represent a graph on vertices [n].

 $CLIQUE_n^k(x, y)$ - a CNF formula asserting that y defines a clique of size k in x.

E.g., the conjunction of the following:

1.
$$\bigvee_{i \in [n]} y_{j,i}$$
, for every $j \in [k]$,
2. $\neg y_{j_1,i} \lor \neg y_{j_2,i}$, for every $j_1 \neq j_2 \in [k]$, $i \in [n]$,
3. $\neg y_{j_1,i_1} \lor \neg y_{j_2,i_2} \lor x_{i_1,i_2}$, for every $j_1, j_2 \in [k], i_1 < i_2 \in [n]$.

 $CLIQUE_n^k(x, y)$ - a CNF formula asserting that y defines a clique of size k in x.

 $COLOR_n^k(x, z)$ - a CNF formula asserting that z defines a k-coloring of x.

Then: $CLIQUE_n^{k+1} \land COLOR_n^k$ is unsatisfiable.

CLIQUE^{*k*}_{*n*}(*x*, *y*) - a CNF formula asserting that *y* defines a clique of size *k* in *x*.

 $COLOR_n^k(x, z)$ - a CNF formula asserting that z defines a k-coloring of x.

Then: $CLIQUE_n^{k+1} \land COLOR_n^k$ is unsatisfiable.

Proposition.

Assume that $CLIQUE_n^{k+1} \land COLOR_n^k$ has a (semantic) CP refutation with s lines. Then there exists an f accepting on $Clique_n^{k+1}$, rejecting on $Color_n^k$, and which has a monotone real circuit of size poly(s).

Corollary.

Every semantic CP refutation of $CLIQUE_n^{k+1} \wedge COLOR_n^k(x, z)$ requires exponential number of lines (for $k \sim n^{2/3}$).

$$\frac{L_1\geq 0,\ldots,L_k\geq 0}{L\geq 0}\,.$$

$$\frac{L_1 \ge 0, \dots, L_k \ge 0}{L \ge 0}$$

٠

▶ The lower-bound works for every fixed *k*.

$$\frac{L_1 \ge 0, \dots, L_k \ge 0}{L \ge 0}$$

The lower-bound works for every fixed k.

Open problem: Are *k*-ary semantic inferences more powerful than binary semantic inferences?

$$\frac{L_1 \ge 0, \dots, L_k \ge 0}{L \ge 0}$$

The lower-bound works for every fixed k.

Open problem: Are *k*-ary semantic inferences more powerful than binary semantic inferences?

Open problem: Can every multivariate non-decreasing real function be expressed as a composition of non-decreasing unary or binary functions?

Open problem: Can every multivariate non-decreasing real function be expressed as a composition of non-decreasing unary or binary functions?

- Kolmogorov-Arnold representation theorem: every real continuous function can be expressed in terms of unary continuous functions and addition. (A solution to Hilbert's 13th Problem.)
- Does not hold for, e.g., analytic functions.

Theorem (Separation).

There exists an unsatisfiable CNF which has a semantic CP refutation of polynomial size but every syntactic CP refutation has an exponential size.

Lemma 1.

If a set of m linear equations is unsatisfiable then it has a semantic cutting planes refutation with O(m) lines.

Lemma 1. If a set of m linear equations is unsatisfiable then it has a semantic cutting planes refutation with O(m) lines.

Lemma 2. Let

$$\begin{split} \mathcal{L} &= \mathcal{L}_0 \cup \{L \geq 0\} \cup \{L \leq 1\} \\ \mathcal{L}' &= \mathcal{L}_0 \cup \{L = z\} \,, \end{split}$$

where z is a fresh variable. In syntactic cutting planes, the lengths of the shortest refutations of \mathcal{L}' and \mathcal{L} differ at most by an additive constant term.

Open problem: Are semantic inferences with *polynomially bounded coefficients* more powerful than syntactic inferences?