Workshop on Proof Complexity, St. Petersburg # Gentzen and Frege systems for QBF Ján Pich University of Leeds 17 May 2016 joint work with Olaf Beyersdorff Propositional proof systems: Frege, Extended Frege (EF) Propositional proof systems: Frege, Extended Frege (EF) QBF proof systems: Frege + $\forall red$, EF + $\forall red$ Propositional proof systems: Frege, Extended Frege (EF) QBF proof systems: Frege $+ \forall red, EF + \forall red$ # I. Gentzen vs. Frege in QBF G_1^* p-simulates $\mathsf{EF} + \forall \mathsf{red}$ i.e. Gentzen systems prove theorems more efficiently than QBF Frege Propositional proof systems: Frege, Extended Frege (EF) QBF proof systems: Frege $+ \forall red, EF + \forall red$ ## I. Gentzen vs. Frege in QBF G_1^* p-simulates $\mathsf{EF} + \forall \mathsf{red}$ i.e. Gentzen systems prove theorems more efficiently than QBF Frege #### II. First-order version of EF + ∀red $\mathsf{EF} + \forall \mathsf{red}$ is intuitionistic S_2^1 i.e. theorems of intuitionistic S_2^1 have short proofs in EF + \forall red Propositional proof systems: Frege, Extended Frege (EF) QBF proof systems: Frege $+ \forall red, EF + \forall red$ # I. Gentzen vs. Frege in QBF G_1^* p-simulates $\mathsf{EF} + \forall \mathsf{red}$ i.e. Gentzen systems prove theorems more efficiently than QBF Frege #### II. First-order version of $EF + \forall red$ $\mathsf{EF} + \forall \mathsf{red}$ is intuitionistic S^1_2 i.e. theorems of intuitionistic S_2^1 have short proofs in EF + \forall red # III. Characterizing lower bounds for QBF Frege \exists hard theorems for EF + \forall red \Leftrightarrow $\mathsf{PSPACE} \not\subseteq \mathsf{P/poly} \ \mathsf{or} \ \exists \ \mathsf{hard} \ \mathsf{theorems} \ \mathsf{for} \ \mathsf{EF}$ Frege systems: common systems for propositional logic - operate with propositional formulas - finite set of derivation rules e.g. $$\frac{\phi \qquad \phi \rightarrow \psi}{\psi} \text{ (modus ponens)}$$ Frege systems: common systems for propositional logic - operate with propositional formulas - finite set of derivation rules e.g. $$\frac{\phi \qquad \phi \to \psi}{\psi} \text{ (modus ponens)}$$ EF systems: operate with circuits QBFs: $\forall x \, \phi(x) \Leftrightarrow \phi(0) \land \phi(1)$ $\exists x \, \phi(x) \Leftrightarrow \phi(0) \lor \phi(1)$ QBFs: $$\forall x \, \phi(x) \Leftrightarrow \phi(0) \land \phi(1)$$ $\exists x \, \phi(x) \Leftrightarrow \phi(0) \lor \phi(1)$ QBF Frege systems [Beyersdorff, Bonacina, Chew] Frege + \forall red: a refutation of a QBF $Q \phi$ is a sequence of formulas L_1, \ldots, L_l where $L_1 = \phi, L_l = \emptyset$ and each L_i is derived using a Frege derivation rule or \forall red rule: $$\frac{L_j(u)}{L_j(u/B)}$$ - \circ where u is - 1. universally quantified (in the prefix Q) - 2. the innermost (w.r.t. Q) among the variables of L_j - \circ B is a formula containing only variables left of u QBFs: $$\forall x \, \phi(x) \Leftrightarrow \phi(0) \land \phi(1)$$ $\exists x \, \phi(x) \Leftrightarrow \phi(0) \lor \phi(1)$ # QBF Frege systems [Beyersdorff, Bonacina, Chew] Frege + \forall red: a refutation of a QBF $Q \phi$ is a sequence of formulas L_1, \ldots, L_l where $L_1 = \phi, L_l = \emptyset$ and each L_i is derived using a Frege derivation rule or \forall red rule: $$\frac{L_j(u)}{L_j(u/B)}$$ - \circ where u is - 1. universally quantified (in the prefix Q) - 2. the innermost (w.r.t. Q) among the variables of L_j - \circ B is a formula containing only variables left of u $\mathsf{EF} + \forall \mathsf{red}$: $\mathsf{Frege} + \forall \mathsf{red}$ but with circuits Gentzen's sequent systems: [Cook, Morioka] [Krajíček, Pudlák] LK: operates with sequents $\Gamma \longrightarrow \Delta$ (i.e. $\bigwedge_{\phi \in \Gamma} \phi \models \bigvee_{\psi \in \Delta} \psi$) e.g. $$\frac{\Gamma \longrightarrow \Delta, A \qquad A, \Gamma \longrightarrow \Delta}{\Gamma \longrightarrow \Delta} \text{ (cut rule)}$$ Gentzen's sequent systems: [Cook, Morioka] [Krajíček, Pudlák] LK: operates with sequents $\Gamma \longrightarrow \Delta$ (i.e. $\bigwedge_{\phi \in \Gamma} \phi \models \bigvee_{\psi \in \Delta} \psi$) e.g. $$\frac{\Gamma \longrightarrow \Delta, A \qquad A, \Gamma \longrightarrow \Delta}{\Gamma \longrightarrow \Delta} \text{ (cut rule)}$$ G: LK + QBFs in sequents and quantification rules $$\frac{\phi(x/\psi), \Gamma \longrightarrow \Delta}{\forall x \, \phi, \Gamma \longrightarrow \Delta} (\forall -I) \quad \frac{\Gamma \longrightarrow \Delta, \phi(x/p)}{\Gamma \longrightarrow \Delta, \forall x \, \phi} (\forall -r)$$ $$\frac{\phi(x/p), \Gamma \longrightarrow \Delta}{\exists x \, \phi, \Gamma \longrightarrow \Delta} (\exists -I) \quad \frac{\Gamma \longrightarrow \Delta, \phi(x/\psi)}{\Gamma \longrightarrow \Delta, \exists x \, \phi} (\exists -r)$$ for quantifier-free formulas ψ Gentzen's sequent systems: [Cook, Morioka] [Krajiček, Pudlák] LK: operates with sequents $\Gamma \longrightarrow \Delta$ (i.e. $\bigwedge_{\phi \in \Gamma} \phi \models \bigvee_{\psi \in \Delta} \psi$) e.g. $$\frac{\Gamma \longrightarrow \Delta, A \qquad A, \Gamma \longrightarrow \Delta}{\Gamma \longrightarrow \Delta} \text{ (cut rule)}$$ G: LK + QBFs in sequents and quantification rules $$\frac{\phi(x/\psi), \Gamma \longrightarrow \Delta}{\forall x \, \phi, \Gamma \longrightarrow \Delta} (\forall -I) \quad \frac{\Gamma \longrightarrow \Delta, \phi(x/p)}{\Gamma \longrightarrow \Delta, \forall x \, \phi} (\forall -r)$$ $$\frac{\phi(x/p), \Gamma \longrightarrow \Delta}{\exists x \, \phi, \Gamma \longrightarrow \Delta} (\exists -I) \quad \frac{\Gamma \longrightarrow \Delta, \phi(x/\psi)}{\Gamma \longrightarrow \Delta, \exists x \, \phi} (\exists -r)$$ for quantifier-free formulas ψ G_1 : G with cut furmulas of the form $\exists x A(x, y)$ for propositional A Gentzen's sequent systems: [Cook, Morioka] [Krajiček, Pudlák] LK: operates with sequents $\Gamma \longrightarrow \Delta$ (i.e. $\bigwedge_{\phi \in \Gamma} \phi \models \bigvee_{\psi \in \Delta} \psi$) e.g. $$\frac{\Gamma \longrightarrow \Delta, A \qquad A, \Gamma \longrightarrow \Delta}{\Gamma \longrightarrow \Delta} \text{ (cut rule)}$$ G: LK + QBFs in sequents and quantification rules $$\frac{\phi(x/\psi), \Gamma \longrightarrow \Delta}{\forall x \, \phi, \Gamma \longrightarrow \Delta} (\forall -I) \quad \frac{\Gamma \longrightarrow \Delta, \phi(x/p)}{\Gamma \longrightarrow \Delta, \forall x \, \phi} (\forall -r)$$ $$\frac{\phi(x/p), \Gamma \longrightarrow \Delta}{\exists x \, \phi, \Gamma \longrightarrow \Delta} (\exists -I) \quad \frac{\Gamma \longrightarrow \Delta, \phi(x/\psi)}{\Gamma \longrightarrow \Delta, \exists x \, \phi} (\exists -r)$$ for quantifier-free formulas ψ G_1 : G with cut furmulas of the form $\exists x \, A(x,y)$ for propositional A G_0 : G but cut furmulas are propositional Gentzen's sequent systems: [Cook, Morioka] [Krajíček, Pudlák] LK: operates with sequents $\Gamma \longrightarrow \Delta$ (i.e. $\bigwedge_{\phi \in \Gamma} \phi \models \bigvee_{\psi \in \Delta} \psi$) e.g. $$\frac{\Gamma \longrightarrow \Delta, A \qquad A, \Gamma \longrightarrow \Delta}{\Gamma \longrightarrow \Delta} \text{ (cut rule)}$$ $\mathsf{G} \colon \mathsf{LK} + \mathsf{QBFs}$ in sequents and quantification rules $$\frac{\phi(x/\psi), \Gamma \longrightarrow \Delta}{\forall x \phi, \Gamma \longrightarrow \Delta} (\forall -1) \qquad \frac{\Gamma \longrightarrow \Delta, \phi(x/p)}{\Gamma \longrightarrow \Delta, \forall x \phi} (\forall -r)$$ $$\frac{\phi(x/p), \Gamma \longrightarrow \Delta}{\exists x \phi, \Gamma \longrightarrow \Delta} (\exists -1) \qquad \frac{\Gamma \longrightarrow \Delta, \phi(x/\psi)}{\Gamma \longrightarrow \Delta, \exists x \phi} (\exists -r)$$ for quantifier-free formulas $\boldsymbol{\psi}$ G_1 : G with cut furmulas of the form $\exists x \, A(x,y)$ for propositional A G₀: G but cut furmulas are propositional G_i^* : G_i with tree-like proofs #### witnessing properties [CM] $\exists y \ A_n(x,y)$, where A_n is propositional, have p-size G_1^* proofs \Rightarrow $\exists f \in \mathsf{P/poly} \ \mathsf{s.t.} \ A_n(x,f(x))$ ## witnessing properties [CM] $\exists y \ A_n(x,y)$, where A_n is propositional, have p-size G_1^* proofs \Rightarrow $\exists f \in \mathsf{P/poly} \ \mathrm{s.t.} \ A_n(x,f(x))$ [CM] $\exists y \ A_n(x,y)$, where A_n is propositional, have p-size G_0 proofs \Rightarrow $\exists f \in \mathsf{NC}^1 \text{ s.t. } A_n(x,f(x))$ # witnessing properties [CM] $$\exists y \ A_n(x,y)$$, where A_n is propositional, have p-size G_1^* proofs \Rightarrow $\exists f \in \mathsf{P/poly} \ \mathrm{s.t.} \ A_n(x,f(x))$ [CM] $$\exists y \ A_n(x,y)$$, where A_n is propositional, have p-size G_0 proofs \Rightarrow $\exists f \in \mathsf{NC}^1 \text{ s.t. } A_n(x,f(x))$ [BBC] $$\exists y \ A_n(x,y)$$ have p-size EF + \forall red proofs \Rightarrow $\exists f \in P/poly \text{ s.t. } A_n(x,f(x))$ $\mbox{NP} \not\subseteq P/\mbox{poly} \Rightarrow \exists \mbox{ formulas with p-size } G_1 \mbox{ proofs but no p-size } EF + \forall \mbox{red}$ proofs $\mathsf{NP} \not\subseteq \mathsf{P/poly} \Rightarrow \exists \mathsf{ formulas with p-size } \mathsf{G_1} \mathsf{ proofs but no p-size } \mathsf{EF} + \forall \mathsf{red} \mathsf{ proofs}$ 'take $f \notin P/poly$ s.t. $T_2^1 \vdash \exists y \ f(x) = y$ ' $\mathsf{NP} \not\subseteq \mathsf{P/poly} \Rightarrow \exists \mathsf{\ formulas\ easy\ for\ } \mathsf{G}_0^* \mathsf{\ but\ hard\ for\ } \mathsf{EF} + \forall \mathsf{red}$ $\mathsf{NP} \not\subseteq \mathsf{P/poly} \Rightarrow \exists \mathsf{\ formulas\ easy\ for\ } \mathsf{G}_0^* \mathsf{\ but\ hard\ for\ } \mathsf{EF} + \forall \mathsf{red}$ $P/\mathsf{poly} \not\subseteq NC^1 \Rightarrow \exists$ formulas easy for $EF + \forall \mathsf{red}$ but hard for G_0 $\mathsf{NP} \not\subseteq \mathsf{P/poly} \Rightarrow \exists \mathsf{\ formulas\ easy\ for\ } \mathsf{G}_0^* \mathsf{\ but\ hard\ for\ } \mathsf{EF} + \forall \mathsf{red}$ $\mathsf{P}/\mathsf{poly} \not\subseteq \mathsf{NC}^1 \Rightarrow \exists \mathsf{\ formulas\ easy\ for\ EF} + \forall \mathsf{red\ but\ hard\ for\ } \mathsf{G}_0$ #### **Simulations** $\begin{aligned} \mathsf{G}_1^* \text{ p-simulates EF} + \forall \mathsf{red} \\ \text{i.e. if } \phi \text{ has an EF} + \forall \mathsf{red-proof} \ \pi \text{, it has also a } \mathsf{G}_1^* \text{ proof } f \big(|\pi| \big) \\ \text{ for a poly-time function } f \end{aligned}$ $\mathsf{NP} \not\subseteq \mathsf{P/poly} \Rightarrow \exists \mathsf{ formulas \ easy \ for \ } \mathsf{G}^*_0 \mathsf{ \ but \ hard \ for \ } \mathsf{EF} + \forall \mathsf{red}$ $\mathsf{P}/\mathsf{poly} \not\subseteq \mathsf{NC}^1 \Rightarrow \exists \mathsf{\ formulas\ easy\ for\ EF} + \forall \mathsf{red\ but\ hard\ for\ } \mathsf{G}_0$ #### **Simulations** G_1^* p-simulates $EF + \forall red$ i.e. if ϕ has an EF + \forall red-proof π , it has also a G_1^* proof $f(|\pi|)$ for a poly-time function f Open problem: G_0^* p-simulates Frege + \forall red? # Formalized strategy extraction Given an EF + \forall red proof π of a QBF $$\forall x_1 \exists y_1 \ldots \forall x_n \exists y_n \, \phi(x_1, \ldots, x_n, y_1, \ldots, y_n)$$ we can construct in $poly(|\pi|)$ -time an EF proof of $$\bigwedge_{i=1}^{n} (y_{i} = C_{i}(x_{1}, \ldots, x_{i}, y_{1}, \ldots, y_{i-1})) \rightarrow \phi(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n})$$ for some circuits C_i . # Formalized strategy extraction Given an EF + \forall red proof π of a QBF $$\forall x_1 \exists y_1 \ldots \forall x_n \exists y_n \, \phi(x_1, \ldots, x_n, y_1, \ldots, y_n)$$ we can construct in $poly(|\pi|)$ -time an EF proof of $$\bigwedge_{i=1}^{n} (y_{i} = C_{i}(x_{1}, \ldots, x_{i}, y_{1}, \ldots, y_{i-1})) \rightarrow \phi(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n})$$ for some circuits C_i . # **Applications:** Simulations (mentioned before) Normal forms of $EF + \forall red proofs$ Correspondence to intuitionistic theories 'Start with EF derivation and finish with \(\forall \text{red rules'} \) 'Start with EF derivation and finish with ∀red rules' To refute $$\exists x_1 \forall y_1 \ldots \exists x_n \forall y_n \neg \phi(x_1, \ldots, x_n, y_1, \ldots, y_n)$$ Start with $\neg \phi$ and derive in EF $$\bigvee_{i=1}^{n} (y_{i} \neq C_{i}(x_{1}, \ldots, x_{i}, y_{1}, \ldots, y_{i-1}))$$ Then apply \forall red to replace y_i 's by $C_i(x_1, \ldots, x_i, y_1, \ldots, y_{i-1})$ and derive \emptyset 'Start with EF derivation and finish with ∀red rules' To refute $$\exists x_1 \forall y_1 \ldots \exists x_n \forall y_n \neg \phi(x_1, \ldots, x_n, y_1, \ldots, y_n)$$ Start with $\neg \phi$ and derive in EF $$\bigvee_{i=1}^{n} (y_{i} \neq C_{i}(x_{1}, \ldots, x_{i}, y_{1}, \ldots, y_{i-1}))$$ Then apply \forall red to replace y_i 's by $C_i(x_1,\ldots,x_i,y_1,\ldots,y_{i-1})$ and derive \emptyset $\mathsf{EF} + \forall \mathsf{red} \ \mathsf{p}\text{-equivalent to} \ \mathsf{EF} + \forall \mathsf{red}_{0,1}$ 'Start with EF derivation and finish with ∀red rules' To refute $$\exists x_1 \forall y_1 \ldots \exists x_n \forall y_n \neg \phi(x_1, \ldots, x_n, y_1, \ldots, y_n)$$ Start with $\neg \phi$ and derive in EF $$\bigvee_{i=1}^{n} (y_{i} \neq C_{i}(x_{1}, \ldots, x_{i}, y_{1}, \ldots, y_{i-1}))$$ Then apply \forall red to replace y_i 's by $C_i(x_1,\ldots,x_i,y_1,\ldots,y_{i-1})$ and derive \emptyset $\mathsf{EF} + \forall \mathsf{red} \ \mathsf{p}\text{-equivalent to} \ \mathsf{EF} + \forall \mathsf{red}_{0,1}$ $$C_n(x_1,\ldots,x_n,y_1,\ldots,y_{n-1}) \neq 0/1 \vee \bigvee_{i=1}^{n-1} (y_i \neq C_i(x_1,\ldots,x_i,y_1,\ldots,y_{i-1}))$$ [Buss] $S_2^1 - L = \{\,0, S, +, \cdot, \leq, \left\lfloor \frac{x}{2} \right\rfloor, |x|, \#\,\}$ ``` [Buss] S_2^1 - L = \{ 0, S, +, \cdot, \leq, \left\lfloor \frac{x}{2} \right\rfloor, |x|, \# \} |x| \sim \text{ 'the length of the binary representation of } x' x \# y = 2^{|x| \cdot |y|} ``` ``` [Buss] S_2^1 - L = \{0, S, +, \cdot, \leq, \left\lfloor \frac{x}{2} \right\rfloor, |x|, \# \} \\ |x| \sim \text{ 'the length of the binary representation of } x' \\ x\#y = 2^{|x|\cdot|y|} \\ \text{Axioms: for symbols in } L ``` ``` [Buss] S_2^1 - L = \left\{ \begin{array}{l} 0, S, +, \cdot, \leq, \left\lfloor \frac{x}{2} \right\rfloor, |x|, \# \right\} \\ |x| \sim \text{ 'the length of the binary representation of } x' \\ x\#y = 2^{|x|\cdot|y|} \\ \text{Axioms: for symbols in } L \\ \text{polynomial induction: for } \Sigma_1^b\text{-formulas } A \\ A(0) \wedge \forall x \left(A(\left\lfloor \frac{x}{2} \right\rfloor) \rightarrow A(x) \right) \rightarrow \forall x \, A(x) \end{array} ``` [Buss] $$S_2^1 - L = \{\,0, S, +, \cdot, \leq, \left\lfloor \frac{x}{2} \right\rfloor, |x|, \# \,\} \\ |x| \sim \text{ 'the length of the binary representation of } x' \\ x\#y = 2^{|x|\cdot|y|} \\ \text{Axioms: for symbols in } L \\ \text{polynomial induction: for } \Sigma_1^b\text{-formulas } A \\ A(0) \land \forall x \left(A(\left\lfloor \frac{x}{2} \right\rfloor) \to A(x)\right) \to \forall x \, A(x)$$ [Buss] $$S_2^1 \vdash \exists y \ A(x,y) \text{ for } \Sigma_1^b\text{-formula } A \Rightarrow \exists \text{ p-time } f \text{ s.t. } A(x,f(x))$$ ``` [Buss] S_2^1 - L = \{0, S, +, \cdot, \leq, \left|\frac{x}{2}\right|, |x|, \#\} |x| \sim 'the length of the binary representation of x' x \# y = 2^{|x| \cdot |y|} Axioms: for symbols in L polynomial induction: for \Sigma_1^b-formulas A A(0) \land \forall x \left(A(\left| \frac{x}{2} \right|) \to A(x) \right) \to \forall x A(x) [Buss] S_2^1 \vdash \exists y \ A(x,y) for \Sigma_1^b-formula A \Rightarrow \exists p-time f s.t. A(x,f(x)) [Buss] [Cook, Urquhart] IS_2^1 - S_2^1 but with intuitionistic logic polynomial induction for \Sigma_1^{b+} formulas (no \to or \neg signs) ``` [Buss] $$S_2^1 - L = \{\,0, S, +, \cdot, \leq, \left\lfloor \frac{x}{2} \right\rfloor, |x|, \# \,\} \\ |x| \sim \text{ 'the length of the binary representation of } x' \\ x\#y = 2^{|x|\cdot|y|} \\ \text{Axioms: for symbols in } L \\ \text{polynomial induction: for } \Sigma_1^b\text{-formulas } A \\ A(0) \land \forall x \left(A(\left\lfloor \frac{x}{2} \right\rfloor) \to A(x)\right) \to \forall x \, A(x)$$ [Buss] $$S_2^1 \vdash \exists y \ A(x,y) \text{ for } \Sigma_1^b\text{-formula } A \Rightarrow \exists \text{ p-time } f \text{ s.t. } A(x,f(x))$$ [Buss] [Cook, Urquhart] $IS_2^1 - S_2^1 \text{ but with }$ intuitionistic logic polynomial induction for Σ_1^{b+} formulas (no \to or \neg signs) [Buss] $$IS_2^1 \vdash \exists y \ A(x,y) \Rightarrow \exists \text{ p-time } f \text{ s.t. } A(x,f(x))$$ first order statement QBF formulas $T(x) \longmapsto T_1(x), T_2(x), \dots$ first order statement QBF formulas $$T(x) \longmapsto T_1(x), T_2(x), \dots$$ $$\forall x \ T(x) \leftrightarrow \forall n \forall x, |x| = n \ T(x)$$ first order statement QBF formulas $$T(x) \longmapsto T_1(x), T_2(x), \dots$$ $$\forall x \ T(x) \leftrightarrow \forall n \forall x, |x| = n \ T(x)$$ $$\forall x, |x| = n \ T(x) \leftrightarrow \forall x \ \text{'quantifiers' 'open formula'}$$ first order statement QBF formulas $$T(x) \longmapsto T_1(x), T_2(x), \dots$$ $$\forall x \ T(x) \leftrightarrow \forall n \forall x, |x| = n \ T(x)$$ $$\forall x, |x| = n \ T(x) \leftrightarrow \forall x \ '\text{quantifiers' 'open formula'}$$ S_2^1 corresponds to G_1^* $$S_2^1 \vdash T \Rightarrow \exists \text{ p-size } \mathsf{G}_1^* \text{ proofs of } T_n$$ first order statement QBF formulas $$T(x) \longmapsto T_1(x), T_2(x), \dots$$ $$\forall x \ T(x) \leftrightarrow \forall n \forall x, |x| = n \ T(x)$$ $$\forall x, |x| = n \ T(x) \leftrightarrow \forall x \ \text{'quantifiers' 'open formula'}$$ S_2^1 corresponds to G_1^* $$S_2^1 \vdash T \Rightarrow \exists$$ p-size G_1^* proofs of T_n IS_2^1 corresponds to EF + \forall red $$IS_2^1 \vdash T \Rightarrow \exists$$ p-size EF + \forall red proofs of T_n $IS_2^1 \vdash$ 'EF + \forall red is sound' #### Circuit and proof complexity united \exists formulas with no p-size EF + \forall red proofs \Leftrightarrow $\mathsf{PSPACE} \not\subseteq \mathsf{P/poly} \ \mathsf{or} \ \exists \ \mathsf{formulas} \ \mathsf{with} \ \mathsf{no} \ \mathsf{p\text{-size}} \ \mathsf{EF} \ \mathsf{proofs}$ #### Circuit and proof complexity united \exists formulas with no p-size EF + \forall red proofs \Leftrightarrow PSPACE $\not\subseteq$ P/poly or \exists formulas with no p-size EF proofs ϕ_n hard formulas for EF+ $\forall {\sf red} \land {\sf PSPACE} \subseteq {\sf P/poly} \Rightarrow \phi_n$ are equivalent to hard tautologies # Thank You