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Consider the corresponding (polynomial-size) circuit 
models capturing the classes.
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Familiar Picture

How many separations do we have?

Fortunately, this is easy to fix.

Monotone = No Negations in Circuit Models
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How many separations do we have?

How did this picture come about?
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Karchmer-Wigderson '88
(Undirected st-connectivity)
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Karchmer-Wigderson '88
(Undirected st-connectivity)

Raz-Mckenzie '97
(GEN)

Potechin '10
(Directed st-connectivity)
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Familiar Picture

There is a complexity measure which 
can lower bound all of these models! 
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Not Communication
Matrix
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Theorem [Razborov '90, KW '90, Gal '98]: 

For any field F, any boolean function f,
and any matrix A over F,
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Rank Measure

Rank Measure [Razborov '90]:
 

 
Best prior lower bounds:

for a monotone function in NP.
[Razborov '90]
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There is a function g in mNL and a matrix B 
such that
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  (in particular, a simplification of                   ).
- First exponential lower bounds for monotone span 
  programs. 

Some Corollaries

Theorem: There is a function f in mP and a 
matrix A such that
 
There is a function g in mNL and a matrix B 
such that
[Babai et al '96] Quasipolynomial lower bounds

against mNP.

[Gal '98] Improved lower bounds using rank
measure (still quasipolynomial).

Equivalent to Linear Secret Sharing Schemes. 
 [KW '90]

[BW '05] Quasipolynomial against nonmonotone NC
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- Unified proof of essentially all bounds sketched earlier 
  (in particular, a simplification of                   ).
- First exponential lower bounds for monotone span 
  programs. 
- First separation between monotone span programs and
  mP/mNL/non-monotone span programs.
- ...
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The Proof

Lifting Theorem
(Our Setting)“Weak?” “Strong”

Algebraic Gaps

Complexity
Measure

On
Search Problems

“Pattern Matrices”
[Sherstov '08]

(Not just PMM,
 need more 
 careful analysis)
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Def: A search problem is a set 
S is total if every input has at least one output.

Ex. Fix an unsatisfiable CNF F. Given an assignment
x, output the index of an unsatisfied clause of F. 

Algebraic Gaps (Definition)

Def: Let                            be a total search 
problem. The algebraic gap complexity, 
gap(S), of S is the maximum k for which there 
is a polynomial                            such that

for each valid output C of S.
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Conclusion

Unified lower bounds against monotone models 
by “lifting”.

Algebraic gaps → other applications?

Average case lower bounds?

Sharpen lifting theorems further?
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