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Semi-algebraic proof systems

I Systems based on integer linear programming, intended to
prove that a set of linear equalities has no 0,1-solution.

I A CNF can be represented as a set of linear inequalities.



Cutting Planes

I Manipulates linear inequalities with integer coefficients,
a1x1 + · · ·+ anxn ≥ b, with a1, . . . ,an,b ∈ Z

I Given a system L of linear inequalities with no
0,1-solution, CP derives the inequality 0 ≥ 1 from L.

Axioms are inequalities in L and the inequalities

xi ≥ 0 , xi ≤ 1 .

The rules are:

L ≥ b
cL ≥ cb

, if c ≥ 0 ,
L1 ≥ b1 , L2 ≥ b2

L1 + L2 ≥ b1 + b2
,

a1x1 + . . . anxn ≥ b
(a1/c)x1 + . . . (an/c)xn ≥ db/ce

, provided c > 0 divides every ai .
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The Lovász-Schrijver system

I Refutes a set of linear inequalities, but the intermediary
steps can have degree 2.

I We can add two inequalities and multiply by a positive
number. The additional rules are

L ≥ 0
xL ≥ 0

,
L ≥ 0

(1− x)L ≥ 0
, x a variable, L degree one.

Degree-d semantic systems
I Intermediate inequalities can have degree ≤ d .
I Inference rule is any valid inference.

L1 ≥ 0 , L2 ≥ 0
L ≥ 0

,

provided every 0,1-assignment which satisfies the
assumption satisfies the conclusion.
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I Exponential lower bound on Cutting Planes [Pudlák’97]
I A lower bound on Lovász-Schrijver system, assuming

certain boolean circuit lower bounds [Pudlák’97].
I Interpolation technique.

I Exponential lower bounds for tree-like degree-d semantic
systems [Beame, Pitassi & Segerlind’ 07].

I Communication lower bounds on randomized multi-party
communication complexity of DISJ [Lee& Shraibman’08,
Sherstov’12,..].

I Exponential lower-bound for non-commutative
Lovasz-Schrijver [Dasch’01].

Open problem. Prove super-polynomial lower bound on the
Lovász-Schrijver system, or the degree-2 semantic system.
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Syntactic Cutting Planes: explicit inference rules

L ≥ b
cL ≥ cb

, if c ≥ 0 ,
L1 ≥ b1 , L2 ≥ b2

L1 + L2 ≥ b1 + b2
,

a1x1 + . . . anxn ≥ b
(a1/c)x1 + . . . (an/c)xn ≥ db/ce

, provided c > 0 divides every ai .

Semantic Cutting Planes: Inference rule

L1 ≥ b1 , L2 ≥ b2

L ≥ b

whenever L ≥ b follows from L1 ≥ b1, L2 ≥ b2.



Theorem (Lower bound).
For every n, there exists an unsatisfiable CNF of polynomial
size which requires semantic CP refutations with 2nΩ(1)

proof
lines.

Theorem (Separation).
There exists an unsatisfiable CNF which has a semantic CP
refutation of polynomial size but every syntactic CP refutation
has an exponential size.
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Monotone real circuit
I computes a monotone boolean function

f : {0,1}n → {0,1}.
I the inputs as well as the output are in {0,1}, but
I the intermediary gates can compute an arbitrary

non-decreasing real function (in two variables).

Monotone real circuits are exponentially more powerful than
monotone Boolean circuits [Rosenbloom’97].
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Cliquek
n = {G ∈ {0,1}(

n
2) : G has a clique of size k} ,

Colork
n = {G ∈ {0,1}(

n
2) : G is k -colorable} .

I Cliquek+1
n ∩ Colork

n = ∅.
I Cliquek

n is closed upwards (and Colork
n downwards).

Theorem (Pudlák).
For a suitable k (k ∼ n2/3), every monotone real circuit which
accepts on Cliquek+1

n and rejects on Colork
n has exponential

size.
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x = {xi1,i2 , i1 < i2 ∈ [n]} - represent a graph on vertices [n].

CLIQUEk
n(x , y) - a CNF formula asserting that y defines a

clique of size k in x .

E.g., the conjunction of the following:

1.
∨

i∈[n] yj,i , for every j ∈ [k ],
2. ¬yj1,i ∨ ¬yj2,i , for every j1 6= j2 ∈ [k ], i ∈ [n],
3. ¬yj1,i1 ∨ ¬yj2,i2 ∨ xi1,i2 , for every j1, j2 ∈ [k ], i1 < i2 ∈ [n].
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clique of size k in x .

COLORk
n(x , z) - a CNF formula asserting that z defines a

k -coloring of x .

Then: CLIQUEk+1
n ∧ COLORk

n is unsatisfiable.

Proposition.
Assume that CLIQUEk+1

n ∧ COLORk
n has a (semantic) CP

refutation with s lines. Then there exists an f accepting on
Cliquek+1

n , rejecting on Colork
n, and which has a monotone real

circuit of size poly(s).

Corollary.
Every semantic CP refutation of CLIQUEk+1

n ∧ COLORk
n(x , z)

requires exponential number of lines (for k ∼ n2/3).



CLIQUEk
n(x , y) - a CNF formula asserting that y defines a

clique of size k in x .

COLORk
n(x , z) - a CNF formula asserting that z defines a

k -coloring of x .

Then: CLIQUEk+1
n ∧ COLORk

n is unsatisfiable.

Proposition.
Assume that CLIQUEk+1

n ∧ COLORk
n has a (semantic) CP

refutation with s lines. Then there exists an f accepting on
Cliquek+1

n , rejecting on Colork
n, and which has a monotone real

circuit of size poly(s).

Corollary.
Every semantic CP refutation of CLIQUEk+1

n ∧ COLORk
n(x , z)

requires exponential number of lines (for k ∼ n2/3).



How about semantic inferences with higher arity?

L1 ≥ 0, . . . ,Lk ≥ 0
L ≥ 0

.

I The lower-bound works for every fixed k .

Open problem: Are k -ary semantic inferences more powerful
than binary semantic inferences?

Open problem: Can every multivariate non-decreasing real
function be expressed as a composition of non-decreasing
unary or binary functions?
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Open problem: Can every multivariate non-decreasing real
function be expressed as a composition of non-decreasing
unary or binary functions?

I Kolmogorov-Arnold representation theorem: every real
continuous function can be expressed in terms of unary
continuous functions and addition. (A solution to Hilbert’s
13th Problem.)

I Does not hold for, e.g., analytic functions.



Theorem (Separation).
There exists an unsatisfiable CNF which has a semantic CP
refutation of polynomial size but every syntactic CP refutation
has an exponential size.



Lemma 1.
If a set of m linear equations is unsatisfiable then it has a
semantic cutting planes refutation with O(m) lines.

Lemma 2.
Let

L = L0 ∪ {L ≥ 0} ∪ {L ≤ 1}
L′ = L0 ∪ {L = z} ,

where z is a fresh variable. In syntactic cutting planes, the
lengths of the shortest refutations of L′ and L differ at most by
an additive constant term.
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Open problem: Are semantic inferences with polynomially
bounded coefficients more powerful than syntactic inferences?


