Workshop on Proof Complexity, St. Petersburg

Gentzen and Frege systems for QBF

Ján Pich University of Leeds 17 May 2016

joint work with Olaf Beyersdorff

Propositional proof systems: Frege, Extended Frege (EF)

Propositional proof systems: Frege, Extended Frege (EF)

QBF proof systems: Frege + $\forall red$, EF + $\forall red$

Propositional proof systems: Frege, Extended Frege (EF)

QBF proof systems: Frege $+ \forall red, EF + \forall red$

I. Gentzen vs. Frege in QBF

 G_1^* p-simulates $\mathsf{EF} + \forall \mathsf{red}$

i.e. Gentzen systems prove theorems more efficiently than QBF Frege

Propositional proof systems: Frege, Extended Frege (EF)

QBF proof systems: Frege $+ \forall red, EF + \forall red$

I. Gentzen vs. Frege in QBF

 G_1^* p-simulates $\mathsf{EF} + \forall \mathsf{red}$

i.e. Gentzen systems prove theorems more efficiently than QBF Frege

II. First-order version of EF + ∀red

 $\mathsf{EF} + \forall \mathsf{red}$ is intuitionistic S_2^1

i.e. theorems of intuitionistic S_2^1 have short proofs in EF + \forall red

Propositional proof systems: Frege, Extended Frege (EF)

QBF proof systems: Frege $+ \forall red, EF + \forall red$

I. Gentzen vs. Frege in QBF

 G_1^* p-simulates $\mathsf{EF} + \forall \mathsf{red}$

i.e. Gentzen systems prove theorems more efficiently than QBF Frege

II. First-order version of $EF + \forall red$

 $\mathsf{EF} + \forall \mathsf{red}$ is intuitionistic S^1_2

i.e. theorems of intuitionistic S_2^1 have short proofs in EF + \forall red

III. Characterizing lower bounds for QBF Frege

 \exists hard theorems for EF + \forall red

 \Leftrightarrow

 $\mathsf{PSPACE} \not\subseteq \mathsf{P/poly} \ \mathsf{or} \ \exists \ \mathsf{hard} \ \mathsf{theorems} \ \mathsf{for} \ \mathsf{EF}$

Frege systems: common systems for propositional logic

- operate with propositional formulas
- finite set of derivation rules

e.g.

$$\frac{\phi \qquad \phi \rightarrow \psi}{\psi} \text{ (modus ponens)}$$

Frege systems: common systems for propositional logic

- operate with propositional formulas
- finite set of derivation rules

e.g.

$$\frac{\phi \qquad \phi \to \psi}{\psi} \text{ (modus ponens)}$$

EF systems: operate with circuits

QBFs: $\forall x \, \phi(x) \Leftrightarrow \phi(0) \land \phi(1)$ $\exists x \, \phi(x) \Leftrightarrow \phi(0) \lor \phi(1)$

QBFs:
$$\forall x \, \phi(x) \Leftrightarrow \phi(0) \land \phi(1)$$

 $\exists x \, \phi(x) \Leftrightarrow \phi(0) \lor \phi(1)$

QBF Frege systems [Beyersdorff, Bonacina, Chew]

Frege + \forall red: a refutation of a QBF $Q \phi$ is a sequence of formulas L_1, \ldots, L_l where $L_1 = \phi, L_l = \emptyset$ and each L_i is derived using a Frege derivation rule or \forall red rule:

$$\frac{L_j(u)}{L_j(u/B)}$$

- \circ where u is
 - 1. universally quantified (in the prefix Q)
 - 2. the innermost (w.r.t. Q) among the variables of L_j
- \circ B is a formula containing only variables left of u

QBFs:
$$\forall x \, \phi(x) \Leftrightarrow \phi(0) \land \phi(1)$$

 $\exists x \, \phi(x) \Leftrightarrow \phi(0) \lor \phi(1)$

QBF Frege systems [Beyersdorff, Bonacina, Chew]

Frege + \forall red: a refutation of a QBF $Q \phi$ is a sequence of formulas L_1, \ldots, L_l where $L_1 = \phi, L_l = \emptyset$ and each L_i is derived using a Frege derivation rule or \forall red rule:

$$\frac{L_j(u)}{L_j(u/B)}$$

- \circ where u is
 - 1. universally quantified (in the prefix Q)
 - 2. the innermost (w.r.t. Q) among the variables of L_j
- \circ B is a formula containing only variables left of u

 $\mathsf{EF} + \forall \mathsf{red}$: $\mathsf{Frege} + \forall \mathsf{red}$ but with circuits

Gentzen's sequent systems: [Cook, Morioka] [Krajíček, Pudlák]

LK: operates with sequents $\Gamma \longrightarrow \Delta$ (i.e. $\bigwedge_{\phi \in \Gamma} \phi \models \bigvee_{\psi \in \Delta} \psi$) e.g.

$$\frac{\Gamma \longrightarrow \Delta, A \qquad A, \Gamma \longrightarrow \Delta}{\Gamma \longrightarrow \Delta} \text{ (cut rule)}$$

Gentzen's sequent systems: [Cook, Morioka] [Krajíček, Pudlák]

LK: operates with sequents $\Gamma \longrightarrow \Delta$ (i.e. $\bigwedge_{\phi \in \Gamma} \phi \models \bigvee_{\psi \in \Delta} \psi$) e.g.

$$\frac{\Gamma \longrightarrow \Delta, A \qquad A, \Gamma \longrightarrow \Delta}{\Gamma \longrightarrow \Delta} \text{ (cut rule)}$$

G: LK + QBFs in sequents and quantification rules

$$\frac{\phi(x/\psi), \Gamma \longrightarrow \Delta}{\forall x \, \phi, \Gamma \longrightarrow \Delta} (\forall -I) \quad \frac{\Gamma \longrightarrow \Delta, \phi(x/p)}{\Gamma \longrightarrow \Delta, \forall x \, \phi} (\forall -r)$$

$$\frac{\phi(x/p), \Gamma \longrightarrow \Delta}{\exists x \, \phi, \Gamma \longrightarrow \Delta} (\exists -I) \quad \frac{\Gamma \longrightarrow \Delta, \phi(x/\psi)}{\Gamma \longrightarrow \Delta, \exists x \, \phi} (\exists -r)$$

for quantifier-free formulas ψ

Gentzen's sequent systems: [Cook, Morioka] [Krajiček, Pudlák]

LK: operates with sequents $\Gamma \longrightarrow \Delta$ (i.e. $\bigwedge_{\phi \in \Gamma} \phi \models \bigvee_{\psi \in \Delta} \psi$) e.g.

$$\frac{\Gamma \longrightarrow \Delta, A \qquad A, \Gamma \longrightarrow \Delta}{\Gamma \longrightarrow \Delta} \text{ (cut rule)}$$

G: LK + QBFs in sequents and quantification rules

$$\frac{\phi(x/\psi), \Gamma \longrightarrow \Delta}{\forall x \, \phi, \Gamma \longrightarrow \Delta} (\forall -I) \quad \frac{\Gamma \longrightarrow \Delta, \phi(x/p)}{\Gamma \longrightarrow \Delta, \forall x \, \phi} (\forall -r)$$

$$\frac{\phi(x/p), \Gamma \longrightarrow \Delta}{\exists x \, \phi, \Gamma \longrightarrow \Delta} (\exists -I) \quad \frac{\Gamma \longrightarrow \Delta, \phi(x/\psi)}{\Gamma \longrightarrow \Delta, \exists x \, \phi} (\exists -r)$$

for quantifier-free formulas ψ

 G_1 : G with cut furmulas of the form $\exists x A(x, y)$ for propositional A

Gentzen's sequent systems: [Cook, Morioka] [Krajiček, Pudlák]

LK: operates with sequents $\Gamma \longrightarrow \Delta$ (i.e. $\bigwedge_{\phi \in \Gamma} \phi \models \bigvee_{\psi \in \Delta} \psi$) e.g.

$$\frac{\Gamma \longrightarrow \Delta, A \qquad A, \Gamma \longrightarrow \Delta}{\Gamma \longrightarrow \Delta} \text{ (cut rule)}$$

G: LK + QBFs in sequents and quantification rules

$$\frac{\phi(x/\psi), \Gamma \longrightarrow \Delta}{\forall x \, \phi, \Gamma \longrightarrow \Delta} (\forall -I) \quad \frac{\Gamma \longrightarrow \Delta, \phi(x/p)}{\Gamma \longrightarrow \Delta, \forall x \, \phi} (\forall -r)$$

$$\frac{\phi(x/p), \Gamma \longrightarrow \Delta}{\exists x \, \phi, \Gamma \longrightarrow \Delta} (\exists -I) \quad \frac{\Gamma \longrightarrow \Delta, \phi(x/\psi)}{\Gamma \longrightarrow \Delta, \exists x \, \phi} (\exists -r)$$

for quantifier-free formulas ψ

 G_1 : G with cut furmulas of the form $\exists x \, A(x,y)$ for propositional A G_0 : G but cut furmulas are propositional

Gentzen's sequent systems: [Cook, Morioka] [Krajíček, Pudlák]

LK: operates with sequents $\Gamma \longrightarrow \Delta$ (i.e. $\bigwedge_{\phi \in \Gamma} \phi \models \bigvee_{\psi \in \Delta} \psi$) e.g.

$$\frac{\Gamma \longrightarrow \Delta, A \qquad A, \Gamma \longrightarrow \Delta}{\Gamma \longrightarrow \Delta} \text{ (cut rule)}$$

 $\mathsf{G} \colon \mathsf{LK} + \mathsf{QBFs}$ in sequents and quantification rules

$$\frac{\phi(x/\psi), \Gamma \longrightarrow \Delta}{\forall x \phi, \Gamma \longrightarrow \Delta} (\forall -1) \qquad \frac{\Gamma \longrightarrow \Delta, \phi(x/p)}{\Gamma \longrightarrow \Delta, \forall x \phi} (\forall -r)$$

$$\frac{\phi(x/p), \Gamma \longrightarrow \Delta}{\exists x \phi, \Gamma \longrightarrow \Delta} (\exists -1) \qquad \frac{\Gamma \longrightarrow \Delta, \phi(x/\psi)}{\Gamma \longrightarrow \Delta, \exists x \phi} (\exists -r)$$

for quantifier-free formulas $\boldsymbol{\psi}$

 G_1 : G with cut furmulas of the form $\exists x \, A(x,y)$ for propositional A

G₀: G but cut furmulas are propositional

 G_i^* : G_i with tree-like proofs

witnessing properties

[CM]

 $\exists y \ A_n(x,y)$, where A_n is propositional, have p-size G_1^* proofs \Rightarrow $\exists f \in \mathsf{P/poly} \ \mathsf{s.t.} \ A_n(x,f(x))$

witnessing properties

[CM]

 $\exists y \ A_n(x,y)$, where A_n is propositional, have p-size G_1^* proofs \Rightarrow $\exists f \in \mathsf{P/poly} \ \mathrm{s.t.} \ A_n(x,f(x))$

[CM]

 $\exists y \ A_n(x,y)$, where A_n is propositional, have p-size G_0 proofs \Rightarrow $\exists f \in \mathsf{NC}^1 \text{ s.t. } A_n(x,f(x))$

witnessing properties

[CM]

$$\exists y \ A_n(x,y)$$
, where A_n is propositional, have p-size G_1^* proofs \Rightarrow $\exists f \in \mathsf{P/poly} \ \mathrm{s.t.} \ A_n(x,f(x))$

[CM]

$$\exists y \ A_n(x,y)$$
, where A_n is propositional, have p-size G_0 proofs \Rightarrow $\exists f \in \mathsf{NC}^1 \text{ s.t. } A_n(x,f(x))$

[BBC]

$$\exists y \ A_n(x,y)$$
 have p-size EF + \forall red proofs \Rightarrow $\exists f \in P/poly \text{ s.t. } A_n(x,f(x))$

 $\mbox{NP} \not\subseteq P/\mbox{poly} \Rightarrow \exists \mbox{ formulas with p-size } G_1 \mbox{ proofs but no p-size } EF + \forall \mbox{red}$ proofs

 $\mathsf{NP} \not\subseteq \mathsf{P/poly} \Rightarrow \exists \mathsf{ formulas with p-size } \mathsf{G_1} \mathsf{ proofs but no p-size } \mathsf{EF} + \forall \mathsf{red} \mathsf{ proofs}$

'take $f \notin P/poly$ s.t. $T_2^1 \vdash \exists y \ f(x) = y$ '

 $\mathsf{NP} \not\subseteq \mathsf{P/poly} \Rightarrow \exists \mathsf{\ formulas\ easy\ for\ } \mathsf{G}_0^* \mathsf{\ but\ hard\ for\ } \mathsf{EF} + \forall \mathsf{red}$

 $\mathsf{NP} \not\subseteq \mathsf{P/poly} \Rightarrow \exists \mathsf{\ formulas\ easy\ for\ } \mathsf{G}_0^* \mathsf{\ but\ hard\ for\ } \mathsf{EF} + \forall \mathsf{red}$

 $P/\mathsf{poly} \not\subseteq NC^1 \Rightarrow \exists$ formulas easy for $EF + \forall \mathsf{red}$ but hard for G_0

 $\mathsf{NP} \not\subseteq \mathsf{P/poly} \Rightarrow \exists \mathsf{\ formulas\ easy\ for\ } \mathsf{G}_0^* \mathsf{\ but\ hard\ for\ } \mathsf{EF} + \forall \mathsf{red}$

 $\mathsf{P}/\mathsf{poly} \not\subseteq \mathsf{NC}^1 \Rightarrow \exists \mathsf{\ formulas\ easy\ for\ EF} + \forall \mathsf{red\ but\ hard\ for\ } \mathsf{G}_0$

Simulations

 $\begin{aligned} \mathsf{G}_1^* \text{ p-simulates EF} + \forall \mathsf{red} \\ \text{i.e. if } \phi \text{ has an EF} + \forall \mathsf{red-proof} \ \pi \text{, it has also a } \mathsf{G}_1^* \text{ proof } f \big(|\pi| \big) \\ \text{ for a poly-time function } f \end{aligned}$

 $\mathsf{NP} \not\subseteq \mathsf{P/poly} \Rightarrow \exists \mathsf{ formulas \ easy \ for \ } \mathsf{G}^*_0 \mathsf{ \ but \ hard \ for \ } \mathsf{EF} + \forall \mathsf{red}$

 $\mathsf{P}/\mathsf{poly} \not\subseteq \mathsf{NC}^1 \Rightarrow \exists \mathsf{\ formulas\ easy\ for\ EF} + \forall \mathsf{red\ but\ hard\ for\ } \mathsf{G}_0$

Simulations

 G_1^* p-simulates $EF + \forall red$

i.e. if ϕ has an EF + \forall red-proof π , it has also a G_1^* proof $f(|\pi|)$ for a poly-time function f

Open problem: G_0^* p-simulates Frege + \forall red?

Formalized strategy extraction

Given an EF + \forall red proof π of a QBF

$$\forall x_1 \exists y_1 \ldots \forall x_n \exists y_n \, \phi(x_1, \ldots, x_n, y_1, \ldots, y_n)$$

we can construct in $poly(|\pi|)$ -time an EF proof of

$$\bigwedge_{i=1}^{n} (y_{i} = C_{i}(x_{1}, \ldots, x_{i}, y_{1}, \ldots, y_{i-1})) \rightarrow \phi(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n})$$

for some circuits C_i .

Formalized strategy extraction

Given an EF + \forall red proof π of a QBF

$$\forall x_1 \exists y_1 \ldots \forall x_n \exists y_n \, \phi(x_1, \ldots, x_n, y_1, \ldots, y_n)$$

we can construct in $poly(|\pi|)$ -time an EF proof of

$$\bigwedge_{i=1}^{n} (y_{i} = C_{i}(x_{1}, \ldots, x_{i}, y_{1}, \ldots, y_{i-1})) \rightarrow \phi(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n})$$

for some circuits C_i .

Applications:

Simulations (mentioned before)

Normal forms of $EF + \forall red proofs$

Correspondence to intuitionistic theories

'Start with EF derivation and finish with \(\forall \text{red rules'} \)

'Start with EF derivation and finish with ∀red rules'

To refute

$$\exists x_1 \forall y_1 \ldots \exists x_n \forall y_n \neg \phi(x_1, \ldots, x_n, y_1, \ldots, y_n)$$

Start with $\neg \phi$ and derive in EF

$$\bigvee_{i=1}^{n} (y_{i} \neq C_{i}(x_{1}, \ldots, x_{i}, y_{1}, \ldots, y_{i-1}))$$

Then apply \forall red to replace y_i 's by $C_i(x_1, \ldots, x_i, y_1, \ldots, y_{i-1})$ and derive \emptyset

'Start with EF derivation and finish with ∀red rules'

To refute

$$\exists x_1 \forall y_1 \ldots \exists x_n \forall y_n \neg \phi(x_1, \ldots, x_n, y_1, \ldots, y_n)$$

Start with $\neg \phi$ and derive in EF

$$\bigvee_{i=1}^{n} (y_{i} \neq C_{i}(x_{1}, \ldots, x_{i}, y_{1}, \ldots, y_{i-1}))$$

Then apply \forall red to replace y_i 's by $C_i(x_1,\ldots,x_i,y_1,\ldots,y_{i-1})$ and derive \emptyset

 $\mathsf{EF} + \forall \mathsf{red} \ \mathsf{p}\text{-equivalent to} \ \mathsf{EF} + \forall \mathsf{red}_{0,1}$

'Start with EF derivation and finish with ∀red rules'

To refute

$$\exists x_1 \forall y_1 \ldots \exists x_n \forall y_n \neg \phi(x_1, \ldots, x_n, y_1, \ldots, y_n)$$

Start with $\neg \phi$ and derive in EF

$$\bigvee_{i=1}^{n} (y_{i} \neq C_{i}(x_{1}, \ldots, x_{i}, y_{1}, \ldots, y_{i-1}))$$

Then apply \forall red to replace y_i 's by $C_i(x_1,\ldots,x_i,y_1,\ldots,y_{i-1})$ and derive \emptyset

 $\mathsf{EF} + \forall \mathsf{red} \ \mathsf{p}\text{-equivalent to} \ \mathsf{EF} + \forall \mathsf{red}_{0,1}$

$$C_n(x_1,\ldots,x_n,y_1,\ldots,y_{n-1}) \neq 0/1 \vee \bigvee_{i=1}^{n-1} (y_i \neq C_i(x_1,\ldots,x_i,y_1,\ldots,y_{i-1}))$$

[Buss] $S_2^1 - L = \{\,0, S, +, \cdot, \leq, \left\lfloor \frac{x}{2} \right\rfloor, |x|, \#\,\}$

```
[Buss]  S_2^1 - L = \{ 0, S, +, \cdot, \leq, \left\lfloor \frac{x}{2} \right\rfloor, |x|, \# \}   |x| \sim \text{ 'the length of the binary representation of } x'   x \# y = 2^{|x| \cdot |y|}
```

```
[Buss] S_2^1 - L = \{0, S, +, \cdot, \leq, \left\lfloor \frac{x}{2} \right\rfloor, |x|, \# \} \\ |x| \sim \text{ 'the length of the binary representation of } x' \\ x\#y = 2^{|x|\cdot|y|} \\ \text{Axioms: for symbols in } L
```

```
[Buss] S_2^1 - L = \left\{ \begin{array}{l} 0, S, +, \cdot, \leq, \left\lfloor \frac{x}{2} \right\rfloor, |x|, \# \right\} \\ |x| \sim \text{ 'the length of the binary representation of } x' \\ x\#y = 2^{|x|\cdot|y|} \\ \text{Axioms: for symbols in } L \\ \text{polynomial induction: for } \Sigma_1^b\text{-formulas } A \\ A(0) \wedge \forall x \left( A(\left\lfloor \frac{x}{2} \right\rfloor) \rightarrow A(x) \right) \rightarrow \forall x \, A(x) \end{array}
```

[Buss]
$$S_2^1 - L = \{\,0, S, +, \cdot, \leq, \left\lfloor \frac{x}{2} \right\rfloor, |x|, \# \,\} \\ |x| \sim \text{ 'the length of the binary representation of } x' \\ x\#y = 2^{|x|\cdot|y|} \\ \text{Axioms: for symbols in } L \\ \text{polynomial induction: for } \Sigma_1^b\text{-formulas } A \\ A(0) \land \forall x \left(A(\left\lfloor \frac{x}{2} \right\rfloor) \to A(x)\right) \to \forall x \, A(x)$$

[Buss]
$$S_2^1 \vdash \exists y \ A(x,y) \text{ for } \Sigma_1^b\text{-formula } A \Rightarrow \exists \text{ p-time } f \text{ s.t. } A(x,f(x))$$

```
[Buss]
S_2^1 - L = \{0, S, +, \cdot, \leq, \left|\frac{x}{2}\right|, |x|, \#\}
             |x| \sim 'the length of the binary representation of x'
             x \# y = 2^{|x| \cdot |y|}
       Axioms: for symbols in L
                    polynomial induction: for \Sigma_1^b-formulas A
                       A(0) \land \forall x \left( A(\left| \frac{x}{2} \right|) \to A(x) \right) \to \forall x A(x)
[Buss] S_2^1 \vdash \exists y \ A(x,y) for \Sigma_1^b-formula A \Rightarrow \exists p-time f s.t. A(x,f(x))
[Buss] [Cook, Urquhart]
IS_2^1 - S_2^1 but with
            intuitionistic logic
            polynomial induction for \Sigma_1^{b+} formulas (no \to or \neg signs)
```

[Buss]
$$S_2^1 - L = \{\,0, S, +, \cdot, \leq, \left\lfloor \frac{x}{2} \right\rfloor, |x|, \# \,\} \\ |x| \sim \text{ 'the length of the binary representation of } x' \\ x\#y = 2^{|x|\cdot|y|} \\ \text{Axioms: for symbols in } L \\ \text{polynomial induction: for } \Sigma_1^b\text{-formulas } A \\ A(0) \land \forall x \left(A(\left\lfloor \frac{x}{2} \right\rfloor) \to A(x)\right) \to \forall x \, A(x)$$

[Buss]
$$S_2^1 \vdash \exists y \ A(x,y) \text{ for } \Sigma_1^b\text{-formula } A \Rightarrow \exists \text{ p-time } f \text{ s.t. } A(x,f(x))$$

[Buss] [Cook, Urquhart] $IS_2^1 - S_2^1 \text{ but with }$ intuitionistic logic polynomial induction for Σ_1^{b+} formulas (no \to or \neg signs)

[Buss]
$$IS_2^1 \vdash \exists y \ A(x,y) \Rightarrow \exists \text{ p-time } f \text{ s.t. } A(x,f(x))$$

first order statement QBF formulas $T(x) \longmapsto T_1(x), T_2(x), \dots$

first order statement QBF formulas
$$T(x) \longmapsto T_1(x), T_2(x), \dots$$

$$\forall x \ T(x) \leftrightarrow \forall n \forall x, |x| = n \ T(x)$$

first order statement QBF formulas
$$T(x) \longmapsto T_1(x), T_2(x), \dots$$

$$\forall x \ T(x) \leftrightarrow \forall n \forall x, |x| = n \ T(x)$$

$$\forall x, |x| = n \ T(x) \leftrightarrow \forall x \ \text{'quantifiers' 'open formula'}$$

first order statement QBF formulas
$$T(x) \longmapsto T_1(x), T_2(x), \dots$$

$$\forall x \ T(x) \leftrightarrow \forall n \forall x, |x| = n \ T(x)$$
$$\forall x, |x| = n \ T(x) \leftrightarrow \forall x \ '\text{quantifiers' 'open formula'}$$

 S_2^1 corresponds to G_1^*

$$S_2^1 \vdash T \Rightarrow \exists \text{ p-size } \mathsf{G}_1^* \text{ proofs of } T_n$$

first order statement QBF formulas
$$T(x) \longmapsto T_1(x), T_2(x), \dots$$

$$\forall x \ T(x) \leftrightarrow \forall n \forall x, |x| = n \ T(x)$$
$$\forall x, |x| = n \ T(x) \leftrightarrow \forall x \ \text{'quantifiers' 'open formula'}$$

 S_2^1 corresponds to G_1^*

$$S_2^1 \vdash T \Rightarrow \exists$$
 p-size G_1^* proofs of T_n

 IS_2^1 corresponds to EF + \forall red

$$IS_2^1 \vdash T \Rightarrow \exists$$
 p-size EF + \forall red proofs of T_n
 $IS_2^1 \vdash$ 'EF + \forall red is sound'

Circuit and proof complexity united

 \exists formulas with no p-size EF + \forall red proofs

 \Leftrightarrow

 $\mathsf{PSPACE} \not\subseteq \mathsf{P/poly} \ \mathsf{or} \ \exists \ \mathsf{formulas} \ \mathsf{with} \ \mathsf{no} \ \mathsf{p\text{-size}} \ \mathsf{EF} \ \mathsf{proofs}$

Circuit and proof complexity united

 \exists formulas with no p-size EF + \forall red proofs \Leftrightarrow PSPACE $\not\subseteq$ P/poly or \exists formulas with no p-size EF proofs

 ϕ_n hard formulas for EF+ $\forall {\sf red} \land {\sf PSPACE} \subseteq {\sf P/poly} \Rightarrow \phi_n$ are equivalent to hard tautologies

Thank You