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Constant depth Frege with parity

PK⊕ has unbounded-fanin
∧
,
∨
,⊕0,⊕1, plus negations of literals.

Lines are cedents. Most rules roughly standard. Rules for ⊕:

Γ,⊕aΦ Γ,⊕bΨ
(Add)

Γ,⊕a+b(Φ,Ψ)

Γ,⊕a(Φ,Ψ) Γ,⊕bΨ
(Subtract)

Γ,⊕a−bΦ

Γ, ϕ,⊕b−1Ψ Γ, ϕ,⊕bΨ
(MOD)

Γ,⊕b(Ψ, ϕ)

Constant depth Frege with parity (a.k.a. AC0[2]-Frege):
a (family of) subsystem(s) of PK⊕ where formulas must have
constant depth (= no. of alternations of

∧
,
∨
,⊕).
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Context

Major open problem:
Prove a superpolynomial (or better) lower bound
on the size of AC0[2]-Frege proofs of some family of tautologies.

Known strong lower bounds for:

I proof size in AC0-Frege (constant depth proofs with no parities),
I size of AC0[2]-circuits,
I proof size in polynomial Polynomial Calculus: refutation system

where lines are polynomials (roughly ⊕’s of
∧

’s of literals).
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Context (2)

Theorem (Buss-K-Zdanowski 2012/15)
AC0[2]-Frege is quasipolynomially simulated by its fragment
operating only with (cedents of)

∧
’s of ⊕’s of log-sized ∧’s.

But the result actually is:

Theorem
AC0[2]-Frege is quasipolynomially simulated by (roughly) PC with
an axiom corresponding to the surjective weak pigeonhole principle
for functions whose graphs are defined by formulas involving ⊕.

(sWPHP for a function f and size parameter n>1 says:
f is not a surjective map from n onto n2.)
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Aim of our work (1)

Problem:
Understand the relationship between AC0[2]-Frege and subsystems
combining full AC0-Frege with limited parity reasoning.

Examples of such systems:

I Constant depth Frege with parity axioms,
I The treelike and daglike versions of a system defined by

Krajíček 1997.
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Aim of our work (2)

Problem:
Understand the relationship between AC0[2]-Frege and subsystems
combining full AC0-Frege with limited parity reasoning.

Why study this?

I Strong lower bounds for such systems known.
I AC0-Frege has quasipolynomial-size proofs of sWPHP

(for functions defined in constant depth without parity).
I BKZ tells us that the “hard part” of AC0[2]-Frege is sWPHP.
I So, if these systems are “close enough” to AC0[2]-Frege for

formulas without parity, then we would actually have a lower
bound for AC0[2]-Frege.
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Constant depth Frege with parity axioms

To AC0-Frege, we add as axioms all instances of the principle Count2,
saying that there is no perfect matching on an odd-sized set:∨

1≤i≤2n+1

∧
e⊆[2n+1]2, i∈e

¬ψe ∨
∧

e,f⊆[2n+1]2, e⊥f

(ψe ∧ ψf ),

where the ψe’s are constant-depth formulas.

I Count2 requires exponential-size proofs in AC0-Frege.
I PHPn+1

n , in the form “there is no injection from n + 1 into n”,
requires exp-size proofs in AC0-Frege plus parity axioms.
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Krajíček’s systems
(Systems from MFCS ’97 paper, reformulated and given new name).

Janc
d: the fragment of PK⊕ where (1) formulas have depth ≤ d,

(2) no ⊕’s are in the scope of
∧

,
∨

, (3) there are ≤ c ⊕’s per line.
E.g. (c = 3):

ϕ1, . . . , ϕn,⊕(Ψ1),⊕(Ψ2),⊕(Ψ3).

Two versions: daglike (normal) and treelike (each line used at most
once as premise). We think of them as refutation systems.

I treelike Jan3
O(1) p-simulates AC0-Frege with counting axioms.

I PHPn+1
n requires exp-size proofs in treelike Janc

d (Krajíček ’97).
I Count3 requires exp-size proofs in daglike Janc

d
(Krajíček ’97 + PC degree lower bounds from Buss et al. ’99).
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Parity axioms vs parity gates

Theorem (Impagliazzo-Segerlind 2001)
There is a family of DNFs requiring superpolynomially larger proofs
in AC0-Frege with counting axioms than in AC0[2]-Frege.

The tautologies implicitly say:
“if ⊕0(q0

1, . . . , q
0
m) and ⊕1(qn

1, . . . , q
n
m),

then for some i<m, ⊕0(qi
1, . . . , q

i
m) ∧ ⊕1(qi+1

1 , . . . , qi+1
m )”.

But they have to say this without ⊕!
So, talk about matchings on the sets of qi

j’s and qi
jq

i+1
k ’s instead.

The proof combines a sophisticated switching lemma with more or
less standard argument against AC0-Frege with counting axioms.
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Krajíček’s systems vs parity gates

We can use an Impagliazzo-Segerlind-style switching lemma to prove:

Proposition
There is a family of DNFs requiring superpolynomially larger proofs
in daglike Janc

O(1) than in AC0[2]-Frege.

I Switching turns Janc
O(1) proofs into low-degree PC refutations.

I So, we need tautology susceptible to IS-like switching lemma,
with polysize proofs in AC0[2]-Frege, but not in low-degree PC.

I We use an obfuscated version of WPHP2n
n (see next slide).
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The separating tautology

Variables: pijk for i≤2n, j≤n, k≤m.
qie for i≤2n, e∈ [n× m ∪ {∗}]2
r〈i1,i2,j〉,f for i≤2n, j≤n, f ∈ [m× m]2.

Idea: pigeon i goes to hole j iff ⊕1(pij1, . . . , pijm).

“for each i, the q’s form a perfect matching
on {∗} ∪ the set of pijk’s that are 1”,

∧
for each i1< i2 and j, the r’s form a perfect matching
on the set of those pi1jkpi2jl’s in which both variables are 1”.

Crucially, m = 2polylog(n), but it is not the case that m = poly(n).
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Some separations and a simulation
Generally,

AC0-Fr/count. ax. <p tree-Janc
O(1) <

p dag-Janc
O(1) <

p AC0[2]-Fr,

all witnessed by families of CNFs.

However...

Theorem
AC0-Frege with counting axioms and treelike Janc

O(1)
are quasipolynomially equivalent (w.r.t. the language without ⊕).

Remark
Inspired by “Counting axioms simulate Nullstellensatz”
(also Impagliazzo-Segerlind), but somewhat more complicated.
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The simulation proof: structure

Theorem
AC0-Frege with counting axioms and treelike Janc

O(1)
are quasipolynomially equivalent (w.r.t. the language without ⊕).

Proof has four steps (given treelike Janc
O(1) refutation of size s):

1. Replace original refutation by treelike JanO(log s)
O(1) refutation that is

balanced (height O(log s)).

2. Modify refutation so that each line contains exactly one ⊕.

3. Delay application of subtraction rules.

4. Simulate the single-parity system w/o subtraction.

We briefly discuss 2.-4.
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Moving to single parities

Replace line

ϕ1, . . . , ϕk,⊕0(ψ1
i : i∈ I1), . . . ,⊕0(ψ`

i : i∈ I`)

by
ϕ1, . . . , ϕk,⊕0(ψ1

i1 ∧ . . . ∧ ψ
`
i` : i1∈ I1, . . . , i`∈ I`).

This necessitates adding some new rules, such as

Γ,⊕0(ϕi : i∈ I)
(Mult)

Γ,⊕0(ϕi ∧ ψj : i∈ I, j∈J)
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Delaying subtraction

Instead of

⊕0(Φ,Ψ) Γ,⊕0Ψ

Γ,⊕0Φ

do

⊕0(Φ,Ψ) Γ,⊕0Ψ

Γ,⊕0(Φ,Ψ,Φ)

I This requires some adding some copies of ϕ,ϕ to ⊕’s
so that premises of multipremise rules align.

I The size blowup is no worse that (size)O(height).
I The last line was ⊕0(1). Now it is ⊕0(1, ψ1, ψ1, . . . , ψ`, ψ`).
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Completing the simulation (1)

We build a quasipolynomial size constant depth formula that,
for each line of the refutation, maintains a perfect matching
on the true inputs to ⊕0 (assuming part outside ⊕0 is false).

E.g. (red = false):
ϕ,⊕0(ψ1, ψ2, 1) ϕ,⊕0(ψ1, ψ2)

⊕0(ψ1, ψ2, ϕ)

or
⊕0(ϕ1, ϕ2)

⊕0(ϕ1 ∧ ψ1, ϕ2 ∧ ψ1, ϕ1 ∧ ψ2, ϕ2 ∧ ψ2, ϕ1 ∧ ψ3, ϕ2 ∧ ψ3)
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Problem with subtraction:

⊕0(ϕ1, ϕ2, ϕ3, ϕ4, ψ1, ψ2) ⊕0(ψ1, ψ2)

⊕0(ϕ1, ϕ2, ϕ3, ϕ4)

We match ϕ3 to ϕ4 because in the left premise they were matched
to formulas that were matched to each other in the right premise.

Keeping track of this through the whole proof would blow up the
formula size.
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Completing the simulation (2)

Eventually, we get a perfect matching
on the true inputs to the end line ⊕0(1, ψ1, ψ1, . . . , ψ`, ψ`).

But there is an obvious perfect matching
on all true inputs to ⊕0(1, ψ1, ψ1, . . . , ψ`, ψ`) except 1.

AC0-Frege with counting axioms knows this is a contradiction.
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This brings up...

Open problem:
Prove a superquasipolynomial separation between AC0[2]-Frege
and a subsystem containing AC0-Frege with counting axioms
on a family of formulas without ⊕.

Remark:
For constant depth systems, superquasipolynomial separation
seems to be the right notion of separation.

E.g., the BKZ collapse of AC0[2]-Frege is quasipolynomial
and proved via a collapse in bounded arithmetic with ∃,∀,⊕
and the nlog n function. Using methods of Maciel-Nguyen-Pitassi,
this fails without nlog n under complexity assumptions.
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Separations with parity

If we consider formulas with ⊕, the difficulties with separating the
systems disappear.

Theorem
In refuting families of polynomial equations of degree 2,
AC0[2]-Frege is exponentially stronger than daglike Janc

O(1),
which is in turn exponentially stronger than treelike Janc

O(1).

The separating families are, respectively:
I WPHP2n

n [⊕1(pij1, . . . , pijm)/pij],
I the housesitting principle, with pij replaced by ⊕1(pij1, . . . , pijm).
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A system of Itsykson and Sokolov

Itsykson and Sokolov (2014) proposed to study a subsystem of PK⊕
where lines are cedents (= disjunctions) of linear equations mod 2.

They obtained an exponential lower bound for the treellike version,
leaving the daglike as an open problem.

Theorem
A treelike system where lines are disjunctions of ⊕’s of constant depth
formulas is quasipolynomially simulated by Janc

polylog
(and thus has no short proofs of Count3).
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Two suspicions

Suspicion 1:
A strong lower bound for the daglike Itsykson-Sokolov system
is within reach.

Suspicion 2:
An analogue of daglike Itsykson-Sokolov where lines are

∨
’s

of polylog-degree equations (as opposed to linear equations)
is quasipolynomially equivalent to AC0[2]-Frege.

Remark
The system in suspicion 2 proves (all reasonable versions of) WPHP
for FP⊕P functions, and can do some rudimentary approximate
counting of sets defined in terms of ⊕.
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