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Ordered binary decision diagram (OBDD)
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• OBDD represents Boolean function {0, 1}n → {0, 1}
• π is order of variables; if i < j , then xπ(j) can’t appear before
xπ(i).
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Operations with OBDD

Given Compute Complexity

Dπ whether Dπ is satisfiable O(|D|)
Dπ (¬D)π O(|D|)
Dπ

1 ,D
π
2 (D1 ∧ D2)π O(|D1| × |D2|)

Dπ
1 ,D

π
2 (D1 ∨ D2)π O(|D1| × |D2|)

Dπ, x is a variable (∃xD)π O(|D|)
Dπ, ρ (D|ρ)π O(|D|)
Dπ1

1 , π2 Dπ2
2 such that Dπ1

1 ≡ Dπ2
2 poly(|D1|×|D2|)

Dπ min Dπ
0 such that D0 ≡ D O(|D|)

Dπ1
1 ,Dπ2

2 ,Dπ1
3 whether D3 ≡ D1 ∧ D2 NP-hard

D1 ≡ D2 if D1 and D2 represents the same Boolean function.
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Outline

• OBDD(∧, weakening)-proof system

• Lower bounds for OBDD(∧, reorder)-proof system

• Lower bounds for OBDD(∧,∃, reorder)-algorithms
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OBDD(∧, weakening)-proofs

• φ = C1 ∧ C2 ∧ · · · ∧ Ct is unsatisfiable CNF.

• Choose order π; every Ci is represented as π-ordered OBDD.

• Join (conjunction) rule:
Dπ

1 ,D
π
2

(D1∧D2)π

• Weakening rule: Dπ

Dπ
1

if D |= D1.

• Proof of unsatisfiability of φ: derivation a constant false
OBDD.

• [Atserias, Kolaitis, Vardi, 2004] OBDD(∧, weakening)
simulates CP∗ =⇒ PHPn+1

n has proofs of poly size.

• OBDD(∧, weakening) is stronger than Resolution

• Unsatisfiable linear systems over GF(2) have short proofs

• [Segerlind, 2007] 2n
Ω(1)

-lower bound for tree-like OBDD(∧,
weakening)-proofs

• [Krajicek, 2008] 2n
Ω(1)

-lower bound for dag-like OBDD(∧,
weakening)-proofs
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OBDD(∧)-proofs

• [Groote, Zantema, 2003; Tveretina et al., 2009]
OBDD(∧)-proof system is incomparable with resolution

• [Tveretina et al., 2009] PHPn+1
n requires OBDD(∧)-proofs of

size 2Ω(n)

• [Friedman, Xu, 2013] Random 3CNFs are hard for
OBDD(∧)-proofs in two particular cases:

• with a fixed order of the variables
• with fixed orders of application of rules
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Reordering rule

• Reordering rule:
D

π1
1

D
π2
2

if Dπ1
1 ≡ Dπ2

2

• Join (conjunction) rule:
Dπ

1 ,D
π
2

(D1∧D2)π

• OBDD(∧, reorder)-proof system:
• We exponentially separate OBDD(∧, reorder) from OBDD(∧)
• Lower bound 2Ω(n) for PHPn+1

n .
• Lower bound 2Ω(n) for Tseitin formulas.
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Lower bound method for OBDD(∧,
reorder)

Let Φ =
∧

i∈I Ci be minimally unsatisfiable CNF

1 Φ′ is a satisfiable formula associated with Φ. Roughly
speaking: Φ′ is Φ without several clauses.

• For Φ=PHPn+1
n , Φ′=PHPn

n

• For unsatisfiable Tseitin formulas, Φ′ is satisfiable Tseitin
formula.

2 Prove that any OBDD representation of Φ′ has large size.

3 The last step:
Fπ

1 ∧Fπ
2

0 . F1,F2 are satisfiable and
F1 ≡

∧
i∈I1 Ci ,F2 ≡

∧
i∈I2 Ci and I1 6= I2, I1 ∪ I2 = I .

4 Find partial substitution ρ1, ρ2 with same support:
F1|ρ1 ∧ F2|ρ2 is a hard satisfiable formula for OBDD. Hence
either F1|πρ or F2|πρ is hard for OBDD, hence F1 or F2 is hard
for OBDD.
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Lower bounds for OBDD

For particular order π:

• F , S = {xπ(1), xπ(2), . . . , xπ(`)}.
• Let ρ1, ρ2, . . . , ρk be partial substitution with support S such

that F |ρ1 ,F |ρ2 , . . . ,F |ρk are different functions.

• Then every π-OBDD for F has at least k vertices.

For all orders:

• For arbitrary S that consists of ` variables.
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Tseitin formulas

• G (V ,E ) is undirected constant-degree graph;

• For every e ∈ E : xe Boolean variable;

• c : V → {0, 1} labelling function

• TSG ,c =
∧

v∈v

(⊕
u:(u,v)∈E x(u,v) = c(v)

)
Lemma. TSG ,c is satisfiable iff for every connected component U,⊕

v∈U c(v) = 0.
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OBDD for satisfiable Tseitin formula

• Let TSG ,c be satisfiable Tseitin formula.

• Consider some order π;

• Let S be a set that consists first ` edges according π

• Consider some substitution ρ with support S .

• TSG ,c |ρ = TSG ′,c+f , where G ′(V ,E \ S) and f : V → {0, 1}
is a modification of labels made by ρ.

• Different functions: different f and TSG ′,c+f is satisfiable.

• We estimate the number of f such that
• TSG ′,c+f is satisfiable
• f can be obtained by a substitution ⇐⇒ TSG ′′,f is satisfiable,

where G ′′(V ,S).

• ]G ′ + ]G ′′ linear conditions on f .

• Hence number of different functions at least 2n−]G
′−]G ′′
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Tseitin formulas on expanders

Theorem. If G (V ,E ) is good enough expander with |V | = n then
∃`: ∀S ⊆ E if |S | = ` then ]G ′(V ,E \ S) + ]G ′′(V , S) ≤ (1− ε)n.
Corollary. Every OBDD representation of satisfiable TSG ,c has size
at least 2Ω(n).
Corollary. If G differs from good enough expander by at most o(n)
edges, then OBDD representation of satisfiable TSG ,c has size at
least 2Ω(n).
Lemma. Good enough expander is connected and remains
connected after deleting of any two vertices and edges from the
shortest path between them.
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Lower bound for unsatisfiable Tseitin
formula

Theorem. If G (V ,E ) is good enough expander with |V | = n and
TSG ,c is unsatisfiable then the size of any OBDD(∧, reorder)-proof
of TSG ,c is at least 2Ω(n).
Proof.

• The last step:
Fπ

1 ∧Fπ
2

0 .
F1,F2 are satisfiable.

• Let F1 does not contains
Cu and F2 does not
contain Cv and
(u, v) /∈ E

• Let P be the shortest
uv -path

F1|ρ1 ∧ F2|ρ2 is almost
satisfiable TSG̃ ,c ′ , where

G̃ (V \ {u, v},E \ P).
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OBDD(∧, weakening, reorder)

Open questions:

• To separate OBDD(∧, weakening, reorder)-proof system and
OBDD(∧, weakening)-proof system.

• Prove superpolynomial lower bound for OBDD(∧, weakening,
reorder)-proofs
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Symbolic quantifier elimination

OBDD(∧, ∃)-algorithms [Pan, Vardi, 2004] for SAT.
Input: CNF formula φ

1 Choose order π, Dπ. Initially D ≡ 1.

2 S := {clauses of φ}.
3 While S 6= ∅ apply the following operations:

• Conjunction (∧) Choose C ∈ S ; S := S − C ; Dπ := Dπ ∧ C
• Projection (∃) If x does not appear in S , then Dπ := (∃xD)π

4 If S = ∅ then report whether D is satisfiable or not.

Running time is polynomially connected with the size of the largest
D.
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OBDD(∧,∃)-algorithms

Upper bounds:

• [Chén, Zhang, 2009] Pigeonhole principle PHPn+1
n is easy for

OBDD(∧,∃)-algorithms.

• Tseitin formulas are easy for OBDD(∧,∃)-algorithms.

• ∃x

{
x + y + z = 1

x + t + f = 0
⇐⇒ y + z + t + f = 1.

• Sum up all equalities in the connected component.

Lower bounds:

• Follows from lower bounds for (tree-like) OBDD(∧,
weakening)-proofs.
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OBDD(∧,∃, reorder)-algorithms

• (reorder) Choose π′ and F π
′

such that F ≡ D; π := π′ and
D := F .

Our goals:

• Lower bounds for OBDD(∧,∃, reorder)-algorithms

• Lower bound of type 2Ω(n), where n is number of variables

• Lower bound for natural formulas.

Theorem. There is a randomized construction of a family of
satisfiable formulas Fn on n variables in O(1)-CNF such that every
OBDD(∧, ∃, reorder)-algorithm runs at least 2Ω(n) steps on Fn.
Formula Fn represents a system of linear equations over F2 based
on checksum matrix of some linear code.
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OBDD size for codes
• A code C ⊆ {0, 1}n recovers ρ fraction of erasures by a list of

size L (or C is (ρ, L)-erasure list-decodable) if for all
w ∈ {0, 1,�}n with at most ρ fraction of � there are at most
L codewords that are consistent with w .

Lemma. If C ⊆ {0, 1}n is ( 1
2 + ε, L)-erasure list-decodable, then

any OBDD for χC has OBDD size at least |C |
L2 . Moreover for every

i1, i2, . . . , ik ∈ [n] if k ≤ 2εn, then ∃xi1 . . . ∃xikχC has OBDD size

at least |C |
L2 .

Proof.
• Consider some order π
• ∃xn−k+1 . . . ∃xnχC (x1, x2, . . . , xn)
• We show that there are many substitutions to the first n−k

2
variables that produce different functions.

• S is a set of all n−k
2 -size prefixes of C .

• L + 1 different codewords can’t have same prefixes since
n − n−k

2 ≤ ( 1
2 + ε)n. Hence |S | ≥ |C |L .

18 / 22



OBDD size for codes
• A code C ⊆ {0, 1}n recovers ρ fraction of erasures by a list of

size L (or C is (ρ, L)-erasure list-decodable) if for all
w ∈ {0, 1,�}n with at most ρ fraction of � there are at most
L codewords that are consistent with w .

Lemma. If C ⊆ {0, 1}n is ( 1
2 + ε, L)-erasure list-decodable, then

any OBDD for χC has OBDD size at least |C |
L2 . Moreover for every

i1, i2, . . . , ik ∈ [n] if k ≤ 2εn, then ∃xi1 . . . ∃xikχC has OBDD size

at least |C |
L2 .

Proof.
• Consider some order π
• ∃xn−k+1 . . . ∃xnχC (x1, x2, . . . , xn)
• We show that there are many substitutions to the first n−k

2
variables that produce different functions.

• S is a set of all n−k
2 -size prefixes of C .

• L + 1 different codewords can’t have same prefixes since
n − n−k

2 ≤ ( 1
2 + ε)n. Hence |S | ≥ |C |L .

18 / 22



OBDD size for codes
• A code C ⊆ {0, 1}n recovers ρ fraction of erasures by a list of

size L (or C is (ρ, L)-erasure list-decodable) if for all
w ∈ {0, 1,�}n with at most ρ fraction of � there are at most
L codewords that are consistent with w .

Lemma. If C ⊆ {0, 1}n is ( 1
2 + ε, L)-erasure list-decodable, then

any OBDD for χC has OBDD size at least |C |
L2 . Moreover for every

i1, i2, . . . , ik ∈ [n] if k ≤ 2εn, then ∃xi1 . . . ∃xikχC has OBDD size

at least |C |
L2 .

Proof.
• Consider some order π
• ∃xn−k+1 . . . ∃xnχC (x1, x2, . . . , xn)
• We show that there are many substitutions to the first n−k

2
variables that produce different functions.

• S is a set of all n−k
2 -size prefixes of C .

• L + 1 different codewords can’t have same prefixes since
n − n−k

2 ≤ ( 1
2 + ε)n. Hence |S | ≥ |C |L .

18 / 22



OBDD size for codes
Lemma. If C ⊆ {0, 1}n is ( 1

2 + ε, L)-erasure list-decodable, then

any OBDD for χC has ODBB size at least |C |
L2 . Moreover for every

i1, i2, . . . , ik ∈ [n] if k ≤ 2εn, then ∃xi1 . . . ∃xikχC has OBDD size

at least |C |
L2 .

Proof. (Continue)

• S is a set of all n−k
2 -size prefixes of C . |S | ≥ |C |L .

• For every s ∈ S we define ρs that substitutes
x1 . . . x(n−k)/2 := s. ∃xn−k+1 . . . ∃xnχC (x1, x2, . . . , xn)|ρs is
satisfiable since s is a prefix of a codeword.

• Let s1, s2, . . . , sL+1 be different elements of S . We claim that
ρsi for i ∈ [L + 1] can’t produce the same function.

• Let s1r be a prefix of an element of C of size n − k .
• ∃xn−k+1 . . . ∃xnχC (x1, x2, . . . , xn)|ρs1 (r) = 1, hence for all
i ∈ [L + 1], si r is n − k prefix of some element of C .

Contradiction, since �
n−k

2 r�k has at most 1
2 + ε fraction of �.

• Number of different functions ≥ S
L ≥

|C |
L2 .
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Lower bounds for OBDD(∧,∃,
reorder)-algorithms

Theorem. Let A be an 0.97n × n matrix over F2 such that
• A is a checksum matrix of ( 2

3 , 10)-eras. list-decodable code;
• A contains t = O(1) ones in every row;
• Every n

12 columns of A contain ones in at least 0.96n rows.

Then every OBDD(∧, ∃, reorder)-algorithm runs at least 2Ω(n)

steps on the formula that encodes Ax = 0.
Proof.
• Let D be the first diagram after n

12 applications of ∃.
• D ≡ ∃1 . . . ∃n/12F , where F is a conjunction of all clauses

from 0.96n rows of A and possibly some other clauses.

Lemma. If A is a checksum matrix of (ρ, L)-erasure list-decodable
code. A′ is obtained from A by removing of k rows, then A is a
checksum matrix of (ρ, 2kL)-erasure list-decodable code.
• F is char. function of a ( 2

3 , 2
0.1n100)-erasure list-decodable

code of size at least |C |. Hence |D| ≥ 2Ω(n).
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Construction of code
Lemma. [Guruswami, 2003] If C is a code with relative distance δ,
then for every ε > 0 the code C is ((2− ε)δ, 2

ε )-erasure
list-decodable.
[Gallager, 1962]

B =

 In/t In/t . . . In/t︸ ︷︷ ︸
t times

 is n/t × n matrix with t ones per row.

A =


[ 1st random perm. of columns of B]
[2nd random perm. of columns of B]

...
[r -th random perm. of columns of B]

 is rn
t × n matrix

with t ones per row.
Lemma. ∃t such that for r = 0.97t w.h.p A defines a code with
relative distance 0.49. W.h.p every n

12 columns of A intersects at
least 0.96n rows.
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Open problems

1 Lower bound for OBDD(∧, weakening, reorder)-proofs;

2 Separate OBDD(∧, weakening) and
OBDD(∧, weakening, reorder)-proofs;

3 Is it possible to simulate OBDD(∧)-proofs by
OBDD(∧,∃)-algorithms?

4 Prove lower bound for OBDD(∧,∃, reorder)-algorithms on
unsatisfiable linear systems.

5 Compare OBDD(∧)-proofs with constant degree Frege.
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