Small Error Versus Unbounded Error Protocols in the NOF Model

Nikhil S.Mande

Tata Institute of Fundamental Research, Mumbai, India

May 24, 2016

Joint work with Arkadev Chattopadhyay

Low-Depth Complexity Workshop, St. Petersburg

NOF Model

Nikhil S.Mande Small Error vs Unbounded Error

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

æ

NOF Model

• k players P_1, \ldots, P_k each with an input $x_i \in \{-1, 1\}^{N_i}$.

伺 ト く ヨ ト く ヨ ト

э

NOF Model

- k players P_1, \ldots, P_k each with an input $x_i \in \{-1, 1\}^{N_i}$.
- Target function $f: \{-1,1\}^{N_1+\dots+N_k} \to \{-1,1\}.$

伺 ト く ヨ ト く ヨ ト

э

NOF Model

- k players P_1, \ldots, P_k each with an input $x_i \in \{-1, 1\}^{N_i}$.
- Target function $f : \{-1, 1\}^{N_1 + \dots + N_k} \rightarrow \{-1, 1\}.$
- Player P_i sees all inputs except x_i .

(*) *) *) *)

A 10

NOF Model

- k players P_1, \ldots, P_k each with an input $x_i \in \{-1, 1\}^{N_i}$.
- Target function $f : \{-1, 1\}^{N_1 + \dots + N_k} \rightarrow \{-1, 1\}.$
- Player P_i sees all inputs except x_i .
- Each player has unbounded computational power.

(*) *) *) *)

NOF Model

- k players P_1, \ldots, P_k each with an input $x_i \in \{-1, 1\}^{N_i}$.
- Target function $f : \{-1, 1\}^{N_1 + \dots + N_k} \rightarrow \{-1, 1\}.$
- Player P_i sees all inputs except x_i .
- Each player has unbounded computational power.
- Communication by writing on blackboard (broadcast).

伺 ト く ヨ ト く ヨ ト

NOF complexity classes

Nikhil S.Mande Small Error vs Unbounded Error

문 🛌 문

NOF complexity classes

Definition (PP_k^{cc}, UPP_k^{cc})

$$\mathsf{PP}_{k}(f) \equiv \min_{\epsilon} \left[R_{\epsilon}^{pub}(f) + \log\left(\frac{1}{\epsilon}\right) \right], \quad \mathsf{UPP}_{k}(f) \equiv \min_{\epsilon} \left[R_{\epsilon}^{priv}(f) \right]$$

э

・ 同 ト ・ ヨ ト ・ ヨ ト

NOF complexity classes

Definition (PP_k^{cc}, UPP_k^{cc})

$$PP_{k}(f) \equiv \min_{\epsilon} \left[R_{\epsilon}^{pub}(f) + \log\left(\frac{1}{\epsilon}\right) \right], \quad UPP_{k}(f) \equiv \min_{\epsilon} \left[R_{\epsilon}^{priv}(f) \right]$$

Define (U)PP_{k}^{cc} = {f: (U)PP_{k}(f) = polylog(n)}

э

・ 同 ト ・ ヨ ト ・ ヨ ト

NOF complexity classes

Definition (PP_k^{cc}, UPP_k^{cc})

$$\mathsf{PP}_k(f) \equiv \min_{\epsilon} \left[R_{\epsilon}^{pub}(f) + \log\left(\frac{1}{\epsilon}\right) \right], \quad \mathsf{UPP}_k(f) \equiv \min_{\epsilon} \left[R_{\epsilon}^{priv}(f) \right]$$

Define (U)PP^{cc}_k = { $f : (U)PP_k(f) = polylog(n)$ }

Not hard: PP^{cc}_k ⊆ UPP^{cc}_k. (Follows from Newman's Theorem).

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

3

Prior work

Nikhil S.Mande Small Error vs Unbounded Error

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

æ

Prior work

• $PP_2^{cc} \subsetneq UPP_2^{cc}$ (Buhrman et al.['07], Sherstov['08]).

э

伺 ト く ヨ ト く ヨ ト

Prior work

- $PP_2^{cc} \subsetneq UPP_2^{cc}$ (Buhrman et al.['07], Sherstov['08]).
- Buhrman et al. show an Ω(n^{1/3}) PP_k lower bound for functions in UPP^{cc}_k for k = 2, Sherstov shows Ω(n^{1/2}).

Prior work

- $PP_2^{cc} \subsetneq UPP_2^{cc}$ (Buhrman et al.['07], Sherstov['08]).
- Buhrman et al. show an Ω(n^{1/3}) PP_k lower bound for functions in UPP^{cc}_k for k = 2, Sherstov shows Ω(n^{1/2}).
- $\mathsf{PP}_k^{\mathsf{cc}} \subsetneq \mathsf{UPP}_k^{\mathsf{cc}}, k \leq O(\log \log(n))$ (follows from Beigel ['94] + Sherstov['14]). Shows an $\Omega(n^{1/3})$ lower bound.

Main results

Nikhil S.Mande Small Error vs Unbounded Error

< ≣ >

< 🗇 > < 🖃 >

æ

Main results

•
$$\mathsf{PP}_k^{\mathsf{cc}} \subsetneq \mathsf{UPP}_k^{\mathsf{cc}}, k \leq \Theta(\log(n)).$$

< ≣ >

< 🗇 > < 🖃 >

æ

Main results

•
$$\mathsf{PP}_k^{\mathsf{cc}} \subsetneq \mathsf{UPP}_k^{\mathsf{cc}}, k \leq \Theta(\log(n)).$$

• $\Omega\left(\frac{\sqrt{n}}{4^k}\right) \mathsf{PP}_k$ lower bound for functions in $\mathsf{UPP}_k^{\mathsf{cc}}$.

(4回) (4 回) (4 回)

3

Main results

- $\mathsf{PP}_k^{\mathsf{cc}} \subsetneq \mathsf{UPP}_k^{\mathsf{cc}}, k \leq \Theta(\log(n)).$
- $\Omega\left(\frac{\sqrt{n}}{4^k}\right) \mathsf{PP}_k$ lower bound for functions in $\mathsf{UPP}_k^{\mathsf{cc}}$.
- There exists a function that is computed very efficiently by THR ∘ PAR_{k+1} circuits but requires 2^{Ω(^{√n}/_{4^k})} size to be computed by depth-three circuits of the form MAJ ∘ THR ∘ ANY_k.

Target function

Nikhil S.Mande Small Error vs Unbounded Error

P

æ

-≣->

Target function

Definition (Goldmann, Håstad, Razborov ['92])

Let

$$P(x, y_1, \ldots, y_k) \equiv \sum_{i=0}^{n-1} \sum_{j=0}^{n4^k-1} 2^j y_{1j} \ldots y_{kj} (x_{i,2j} + x_{i,2j+1})$$

where $x \in \{\pm 1\}^{2n^2 4^k}$, $y_i \in \{\pm 1\}^{n4^k}$ for each *i*. Then, $GHR_k^N(x, y_1, ..., y_k) \equiv sgn(2P(x, y_1, ..., y_k) + 1)$, where $N = 2n^2 4^k$.

伺 ト く ヨ ト く ヨ ト

Discrepancy and Cylinder Intersections

Nikhil S.Mande Small Error vs Unbounded Error

э

Discrepancy and Cylinder Intersections

 A subset S_i ⊆ X₁ × · · · × X_k is a cylinder in the *i*th direction if membership in S_i doesn't depend on the *i*th coordinate.

Discrepancy and Cylinder Intersections

- A subset S_i ⊆ X₁ × · · · × X_k is a cylinder in the *i*th direction if membership in S_i doesn't depend on the *i*th coordinate.
- S is a cylinder intersection if it can be written as $S = \bigcap_{i=1}^{k} S_i$.

Discrepancy and Cylinder Intersections

- A subset S_i ⊆ X₁ × · · · × X_k is a cylinder in the *i*th direction if membership in S_i doesn't depend on the *i*th coordinate.
- S is a cylinder intersection if it can be written as $S = \bigcap_{i=1}^{k} S_i$.

Lemma (Folklore)

$$R^{pub}_{\epsilon}(f) \geq \log(2\epsilon/\min_{\mu} Disc^k_{\mu}(f)).$$

Discrepancy and Cylinder Intersections

- A subset S_i ⊆ X₁ × · · · × X_k is a cylinder in the *i*th direction if membership in S_i doesn't depend on the *i*th coordinate.
- S is a cylinder intersection if it can be written as $S = \bigcap_{i=1}^{k} S_i$.

Lemma (Folklore)

$$R^{pub}_{\epsilon}(f) \geq \log(2\epsilon/\min_{\mu} Disc^k_{\mu}(f)).$$

Thus, PP_k lower bounds exactly correspond to discrepancy upper bounds.

伺 ト イヨト イヨト

Discrepancy

Nikhil S.Mande Small Error vs Unbounded Error

< ≣⇒

3

< (□)

æ

Discrepancy

Let
$$f: X_1 \times \cdots \times X_k \to \{-1, 1\}.$$

Definition

Let μ be a distribution on $X_1 \times \cdots \times X_k$. The discrepancy of f according to μ , $Disc_{\mu}^k(f)$ is

$$\max_{S} \left| \mu(f^{-1}(1) \cap S) - \mu(f^{-1}(-1) \cap S) \right|$$

where the maximum is taken over all cylinder intersections S.

□ > < = > <

Discrepancy under product distributions

Nikhil S.Mande Small Error vs Unbounded Error

Discrepancy under product distributions

Lemma (Folklore)

Let $f: X \times Y_1 \times \cdots \times Y_k \rightarrow \{-1, 1\}$, and μ any product distribution. Then,

$$(\textit{Disc}^{k+1}_{\mu}(f))^{2^k} \leq \mathbb{E}_{y^0_1, y^1_1, \dots, y^0_k, y^1_k} \left[\left| \mathbb{E}_x \prod_{\pmb{a} \in \{0,1\}^k} f(x, y^{a_1}_1, \dots, y^{a_k}_k) \right| \right]$$

I ≡ →

A D

Proof Outline - 1

Lemma

Let $f: X \times Y_1 \times \cdots \times Y_k \to \{-1, 1\}$, and μ any product distribution. Then,

$$\left(\text{Disc}_{\mu}^{k+1}(f)\right)^{2^{k}} \leq \mathbb{E}_{y_{1}^{0}, y_{1}^{1}, \dots, y_{k}^{0}, y_{k}^{1}}\left[\left|\mathbb{E}_{x}\prod_{a \in \{0,1\}^{k}} f(x, y_{1}^{a_{1}}, \dots, y_{k}^{a_{k}})\right|\right]$$

イロト イポト イヨト イヨト

э

Proof Outline - 1

Lemma

Let $f: X imes Y_1 imes \dots imes Y_k o \{-1,1\}$, and μ any product distribution. Then,

$$\left(\textit{Disc}_{\mu}^{k+1}(f)\right)^{2^{k}} \leq \mathbb{E}_{y_{1}^{0}, y_{1}^{1}, \dots, y_{k}^{0}, y_{k}^{1}}\left[\left|\mathbb{E}_{x}\prod_{a \in \{0,1\}^{k}} f(x, y_{1}^{a_{1}}, \dots, y_{k}^{a_{k}})\right|\right]$$

 We construct a distribution μ that makes all y'_is uniform and independent of each other.

э

Proof Outline - 1

Lemma

Let $f: X imes Y_1 imes \dots imes Y_k o \{-1,1\}$, and μ any product distribution. Then,

$$\left(\textit{Disc}_{\mu}^{k+1}(f)\right)^{2^{k}} \leq \mathbb{E}_{y_{1}^{0}, y_{1}^{1}, \dots, y_{k}^{0}, y_{k}^{1}}\left[\left|\mathbb{E}_{x}\prod_{a \in \{0,1\}^{k}} f(x, y_{1}^{a_{1}}, \dots, y_{k}^{a_{k}})\right|\right]$$

- We construct a distribution μ that makes all y'_is uniform and independent of each other.
- x's are distributed such that $A_j = \frac{1}{2} \sum_{i=0}^{n-1} 2^i (x_{i,2j} + x_{i,2j+1})$ is binomially distributed for each $0 \le j \le n4^k 1$.

□ > < = > <

Proof Outline - 1

Lemma

Let $f: X imes Y_1 imes \dots imes Y_k o \{-1,1\}$, and μ any product distribution. Then,

$$\left(\textit{Disc}_{\mu}^{k+1}(f)\right)^{2^{k}} \leq \mathbb{E}_{y_{1}^{0}, y_{1}^{1}, \dots, y_{k}^{0}, y_{k}^{1}}\left[\left|\mathbb{E}_{x}\prod_{a \in \{0,1\}^{k}} f(x, y_{1}^{a_{1}}, \dots, y_{k}^{a_{k}})\right|\right]$$

- We construct a distribution μ that makes all y'_is uniform and independent of each other.
- x's are distributed such that $A_j = \frac{1}{2} \sum_{i=0}^{n-1} 2^i (x_{i,2j} + x_{i,2j+1})$ is binomially distributed for each $0 \le j \le n4^k 1$.
- Note $\operatorname{GHR}_k^N(x, y_1, \dots, y_k) = \operatorname{sgn}(\sum_{j=0}^{n^{4^k}} A_j y_{1j} \cdots y_{kj}).$

伺 ト イヨト イヨト

Proof Outline - 2

Lemma

Let $f: X imes Y_1 imes \dots imes Y_k o \{-1, 1\}$, and μ any product distribution. Then,

$$\left(\text{Disc}_{\mu}^{k+1}(f)\right)^{2^{k}} \leq \mathbb{E}_{y_{1}^{0}, y_{1}^{1}, \dots, y_{k}^{0}, y_{k}^{1}}\left[\left|\mathbb{E}_{x}\prod_{a \in \{0,1\}^{k}} f(x, y_{1}^{a_{1}}, \dots, y_{k}^{a_{k}})\right|\right]$$

イロト イポト イヨト イヨト

э

Proof Outline - 2

Lemma

Let $f: X \times Y_1 \times \cdots \times Y_k \to \{-1, 1\}$, and μ any product distribution. Then,

$$\left(\text{Disc}_{\mu}^{k+1}(f)\right)^{2^{k}} \leq \mathbb{E}_{y_{1}^{0}, y_{1}^{1}, \dots, y_{k}^{0}, y_{k}^{1}}\left[\left|\mathbb{E}_{x}\prod_{a \in \{0,1\}^{k}} f(x, y_{1}^{a_{1}}, \dots, y_{k}^{a_{k}})\right|\right]$$

• Will show that for many fixings of the y'_is, the inner expectation is small.

(日) (同) (三) (三)

э

Proof Outline - 2

Lemma

Let $f: X imes Y_1 imes \dots imes Y_k o \{-1,1\}$, and μ any product distribution. Then,

$$\left(\text{Disc}_{\mu}^{k+1}(f)\right)^{2^{k}} \leq \mathbb{E}_{y_{1}^{0}, y_{1}^{1}, \dots, y_{k}^{0}, y_{k}^{1}}\left[\left|\mathbb{E}_{x}\prod_{a \in \{0,1\}^{k}} f(x, y_{1}^{a_{1}}, \dots, y_{k}^{a_{k}})\right|\right]$$

- Will show that for many fixings of the y'_is, the inner expectation is small.
- Analyze the number and size of integral solutions to Hadamard constraints.

Proof Outline - 2

Lemma

Let $f: X imes Y_1 imes \dots imes Y_k o \{-1,1\}$, and μ any product distribution. Then,

$$\left(\text{Disc}_{\mu}^{k+1}(f)\right)^{2^{k}} \leq \mathbb{E}_{y_{1}^{0}, y_{1}^{1}, \dots, y_{k}^{0}, y_{k}^{1}}\left[\left|\mathbb{E}_{x}\prod_{a \in \{0,1\}^{k}} f(x, y_{1}^{a_{1}}, \dots, y_{k}^{a_{k}})\right|\right]$$

- Will show that for many fixings of the y_i's, the inner expectation is small.
- Analyze the number and size of integral solutions to Hadamard constraints.
- Use anticoncentration properties of binomial distribution.

A (10) × (10) × (10)

Circuit Lower Bounds

Nikhil S.Mande Small Error vs Unbounded Error

문 🛌 문

Circuit Lower Bounds

 Clearly, GHR_k can be computed by polynomial sized THR ∘ PAR_{k+1} circuits.

-

Circuit Lower Bounds

 Clearly, GHR_k can be computed by polynomial sized THR ∘ PAR_{k+1} circuits.

Lemma (Folklore)

For $f \in MAJ \circ SYM \circ ANY_k$ of size s, and any partition of the input bits amongst k + 1 players, there exists a randomized protocol computing f with advantage $\Omega(1/s)$ and cost $O(k \log(s))$.

Circuit Lower Bounds

 Clearly, GHR_k can be computed by polynomial sized THR ∘ PAR_{k+1} circuits.

Lemma (Folklore)

For $f \in MAJ \circ SYM \circ ANY_k$ of size s, and any partition of the input bits amongst k + 1 players, there exists a randomized protocol computing f with advantage $\Omega(1/s)$ and cost $O(k \log(s))$.

Lemma (GHR['92])

 $\mathsf{MAJ}\circ\mathsf{THR}\subseteq\mathsf{MAJ}\circ\mathsf{MAJ}$

• GHR_k requires $2^{\Omega(\frac{\sqrt{n}}{4^{k}})}$ size to be computed by MAJ \circ THR \circ ANY_k circuits.

Open questions

Nikhil S.Mande Small Error vs Unbounded Error

P

æ

≪ ≣ ⊁

Open questions

 Ω(n) PP_k lower bound for an explicit function in UPP_k (open for 2 player case too)?

Open questions

- Ω(n) PP_k lower bound for an explicit function in UPP_k (open for 2 player case too)?
- Is GHR_k hard for $k > \log(n)$ players?

Open questions

- Ω(n) PP_k lower bound for an explicit function in UPP_k (open for 2 player case too)?
- Is GHR_k hard for $k > \log(n)$ players?
- Can we find an explicit *f* not in UPP₃^{cc}? This will show that *f* is not in polynomial size THR ∘ THR (Hansen, Podolskii ['15]).

Thank You!

Nikhil S.Mande Small Error vs Unbounded Error

æ

ъ