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NOF Model

k players P1, . . . ,Pk each with an input xi ∈ {−1, 1}Ni .

Target function f : {−1, 1}N1+···+Nk → {−1, 1}.
Player Pi sees all inputs except xi .

Each player has unbounded computational power.

Communication by writing on blackboard (broadcast).
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NOF complexity classes

Definition (PPcc
k ,UPPcc

k )

PPk(f ) ≡ min
ε

[
Rpub
ε (f ) + log

(
1

ε

)]
, UPPk(f ) ≡ min

ε

[
Rpriv
ε (f )

]
Define (U)PPcc

k = {f : (U)PPk(f ) = polylog(n)}

Not hard: PPcc
k ⊆ UPPcc

k . (Follows from Newman’s
Theorem).
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Prior work

PPcc
2 ( UPPcc

2 (Buhrman et al.[’07], Sherstov[’08]).

Buhrman et al. show an Ω(n1/3) PPk lower bound for
functions in UPPcc

k for k = 2, Sherstov shows Ω(n1/2).

PPcc
k ( UPPcc

k , k ≤ O(log log(n)) (follows from Beigel [’94] +
Sherstov[’14]). Shows an Ω(n1/3) lower bound.
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Main results

PPcc
k ( UPPcc

k , k ≤ Θ(log(n)).

Ω
(√

n
4k

)
PPk lower bound for functions in UPPcc

k .

There exists a function that is computed very efficiently by

THR ◦ PARk+1 circuits but requires 2
Ω
(√

n

4k

)
size to be

computed by depth-three circuits of the form
MAJ ◦ THR ◦ ANYk .
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Target function

Definition (Goldmann, Håstad, Razborov [’92])

Let

P(x , y1, . . . , yk) ≡
n−1∑
i=0

n4k−1∑
j=0

2iy1j . . . yk j(xi ,2j + xi ,2j+1)

where x ∈ {±1}2n24k , yi ∈ {±1}n4k for each i .
Then, GHRN

k

(
x , y1, . . . , yk

)
≡ sgn(2P(x , y1, . . . , yk) + 1), where

N = 2n24k .
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Discrepancy and Cylinder Intersections

A subset Si ⊆ X1× · · · ×Xk is a cylinder in the ith direction if
membership in Si doesn’t depend on the ith coordinate.

S is a cylinder intersection if it can be written as S = ∩ki=1Si .

Lemma (Folklore)

Rpub
ε (f ) ≥ log(2ε/minµ Disck

µ(f )).

Thus, PPk lower bounds exactly correspond to discrepancy upper
bounds.
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Discrepancy

Let f : X1 × · · · × Xk → {−1, 1}.

Definition

Let µ be a distribution on X1 × · · · × Xk . The discrepancy of f
according to µ, Disck

µ(f ) is

max
S

∣∣µ(f −1(1) ∩ S)− µ(f −1(−1) ∩ S)
∣∣

where the maximum is taken over all cylinder intersections S .
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Discrepancy under product distributions

Lemma (Folklore)

Let f : X × Y1 × · · · × Yk → {−1, 1}, and µ any product
distribution. Then,

(Disck+1
µ (f ))2k ≤ Ey0

1 ,y
1
1 ,...,y

0
k ,y

1
k

∣∣∣∣∣∣Ex

∏
a∈{0,1}k

f (x , ya1
1 , . . . , yak

k )

∣∣∣∣∣∣
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Proof Outline - 1

Lemma

Let f : X × Y1 × · · · × Yk → {−1, 1}, and µ any product distribution. Then,

(Disck+1
µ (f ))2k ≤ E

y0
1
,y1

1
,...,y0

k
,y1
k


∣∣∣∣∣∣∣Ex

∏
a∈{0,1}k

f (x, y
a1
1 , . . . , y

ak
k

)

∣∣∣∣∣∣∣


We construct a distribution µ that makes all y ′i s uniform and
independent of each other.

x ′s are distributed such that Aj = 1
2

∑n−1
i=0 2i (xi ,2j + xi ,2j+1) is

binomially distributed for each 0 ≤ j ≤ n4k − 1.

Note GHRN
k (x , y1, . . . , yk) = sgn(

∑n4k

j=0 Ajy1j · · · yk j).
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Proof Outline - 2

Lemma

Let f : X × Y1 × · · · × Yk → {−1, 1}, and µ any product distribution. Then,

(Disck+1
µ (f ))2k ≤ E

y0
1
,y1

1
,...,y0

k
,y1
k


∣∣∣∣∣∣∣Ex

∏
a∈{0,1}k

f (x, y
a1
1 , . . . , y

ak
k

)

∣∣∣∣∣∣∣


Will show that for many fixings of the y ′i s, the inner
expectation is small.

Analyze the number and size of integral solutions to
Hadamard constraints.

Use anticoncentration properties of binomial distribution.
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Circuit Lower Bounds

Clearly, GHRk can be computed by polynomial sized
THR ◦ PARk+1 circuits.

Lemma (Folklore)

For f ∈ MAJ ◦ SYM ◦ ANYk of size s, and any partition of the
input bits amongst k + 1 players, there exists a randomized
protocol computing f with advantage Ω(1/s) and cost O(k log(s)).

Lemma (GHR[’92])

MAJ ◦ THR ⊆ MAJ ◦MAJ

GHRk requires 2
Ω
(√

n

4k

)
size to be computed by

MAJ ◦ THR ◦ ANYk circuits.
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Open questions

Ω(n) PPk lower bound for an explicit function in UPPk (open
for 2 player case too)?

Is GHRk hard for k > log(n) players?

Can we find an explicit f not in UPPcc
3 ? This will show that f

is not in polynomial size THR ◦THR (Hansen, Podolskii [’15]).

Nikhil S.Mande Small Error vs Unbounded Error



Model of Computation
Prior work
Our work

Open questions

Open questions

Ω(n) PPk lower bound for an explicit function in UPPk (open
for 2 player case too)?

Is GHRk hard for k > log(n) players?

Can we find an explicit f not in UPPcc
3 ? This will show that f

is not in polynomial size THR ◦THR (Hansen, Podolskii [’15]).

Nikhil S.Mande Small Error vs Unbounded Error



Model of Computation
Prior work
Our work

Open questions

Open questions

Ω(n) PPk lower bound for an explicit function in UPPk (open
for 2 player case too)?

Is GHRk hard for k > log(n) players?

Can we find an explicit f not in UPPcc
3 ? This will show that f

is not in polynomial size THR ◦THR (Hansen, Podolskii [’15]).

Nikhil S.Mande Small Error vs Unbounded Error



Model of Computation
Prior work
Our work

Open questions

Open questions

Ω(n) PPk lower bound for an explicit function in UPPk (open
for 2 player case too)?

Is GHRk hard for k > log(n) players?

Can we find an explicit f not in UPPcc
3 ? This will show that f

is not in polynomial size THR ◦THR (Hansen, Podolskii [’15]).

Nikhil S.Mande Small Error vs Unbounded Error



Model of Computation
Prior work
Our work

Open questions

Thank You!
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