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QBF proof systems: Frege + Vred, EF + Vred

l. Gentzen vs. Frege in QBF

G] p-simulates EF + Vred

i.e. Gentzen systems prove theorems more efficiently than QBF Frege

Il. First-order version of EF + Vred

EF + Vred is intuitionistic S3

i.e. theorems of intuitionistic S3 have short proofs in EF + Vred
I1l. Characterizing lower bounds for QBF Frege

3 hard theorems for EF + Vred
=4
PSPACE & P/poly or 3 hard theorems for EF
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QBF Frege systems [Beyersdorff, Bonacina, Chew]

Frege + Vred: a refutation of a QBF Q ¢ is a sequence of formulas

EF + Vred

Ly,...,L; where Ly = ¢,L; = () and each L; is derived
using a Frege derivation rule or Vred rule:

Lj(u)

Li(u/B)
o where u is
1. universally quantified (in the prefix Q)
2. the innermost (w.r.t. Q) among the variables of L;
o B is a formula containing only variables left of u

: Frege +Vred but with circuits
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e.g.
—AA AT —A

A (cut rule)

G: LK + QBFs in sequents and quantification rules
Vx ¢, I— A Mr— A Vx¢

d(x/p),[— A r— A, ¢(x/v)
ol —n ) TS Ae O

for quantifier-free formulas
Gi: G with cut furmulas of the form 3x A(x, y) for propositional A
Go: G but cut furmulas are propositional

G}: G; with tree-like proofs
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witnessing properties

[CM]
Jdy An(x, y), where A, is propositional, have p-size G] proofs
=
3af € P/poly s.t. Aq(x, f(x))
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[CM]
Jdy An(x, y), where A, is propositional, have p-size G] proofs
=
3af € P/poly s.t. Aq(x, f(x))
[CM]
Jy An(x,y), where A, is propositional, have p-size Gg proofs
=
3f € NCLs.t. Ay(x, f(x))
[BBC]

dy An(x, y) have p-size EF + Vred proofs
=
3f € P/poly s.t. Ap(x, f(x))
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Separations

NP & P/poly = 3 formulas with p-size G; proofs but no p-size EF + Vred
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Separations
NP & P/poly = 3 formulas easy for G§ but hard for EF + Vred

P/poly € NC! = 3 formulas easy for EF +Vred but hard for Gg

Simulations

G} p-simulates EF + Vred
i.e. if ¢ has an EF +Vred-proof 7, it has also a G} proof f(|x|)
for a poly-time function f

Open problem: Gg p-simulates Frege + Vred?
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Formalized strategy extraction
Given an EF + Vred proof 7 of a QBF
Vx13y1 - VX 3yn O(X1,s oy Xny Y1y -+ Vi)

we can construct in poly(|r|)-time an EF proof of

n
/\ (yl = Ci(Xl7"'aXiay17" . ayi—l)) - ¢(X17' - Xny Y1y e ayn)
i=1

for some circuits C;.
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i=1

for some circuits C;.

Applications:

Simulations (mentioned before)

Normal forms of EF +Vred proofs

Correspondence to intuitionistic theories

a}/n)
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i=1

Then apply Vred to replace y;'s by Ci(x1,...,xi,y1,--.,yi—1) and derive ()

EF + Vred p-equivalent to EF +Vredg 1

n—1

Cn(le"an?yla' . 'a)/nfl) 7& 0/1 \ \/()/I 75 Ci(Xla'-->Xi7Y17' . 'a}/i—l))
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First-order theories

[Buss|
Sy-L={0,S+,< %], Ix,#}
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first order statement QBF formulas
T(X) — Tl(X), TQ(X),...

Vx T(x) <> VnVx, |x| = n T(x)
Vx,|x| = n T(x) <+ ¥x 'quantifiers’ 'open formula’

S} corresponds to G}
S} T = 3 p-size G} proofs of T,
IS} corresponds to EF + Vred
l5% F T = d p-size EF + Vred proofs of T,

IS} - "EF + Vred is sound’
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Circuit and proof complexity united

3 formulas with no p-size EF + Vred proofs
=
PSPACE ¢ P/poly or 3 formulas with no p-size EF proofs

¢n hard formulas for EF +Vred A PSPACE C P/poly
=
¢n are equivalent to hard tautologies
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